/* * Copyright (c) 2014, The Linux Foundation. All rights reserved. * Not a Contribution. * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include "AccelSensor.h" #include "sensors.h" #define FETCH_FULL_EVENT_BEFORE_RETURN 1 #define IGNORE_EVENT_TIME 10000000 #define EVENT_TYPE_ACCEL_X ABS_X #define EVENT_TYPE_ACCEL_Y ABS_Y #define EVENT_TYPE_ACCEL_Z ABS_Z #define ACCEL_CONVERT ((GRAVITY_EARTH) / 16384) /* (4 * 1G / 2^16) */ #define CONVERT_ACCEL_X ACCEL_CONVERT #define CONVERT_ACCEL_Y ACCEL_CONVERT #define CONVERT_ACCEL_Z ACCEL_CONVERT #define SYSFS_I2C_SLAVE_PATH "/device/device/" #define SYSFS_INPUT_DEV_PATH "/device/" /*****************************************************************************/ AccelSensor::AccelSensor() : SensorBase(NULL, "accelerometer"), mEnabled(0), mInputReader(6), mHasPendingEvent(false), mEnabledTime(0) { mPendingEvent.version = sizeof(sensors_event_t); mPendingEvent.sensor = SENSORS_ACCELERATION_HANDLE; mPendingEvent.type = SENSOR_TYPE_ACCELEROMETER; memset(mPendingEvent.data, 0, sizeof(mPendingEvent.data)); if (data_fd) { strlcpy(input_sysfs_path, "/sys/class/input/", sizeof(input_sysfs_path)); strlcat(input_sysfs_path, input_name, sizeof(input_sysfs_path)); strlcat(input_sysfs_path, SYSFS_I2C_SLAVE_PATH, sizeof(input_sysfs_path)); input_sysfs_path_len = strlen(input_sysfs_path); #ifdef TARGET_8610 if (access(input_sysfs_path, F_OK)) { input_sysfs_path_len -= strlen(SYSFS_I2C_SLAVE_PATH); strcpy(&input_sysfs_path[input_sysfs_path_len], SYSFS_INPUT_DEV_PATH); input_sysfs_path_len += strlen(SYSFS_INPUT_DEV_PATH); } #endif enable(0, 1); } } AccelSensor::AccelSensor(char *name) : SensorBase(NULL, "accelerometer"), mEnabled(0), mInputReader(6), mHasPendingEvent(false), mEnabledTime(0) { mPendingEvent.version = sizeof(sensors_event_t); mPendingEvent.sensor = SENSORS_ACCELERATION_HANDLE; mPendingEvent.type = SENSOR_TYPE_ACCELEROMETER; memset(mPendingEvent.data, 0, sizeof(mPendingEvent.data)); if (data_fd) { strlcpy(input_sysfs_path, SYSFS_CLASS, sizeof(input_sysfs_path)); strlcat(input_sysfs_path, name, sizeof(input_sysfs_path)); strlcat(input_sysfs_path, "/", sizeof(input_sysfs_path)); input_sysfs_path_len = strlen(input_sysfs_path); ALOGI("The accel sensor path is %s",input_sysfs_path); enable(0, 1); } } AccelSensor::AccelSensor(SensorContext *context) : SensorBase(NULL, NULL), mEnabled(0), mInputReader(6), mHasPendingEvent(false), mEnabledTime(0) { mPendingEvent.version = sizeof(sensors_event_t); mPendingEvent.sensor = context->sensor->handle; mPendingEvent.type = SENSOR_TYPE_ACCELEROMETER; memset(mPendingEvent.data, 0, sizeof(mPendingEvent.data)); strlcpy(input_sysfs_path, context->enable_path, sizeof(input_sysfs_path)); input_sysfs_path_len = strlen(input_sysfs_path); data_fd = context->data_fd; ALOGI("The accel sensor path is %s",input_sysfs_path); mUseAbsTimeStamp = false; enable(0, 1); } AccelSensor::~AccelSensor() { if (mEnabled) { enable(0, 0); } } int AccelSensor::enable(int32_t, int en) { int flags = en ? 1 : 0; char propBuf[PROPERTY_VALUE_MAX]; property_get("sensors.accel.loopback", propBuf, "0"); if (strcmp(propBuf, "1") == 0) { ALOGE("sensors.accel.loopback is set"); mEnabled = flags; return 0; } if (flags != mEnabled) { int fd; strlcpy(&input_sysfs_path[input_sysfs_path_len], SYSFS_ENABLE, SYSFS_MAXLEN); fd = open(input_sysfs_path, O_RDWR); if (fd >= 0) { char buf[2]; int err; buf[1] = 0; if (flags) { buf[0] = '1'; mEnabledTime = getTimestamp() + IGNORE_EVENT_TIME; } else { buf[0] = '0'; } err = write(fd, buf, sizeof(buf)); close(fd); mEnabled = flags; return 0; } ALOGE("AccelSensor: failed to open %s", input_sysfs_path); return -1; } return 0; } bool AccelSensor::hasPendingEvents() const { return mHasPendingEvent; } int AccelSensor::setDelay(int32_t, int64_t delay_ns) { int fd; char propBuf[PROPERTY_VALUE_MAX]; property_get("sensors.accel.loopback", propBuf, "0"); if (strcmp(propBuf, "1") == 0) { ALOGE("sensors.accel.loopback is set"); return 0; } int delay_ms = delay_ns / 1000000; strlcpy(&input_sysfs_path[input_sysfs_path_len], SYSFS_POLL_DELAY, SYSFS_MAXLEN); fd = open(input_sysfs_path, O_RDWR); if (fd >= 0) { char buf[80]; sprintf(buf, "%d", delay_ms); write(fd, buf, strlen(buf)+1); close(fd); return 0; } return -1; } int AccelSensor::readEvents(sensors_event_t* data, int count) { if (count < 1) return -EINVAL; if (mHasPendingEvent) { mHasPendingEvent = false; mPendingEvent.timestamp = getTimestamp(); *data = mPendingEvent; return mEnabled ? 1 : 0; } ssize_t n = mInputReader.fill(data_fd); if (n < 0) return n; int numEventReceived = 0; input_event const* event; #if FETCH_FULL_EVENT_BEFORE_RETURN again: #endif while (count && mInputReader.readEvent(&event)) { int type = event->type; if (type == EV_ABS) { float value = event->value; if (event->code == EVENT_TYPE_ACCEL_X) { mPendingEvent.data[0] = value * CONVERT_ACCEL_X; } else if (event->code == EVENT_TYPE_ACCEL_Y) { mPendingEvent.data[1] = value * CONVERT_ACCEL_Y; } else if (event->code == EVENT_TYPE_ACCEL_Z) { mPendingEvent.data[2] = value * CONVERT_ACCEL_Z; } } else if (type == EV_SYN) { switch ( event->code ){ case SYN_TIME_SEC: { mUseAbsTimeStamp = true; report_time = event->value*1000000000LL; } break; case SYN_TIME_NSEC: { mUseAbsTimeStamp = true; mPendingEvent.timestamp = report_time+event->value; } break; case SYN_REPORT: { if (mEnabled && mUseAbsTimeStamp) { if(mPendingEvent.timestamp >= mEnabledTime) { *data++ = mPendingEvent; numEventReceived++; } count--; mUseAbsTimeStamp = false; } else { ALOGE_IF(!mUseAbsTimeStamp, "AccelSensor:timestamp not received"); } } break; } } else { ALOGE("AccelSensor: unknown event (type=%d, code=%d)", type, event->code); } mInputReader.next(); } #if FETCH_FULL_EVENT_BEFORE_RETURN /* if we didn't read a complete event, see if we can fill and try again instead of returning with nothing and redoing poll. */ if (numEventReceived == 0 && mEnabled == 1) { n = mInputReader.fill(data_fd); if (n) goto again; } #endif return numEventReceived; } int AccelSensor::calibrate(int32_t, struct cal_cmd_t *para, struct cal_result_t *cal_result) { int fd; char temp[3][LENGTH]; char buf[3 * LENGTH]; char *token, *strsaveptr, *endptr; int i, err; off_t offset; int para1 = 0; if (para == NULL || cal_result == NULL) { ALOGE("Null pointer calibrate parameters\n"); return -1; } para1 = CMD_CAL(para->axis, para->apply_now); strlcpy(&input_sysfs_path[input_sysfs_path_len], SYSFS_CALIBRATE, SYSFS_MAXLEN); fd = open(input_sysfs_path, O_RDWR); if (fd >= 0) { snprintf(buf, sizeof(buf), "%d", para1); write(fd, buf, strlen(buf)+1); } else { ALOGE("open %s failed\n", input_sysfs_path); return -1; } if (fd >= 0) { offset = lseek(fd, 0, SEEK_SET); char *p = buf; memset(buf, 0, sizeof(buf)); err = read(fd, buf, sizeof(buf)-1); if(err < 0) { ALOGE("read error\n"); close(fd); return err; } for(i = 0; i < (int)(sizeof(temp) / LENGTH); i++, p = NULL) { token = strtok_r(p, ",", &strsaveptr); if(token == NULL) break; if(strlen(token) > LENGTH - 1) { ALOGE("token is too long\n"); close(fd); return -1; } strlcpy(temp[i], token, sizeof(temp[i])); } close(fd); for(int i = 0; i < (int)(sizeof(temp) / LENGTH); i++) { cal_result->offset[i] = strtol(temp[i], &endptr, 10); if (cal_result->offset[i] == LONG_MAX || cal_result->offset[i] == LONG_MIN) { ALOGE("cal_result->offset[%d] error value\n", i); return -1; } if (endptr == temp[i]) { ALOGE("No digits were found\n"); return -1; } } return 0; } else { ALOGE("open %s error\n", input_sysfs_path); return -1; } return 0; } int AccelSensor::initCalibrate(int32_t, struct cal_result_t *cal_result) { int fd, i, err; char buf[LENGTH]; int arry[] = {CMD_W_OFFSET_X, CMD_W_OFFSET_Y, CMD_W_OFFSET_Z}; if (cal_result == NULL) { ALOGE("Null pointer initcalibrate parameter\n"); return -1; } strlcpy(&input_sysfs_path[input_sysfs_path_len], SYSFS_CALIBRATE, SYSFS_MAXLEN); fd = open(input_sysfs_path, O_RDWR); if (fd >= 0) { int para1 = 0; for(i = 0; i < (int)(sizeof(arry) / sizeof(int)); ++i) { para1 = SET_CMD_H(cal_result->offset[i], arry[i]); snprintf(buf, sizeof(buf), "%d", para1); err = write(fd, buf, strlen(buf)+1); if(err < 0) { ALOGE("write error\n"); close(fd); return err; } memset(buf, 0, sizeof(buf)); para1 = SET_CMD_L(cal_result->offset[i], arry[i]); snprintf(buf, sizeof(buf), "%d", para1); err = write(fd, buf, strlen(buf)+1); if(err < 0) { ALOGE("write error\n"); close(fd); return err; } } memset(buf, 0, sizeof(buf)); snprintf(buf, sizeof(buf), "%d", CMD_COMPLETE); err = write(fd, buf, strlen(buf)+1); if(err < 0) { ALOGE("write error\n"); close(fd); return err; } close(fd); return 0; } ALOGE("open %s error\n", input_sysfs_path); return -1; }