/* * drivers/cpufreq/cpufreq_intelliactive.c * * Copyright (C) 2010 Google, Inc. * Copyright (C) 2014 Paul Reioux * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * Author: Mike Chan (mike@android.com) * Author: Paul Reioux (reioux@gmail.com) Modified for intelliactive */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int active_count; struct cpufreq_interactive_cpuinfo { struct timer_list cpu_timer; struct timer_list cpu_slack_timer; spinlock_t load_lock; /* protects the next 4 fields */ u64 time_in_idle; u64 time_in_idle_timestamp; u64 cputime_speedadj; u64 cputime_speedadj_timestamp; struct cpufreq_policy *policy; struct cpufreq_frequency_table *freq_table; unsigned int target_freq; unsigned int floor_freq; u64 floor_validate_time; u64 hispeed_validate_time; struct rw_semaphore enable_sem; int governor_enabled; int prev_load; unsigned int two_phase_freq; }; static DEFINE_PER_CPU(struct cpufreq_interactive_cpuinfo, cpuinfo); /* realtime thread handles frequency scaling */ static struct task_struct *speedchange_task; static cpumask_t speedchange_cpumask; static spinlock_t speedchange_cpumask_lock; static struct mutex gov_lock; /* Hi speed to bump to from lo speed when load burst (default max) */ static unsigned int hispeed_freq; /* Go to hi speed when CPU load at or above this value. */ #define DEFAULT_GO_HISPEED_LOAD 99 static unsigned long go_hispeed_load = DEFAULT_GO_HISPEED_LOAD; /* Sampling down factor to be applied to min_sample_time at max freq */ static unsigned int sampling_down_factor; /* Target load. Lower values result in higher CPU speeds. */ #define DEFAULT_TARGET_LOAD 90 static unsigned int default_target_loads[] = {DEFAULT_TARGET_LOAD}; static spinlock_t target_loads_lock; static unsigned int *target_loads = default_target_loads; static int ntarget_loads = ARRAY_SIZE(default_target_loads); /* * The minimum amount of time to spend at a frequency before we can ramp down. */ #define DEFAULT_MIN_SAMPLE_TIME (80 * USEC_PER_MSEC) static unsigned long min_sample_time = DEFAULT_MIN_SAMPLE_TIME; /* * The sample rate of the timer used to increase frequency */ #define DEFAULT_TIMER_RATE (20 * USEC_PER_MSEC) static unsigned long timer_rate = DEFAULT_TIMER_RATE; /* Busy SDF parameters*/ #define MIN_BUSY_TIME (100 * USEC_PER_MSEC) /* * Wait this long before raising speed above hispeed, by default a single * timer interval. */ #define DEFAULT_ABOVE_HISPEED_DELAY DEFAULT_TIMER_RATE static unsigned int default_above_hispeed_delay[] = { DEFAULT_ABOVE_HISPEED_DELAY }; static spinlock_t above_hispeed_delay_lock; static unsigned int *above_hispeed_delay = default_above_hispeed_delay; static int nabove_hispeed_delay = ARRAY_SIZE(default_above_hispeed_delay); /* Non-zero means indefinite speed boost active */ static int boost_val; /* Duration of a boot pulse in usecs */ static int boostpulse_duration_val = DEFAULT_MIN_SAMPLE_TIME; /* End time of boost pulse in ktime converted to usecs */ static u64 boostpulse_endtime; /* * Max additional time to wait in idle, beyond timer_rate, at speeds above * minimum before wakeup to reduce speed, or -1 if unnecessary. */ #define DEFAULT_TIMER_SLACK (4 * DEFAULT_TIMER_RATE) static int timer_slack_val = DEFAULT_TIMER_SLACK; static bool io_is_busy = 1; /* * If the max load among other CPUs is higher than up_threshold_any_cpu_load * and if the highest frequency among the other CPUs is higher than * up_threshold_any_cpu_freq then do not let the frequency to drop below * sync_freq */ static unsigned int up_threshold_any_cpu_load = 95; static unsigned int sync_freq = 475000; static unsigned int up_threshold_any_cpu_freq = 1000000; static int two_phase_freq_array[NR_CPUS] = {[0 ... NR_CPUS-1] = 1200000} ; static int cpufreq_governor_intelliactive(struct cpufreq_policy *policy, unsigned int event); #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_INTELLIACTIVE static #endif struct cpufreq_governor cpufreq_gov_intelliactive = { .name = "intelliactive", .governor = cpufreq_governor_intelliactive, .max_transition_latency = 10000000, .owner = THIS_MODULE, }; static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu, cputime64_t *wall) { cputime64_t idle_time; cputime64_t cur_wall_time; cputime64_t busy_time; cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user, kstat_cpu(cpu).cpustat.system); busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq); busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq); busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal); busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice); idle_time = cputime64_sub(cur_wall_time, busy_time); if (wall) *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time); return (cputime64_t)jiffies_to_usecs(idle_time); } static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall) { u64 idle_time = get_cpu_idle_time_us(cpu, wall); if (idle_time == -1ULL) idle_time = get_cpu_idle_time_jiffy(cpu, wall); else if (!io_is_busy) idle_time += get_cpu_iowait_time_us(cpu, wall); return idle_time; } static void cpufreq_interactive_timer_resched( struct cpufreq_interactive_cpuinfo *pcpu) { unsigned long expires; unsigned long flags; spin_lock_irqsave(&pcpu->load_lock, flags); pcpu->time_in_idle = get_cpu_idle_time(smp_processor_id(), &pcpu->time_in_idle_timestamp); pcpu->cputime_speedadj = 0; pcpu->cputime_speedadj_timestamp = pcpu->time_in_idle_timestamp; expires = jiffies + usecs_to_jiffies(timer_rate); mod_timer_pinned(&pcpu->cpu_timer, expires); if (timer_slack_val >= 0 && pcpu->target_freq > pcpu->policy->min) { expires += usecs_to_jiffies(timer_slack_val); mod_timer_pinned(&pcpu->cpu_slack_timer, expires); } spin_unlock_irqrestore(&pcpu->load_lock, flags); } /* The caller shall take enable_sem write semaphore to avoid any timer race. * The cpu_timer and cpu_slack_timer must be deactivated when calling this * function. */ static void cpufreq_interactive_timer_start(int cpu) { struct cpufreq_interactive_cpuinfo *pcpu = &per_cpu(cpuinfo, cpu); unsigned long expires = jiffies + usecs_to_jiffies(timer_rate); unsigned long flags; pcpu->cpu_timer.expires = expires; if (cpu_online(cpu)) { add_timer_on(&pcpu->cpu_timer, cpu); if (timer_slack_val >= 0 && pcpu->target_freq > pcpu->policy->min) { expires += usecs_to_jiffies(timer_slack_val); pcpu->cpu_slack_timer.expires = expires; add_timer_on(&pcpu->cpu_slack_timer, cpu); } } spin_lock_irqsave(&pcpu->load_lock, flags); pcpu->time_in_idle = get_cpu_idle_time(cpu, &pcpu->time_in_idle_timestamp); pcpu->cputime_speedadj = 0; pcpu->cputime_speedadj_timestamp = pcpu->time_in_idle_timestamp; spin_unlock_irqrestore(&pcpu->load_lock, flags); } static unsigned int freq_to_above_hispeed_delay(unsigned int freq) { int i; unsigned int ret; unsigned long flags; spin_lock_irqsave(&above_hispeed_delay_lock, flags); for (i = 0; i < nabove_hispeed_delay - 1 && freq >= above_hispeed_delay[i+1]; i += 2) ; ret = above_hispeed_delay[i]; ret = (ret > (1 * USEC_PER_MSEC)) ? (ret - (1 * USEC_PER_MSEC)) : ret; spin_unlock_irqrestore(&above_hispeed_delay_lock, flags); return ret; } static unsigned int freq_to_targetload(unsigned int freq) { int i; unsigned int ret; unsigned long flags; spin_lock_irqsave(&target_loads_lock, flags); for (i = 0; i < ntarget_loads - 1 && freq >= target_loads[i+1]; i += 2) ; ret = target_loads[i]; spin_unlock_irqrestore(&target_loads_lock, flags); return ret; } /* * If increasing frequencies never map to a lower target load then * choose_freq() will find the minimum frequency that does not exceed its * target load given the current load. */ static unsigned int choose_freq( struct cpufreq_interactive_cpuinfo *pcpu, unsigned int loadadjfreq) { unsigned int freq = pcpu->policy->cur; unsigned int prevfreq, freqmin, freqmax; unsigned int tl; int index; freqmin = 0; freqmax = UINT_MAX; do { prevfreq = freq; tl = freq_to_targetload(freq); /* * Find the lowest frequency where the computed load is less * than or equal to the target load. */ if (cpufreq_frequency_table_target( pcpu->policy, pcpu->freq_table, loadadjfreq / tl, CPUFREQ_RELATION_L, &index)) break; freq = pcpu->freq_table[index].frequency; if (freq > prevfreq) { /* The previous frequency is too low. */ freqmin = prevfreq; if (freq >= freqmax) { /* * Find the highest frequency that is less * than freqmax. */ if (cpufreq_frequency_table_target( pcpu->policy, pcpu->freq_table, freqmax - 1, CPUFREQ_RELATION_H, &index)) break; freq = pcpu->freq_table[index].frequency; if (freq == freqmin) { /* * The first frequency below freqmax * has already been found to be too * low. freqmax is the lowest speed * we found that is fast enough. */ freq = freqmax; break; } } } else if (freq < prevfreq) { /* The previous frequency is high enough. */ freqmax = prevfreq; if (freq <= freqmin) { /* * Find the lowest frequency that is higher * than freqmin. */ if (cpufreq_frequency_table_target( pcpu->policy, pcpu->freq_table, freqmin + 1, CPUFREQ_RELATION_L, &index)) break; freq = pcpu->freq_table[index].frequency; /* * If freqmax is the first frequency above * freqmin then we have already found that * this speed is fast enough. */ if (freq == freqmax) break; } } /* If same frequency chosen as previous then done. */ } while (freq != prevfreq); return freq; } static u64 update_load(int cpu) { struct cpufreq_interactive_cpuinfo *pcpu = &per_cpu(cpuinfo, cpu); u64 now; u64 now_idle; unsigned int delta_idle; unsigned int delta_time; u64 active_time; now_idle = get_cpu_idle_time(cpu, &now); delta_idle = (unsigned int)(now_idle - pcpu->time_in_idle); delta_time = (unsigned int)(now - pcpu->time_in_idle_timestamp); if (delta_time <= delta_idle) active_time = 0; else active_time = delta_time - delta_idle; pcpu->cputime_speedadj += active_time * pcpu->policy->cur; pcpu->time_in_idle = now_idle; pcpu->time_in_idle_timestamp = now; return now; } static void cpufreq_interactive_timer(unsigned long data) { u64 now; unsigned int delta_time; u64 cputime_speedadj; int cpu_load; struct cpufreq_interactive_cpuinfo *pcpu = &per_cpu(cpuinfo, data); unsigned int new_freq; unsigned int loadadjfreq; unsigned int index; unsigned long flags; bool boosted; unsigned long mod_min_sample_time; int i, max_load; unsigned int max_freq; struct cpufreq_interactive_cpuinfo *picpu; static unsigned int phase = 0; static unsigned int counter = 0; unsigned int nr_cpus; if (!down_read_trylock(&pcpu->enable_sem)) return; if (!pcpu->governor_enabled) goto exit; if (cpu_is_offline(data)) goto exit; spin_lock_irqsave(&pcpu->load_lock, flags); now = update_load(data); delta_time = (unsigned int)(now - pcpu->cputime_speedadj_timestamp); cputime_speedadj = pcpu->cputime_speedadj; spin_unlock_irqrestore(&pcpu->load_lock, flags); if (WARN_ON_ONCE(!delta_time)) goto rearm; do_div(cputime_speedadj, delta_time); loadadjfreq = (unsigned int)cputime_speedadj * 100; cpu_load = loadadjfreq / pcpu->target_freq; pcpu->prev_load = cpu_load; boosted = boost_val || now < boostpulse_endtime; if (counter < 5) { counter++; if (counter > 2) { phase = 1; } } if (cpu_load >= go_hispeed_load || boosted) { if (pcpu->target_freq < hispeed_freq) { nr_cpus = num_online_cpus(); pcpu->two_phase_freq = two_phase_freq_array[nr_cpus-1]; if (pcpu->two_phase_freq < pcpu->policy->cur) phase = 1; if (pcpu->two_phase_freq != 0 && phase == 0) { new_freq = pcpu->two_phase_freq; } else new_freq = hispeed_freq; } else { new_freq = choose_freq(pcpu, loadadjfreq); if (new_freq < hispeed_freq) new_freq = hispeed_freq; } } else { new_freq = choose_freq(pcpu, loadadjfreq); if (sync_freq && new_freq < sync_freq) { max_load = 0; max_freq = 0; for_each_online_cpu(i) { picpu = &per_cpu(cpuinfo, i); if (i == data || picpu->prev_load < up_threshold_any_cpu_load) continue; max_load = max(max_load, picpu->prev_load); max_freq = max(max_freq, picpu->target_freq); } if (max_freq > up_threshold_any_cpu_freq && max_load >= up_threshold_any_cpu_load) new_freq = sync_freq; } } if (counter > 0) { counter--; if (counter == 0) { phase = 0; } } if (pcpu->target_freq >= hispeed_freq && new_freq > pcpu->target_freq && now - pcpu->hispeed_validate_time < freq_to_above_hispeed_delay(pcpu->target_freq)) { goto rearm; } pcpu->hispeed_validate_time = now; if (cpufreq_frequency_table_target(pcpu->policy, pcpu->freq_table, new_freq, CPUFREQ_RELATION_L, &index)) goto rearm; new_freq = pcpu->freq_table[index].frequency; /* * Do not scale below floor_freq unless we have been at or above the * floor frequency for the minimum sample time since last validated. */ if (sampling_down_factor && pcpu->policy->cur == pcpu->policy->max) mod_min_sample_time = sampling_down_factor; else mod_min_sample_time = min_sample_time; if (new_freq < pcpu->floor_freq) { if (now - pcpu->floor_validate_time < mod_min_sample_time) { goto rearm; } } /* * Update the timestamp for checking whether speed has been held at * or above the selected frequency for a minimum of min_sample_time, * if not boosted to hispeed_freq. If boosted to hispeed_freq then we * allow the speed to drop as soon as the boostpulse duration expires * (or the indefinite boost is turned off). */ if (!boosted || new_freq > hispeed_freq) { pcpu->floor_freq = new_freq; pcpu->floor_validate_time = now; } if (pcpu->target_freq == new_freq) { goto rearm_if_notmax; } pcpu->target_freq = new_freq; spin_lock_irqsave(&speedchange_cpumask_lock, flags); cpumask_set_cpu(data, &speedchange_cpumask); spin_unlock_irqrestore(&speedchange_cpumask_lock, flags); wake_up_process(speedchange_task); rearm_if_notmax: /* * Already set max speed and don't see a need to change that, * wait until next idle to re-evaluate, don't need timer. */ if (pcpu->target_freq == pcpu->policy->max) goto exit; rearm: if (!timer_pending(&pcpu->cpu_timer)) cpufreq_interactive_timer_resched(pcpu); exit: up_read(&pcpu->enable_sem); return; } static void cpufreq_interactive_idle_start(void) { int cpu = smp_processor_id(); struct cpufreq_interactive_cpuinfo *pcpu = &per_cpu(cpuinfo, smp_processor_id()); int pending; u64 now; if (!down_read_trylock(&pcpu->enable_sem)) return; if (!pcpu->governor_enabled) goto exit; /* Cancel the timer if cpu is offline */ if (cpu_is_offline(cpu)) { del_timer(&pcpu->cpu_timer); del_timer(&pcpu->cpu_slack_timer); goto exit; } pending = timer_pending(&pcpu->cpu_timer); if (pcpu->target_freq != pcpu->policy->min) { /* * Entering idle while not at lowest speed. On some * platforms this can hold the other CPU(s) at that speed * even though the CPU is idle. Set a timer to re-evaluate * speed so this idle CPU doesn't hold the other CPUs above * min indefinitely. This should probably be a quirk of * the CPUFreq driver. */ if (!pending) { cpufreq_interactive_timer_resched(pcpu); now = ktime_to_us(ktime_get()); if ((pcpu->policy->cur == pcpu->policy->max) && (now - pcpu->hispeed_validate_time) > MIN_BUSY_TIME) { pcpu->floor_validate_time = now; } } } exit: up_read(&pcpu->enable_sem); } static void cpufreq_interactive_idle_end(void) { struct cpufreq_interactive_cpuinfo *pcpu = &per_cpu(cpuinfo, smp_processor_id()); if (!down_read_trylock(&pcpu->enable_sem)) return; if (!pcpu->governor_enabled) { up_read(&pcpu->enable_sem); return; } /* Arm the timer for 1-2 ticks later if not already. */ if (!timer_pending(&pcpu->cpu_timer)) { cpufreq_interactive_timer_resched(pcpu); } else if (time_after_eq(jiffies, pcpu->cpu_timer.expires)) { del_timer(&pcpu->cpu_timer); del_timer(&pcpu->cpu_slack_timer); cpufreq_interactive_timer(smp_processor_id()); } up_read(&pcpu->enable_sem); } static int cpufreq_interactive_speedchange_task(void *data) { unsigned int cpu; cpumask_t tmp_mask; unsigned long flags; struct cpufreq_interactive_cpuinfo *pcpu; while (1) { set_current_state(TASK_INTERRUPTIBLE); spin_lock_irqsave(&speedchange_cpumask_lock, flags); if (cpumask_empty(&speedchange_cpumask)) { spin_unlock_irqrestore(&speedchange_cpumask_lock, flags); schedule(); if (kthread_should_stop()) break; spin_lock_irqsave(&speedchange_cpumask_lock, flags); } set_current_state(TASK_RUNNING); tmp_mask = speedchange_cpumask; cpumask_clear(&speedchange_cpumask); spin_unlock_irqrestore(&speedchange_cpumask_lock, flags); for_each_cpu(cpu, &tmp_mask) { unsigned int j; unsigned int max_freq = 0; pcpu = &per_cpu(cpuinfo, cpu); if (!down_read_trylock(&pcpu->enable_sem)) continue; if (!pcpu->governor_enabled) { up_read(&pcpu->enable_sem); continue; } for_each_cpu(j, pcpu->policy->cpus) { struct cpufreq_interactive_cpuinfo *pjcpu = &per_cpu(cpuinfo, j); if (pjcpu->target_freq > max_freq) max_freq = pjcpu->target_freq; } if (max_freq != pcpu->policy->cur) __cpufreq_driver_target(pcpu->policy, max_freq, CPUFREQ_RELATION_H); up_read(&pcpu->enable_sem); } } return 0; } static void cpufreq_interactive_boost(void) { int i; int anyboost = 0; unsigned long flags; struct cpufreq_interactive_cpuinfo *pcpu; spin_lock_irqsave(&speedchange_cpumask_lock, flags); for_each_online_cpu(i) { pcpu = &per_cpu(cpuinfo, i); if (pcpu->target_freq < hispeed_freq) { pcpu->target_freq = hispeed_freq; cpumask_set_cpu(i, &speedchange_cpumask); pcpu->hispeed_validate_time = ktime_to_us(ktime_get()); anyboost = 1; } /* * Set floor freq and (re)start timer for when last * validated. */ pcpu->floor_freq = hispeed_freq; pcpu->floor_validate_time = ktime_to_us(ktime_get()); } spin_unlock_irqrestore(&speedchange_cpumask_lock, flags); if (anyboost) wake_up_process(speedchange_task); } static int cpufreq_interactive_notifier( struct notifier_block *nb, unsigned long val, void *data) { struct cpufreq_freqs *freq = data; struct cpufreq_interactive_cpuinfo *pcpu; int cpu; unsigned long flags; if (val == CPUFREQ_POSTCHANGE) { pcpu = &per_cpu(cpuinfo, freq->cpu); if (!down_read_trylock(&pcpu->enable_sem)) return 0; if (!pcpu->governor_enabled) { up_read(&pcpu->enable_sem); return 0; } for_each_cpu(cpu, pcpu->policy->cpus) { struct cpufreq_interactive_cpuinfo *pjcpu = &per_cpu(cpuinfo, cpu); if (cpu != freq->cpu) { if (!down_read_trylock(&pjcpu->enable_sem)) continue; if (!pjcpu->governor_enabled) { up_read(&pjcpu->enable_sem); continue; } } spin_lock_irqsave(&pjcpu->load_lock, flags); update_load(cpu); spin_unlock_irqrestore(&pjcpu->load_lock, flags); if (cpu != freq->cpu) up_read(&pjcpu->enable_sem); } up_read(&pcpu->enable_sem); } return 0; } static struct notifier_block cpufreq_notifier_block = { .notifier_call = cpufreq_interactive_notifier, }; static unsigned int *get_tokenized_data(const char *buf, int *num_tokens) { const char *cp; int i; int ntokens = 1; unsigned int *tokenized_data; int err = -EINVAL; cp = buf; while ((cp = strpbrk(cp + 1, " :"))) ntokens++; if (!(ntokens & 0x1)) goto err; tokenized_data = kmalloc(ntokens * sizeof(unsigned int), GFP_KERNEL); if (!tokenized_data) { err = -ENOMEM; goto err; } cp = buf; i = 0; while (i < ntokens) { if (sscanf(cp, "%u", &tokenized_data[i++]) != 1) goto err_kfree; cp = strpbrk(cp, " :"); if (!cp) break; cp++; } if (i != ntokens) goto err_kfree; *num_tokens = ntokens; return tokenized_data; err_kfree: kfree(tokenized_data); err: return ERR_PTR(err); } static ssize_t show_two_phase_freq (struct kobject *kobj, struct attribute *attr, char *buf) { int i = 0 ; int shift = 0 ; char *buf_pos = buf; for ( i = 0 ; i < NR_CPUS; i++) { shift = sprintf(buf_pos,"%d,",two_phase_freq_array[i]); buf_pos += shift; } *(buf_pos-1) = '\0'; return strlen(buf); } static ssize_t store_two_phase_freq(struct kobject *a, struct attribute *b, const char *buf, size_t count) { int ret = 0; if (NR_CPUS == 1) ret = sscanf(buf,"%u",&two_phase_freq_array[0]); else if (NR_CPUS == 2) ret = sscanf(buf,"%u,%u",&two_phase_freq_array[0], &two_phase_freq_array[1]); else if (NR_CPUS == 4) ret = sscanf(buf, "%u,%u,%u,%u", &two_phase_freq_array[0], &two_phase_freq_array[1], &two_phase_freq_array[2], &two_phase_freq_array[3]); if (ret < NR_CPUS) return -EINVAL; return count; } static struct global_attr two_phase_freq_attr = __ATTR(two_phase_freq, S_IRUGO | S_IWUSR, show_two_phase_freq, store_two_phase_freq); static ssize_t show_target_loads( struct kobject *kobj, struct attribute *attr, char *buf) { int i; ssize_t ret = 0; unsigned long flags; spin_lock_irqsave(&target_loads_lock, flags); for (i = 0; i < ntarget_loads; i++) ret += sprintf(buf + ret, "%u%s", target_loads[i], i & 0x1 ? ":" : " "); ret += sprintf(buf + --ret, "\n"); spin_unlock_irqrestore(&target_loads_lock, flags); return ret; } static ssize_t store_target_loads( struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ntokens; unsigned int *new_target_loads = NULL; unsigned long flags; new_target_loads = get_tokenized_data(buf, &ntokens); if (IS_ERR(new_target_loads)) return PTR_RET(new_target_loads); spin_lock_irqsave(&target_loads_lock, flags); if (target_loads != default_target_loads) kfree(target_loads); target_loads = new_target_loads; ntarget_loads = ntokens; spin_unlock_irqrestore(&target_loads_lock, flags); return count; } static struct global_attr target_loads_attr = __ATTR(target_loads, S_IRUGO | S_IWUSR, show_target_loads, store_target_loads); static ssize_t show_above_hispeed_delay( struct kobject *kobj, struct attribute *attr, char *buf) { int i; ssize_t ret = 0; unsigned long flags; spin_lock_irqsave(&above_hispeed_delay_lock, flags); for (i = 0; i < nabove_hispeed_delay; i++) ret += sprintf(buf + ret, "%u%s", above_hispeed_delay[i], i & 0x1 ? ":" : " "); ret += sprintf(buf + --ret, "\n"); spin_unlock_irqrestore(&above_hispeed_delay_lock, flags); return ret; } static ssize_t store_above_hispeed_delay( struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ntokens; unsigned int *new_above_hispeed_delay = NULL; unsigned long flags; new_above_hispeed_delay = get_tokenized_data(buf, &ntokens); if (IS_ERR(new_above_hispeed_delay)) return PTR_RET(new_above_hispeed_delay); spin_lock_irqsave(&above_hispeed_delay_lock, flags); if (above_hispeed_delay != default_above_hispeed_delay) kfree(above_hispeed_delay); above_hispeed_delay = new_above_hispeed_delay; nabove_hispeed_delay = ntokens; spin_unlock_irqrestore(&above_hispeed_delay_lock, flags); return count; } static struct global_attr above_hispeed_delay_attr = __ATTR(above_hispeed_delay, S_IRUGO | S_IWUSR, show_above_hispeed_delay, store_above_hispeed_delay); static ssize_t show_hispeed_freq(struct kobject *kobj, struct attribute *attr, char *buf) { return sprintf(buf, "%u\n", hispeed_freq); } static ssize_t store_hispeed_freq(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ret; long unsigned int val; ret = strict_strtoul(buf, 0, &val); if (ret < 0) return ret; hispeed_freq = val; return count; } static struct global_attr hispeed_freq_attr = __ATTR(hispeed_freq, 0644, show_hispeed_freq, store_hispeed_freq); static ssize_t show_sampling_down_factor(struct kobject *kobj, struct attribute *attr, char *buf) { return sprintf(buf, "%u\n", sampling_down_factor); } static ssize_t store_sampling_down_factor(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ret; long unsigned int val; ret = strict_strtoul(buf, 0, &val); if (ret < 0) return ret; sampling_down_factor = val; return count; } static struct global_attr sampling_down_factor_attr = __ATTR(sampling_down_factor, 0644, show_sampling_down_factor, store_sampling_down_factor); static ssize_t show_go_hispeed_load(struct kobject *kobj, struct attribute *attr, char *buf) { return sprintf(buf, "%lu\n", go_hispeed_load); } static ssize_t store_go_hispeed_load(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ret; unsigned long val; ret = strict_strtoul(buf, 0, &val); if (ret < 0) return ret; go_hispeed_load = val; return count; } static struct global_attr go_hispeed_load_attr = __ATTR(go_hispeed_load, 0644, show_go_hispeed_load, store_go_hispeed_load); static ssize_t show_min_sample_time(struct kobject *kobj, struct attribute *attr, char *buf) { return sprintf(buf, "%lu\n", min_sample_time); } static ssize_t store_min_sample_time(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ret; unsigned long val; ret = strict_strtoul(buf, 0, &val); if (ret < 0) return ret; min_sample_time = val; return count; } static struct global_attr min_sample_time_attr = __ATTR(min_sample_time, 0644, show_min_sample_time, store_min_sample_time); static ssize_t show_timer_rate(struct kobject *kobj, struct attribute *attr, char *buf) { return sprintf(buf, "%lu\n", timer_rate); } static ssize_t store_timer_rate(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ret; unsigned long val; ret = strict_strtoul(buf, 0, &val); if (ret < 0) return ret; timer_rate = val; return count; } static struct global_attr timer_rate_attr = __ATTR(timer_rate, 0644, show_timer_rate, store_timer_rate); static ssize_t show_timer_slack( struct kobject *kobj, struct attribute *attr, char *buf) { return sprintf(buf, "%d\n", timer_slack_val); } static ssize_t store_timer_slack( struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ret; unsigned long val; ret = kstrtol(buf, 10, &val); if (ret < 0) return ret; timer_slack_val = val; return count; } define_one_global_rw(timer_slack); static ssize_t show_boost(struct kobject *kobj, struct attribute *attr, char *buf) { return sprintf(buf, "%d\n", boost_val); } static ssize_t store_boost(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ret; unsigned long val; ret = kstrtoul(buf, 0, &val); if (ret < 0) return ret; boost_val = val; if (boost_val) { cpufreq_interactive_boost(); } return count; } define_one_global_rw(boost); static ssize_t store_boostpulse(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ret; unsigned long val; ret = kstrtoul(buf, 0, &val); if (ret < 0) return ret; boostpulse_endtime = ktime_to_us(ktime_get()) + boostpulse_duration_val; cpufreq_interactive_boost(); return count; } static struct global_attr boostpulse = __ATTR(boostpulse, 0200, NULL, store_boostpulse); static ssize_t show_boostpulse_duration( struct kobject *kobj, struct attribute *attr, char *buf) { return sprintf(buf, "%d\n", boostpulse_duration_val); } static ssize_t store_boostpulse_duration( struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ret; unsigned long val; ret = kstrtoul(buf, 0, &val); if (ret < 0) return ret; boostpulse_duration_val = val; return count; } define_one_global_rw(boostpulse_duration); static ssize_t show_io_is_busy(struct kobject *kobj, struct attribute *attr, char *buf) { return sprintf(buf, "%u\n", io_is_busy); } static ssize_t store_io_is_busy(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ret; unsigned long val; ret = kstrtoul(buf, 0, &val); if (ret < 0) return ret; io_is_busy = val; return count; } static struct global_attr io_is_busy_attr = __ATTR(io_is_busy, 0644, show_io_is_busy, store_io_is_busy); static ssize_t show_sync_freq(struct kobject *kobj, struct attribute *attr, char *buf) { return sprintf(buf, "%u\n", sync_freq); } static ssize_t store_sync_freq(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ret; unsigned long val; ret = kstrtoul(buf, 0, &val); if (ret < 0) return ret; sync_freq = val; return count; } static struct global_attr sync_freq_attr = __ATTR(sync_freq, 0644, show_sync_freq, store_sync_freq); static ssize_t show_up_threshold_any_cpu_load(struct kobject *kobj, struct attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "%u\n", up_threshold_any_cpu_load); } static ssize_t store_up_threshold_any_cpu_load(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ret; unsigned long val; ret = kstrtoul(buf, 0, &val); if (ret < 0) return ret; up_threshold_any_cpu_load = val; return count; } static struct global_attr up_threshold_any_cpu_load_attr = __ATTR(up_threshold_any_cpu_load, 0644, show_up_threshold_any_cpu_load, store_up_threshold_any_cpu_load); static ssize_t show_up_threshold_any_cpu_freq(struct kobject *kobj, struct attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "%u\n", up_threshold_any_cpu_freq); } static ssize_t store_up_threshold_any_cpu_freq(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ret; unsigned long val; ret = kstrtoul(buf, 0, &val); if (ret < 0) return ret; up_threshold_any_cpu_freq = val; return count; } static struct global_attr up_threshold_any_cpu_freq_attr = __ATTR(up_threshold_any_cpu_freq, 0644, show_up_threshold_any_cpu_freq, store_up_threshold_any_cpu_freq); static struct attribute *interactive_attributes[] = { &target_loads_attr.attr, &above_hispeed_delay_attr.attr, &hispeed_freq_attr.attr, &go_hispeed_load_attr.attr, &min_sample_time_attr.attr, &timer_rate_attr.attr, &timer_slack.attr, &boost.attr, &boostpulse.attr, &boostpulse_duration.attr, &io_is_busy_attr.attr, &sampling_down_factor_attr.attr, &sync_freq_attr.attr, &up_threshold_any_cpu_load_attr.attr, &up_threshold_any_cpu_freq_attr.attr, &two_phase_freq_attr.attr, NULL, }; static void interactive_input_event(struct input_handle *handle, unsigned int type, unsigned int code, int value) { if (type == EV_SYN && code == SYN_REPORT) { boostpulse_endtime = ktime_to_us(ktime_get()) + boostpulse_duration_val; cpufreq_interactive_boost(); } } static int interactive_input_connect(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id) { struct input_handle *handle; int error; handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL); if (!handle) return -ENOMEM; handle->dev = dev; handle->handler = handler; handle->name = "cpufreq"; error = input_register_handle(handle); if (error) goto err2; error = input_open_device(handle); if (error) goto err1; return 0; err1: input_unregister_handle(handle); err2: kfree(handle); return error; } static void interactive_input_disconnect(struct input_handle *handle) { input_close_device(handle); input_unregister_handle(handle); kfree(handle); } static const struct input_device_id interactive_ids[] = { { .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_ABSBIT, .evbit = { BIT_MASK(EV_ABS) }, .absbit = { [BIT_WORD(ABS_MT_POSITION_X)] = BIT_MASK(ABS_MT_POSITION_X) | BIT_MASK(ABS_MT_POSITION_Y) }, }, /* multi-touch touchscreen */ { .flags = INPUT_DEVICE_ID_MATCH_KEYBIT | INPUT_DEVICE_ID_MATCH_ABSBIT, .keybit = { [BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH) }, .absbit = { [BIT_WORD(ABS_X)] = BIT_MASK(ABS_X) | BIT_MASK(ABS_Y) }, }, /* touchpad */ }; static struct input_handler interactive_input_handler = { .event = interactive_input_event, .connect = interactive_input_connect, .disconnect = interactive_input_disconnect, .name = "intelliactive", .id_table = interactive_ids, }; static struct attribute_group interactive_attr_group = { .attrs = interactive_attributes, .name = "intelliactive", }; static int cpufreq_interactive_idle_notifier(struct notifier_block *nb, unsigned long val, void *data) { switch (val) { case IDLE_START: cpufreq_interactive_idle_start(); break; case IDLE_END: cpufreq_interactive_idle_end(); break; } return 0; } static struct notifier_block cpufreq_interactive_idle_nb = { .notifier_call = cpufreq_interactive_idle_notifier, }; static int cpufreq_governor_intelliactive(struct cpufreq_policy *policy, unsigned int event) { int rc; unsigned int j; struct cpufreq_interactive_cpuinfo *pcpu; struct cpufreq_frequency_table *freq_table; switch (event) { case CPUFREQ_GOV_START: if (!cpu_online(policy->cpu)) return -EINVAL; mutex_lock(&gov_lock); freq_table = cpufreq_frequency_get_table(policy->cpu); if (!hispeed_freq) hispeed_freq = policy->max; for_each_cpu(j, policy->cpus) { pcpu = &per_cpu(cpuinfo, j); pcpu->policy = policy; pcpu->target_freq = policy->cur; pcpu->freq_table = freq_table; pcpu->floor_freq = pcpu->target_freq; pcpu->floor_validate_time = ktime_to_us(ktime_get()); pcpu->hispeed_validate_time = pcpu->floor_validate_time; down_write(&pcpu->enable_sem); del_timer_sync(&pcpu->cpu_timer); del_timer_sync(&pcpu->cpu_slack_timer); cpufreq_interactive_timer_start(j); pcpu->governor_enabled = 1; up_write(&pcpu->enable_sem); } /* * Do not register the idle hook and create sysfs * entries if we have already done so. */ if (++active_count > 1) { mutex_unlock(&gov_lock); return 0; } if (!policy->cpu) rc = input_register_handler (&interactive_input_handler); rc = sysfs_create_group(cpufreq_global_kobject, &interactive_attr_group); if (rc) { mutex_unlock(&gov_lock); return rc; } idle_notifier_register(&cpufreq_interactive_idle_nb); cpufreq_register_notifier( &cpufreq_notifier_block, CPUFREQ_TRANSITION_NOTIFIER); mutex_unlock(&gov_lock); break; case CPUFREQ_GOV_STOP: mutex_lock(&gov_lock); for_each_cpu(j, policy->cpus) { pcpu = &per_cpu(cpuinfo, j); down_write(&pcpu->enable_sem); pcpu->governor_enabled = 0; pcpu->target_freq = 0; del_timer_sync(&pcpu->cpu_timer); del_timer_sync(&pcpu->cpu_slack_timer); up_write(&pcpu->enable_sem); } if (--active_count > 0) { mutex_unlock(&gov_lock); return 0; } if (!policy->cpu) input_unregister_handler(&interactive_input_handler); cpufreq_unregister_notifier( &cpufreq_notifier_block, CPUFREQ_TRANSITION_NOTIFIER); idle_notifier_unregister(&cpufreq_interactive_idle_nb); sysfs_remove_group(cpufreq_global_kobject, &interactive_attr_group); mutex_unlock(&gov_lock); break; case CPUFREQ_GOV_LIMITS: if (policy->max < policy->cur) __cpufreq_driver_target(policy, policy->max, CPUFREQ_RELATION_H); else if (policy->min > policy->cur) __cpufreq_driver_target(policy, policy->min, CPUFREQ_RELATION_L); for_each_cpu(j, policy->cpus) { pcpu = &per_cpu(cpuinfo, j); /* hold write semaphore to avoid race */ down_write(&pcpu->enable_sem); if (pcpu->governor_enabled == 0) { up_write(&pcpu->enable_sem); continue; } /* update target_freq firstly */ if (policy->max < pcpu->target_freq) pcpu->target_freq = policy->max; else if (policy->min > pcpu->target_freq) pcpu->target_freq = policy->min; /* Reschedule timer. * Delete the timers, else the timer callback may * return without re-arm the timer when failed * acquire the semaphore. This race may cause timer * stopped unexpectedly. */ del_timer_sync(&pcpu->cpu_timer); del_timer_sync(&pcpu->cpu_slack_timer); cpufreq_interactive_timer_start(j); up_write(&pcpu->enable_sem); } break; } return 0; } static void cpufreq_interactive_nop_timer(unsigned long data) { } static int __init cpufreq_intelliactive_init(void) { unsigned int i; struct cpufreq_interactive_cpuinfo *pcpu; struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 }; /* Initalize per-cpu timers */ for_each_possible_cpu(i) { pcpu = &per_cpu(cpuinfo, i); init_timer_deferrable(&pcpu->cpu_timer); pcpu->cpu_timer.function = cpufreq_interactive_timer; pcpu->cpu_timer.data = i; init_timer(&pcpu->cpu_slack_timer); pcpu->cpu_slack_timer.function = cpufreq_interactive_nop_timer; spin_lock_init(&pcpu->load_lock); init_rwsem(&pcpu->enable_sem); } spin_lock_init(&target_loads_lock); spin_lock_init(&speedchange_cpumask_lock); spin_lock_init(&above_hispeed_delay_lock); mutex_init(&gov_lock); speedchange_task = kthread_create(cpufreq_interactive_speedchange_task, NULL, "cfintelliactive"); if (IS_ERR(speedchange_task)) return PTR_ERR(speedchange_task); sched_setscheduler_nocheck(speedchange_task, SCHED_FIFO, ¶m); get_task_struct(speedchange_task); /* NB: wake up so the thread does not look hung to the freezer */ wake_up_process(speedchange_task); return cpufreq_register_governor(&cpufreq_gov_intelliactive); } #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_INTELLIACTIVE fs_initcall(cpufreq_intelliactive_init); #else module_init(cpufreq_intelliactive_init); #endif static void __exit cpufreq_interactive_exit(void) { cpufreq_unregister_governor(&cpufreq_gov_intelliactive); kthread_stop(speedchange_task); put_task_struct(speedchange_task); } module_exit(cpufreq_interactive_exit); MODULE_AUTHOR("Mike Chan "); MODULE_AUTHOR("Paul Reioux "); MODULE_DESCRIPTION("'cpufreq_intelliactive' - A cpufreq governor for " "Latency sensitive workloads based on Google's Interactive"); MODULE_LICENSE("GPL");