/* * Copyright © 2008-2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * Zou Nan hai * Xiang Hai hao * */ #include #include "i915_drv.h" #include #include "i915_trace.h" #include "i915_cmd_parser.h" #include "intel_drv.h" /* * 965+ support PIPE_CONTROL commands, which provide finer grained control * over cache flushing. */ struct pipe_control { struct drm_i915_gem_object *obj; volatile u32 *cpu_page; u32 gtt_offset; }; static inline int ring_space(struct intel_ring_buffer *ring) { int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE); if (space < 0) space += ring->size; return space; } static int gen2_render_ring_flush(struct intel_ring_buffer *ring, u32 invalidate_domains, u32 flush_domains) { u32 cmd; int ret; cmd = MI_FLUSH; if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0) cmd |= MI_NO_WRITE_FLUSH; if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER) cmd |= MI_READ_FLUSH; ret = intel_ring_begin(ring, 2); if (ret) return ret; intel_ring_emit(ring, cmd); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); return 0; } static int gen4_render_ring_flush(struct intel_ring_buffer *ring, u32 invalidate_domains, u32 flush_domains) { struct drm_device *dev = ring->dev; u32 cmd; int ret; /* * read/write caches: * * I915_GEM_DOMAIN_RENDER is always invalidated, but is * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is * also flushed at 2d versus 3d pipeline switches. * * read-only caches: * * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if * MI_READ_FLUSH is set, and is always flushed on 965. * * I915_GEM_DOMAIN_COMMAND may not exist? * * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is * invalidated when MI_EXE_FLUSH is set. * * I915_GEM_DOMAIN_VERTEX, which exists on 965, is * invalidated with every MI_FLUSH. * * TLBs: * * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER * are flushed at any MI_FLUSH. */ cmd = MI_FLUSH | MI_NO_WRITE_FLUSH; if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) cmd &= ~MI_NO_WRITE_FLUSH; if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION) cmd |= MI_EXE_FLUSH; if (invalidate_domains & I915_GEM_DOMAIN_COMMAND && (IS_G4X(dev) || IS_GEN5(dev))) cmd |= MI_INVALIDATE_ISP; ret = intel_ring_begin(ring, 2); if (ret) return ret; intel_ring_emit(ring, cmd); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); return 0; } /** * Emits a PIPE_CONTROL with a non-zero post-sync operation, for * implementing two workarounds on gen6. From section 1.4.7.1 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1: * * [DevSNB-C+{W/A}] Before any depth stall flush (including those * produced by non-pipelined state commands), software needs to first * send a PIPE_CONTROL with no bits set except Post-Sync Operation != * 0. * * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable * =1, a PIPE_CONTROL with any non-zero post-sync-op is required. * * And the workaround for these two requires this workaround first: * * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent * BEFORE the pipe-control with a post-sync op and no write-cache * flushes. * * And this last workaround is tricky because of the requirements on * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM * volume 2 part 1: * * "1 of the following must also be set: * - Render Target Cache Flush Enable ([12] of DW1) * - Depth Cache Flush Enable ([0] of DW1) * - Stall at Pixel Scoreboard ([1] of DW1) * - Depth Stall ([13] of DW1) * - Post-Sync Operation ([13] of DW1) * - Notify Enable ([8] of DW1)" * * The cache flushes require the workaround flush that triggered this * one, so we can't use it. Depth stall would trigger the same. * Post-sync nonzero is what triggered this second workaround, so we * can't use that one either. Notify enable is IRQs, which aren't * really our business. That leaves only stall at scoreboard. */ static int intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring) { struct pipe_control *pc = ring->private; u32 scratch_addr = pc->gtt_offset + 128; int ret; ret = intel_ring_begin(ring, 6); if (ret) return ret; intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5)); intel_ring_emit(ring, PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD); intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */ intel_ring_emit(ring, 0); /* low dword */ intel_ring_emit(ring, 0); /* high dword */ intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); ret = intel_ring_begin(ring, 6); if (ret) return ret; intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5)); intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE); intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */ intel_ring_emit(ring, 0); intel_ring_emit(ring, 0); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); return 0; } static int gen6_render_ring_flush(struct intel_ring_buffer *ring, u32 invalidate_domains, u32 flush_domains) { u32 flags = 0; struct pipe_control *pc = ring->private; u32 scratch_addr = pc->gtt_offset + 128; int ret; /* Force SNB workarounds for PIPE_CONTROL flushes */ ret = intel_emit_post_sync_nonzero_flush(ring); if (ret) return ret; /* Just flush everything. Experiments have shown that reducing the * number of bits based on the write domains has little performance * impact. */ if (flush_domains) { flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; /* * Ensure that any following seqno writes only happen * when the render cache is indeed flushed. */ flags |= PIPE_CONTROL_CS_STALL; } if (invalidate_domains) { flags |= PIPE_CONTROL_TLB_INVALIDATE; flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; /* * TLB invalidate requires a post-sync write. */ flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL; } ret = intel_ring_begin(ring, 4); if (ret) return ret; intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4)); intel_ring_emit(ring, flags); intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); intel_ring_emit(ring, 0); intel_ring_advance(ring); return 0; } static int gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring) { int ret; ret = intel_ring_begin(ring, 4); if (ret) return ret; intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4)); intel_ring_emit(ring, PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD); intel_ring_emit(ring, 0); intel_ring_emit(ring, 0); intel_ring_advance(ring); return 0; } static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value) { int ret; if (!ring->fbc_dirty) return 0; ret = intel_ring_begin(ring, 4); if (ret) return ret; intel_ring_emit(ring, MI_NOOP); /* WaFbcNukeOn3DBlt:ivb/hsw */ intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); intel_ring_emit(ring, MSG_FBC_REND_STATE); intel_ring_emit(ring, value); intel_ring_advance(ring); ring->fbc_dirty = false; return 0; } static int gen7_render_ring_flush(struct intel_ring_buffer *ring, u32 invalidate_domains, u32 flush_domains) { u32 flags = 0; struct pipe_control *pc = ring->private; u32 scratch_addr = pc->gtt_offset + 128; int ret; /* * Ensure that any following seqno writes only happen when the render * cache is indeed flushed. * * Workaround: 4th PIPE_CONTROL command (except the ones with only * read-cache invalidate bits set) must have the CS_STALL bit set. We * don't try to be clever and just set it unconditionally. */ flags |= PIPE_CONTROL_CS_STALL; /* Just flush everything. Experiments have shown that reducing the * number of bits based on the write domains has little performance * impact. */ if (flush_domains) { flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; } if (invalidate_domains) { flags |= PIPE_CONTROL_TLB_INVALIDATE; flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR; /* * TLB invalidate requires a post-sync write. */ flags |= PIPE_CONTROL_QW_WRITE; flags |= PIPE_CONTROL_GLOBAL_GTT_IVB; flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD; /* Workaround: we must issue a pipe_control with CS-stall bit * set before a pipe_control command that has the state cache * invalidate bit set. */ gen7_render_ring_cs_stall_wa(ring); } ret = intel_ring_begin(ring, 4); if (ret) return ret; intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4)); intel_ring_emit(ring, flags); intel_ring_emit(ring, scratch_addr); intel_ring_emit(ring, 0); intel_ring_advance(ring); if (flush_domains) return gen7_ring_fbc_flush(ring, FBC_REND_NUKE); return 0; } static void ring_write_tail(struct intel_ring_buffer *ring, u32 value) { drm_i915_private_t *dev_priv = ring->dev->dev_private; I915_WRITE_TAIL(ring, value); } u32 intel_ring_get_active_head(struct intel_ring_buffer *ring) { drm_i915_private_t *dev_priv = ring->dev->dev_private; u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ? RING_ACTHD(ring->mmio_base) : ACTHD; return I915_READ(acthd_reg); } void intel_ring_resample(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; if (!drm_core_check_feature(ring->dev, DRIVER_MODESET)) i915_kernel_lost_context(ring->dev); else { ring->head = I915_READ_HEAD(ring); ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR; ring->space = ring_space(ring); ring->last_retired_head = -1; } } static void ring_setup_phys_status_page(struct intel_ring_buffer *ring) { struct drm_i915_private *dev_priv = ring->dev->dev_private; u32 addr; addr = dev_priv->status_page_dmah->busaddr; if (INTEL_INFO(ring->dev)->gen >= 4) addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0; I915_WRITE(HWS_PGA, addr); } static int init_ring_common(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj = ring->obj; int ret = 0; u32 head; if (HAS_FORCE_WAKE(dev)) gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL); if (I915_NEED_GFX_HWS(dev)) intel_ring_setup_status_page(ring); else ring_setup_phys_status_page(ring); /* Stop the ring if it's running. */ I915_WRITE_CTL(ring, 0); I915_WRITE_HEAD(ring, 0); ring->write_tail(ring, 0); head = I915_READ_HEAD(ring) & HEAD_ADDR; /* G45 ring initialization fails to reset head to zero */ if (head != 0) { DRM_DEBUG_KMS("%s head not reset to zero " "ctl %08x head %08x tail %08x start %08x\n", ring->name, I915_READ_CTL(ring), I915_READ_HEAD(ring), I915_READ_TAIL(ring), I915_READ_START(ring)); I915_WRITE_HEAD(ring, 0); if (I915_READ_HEAD(ring) & HEAD_ADDR) { DRM_ERROR("failed to set %s head to zero " "ctl %08x head %08x tail %08x start %08x\n", ring->name, I915_READ_CTL(ring), I915_READ_HEAD(ring), I915_READ_TAIL(ring), I915_READ_START(ring)); } } /* Initialize the ring. This must happen _after_ we've cleared the ring * registers with the above sequence (the readback of the HEAD registers * also enforces ordering), otherwise the hw might lose the new ring * register values. */ I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj)); I915_WRITE_CTL(ring, ((ring->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID); /* If the head is still not zero, the ring is dead */ if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 && I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) && (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) { DRM_ERROR("%s initialization failed " "ctl %08x head %08x tail %08x start %08x\n", ring->name, I915_READ_CTL(ring), I915_READ_HEAD(ring), I915_READ_TAIL(ring), I915_READ_START(ring)); ret = -EIO; goto out; } if (!drm_core_check_feature(ring->dev, DRIVER_MODESET)) i915_kernel_lost_context(ring->dev); else { ring->head = I915_READ_HEAD(ring); ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR; ring->space = ring_space(ring); ring->last_retired_head = -1; } /* invalidate TLB */ if (ring->invalidate_tlb) ring->invalidate_tlb(ring); out: if (HAS_FORCE_WAKE(dev)) gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL); return ret; } static int init_pipe_control(struct intel_ring_buffer *ring) { struct pipe_control *pc; struct drm_i915_gem_object *obj; int ret; if (ring->private) return 0; pc = kmalloc(sizeof(*pc), GFP_KERNEL); if (!pc) return -ENOMEM; obj = i915_gem_alloc_object(ring->dev, 4096); if (obj == NULL) { DRM_ERROR("Failed to allocate seqno page\n"); ret = -ENOMEM; goto err; } i915_gem_object_set_cache_level(obj, I915_CACHE_LLC); ret = i915_gem_obj_ggtt_pin(obj, 4096, true, false); if (ret) goto err_unref; pc->gtt_offset = i915_gem_obj_ggtt_offset(obj); pc->cpu_page = kmap(sg_page(obj->pages->sgl)); if (pc->cpu_page == NULL) { ret = -ENOMEM; goto err_unpin; } DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n", ring->name, pc->gtt_offset); pc->obj = obj; ring->private = pc; return 0; err_unpin: i915_gem_object_unpin(obj); err_unref: drm_gem_object_unreference(&obj->base); err: kfree(pc); return ret; } static void cleanup_pipe_control(struct intel_ring_buffer *ring) { struct pipe_control *pc = ring->private; struct drm_i915_gem_object *obj; obj = pc->obj; kunmap(sg_page(obj->pages->sgl)); i915_gem_object_unpin(obj); drm_gem_object_unreference(&obj->base); kfree(pc); } u32 get_pipe_control_scratch_addr(struct intel_ring_buffer *ring) { struct pipe_control *pc = ring->private; if (!ring->private) return 0; return pc->gtt_offset; } static int init_render_ring(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; struct drm_i915_private *dev_priv = dev->dev_private; int ret = init_ring_common(ring); uint32_t imr; if (INTEL_INFO(dev)->gen > 3) if (!IS_VALLEYVIEW(dev)) I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH)); /* We need to disable the AsyncFlip performance optimisations in order * to use MI_WAIT_FOR_EVENT within the CS. It should already be * programmed to '1' on all products. * * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv */ if (INTEL_INFO(dev)->gen >= 6) I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE)); /* Required for the hardware to program scanline values for waiting */ if (INTEL_INFO(dev)->gen == 6) I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS)); if (IS_GEN7(dev)) { if (IS_VALLEYVIEW(dev)) { I915_WRITE(GFX_MODE_GEN7, _MASKED_BIT_ENABLE(GFX_REPLAY_MODE)); I915_WRITE(MI_MODE, I915_READ(MI_MODE) | _MASKED_BIT_ENABLE(MI_FLUSH_ENABLE)); } else I915_WRITE(GFX_MODE_GEN7, _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) | _MASKED_BIT_ENABLE(GFX_REPLAY_MODE)); } if (INTEL_INFO(dev)->gen >= 5) { ret = init_pipe_control(ring); if (ret) return ret; } if (IS_GEN6(dev)) { /* From the Sandybridge PRM, volume 1 part 3, page 24: * "If this bit is set, STCunit will have LRA as replacement * policy. [...] This bit must be reset. LRA replacement * policy is not supported." */ I915_WRITE(CACHE_MODE_0_OFFSET(dev), _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB)); /* This is not explicitly set for GEN6, so read the register. * see intel_ring_mi_set_context() for why we care. * TODO: consider explicitly setting the bit for GEN5 */ ring->itlb_before_ctx_switch = !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS); } if (INTEL_INFO(dev)->gen >= 6) I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING)); imr = ~0; if (INTEL_INFO(dev)->gen >= 7) imr &= ~GEN6_RENDER_TIMEOUT_COUNTER_EXPIRED; if (HAS_L3_GPU_CACHE(dev)) imr &= ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT; if (IS_VALLEYVIEW(dev)) imr &= ~GT_RENDER_PERFMON_BUFFER_INTERRUPT; I915_WRITE_IMR(ring, imr); return ret; } static void render_ring_cleanup(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; if (!ring->private) return; if (HAS_BROKEN_CS_TLB(dev)) drm_gem_object_unreference(to_gem_object(ring->private)); if (INTEL_INFO(dev)->gen >= 5) cleanup_pipe_control(ring); ring->private = NULL; } static void update_mboxes(struct intel_ring_buffer *ring, u32 seqno, u32 mmio_offset) { /* NB: In order to be able to do semaphore MBOX updates for varying number * of rings, it's easiest if we round up each individual update to a * multiple of 2 (since ring updates must always be a multiple of 2) * even though the actual update only requires 3 dwords. */ #define MBOX_UPDATE_DWORDS 4 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); intel_ring_emit(ring, mmio_offset); intel_ring_emit(ring, seqno); intel_ring_emit(ring, MI_NOOP); } /** * gen6_add_request - Update the semaphore mailbox registers * * @ring - ring that is adding a request * @seqno - return seqno stuck into the ring * * Update the mailbox registers in the *other* rings with the current seqno. * This acts like a signal in the canonical semaphore. */ static int gen6_add_request(struct intel_ring_buffer *ring) { int ret; ret = intel_ring_begin(ring, 4); if (ret) return ret; intel_ring_emit(ring, MI_STORE_DWORD_INDEX); intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT); intel_ring_emit(ring, ring->outstanding_lazy_request); intel_ring_emit(ring, MI_USER_INTERRUPT); intel_ring_advance(ring); return 0; } static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev, u32 seqno) { struct drm_i915_private *dev_priv = dev->dev_private; return dev_priv->last_seqno < seqno; } /** * intel_ring_sync - sync the waiter to the signaller on seqno * * @waiter - ring that is waiting * @signaller - ring which has, or will signal * @seqno - seqno which the waiter will block on */ static int gen6_ring_sync(struct intel_ring_buffer *waiter, struct intel_ring_buffer *signaller, u32 seqno) { int ret; u32 dw1 = MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER; /* Throughout all of the GEM code, seqno passed implies our current * seqno is >= the last seqno executed. However for hardware the * comparison is strictly greater than. */ seqno -= 1; WARN_ON(signaller->semaphore_register[waiter->id] == MI_SEMAPHORE_SYNC_INVALID); ret = intel_ring_begin(waiter, 4); if (ret) return ret; /* If seqno wrap happened, omit the wait with no-ops */ if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) { /* Add the Mbox update command in the Signaller ring, * this a point where the actual inter ring dependency has * been ascertained. Although this late sync could affect * the Media performance slightly but it shall improve the * residency time of individual power wells in C6 state */ u32 mbox_reg = signaller->signal_mbox[waiter->id]; /* Precautionary check */ if (mbox_reg != GEN6_NOSYNC) { ret = intel_ring_begin(signaller, MBOX_UPDATE_DWORDS); if (ret) return ret; #undef MBOX_UPDATE_DWORDS update_mboxes(signaller, (seqno + 1), mbox_reg); intel_ring_advance(signaller); } /* Add the corresponding Semaphore Wait command in the * waiter ring */ intel_ring_emit(waiter, dw1 | signaller->semaphore_register[waiter->id]); intel_ring_emit(waiter, seqno); intel_ring_emit(waiter, 0); intel_ring_emit(waiter, MI_NOOP); } else { intel_ring_emit(waiter, MI_NOOP); intel_ring_emit(waiter, MI_NOOP); intel_ring_emit(waiter, MI_NOOP); intel_ring_emit(waiter, MI_NOOP); } intel_ring_advance(waiter); return 0; } #define PIPE_CONTROL_FLUSH(ring__, addr__) \ do { \ intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \ PIPE_CONTROL_DEPTH_STALL); \ intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \ intel_ring_emit(ring__, 0); \ intel_ring_emit(ring__, 0); \ } while (0) static int pc_render_add_request(struct intel_ring_buffer *ring) { struct pipe_control *pc = ring->private; u32 scratch_addr = pc->gtt_offset + 128; int ret; /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently * incoherent with writes to memory, i.e. completely fubar, * so we need to use PIPE_NOTIFY instead. * * However, we also need to workaround the qword write * incoherence by flushing the 6 PIPE_NOTIFY buffers out to * memory before requesting an interrupt. */ ret = intel_ring_begin(ring, 32); if (ret) return ret; intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_WRITE_FLUSH | PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE); intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT); intel_ring_emit(ring, ring->outstanding_lazy_request); intel_ring_emit(ring, 0); PIPE_CONTROL_FLUSH(ring, scratch_addr); scratch_addr += 128; /* write to separate cachelines */ PIPE_CONTROL_FLUSH(ring, scratch_addr); scratch_addr += 128; PIPE_CONTROL_FLUSH(ring, scratch_addr); scratch_addr += 128; PIPE_CONTROL_FLUSH(ring, scratch_addr); scratch_addr += 128; PIPE_CONTROL_FLUSH(ring, scratch_addr); scratch_addr += 128; PIPE_CONTROL_FLUSH(ring, scratch_addr); intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_WRITE_FLUSH | PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE | PIPE_CONTROL_NOTIFY); intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT); intel_ring_emit(ring, ring->outstanding_lazy_request); intel_ring_emit(ring, 0); intel_ring_advance(ring); return 0; } static u32 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency) { /* Workaround to force correct ordering between irq and seqno writes on * ivb (and maybe also on snb) by reading from a CS register (like * ACTHD) before reading the status page. */ if (!lazy_coherency) intel_ring_get_active_head(ring); return intel_read_status_page(ring, I915_GEM_HWS_INDEX); } static u32 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency) { return intel_read_status_page(ring, I915_GEM_HWS_INDEX); } static void ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno) { intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno); } static u32 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency) { struct pipe_control *pc = ring->private; return pc->cpu_page[0]; } static void pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno) { struct pipe_control *pc = ring->private; pc->cpu_page[0] = seqno; } static bool gen5_ring_get_irq(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; unsigned long flags; if (!dev->irq_enabled) return false; spin_lock_irqsave(&dev_priv->irq_lock, flags); if (ring->irq_refcount++ == 0) ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask); spin_unlock_irqrestore(&dev_priv->irq_lock, flags); return true; } static void gen5_ring_put_irq(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; unsigned long flags; spin_lock_irqsave(&dev_priv->irq_lock, flags); if (--ring->irq_refcount == 0) ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask); spin_unlock_irqrestore(&dev_priv->irq_lock, flags); } static bool i9xx_ring_get_irq(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; unsigned long flags; if (!dev->irq_enabled) return false; spin_lock_irqsave(&dev_priv->irq_lock, flags); if (ring->irq_refcount++ == 0) { dev_priv->irq_mask &= ~ring->irq_enable_mask; I915_WRITE(IMR, dev_priv->irq_mask); POSTING_READ(IMR); } spin_unlock_irqrestore(&dev_priv->irq_lock, flags); return true; } static void i9xx_ring_put_irq(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; unsigned long flags; spin_lock_irqsave(&dev_priv->irq_lock, flags); if (--ring->irq_refcount == 0) { dev_priv->irq_mask |= ring->irq_enable_mask; I915_WRITE(IMR, dev_priv->irq_mask); POSTING_READ(IMR); } spin_unlock_irqrestore(&dev_priv->irq_lock, flags); } static bool i8xx_ring_get_irq(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; unsigned long flags; if (!dev->irq_enabled) return false; spin_lock_irqsave(&dev_priv->irq_lock, flags); if (ring->irq_refcount++ == 0) { dev_priv->irq_mask &= ~ring->irq_enable_mask; I915_WRITE16(IMR, dev_priv->irq_mask); POSTING_READ16(IMR); } spin_unlock_irqrestore(&dev_priv->irq_lock, flags); return true; } static void i8xx_ring_put_irq(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; unsigned long flags; spin_lock_irqsave(&dev_priv->irq_lock, flags); if (--ring->irq_refcount == 0) { dev_priv->irq_mask |= ring->irq_enable_mask; I915_WRITE16(IMR, dev_priv->irq_mask); POSTING_READ16(IMR); } spin_unlock_irqrestore(&dev_priv->irq_lock, flags); } void intel_ring_setup_status_page(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = ring->dev->dev_private; u32 mmio = 0; /* The ring status page addresses are no longer next to the rest of * the ring registers as of gen7. */ if (IS_GEN7(dev)) { switch (ring->id) { case RCS: mmio = RENDER_HWS_PGA_GEN7; break; case BCS: mmio = BLT_HWS_PGA_GEN7; break; case VCS: mmio = BSD_HWS_PGA_GEN7; break; case VECS: mmio = VEBOX_HWS_PGA_GEN7; break; } } else if (IS_GEN6(ring->dev)) { mmio = RING_HWS_PGA_GEN6(ring->mmio_base); } else { mmio = RING_HWS_PGA(ring->mmio_base); } I915_WRITE(mmio, (u32)ring->status_page.gfx_addr); POSTING_READ(mmio); } static int bsd_ring_flush(struct intel_ring_buffer *ring, u32 invalidate_domains, u32 flush_domains) { int ret; ret = intel_ring_begin(ring, 2); if (ret) return ret; intel_ring_emit(ring, MI_FLUSH); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); return 0; } static int i9xx_add_request(struct intel_ring_buffer *ring) { int ret; ret = intel_ring_begin(ring, 4); if (ret) return ret; intel_ring_emit(ring, MI_STORE_DWORD_INDEX); intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT); intel_ring_emit(ring, ring->outstanding_lazy_request); intel_ring_emit(ring, MI_USER_INTERRUPT); intel_ring_advance(ring); return 0; } static bool gen6_ring_get_irq(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; unsigned long flags; uint32_t imr; if (!dev->irq_enabled) return false; spin_lock_irqsave(&dev_priv->irq_lock, flags); if (ring->irq_refcount++ == 0) { imr = I915_READ_IMR(ring); imr &= ~ring->irq_enable_mask; I915_WRITE_IMR(ring, imr); ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask); } spin_unlock_irqrestore(&dev_priv->irq_lock, flags); return true; } static void gen6_ring_put_irq(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; unsigned long flags; uint32_t imr; spin_lock_irqsave(&dev_priv->irq_lock, flags); if (--ring->irq_refcount == 0) { imr = I915_READ_IMR(ring); imr |= ring->irq_enable_mask; I915_WRITE_IMR(ring, imr); ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask); } spin_unlock_irqrestore(&dev_priv->irq_lock, flags); } static bool hsw_vebox_get_irq(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; struct drm_i915_private *dev_priv = dev->dev_private; unsigned long flags; if (!dev->irq_enabled) return false; spin_lock_irqsave(&dev_priv->irq_lock, flags); if (ring->irq_refcount++ == 0) { I915_WRITE_IMR(ring, ~ring->irq_enable_mask); snb_enable_pm_irq(dev_priv, ring->irq_enable_mask); } spin_unlock_irqrestore(&dev_priv->irq_lock, flags); return true; } static void hsw_vebox_put_irq(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; struct drm_i915_private *dev_priv = dev->dev_private; unsigned long flags; if (!dev->irq_enabled) return; spin_lock_irqsave(&dev_priv->irq_lock, flags); if (--ring->irq_refcount == 0) { I915_WRITE_IMR(ring, ~0); snb_disable_pm_irq(dev_priv, ring->irq_enable_mask); } spin_unlock_irqrestore(&dev_priv->irq_lock, flags); } static int i965_dispatch_execbuffer(struct intel_ring_buffer *ring, u32 offset, u32 length, unsigned flags, void *priv_data, u32 priv_length) { int ret; ret = intel_ring_begin(ring, 2); if (ret) return ret; intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965)); intel_ring_emit(ring, offset); intel_ring_advance(ring); return 0; } /* Just userspace ABI convention to limit the wa batch bo to a resonable size */ #define I830_BATCH_LIMIT (256*1024) static int i830_dispatch_execbuffer(struct intel_ring_buffer *ring, u32 offset, u32 len, unsigned flags, void *priv_data, u32 priv_length) { int ret; if (flags & I915_DISPATCH_PINNED) { ret = intel_ring_begin(ring, 4); if (ret) return ret; intel_ring_emit(ring, MI_BATCH_BUFFER); intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE)); intel_ring_emit(ring, offset + len - 8); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); } else { struct drm_i915_gem_object *obj = ring->private; u32 cs_offset = i915_gem_obj_ggtt_offset(obj); if (len > I830_BATCH_LIMIT) return -ENOSPC; ret = intel_ring_begin(ring, 9+3); if (ret) return ret; /* Blit the batch (which has now all relocs applied) to the stable batch * scratch bo area (so that the CS never stumbles over its tlb * invalidation bug) ... */ intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD | XY_SRC_COPY_BLT_WRITE_ALPHA | XY_SRC_COPY_BLT_WRITE_RGB); intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096); intel_ring_emit(ring, 0); intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024); intel_ring_emit(ring, cs_offset); intel_ring_emit(ring, 0); intel_ring_emit(ring, 4096); intel_ring_emit(ring, offset); intel_ring_emit(ring, MI_FLUSH); /* ... and execute it. */ intel_ring_emit(ring, MI_BATCH_BUFFER); intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE)); intel_ring_emit(ring, cs_offset + len - 8); intel_ring_advance(ring); } return 0; } static int i915_dispatch_execbuffer(struct intel_ring_buffer *ring, u32 offset, u32 len, unsigned flags, void *priv_data, u32 priv_length) { int ret; ret = intel_ring_begin(ring, 2); if (ret) return ret; intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT); intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE)); intel_ring_advance(ring); return 0; } static void cleanup_status_page(struct intel_ring_buffer *ring) { struct drm_i915_gem_object *obj; obj = ring->status_page.obj; if (obj == NULL) return; kunmap(sg_page(obj->pages->sgl)); i915_gem_object_unpin(obj); drm_gem_object_unreference(&obj->base); ring->status_page.obj = NULL; } static int init_status_page(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; struct drm_i915_gem_object *obj; int ret; obj = i915_gem_alloc_object(dev, 4096); if (obj == NULL) { DRM_ERROR("Failed to allocate status page\n"); ret = -ENOMEM; goto err; } i915_gem_object_set_cache_level(obj, I915_CACHE_LLC); ret = i915_gem_obj_ggtt_pin(obj, 4096, true, false); if (ret != 0) { goto err_unref; } ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj); ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl)); if (ring->status_page.page_addr == NULL) { ret = -ENOMEM; goto err_unpin; } ring->status_page.obj = obj; memset(ring->status_page.page_addr, 0, PAGE_SIZE); DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n", ring->name, ring->status_page.gfx_addr); return 0; err_unpin: i915_gem_object_unpin(obj); err_unref: drm_gem_object_unreference(&obj->base); err: return ret; } static int init_phys_status_page(struct intel_ring_buffer *ring) { struct drm_i915_private *dev_priv = ring->dev->dev_private; if (!dev_priv->status_page_dmah) { dev_priv->status_page_dmah = drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE); if (!dev_priv->status_page_dmah) return -ENOMEM; } ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr; memset(ring->status_page.page_addr, 0, PAGE_SIZE); return 0; } static int gen6_ring_stop(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; /* check if ring is already stopped */ if (I915_READ_MODE(ring) & MODE_STOP) return -EALREADY; /* Request the ring to go idle */ I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(MODE_STOP)); /* Wait for idle */ if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) { DRM_ERROR("%s :timed out trying to stop ring", ring->name); return -ETIMEDOUT; } return 0; } static int gen6_ring_start(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; uint32_t mode; /* Clear the MI_MODE stop bit */ I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(MODE_STOP)); mode = I915_READ_MODE(ring); /* Barrier read */ return 0; } /* gen6_ring_invalidate_tlb * GFX soft resets do not invalidate TLBs, it is up to * GFX driver to explicitly invalidate TLBs post reset. */ static int gen6_ring_invalidate_tlb(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; u32 reg; int ret; if ((INTEL_INFO(dev)->gen < 6) || (!ring->stop) || (!ring->start)) return -EINVAL; /* stop the ring before sync_flush */ ret = ring->stop(ring); if ((ret) && (ret != -EALREADY)) DRM_ERROR("%s: unable to stop the ring\n", ring->name); /* Invalidate TLB */ reg = RING_INSTPM(ring->mmio_base); I915_WRITE(reg, _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE | INSTPM_SYNC_FLUSH)); if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0, 1000)) DRM_ERROR("%s: wait for SyncFlush to complete timed out\n", ring->name); /* only start if stop was done by us */ if (-EALREADY != ret) ring->start(ring); return 0; } static int intel_init_ring_buffer(struct drm_device *dev, struct intel_ring_buffer *ring) { struct drm_i915_gem_object *obj; struct drm_i915_private *dev_priv = dev->dev_private; int ret; ring->dev = dev; INIT_LIST_HEAD(&ring->active_list); INIT_LIST_HEAD(&ring->request_list); ring->size = 32 * PAGE_SIZE; memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno)); init_waitqueue_head(&ring->irq_queue); if (I915_NEED_GFX_HWS(dev)) { ret = init_status_page(ring); if (ret) return ret; } else { BUG_ON(ring->id != RCS); ret = init_phys_status_page(ring); if (ret) return ret; } obj = NULL; if (!HAS_LLC(dev)) obj = i915_gem_object_create_stolen(dev, ring->size); if (obj == NULL) obj = i915_gem_alloc_object(dev, ring->size); if (obj == NULL) { DRM_ERROR("Failed to allocate ringbuffer\n"); ret = -ENOMEM; goto err_hws; } /* mark ring buffers as read-only from GPU side by default */ obj->gt_ro = 1; ring->obj = obj; ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, true, false); if (ret) goto err_unref; ret = i915_gem_object_set_to_gtt_domain(obj, true); if (ret) goto err_unpin; ring->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj), ring->size); if (ring->virtual_start == NULL) { DRM_ERROR("Failed to map ringbuffer.\n"); ret = -EINVAL; goto err_unpin; } /* Create a timeline for HW Native Sync support*/ ret = i915_sync_timeline_create(ring->dev, ring->name, ring); if (ret) { DRM_ERROR("Sync timeline creation failed for ring %s\n", ring->name); goto err_unmap; } ret = ring->init(ring); if (ret) goto err_unmap; /* Workaround an erratum on the i830 which causes a hang if * the TAIL pointer points to within the last 2 cachelines * of the buffer. */ ring->effective_size = ring->size; if (IS_I830(ring->dev) || IS_845G(ring->dev)) ring->effective_size -= 128; return 0; err_unmap: i915_sync_timeline_destroy(ring); iounmap(ring->virtual_start); err_unpin: i915_gem_object_unpin(obj); err_unref: drm_gem_object_unreference(&obj->base); ring->obj = NULL; err_hws: cleanup_status_page(ring); return ret; } void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring) { struct drm_i915_private *dev_priv; int ret; if (ring->obj == NULL) return; /* Disable the ring buffer. The ring must be idle at this point */ dev_priv = ring->dev->dev_private; ret = intel_ring_idle(ring); if (ret) DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n", ring->name, ret); I915_WRITE_CTL(ring, 0); /* When destroying the ring timeline, we need to set * the ring->timeline to NULL and sync the irq handler, * otherwise we will hit the issue that the notify_ring() * is still be called even after destroyed the ring timeline. */ synchronize_irq(drm_dev_to_irq(ring->dev)); i915_sync_timeline_destroy(ring); iounmap(ring->virtual_start); i915_gem_object_unpin(ring->obj); drm_gem_object_unreference(&ring->obj->base); ring->obj = NULL; if (ring->cleanup) ring->cleanup(ring); cleanup_status_page(ring); } static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno) { int ret; ret = i915_wait_seqno(ring, seqno); if (!ret) i915_gem_retire_requests_ring(ring); return ret; } static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n) { struct drm_i915_gem_request *request; u32 seqno = 0; int ret; i915_gem_retire_requests_ring(ring); if (ring->last_retired_head != -1) { ring->head = ring->last_retired_head; ring->last_retired_head = -1; ring->space = ring_space(ring); if (ring->space >= n) return 0; } list_for_each_entry(request, &ring->request_list, list) { int space; if (request->tail == -1) continue; space = request->tail - (ring->tail + I915_RING_FREE_SPACE); if (space < 0) space += ring->size; if (space >= n) { seqno = request->seqno; break; } /* Consume this request in case we need more space than * is available and so need to prevent a race between * updating last_retired_head and direct reads of * I915_RING_HEAD. It also provides a nice sanity check. */ request->tail = -1; } if (seqno == 0) return -ENOSPC; ret = intel_ring_wait_seqno(ring, seqno); if (ret) return ret; if (WARN_ON(ring->last_retired_head == -1)) return -ENOSPC; ring->head = ring->last_retired_head; ring->last_retired_head = -1; ring->space = ring_space(ring); if (WARN_ON(ring->space < n)) return -ENOSPC; return 0; } static int ring_wait_for_space(struct intel_ring_buffer *ring, int n) { struct drm_device *dev = ring->dev; struct drm_i915_private *dev_priv = dev->dev_private; unsigned long end; int ret; ret = intel_ring_wait_request(ring, n); if (ret != -ENOSPC) return ret; trace_i915_ring_wait_begin(ring); /* With GEM the hangcheck timer should kick us out of the loop, * leaving it early runs the risk of corrupting GEM state (due * to running on almost untested codepaths). But on resume * timers don't work yet, so prevent a complete hang in that * case by choosing an insanely large timeout. */ end = jiffies + 60 * HZ; do { ring->head = I915_READ_HEAD(ring); ring->space = ring_space(ring); if (ring->space >= n) { trace_i915_ring_wait_end(ring); return 0; } if (dev->primary->master) { struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv; if (master_priv->sarea_priv) master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT; } msleep(1); ret = i915_gem_check_wedge(&dev_priv->gpu_error, dev_priv->mm.interruptible, ring); if (ret) return ret; } while (!time_after(jiffies, end)); trace_i915_ring_wait_end(ring); return -EBUSY; } static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring) { uint32_t __iomem *virt; int rem = ring->size - ring->tail; if (ring->space < rem) { int ret = ring_wait_for_space(ring, rem); if (ret) return ret; } virt = ring->virtual_start + ring->tail; rem /= 4; while (rem--) iowrite32(MI_NOOP, virt++); ring->tail = 0; ring->space = ring_space(ring); return 0; } int intel_ring_idle(struct intel_ring_buffer *ring) { u32 seqno; int ret; /* We need to add any requests required to flush the objects and ring */ if (ring->outstanding_lazy_request) { ret = i915_add_request(ring, NULL); if (ret) return ret; } /* Wait upon the last request to be completed */ if (list_empty(&ring->request_list)) return 0; seqno = list_entry(ring->request_list.prev, struct drm_i915_gem_request, list)->seqno; return i915_wait_seqno(ring, seqno); } static int intel_ring_alloc_seqno(struct intel_ring_buffer *ring) { if (ring->outstanding_lazy_request) return 0; return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_request); } static int __intel_ring_begin(struct intel_ring_buffer *ring, int bytes) { int ret; if (unlikely(ring->tail + bytes > ring->effective_size)) { ret = intel_wrap_ring_buffer(ring); if (unlikely(ret)) return ret; } if (unlikely(ring->space < bytes)) { ret = ring_wait_for_space(ring, bytes); if (unlikely(ret)) return ret; } ring->space -= bytes; return 0; } int intel_ring_begin(struct intel_ring_buffer *ring, int num_dwords) { drm_i915_private_t *dev_priv = ring->dev->dev_private; int ret; ret = i915_gem_check_wedge(&dev_priv->gpu_error, dev_priv->mm.interruptible, ring); if (ret) return ret; /* Preallocate the olr before touching the ring */ ret = intel_ring_alloc_seqno(ring); if (ret) return ret; return __intel_ring_begin(ring, num_dwords * sizeof(uint32_t)); } void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno) { struct drm_i915_private *dev_priv = ring->dev->dev_private; BUG_ON(ring->outstanding_lazy_request); if (INTEL_INFO(ring->dev)->gen >= 6) { I915_WRITE(RING_SYNC_0(ring->mmio_base), 0); I915_WRITE(RING_SYNC_1(ring->mmio_base), 0); if (HAS_VEBOX(ring->dev)) I915_WRITE(RING_SYNC_2(ring->mmio_base), 0); } ring->set_seqno(ring, seqno); } void intel_ring_advance(struct intel_ring_buffer *ring) { struct drm_i915_private *dev_priv = ring->dev->dev_private; ring->tail &= ring->size - 1; /* Re-schedule the hangcheck timer each time the ring is given new work * so that we can detect hangs caused by commands inserted directly * to the ring as well as bad batch buffers */ if (!dev_priv->ums.mm_suspended) i915_queue_hangcheck(ring->dev, ring->id); if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring)) return; ring->write_tail(ring, ring->tail); } static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring, u32 value) { drm_i915_private_t *dev_priv = ring->dev->dev_private; /* Every tail move must follow the sequence below */ /* Disable notification that the ring is IDLE. The GT * will then assume that it is busy and bring it out of rc6. */ I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL, _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE)); /* Clear the context id. Here be magic! */ I915_WRITE64(GEN6_BSD_RNCID, 0x0); /* Wait for the ring not to be idle, i.e. for it to wake up. */ if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) & GEN6_BSD_SLEEP_INDICATOR) == 0, 50)) DRM_ERROR("timed out waiting for the BSD ring to wake up\n"); /* Now that the ring is fully powered up, update the tail */ I915_WRITE_TAIL(ring, value); POSTING_READ(RING_TAIL(ring->mmio_base)); /* Let the ring send IDLE messages to the GT again, * and so let it sleep to conserve power when idle. */ I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL, _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE)); } static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring, u32 invalidate, u32 flush) { uint32_t cmd; int ret; ret = intel_ring_begin(ring, 4); if (ret) return ret; cmd = MI_FLUSH_DW; /* * Bspec vol 1c.5 - video engine command streamer: * "If ENABLED, all TLBs will be invalidated once the flush * operation is complete. This bit is only valid when the * Post-Sync Operation field is a value of 1h or 3h." */ if (invalidate & I915_GEM_GPU_DOMAINS) cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD | MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW; intel_ring_emit(ring, cmd); intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT); intel_ring_emit(ring, 0); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); return 0; } static int hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring, u32 offset, u32 len, unsigned flags, void *priv_data, u32 priv_length) { int ret; ret = intel_ring_begin(ring, 2); if (ret) return ret; intel_ring_emit(ring, MI_BATCH_BUFFER_START | (i915_enable_kernel_batch_copy > 0 ? 0 : MI_BATCH_PPGTT_HSW) | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW)); /* bit0-7 is the length on GEN6+ */ intel_ring_emit(ring, offset); intel_ring_advance(ring); return 0; } static int vlv_launch_cb2(struct intel_ring_buffer *ring) { int i; int ret = 0; uint32_t hws_pga; drm_i915_private_t *dev_priv = ring->dev->dev_private; /* Get HW Status Page address & point to its center */ hws_pga = 0x800 + (I915_READ(HWS_PGA) & 0xFFFFF000); ret = intel_ring_begin(ring, 8); if (ret) return ret; /* Pipe Control */ intel_ring_emit(ring, 0x7a000003); /* PipeControl DW0 */ intel_ring_emit(ring, 0x01510bc); /* DW1 */ intel_ring_emit(ring, 0); /* DW2 */ intel_ring_emit(ring, 0); /* DW3 */ intel_ring_emit(ring, 0); /* DW4 */ intel_ring_emit(ring, 0); /* NOOP */ intel_ring_emit(ring, 0); /* NOOP */ intel_ring_emit(ring, 0); /* NOOP */ intel_ring_advance(ring); /* Insert 20 Store Data Immediate commands */ for (i = 0; i < 20; i++) { ret = intel_ring_begin(ring, 4); if (ret) return ret; intel_ring_emit(ring, MI_STORE_DWORD_INDEX); intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT); intel_ring_emit(ring, 0); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); } ret = intel_ring_begin(ring, 12); if (ret) return ret; /* Start CB2 */ intel_ring_emit(ring, 0x18800800); /* BB Start - CB2 */ intel_ring_emit(ring, 0); /* Address */ intel_ring_emit(ring, 0); /* NOOP */ intel_ring_emit(ring, 0); /* NOOP */ /* Pipe Control */ intel_ring_emit(ring, 0x7a000003); /* PipeControl DW0 */ intel_ring_emit(ring, 0x01510bc); /* DW1 */ intel_ring_emit(ring, 0); /* DW2 */ intel_ring_emit(ring, 0); /* DW3 */ intel_ring_emit(ring, 0); /* DW4 */ intel_ring_emit(ring, 0); /* NOOP */ intel_ring_emit(ring, 0); /* NOOP */ intel_ring_emit(ring, 0); /* NOOP */ intel_ring_advance(ring); /* Add another 20 Store Data Immediate commands */ for (i = 0; i < 20; i++) { ret = intel_ring_begin(ring, 4); if (ret) return ret; intel_ring_emit(ring, MI_STORE_DWORD_INDEX); intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT); intel_ring_emit(ring, 0); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); } return ret; } static int gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring, u32 offset, u32 len, unsigned flags, void *priv_data, u32 priv_length) { int ret; ret = intel_ring_begin(ring, 2); if (ret) return ret; intel_ring_emit(ring, MI_BATCH_BUFFER_START | (i915_enable_kernel_batch_copy > 0 ? 0 : MI_BATCH_NON_SECURE_I965) | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965)); /* bit0-7 is the length on GEN6+ */ intel_ring_emit(ring, offset); intel_ring_advance(ring); /* Execute CB2 if requested to do so */ if ((priv_length == sizeof(u32)) && (*(u32 *)priv_data == 0xffffffff)) { if (IS_VALLEYVIEW(ring->dev)) ret = vlv_launch_cb2(ring); } return 0; } int intel_ring_disable(struct intel_ring_buffer *ring) { if (ring && ring->disable) return ring->disable(ring); else { DRM_ERROR("ring disable not supported\n"); return -EINVAL; } } static int gen6_ring_disable(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; uint32_t ring_ctl; uint32_t mi_mode; uint32_t retries = 10000; /* Request the ring to go idle */ I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(MODE_STOP)); /* Wait for idle */ do { mi_mode = I915_READ_MODE(ring); } while (retries-- && !(mi_mode & MODE_IDLE)); if (retries == 0) { DRM_ERROR("timed out trying to disable ring %d\n", ring->id); return -ETIMEDOUT; } /* Disable the ring */ ring_ctl = I915_READ_CTL(ring); ring_ctl &= (RING_NR_PAGES | RING_REPORT_MASK); I915_WRITE_CTL(ring, ring_ctl); ring_ctl = I915_READ_CTL(ring); /* Barrier read */ return ((ring_ctl & RING_VALID) == 0) ? 0 : -EIO; } int intel_ring_enable(struct intel_ring_buffer *ring) { if (ring && ring->enable) return ring->enable(ring); else { DRM_ERROR("ring enable not supported\n"); return -EINVAL; } } static int gen6_ring_enable(struct intel_ring_buffer *ring) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; uint32_t ring_ctl; uint32_t mode; /* Clear the MI_MODE stop bit */ I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(MODE_STOP)); mode = I915_READ_MODE(ring); /* Barrier read */ /* Enable the ring */ ring_ctl = I915_READ_CTL(ring); ring_ctl &= (RING_NR_PAGES | RING_REPORT_MASK); I915_WRITE_CTL(ring, ring_ctl | RING_VALID); ring_ctl = I915_READ_CTL(ring); /* Barrier read */ return ((ring_ctl & RING_VALID) == 0) ? -EIO : 0; } int intel_ring_save(struct intel_ring_buffer *ring, u32 flags) { if (ring && ring->save) return ring->save(ring, ring->saved_state, I915_RING_CONTEXT_SIZE, flags); else { DRM_ERROR("ring save not supported\n"); return -EINVAL; } } static int gen6_ring_save(struct intel_ring_buffer *ring, uint32_t *data, uint32_t max, u32 flags) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; uint32_t idx = 0; uint32_t gen = INTEL_INFO(dev)->gen; uint32_t head; uint32_t tail; uint32_t head_addr; uint32_t tail_addr; int clamp_to_tail = 0; /* Ring save only added for gen >= 7 */ WARN_ON(gen < 7); /* Save common registers */ if (max < COMMON_RING_CTX_SIZE) return -EINVAL; head = I915_READ_HEAD(ring); tail = I915_READ_TAIL(ring); head_addr = head & HEAD_ADDR; tail_addr = tail & TAIL_ADDR; if (flags & FORCE_ADVANCE) { /* The head must always chase the tail. * If the tail is beyond the head then do not allow * the head to overtake it. If the tail is less than * the head then the tail has already wrapped and * there is no problem in advancing the head or even * wrapping the head back to 0 as worst case it will * become equal to tail */ if (head_addr <= tail_addr) clamp_to_tail = 1; /* Force head to next QWORD boundary */ head_addr &= ~0x7; head_addr += 8; if (clamp_to_tail && (head_addr > tail_addr)) { head_addr = tail_addr; } else if (head_addr >= ring->size) { /* Wrap head back to start if it exceeds ring size*/ head_addr = 0; } /* Update the register */ head &= ~HEAD_ADDR; head |= (head_addr & HEAD_ADDR); DRM_DEBUG_TDR("Forced head to 0x%08x\n", head); } else if (head & 0x7) { /* Ensure head pointer is pointing to a QWORD boundary */ DRM_DEBUG_TDR("Rounding up head 0x%08x\n", head); head += 0x7; head &= ~0x7; } /* Saved with enable = 0 */ data[idx++] = I915_READ_CTL(ring) & (RING_NR_PAGES | RING_REPORT_MASK); data[idx++] = (flags & RESET_HEAD_TAIL) ? 0 : tail; if (flags & RESET_HEAD_TAIL) { /* Save head as 0 so head is reset on restore */ data[idx++] = 0; } else { /* Head will already have advanced to next instruction location * even if the current instruction caused a hang, so we just * save the current value as the value to restart at */ data[idx++] = head; } data[idx++] = I915_READ_START(ring); /* Workaround for reading DCLV registers for gen < 8 */ data[idx++] = (gen < 8) ? I915_READ(RING_PP_DIR_DCLV(&dev_priv->ring[VCS])) : I915_READ(RING_PP_DIR_DCLV(ring)); data[idx++] = (gen < 8) ? I915_READ(RING_PP_DIR_BASE(&dev_priv->ring[VCS])) : I915_READ(RING_PP_DIR_BASE(ring)); switch (ring->id) { case RCS: if (max < (COMMON_RING_CTX_SIZE + RCS_RING_CTX_SIZE)) return -EINVAL; data[idx++] = I915_READ(RENDER_HWS_PGA_GEN7); data[idx++] = I915_READ(RING_UHPTR(ring->mmio_base)); data[idx++] = I915_READ(RING_INSTPM(ring->mmio_base)); data[idx++] = I915_READ(RING_IMR(ring->mmio_base)); data[idx++] = I915_READ(CACHE_MODE_0_OFFSET(dev)); data[idx++] = I915_READ(CACHE_MODE_1); data[idx++] = I915_READ(RING_MI_MODE(ring->mmio_base)); data[idx++] = I915_READ(_3D_CHICKEN2); data[idx++] = I915_READ(_3D_CHICKEN3); data[idx++] = I915_READ(GAM_ECOCHK); data[idx++] = I915_READ(GFX_MODE_GEN7); data[idx++] = I915_READ(GEN6_RBSYNC); data[idx++] = I915_READ(GEN7_FF_THREAD_MODE); data[idx++] = I915_READ(RING_MAX_IDLE(ring->mmio_base)); break; case VCS: if (max < (COMMON_RING_CTX_SIZE + VCS_RING_CTX_SIZE)) return -EINVAL; data[idx++] = I915_READ(BSD_HWS_PGA_GEN7); data[idx++] = I915_READ(RING_MI_MODE(ring->mmio_base)); data[idx++] = I915_READ(RING_IMR(ring->mmio_base)); data[idx++] = I915_READ(RING_UHPTR(ring->mmio_base)); data[idx++] = I915_READ(RING_INSTPM(ring->mmio_base)); data[idx++] = I915_READ(RING_EXCC_GEN7(ring)); data[idx++] = I915_READ(GAC_ECO_BITS); data[idx++] = I915_READ(RING_MODE_GEN7(ring)); data[idx++] = I915_READ(GEN6_VRSYNC); data[idx++] = I915_READ(RING_MAX_IDLE(ring->mmio_base)); break; case BCS: if (max < (COMMON_RING_CTX_SIZE + BCS_RING_CTX_SIZE)) return -EINVAL; data[idx++] = I915_READ(BLT_HWS_PGA_GEN7); data[idx++] = I915_READ(RING_MI_MODE(ring->mmio_base)); data[idx++] = I915_READ(RING_IMR(ring->mmio_base)); data[idx++] = I915_READ(RING_UHPTR(ring->mmio_base)); data[idx++] = I915_READ(RING_INSTPM(ring->mmio_base)); data[idx++] = I915_READ(RING_EXCC_GEN7(ring)); data[idx++] = I915_READ(GAB_CTL); data[idx++] = I915_READ(RING_MODE_GEN7(ring)); data[idx++] = I915_READ(GEN6_BRSYNC); data[idx++] = I915_READ(GEN6_BVSYNC); data[idx++] = I915_READ(RING_MAX_IDLE(ring->mmio_base)); break; default: DRM_ERROR("Invalid ring ID %d\n", ring->id); break; } return 0; } int intel_ring_restore(struct intel_ring_buffer *ring) { if (ring && ring->restore) return ring->restore(ring, ring->saved_state, I915_RING_CONTEXT_SIZE); else { DRM_ERROR("ring restore not supported\n"); return -EINVAL; } } static int gen6_ring_restore(struct intel_ring_buffer *ring, uint32_t *data, uint32_t max) { struct drm_device *dev = ring->dev; drm_i915_private_t *dev_priv = dev->dev_private; uint32_t idx = 0; uint32_t x; /* NOTE: Registers are restored in reverse order from when * they were saved. */ switch (ring->id) { case RCS: if (max < (COMMON_RING_CTX_SIZE + RCS_RING_CTX_SIZE)) return -EINVAL; idx = COMMON_RING_CTX_SIZE + RCS_RING_CTX_SIZE - 1; I915_WRITE(RING_MAX_IDLE(ring->mmio_base), data[idx--]); I915_WRITE(GEN7_FF_THREAD_MODE, data[idx--]); I915_WRITE(GEN6_RBSYNC, data[idx--]); I915_WRITE(RING_MODE_GEN7(ring), _MASKED_BIT_ENABLE_ALL(data[idx--])); I915_WRITE(GAM_ECOCHK, data[idx--]); I915_WRITE(_3D_CHICKEN3, _MASKED_BIT_ENABLE_ALL(data[idx--])); I915_WRITE(_3D_CHICKEN2, _MASKED_BIT_ENABLE_ALL(data[idx--])); I915_WRITE(RING_MI_MODE(ring->mmio_base), _MASKED_BIT_ENABLE_ALL(data[idx--])); I915_WRITE(CACHE_MODE_1, _MASKED_BIT_ENABLE_ALL(data[idx--])); I915_WRITE(CACHE_MODE_0_OFFSET(dev), _MASKED_BIT_ENABLE_ALL(data[idx--])); I915_WRITE(RING_IMR(ring->mmio_base), data[idx--]); I915_WRITE(RING_INSTPM(ring->mmio_base), _MASKED_BIT_ENABLE_ALL(data[idx--])); I915_WRITE(RING_UHPTR(ring->mmio_base), data[idx--]); I915_WRITE(RENDER_HWS_PGA_GEN7, data[idx--]); break; case VCS: if (max < (COMMON_RING_CTX_SIZE + VCS_RING_CTX_SIZE)) return -EINVAL; idx = COMMON_RING_CTX_SIZE + VCS_RING_CTX_SIZE - 1; I915_WRITE(RING_MAX_IDLE(ring->mmio_base), data[idx--]); I915_WRITE(GEN6_VRSYNC, data[idx--]); I915_WRITE(RING_MODE_GEN7(ring), _MASKED_BIT_ENABLE_ALL(data[idx--])); I915_WRITE(GAC_ECO_BITS, data[idx--]); I915_WRITE(RING_EXCC_GEN7(ring), _MASKED_BIT_ENABLE_ALL(data[idx--])); I915_WRITE(RING_INSTPM(ring->mmio_base), _MASKED_BIT_ENABLE_ALL(data[idx--])); I915_WRITE(RING_UHPTR(ring->mmio_base), data[idx--]); I915_WRITE(RING_IMR(ring->mmio_base), data[idx--]); I915_WRITE(RING_MI_MODE(ring->mmio_base), _MASKED_BIT_ENABLE_ALL(data[idx--])); I915_WRITE(BSD_HWS_PGA_GEN7, data[idx--]); break; case BCS: if (max < (COMMON_RING_CTX_SIZE + BCS_RING_CTX_SIZE)) return -EINVAL; idx = COMMON_RING_CTX_SIZE + BCS_RING_CTX_SIZE - 1; I915_WRITE(RING_MAX_IDLE(ring->mmio_base), data[idx--]); I915_WRITE(GEN6_BVSYNC, data[idx--]); I915_WRITE(GEN6_BRSYNC, data[idx--]); I915_WRITE(RING_MODE_GEN7(ring), _MASKED_BIT_ENABLE_ALL(data[idx--])); I915_WRITE(GAB_CTL, data[idx--]); I915_WRITE(RING_EXCC_GEN7(ring), _MASKED_BIT_ENABLE_ALL(data[idx--])); I915_WRITE(RING_INSTPM(ring->mmio_base), _MASKED_BIT_ENABLE_ALL(data[idx--])); I915_WRITE(RING_UHPTR(ring->mmio_base), data[idx--]); I915_WRITE(RING_IMR(ring->mmio_base), data[idx--]); I915_WRITE(RING_MI_MODE(ring->mmio_base), _MASKED_BIT_ENABLE_ALL(data[idx--])); I915_WRITE(BLT_HWS_PGA_GEN7, data[idx--]); break; default: DRM_ERROR("Invalid ring ID %d\n", ring->id); break; } /* Restore common registers */ if (max < COMMON_RING_CTX_SIZE) return -EINVAL; idx = COMMON_RING_CTX_SIZE - 1; I915_WRITE(RING_PP_DIR_BASE(ring), data[idx--]); I915_WRITE(RING_PP_DIR_DCLV(ring), data[idx--]); /* Write ring base address before head/tail as it clears head to 0 */ I915_WRITE_START(ring, data[idx--]); x = I915_READ_START(ring); I915_WRITE_HEAD(ring, data[idx--]); I915_WRITE_TAIL(ring, data[idx--]); I915_WRITE_CTL(ring, data[idx--]); return 0; } /* Blitter support (SandyBridge+) */ static int gen6_ring_flush(struct intel_ring_buffer *ring, u32 invalidate, u32 flush) { struct drm_device *dev = ring->dev; uint32_t cmd; int ret; ret = intel_ring_begin(ring, 4); if (ret) return ret; cmd = MI_FLUSH_DW; /* * Bspec vol 1c.3 - blitter engine command streamer: * "If ENABLED, all TLBs will be invalidated once the flush * operation is complete. This bit is only valid when the * Post-Sync Operation field is a value of 1h or 3h." */ if (invalidate & I915_GEM_DOMAIN_RENDER) cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW; intel_ring_emit(ring, cmd); intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT); intel_ring_emit(ring, 0); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); if (IS_GEN7(dev) && flush) return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN); return 0; } #define CLIENT_MASK 0xE0000000 #define SUBCLIENT_MASK 0x18000000 #define MI_CLIENT 0x00000000 #define RC_CLIENT 0x60000000 #define BC_CLIENT 0x40000000 #define MEDIA_SUBCLIENT 0x10000000 static unsigned int gen7_render_get_cmd_length_mask(unsigned int cmd_header) { unsigned int client = cmd_header & CLIENT_MASK; unsigned int subclient = cmd_header & SUBCLIENT_MASK; if (client == MI_CLIENT) return 0x3F; else if (client == RC_CLIENT) { if (subclient == MEDIA_SUBCLIENT) return 0xFFFF; else return 0xFF; } DRM_ERROR("CMD: Abnormal rcs cmd length! 0x%08X\n", cmd_header); return 0; } static unsigned int gen7_bsd_get_cmd_length_mask(unsigned int cmd_header) { unsigned int client = cmd_header & CLIENT_MASK; unsigned int subclient = cmd_header & SUBCLIENT_MASK; if (client == MI_CLIENT) return 0x3F; else if (client == RC_CLIENT) { if (subclient == MEDIA_SUBCLIENT) return 0xFFF; else return 0xFF; } DRM_ERROR("CMD: Abnormal bsd cmd length! 0x%08X\n", cmd_header); return 0; } static unsigned int gen7_blt_get_cmd_length_mask(unsigned int cmd_header) { unsigned int client = cmd_header & CLIENT_MASK; if (client == MI_CLIENT) return 0x3F; else if (client == BC_CLIENT) return 0xFF; DRM_ERROR("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header); return 0; } int intel_init_render_ring_buffer(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring = &dev_priv->ring[RCS]; ring->name = "render ring"; ring->id = RCS; ring->mmio_base = RENDER_RING_BASE; if (INTEL_INFO(dev)->gen >= 6) { ring->add_request = gen6_add_request; ring->flush = gen7_render_ring_flush; if (INTEL_INFO(dev)->gen == 6) ring->flush = gen6_render_ring_flush; ring->irq_get = gen6_ring_get_irq; ring->irq_put = gen6_ring_put_irq; ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT; ring->get_seqno = gen6_ring_get_seqno; ring->set_seqno = ring_set_seqno; ring->sync_to = gen6_ring_sync; ring->enable = gen6_ring_enable; ring->disable = gen6_ring_disable; ring->save = gen6_ring_save; ring->restore = gen6_ring_restore; ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID; ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV; ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB; ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE; ring->signal_mbox[RCS] = GEN6_NOSYNC; ring->signal_mbox[VCS] = GEN6_VRSYNC; ring->signal_mbox[BCS] = GEN6_BRSYNC; ring->signal_mbox[VECS] = GEN6_VERSYNC; ring->start = gen6_ring_start; ring->stop = gen6_ring_stop; ring->invalidate_tlb = gen6_ring_invalidate_tlb; } else if (IS_GEN5(dev)) { ring->add_request = pc_render_add_request; ring->flush = gen4_render_ring_flush; ring->get_seqno = pc_render_get_seqno; ring->set_seqno = pc_render_set_seqno; ring->irq_get = gen5_ring_get_irq; ring->irq_put = gen5_ring_put_irq; ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT; } else { ring->add_request = i9xx_add_request; if (INTEL_INFO(dev)->gen < 4) ring->flush = gen2_render_ring_flush; else ring->flush = gen4_render_ring_flush; ring->get_seqno = ring_get_seqno; ring->set_seqno = ring_set_seqno; if (IS_GEN2(dev)) { ring->irq_get = i8xx_ring_get_irq; ring->irq_put = i8xx_ring_put_irq; } else { ring->irq_get = i9xx_ring_get_irq; ring->irq_put = i9xx_ring_put_irq; } ring->irq_enable_mask = I915_USER_INTERRUPT; } ring->write_tail = ring_write_tail; if (IS_HASWELL(dev)) ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer; else if (INTEL_INFO(dev)->gen >= 6) ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer; else if (INTEL_INFO(dev)->gen >= 4) ring->dispatch_execbuffer = i965_dispatch_execbuffer; else if (IS_I830(dev) || IS_845G(dev)) ring->dispatch_execbuffer = i830_dispatch_execbuffer; else ring->dispatch_execbuffer = i915_dispatch_execbuffer; ring->init = init_render_ring; ring->cleanup = render_ring_cleanup; /* Workaround batchbuffer to combat CS tlb bug. */ if (HAS_BROKEN_CS_TLB(dev)) { struct drm_i915_gem_object *obj; int ret; obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT); if (obj == NULL) { DRM_ERROR("Failed to allocate batch bo\n"); return -ENOMEM; } ret = i915_gem_obj_ggtt_pin(obj, 0, true, false); if (ret != 0) { drm_gem_object_unreference(&obj->base); DRM_ERROR("Failed to ping batch bo\n"); return ret; } ring->private = obj; } if (IS_GEN7(dev)) { if (IS_HASWELL(dev)) { ring->cmd_tables = hsw_render_ring_cmds; ring->cmd_table_count = ARRAY_SIZE(hsw_render_ring_cmds); } else { ring->cmd_tables = gen7_render_cmds; ring->cmd_table_count = ARRAY_SIZE(gen7_render_cmds); } ring->get_cmd_length_mask = gen7_render_get_cmd_length_mask; } return intel_init_ring_buffer(dev, ring); } int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring = &dev_priv->ring[RCS]; int ret; ring->name = "render ring"; ring->id = RCS; ring->mmio_base = RENDER_RING_BASE; if (INTEL_INFO(dev)->gen >= 6) { /* non-kms not supported on gen6+ */ return -ENODEV; } /* Note: gem is not supported on gen5/ilk without kms (the corresponding * gem_init ioctl returns with -ENODEV). Hence we do not need to set up * the special gen5 functions. */ ring->add_request = i9xx_add_request; if (INTEL_INFO(dev)->gen < 4) ring->flush = gen2_render_ring_flush; else ring->flush = gen4_render_ring_flush; ring->get_seqno = ring_get_seqno; ring->set_seqno = ring_set_seqno; if (IS_GEN2(dev)) { ring->irq_get = i8xx_ring_get_irq; ring->irq_put = i8xx_ring_put_irq; } else { ring->irq_get = i9xx_ring_get_irq; ring->irq_put = i9xx_ring_put_irq; } ring->irq_enable_mask = I915_USER_INTERRUPT; ring->write_tail = ring_write_tail; if (INTEL_INFO(dev)->gen >= 4) ring->dispatch_execbuffer = i965_dispatch_execbuffer; else if (IS_I830(dev) || IS_845G(dev)) ring->dispatch_execbuffer = i830_dispatch_execbuffer; else ring->dispatch_execbuffer = i915_dispatch_execbuffer; ring->init = init_render_ring; ring->cleanup = render_ring_cleanup; ring->dev = dev; INIT_LIST_HEAD(&ring->active_list); INIT_LIST_HEAD(&ring->request_list); ring->size = size; ring->effective_size = ring->size; if (IS_I830(ring->dev) || IS_845G(ring->dev)) ring->effective_size -= 128; ring->virtual_start = ioremap_wc(start, size); if (ring->virtual_start == NULL) { DRM_ERROR("can not ioremap virtual address for" " ring buffer\n"); return -ENOMEM; } if (!I915_NEED_GFX_HWS(dev)) { ret = init_phys_status_page(ring); if (ret) return ret; } return 0; } int intel_init_bsd_ring_buffer(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring = &dev_priv->ring[VCS]; ring->name = "bsd ring"; ring->id = VCS; ring->write_tail = ring_write_tail; if (IS_GEN6(dev) || IS_GEN7(dev)) { ring->mmio_base = GEN6_BSD_RING_BASE; /* gen6 bsd needs a special wa for tail updates */ if (IS_GEN6(dev)) ring->write_tail = gen6_bsd_ring_write_tail; ring->flush = gen6_bsd_ring_flush; ring->add_request = gen6_add_request; ring->get_seqno = gen6_ring_get_seqno; ring->set_seqno = ring_set_seqno; ring->irq_enable_mask = GT_BSD_USER_INTERRUPT; ring->irq_get = gen6_ring_get_irq; ring->irq_put = gen6_ring_put_irq; ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer; ring->sync_to = gen6_ring_sync; ring->enable = gen6_ring_enable; ring->disable = gen6_ring_disable; ring->save = gen6_ring_save; ring->restore = gen6_ring_restore; ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR; ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID; ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB; ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE; ring->signal_mbox[RCS] = GEN6_RVSYNC; ring->signal_mbox[VCS] = GEN6_NOSYNC; ring->signal_mbox[BCS] = GEN6_BVSYNC; ring->signal_mbox[VECS] = GEN6_VEVSYNC; ring->start = gen6_ring_start; ring->stop = gen6_ring_stop; ring->invalidate_tlb = gen6_ring_invalidate_tlb; } else { ring->mmio_base = BSD_RING_BASE; ring->flush = bsd_ring_flush; ring->add_request = i9xx_add_request; ring->get_seqno = ring_get_seqno; ring->set_seqno = ring_set_seqno; if (IS_GEN5(dev)) { ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT; ring->irq_get = gen5_ring_get_irq; ring->irq_put = gen5_ring_put_irq; } else { ring->irq_enable_mask = I915_BSD_USER_INTERRUPT; ring->irq_get = i9xx_ring_get_irq; ring->irq_put = i9xx_ring_put_irq; } ring->dispatch_execbuffer = i965_dispatch_execbuffer; } ring->init = init_ring_common; /* Enable the timeout counter for watchdog reset */ I915_WRITE_IMR(ring, ~GEN6_BSD_TIMEOUT_COUNTER_EXPIRED); if (IS_GEN7(dev)) { ring->cmd_tables = gen7_video_cmds; ring->cmd_table_count = ARRAY_SIZE(gen7_video_cmds); ring->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask; } return intel_init_ring_buffer(dev, ring); } int intel_init_blt_ring_buffer(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring = &dev_priv->ring[BCS]; ring->name = "blitter ring"; ring->id = BCS; ring->mmio_base = BLT_RING_BASE; ring->write_tail = ring_write_tail; ring->flush = gen6_ring_flush; ring->add_request = gen6_add_request; ring->get_seqno = gen6_ring_get_seqno; ring->set_seqno = ring_set_seqno; ring->irq_enable_mask = GT_BLT_USER_INTERRUPT; ring->irq_get = gen6_ring_get_irq; ring->irq_put = gen6_ring_put_irq; ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer; ring->sync_to = gen6_ring_sync; ring->enable = gen6_ring_enable; ring->disable = gen6_ring_disable; ring->save = gen6_ring_save; ring->restore = gen6_ring_restore; ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR; ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV; ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID; ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE; ring->signal_mbox[RCS] = GEN6_RBSYNC; ring->signal_mbox[VCS] = GEN6_VBSYNC; ring->signal_mbox[BCS] = GEN6_NOSYNC; ring->signal_mbox[VECS] = GEN6_VEBSYNC; ring->start = gen6_ring_start; ring->stop = gen6_ring_stop; ring->invalidate_tlb = gen6_ring_invalidate_tlb; ring->init = init_ring_common; if (IS_GEN7(dev)) { ring->cmd_tables = gen7_blt_cmds; ring->cmd_table_count = ARRAY_SIZE(gen7_blt_cmds); ring->get_cmd_length_mask = gen7_blt_get_cmd_length_mask; } return intel_init_ring_buffer(dev, ring); } int intel_init_vebox_ring_buffer(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring = &dev_priv->ring[VECS]; ring->name = "video enhancement ring"; ring->id = VECS; ring->mmio_base = VEBOX_RING_BASE; ring->write_tail = ring_write_tail; ring->flush = gen6_ring_flush; ring->add_request = gen6_add_request; ring->get_seqno = gen6_ring_get_seqno; ring->set_seqno = ring_set_seqno; ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT; ring->irq_get = hsw_vebox_get_irq; ring->irq_put = hsw_vebox_put_irq; ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer; ring->sync_to = gen6_ring_sync; ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER; ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV; ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB; ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID; ring->signal_mbox[RCS] = GEN6_RVESYNC; ring->signal_mbox[VCS] = GEN6_VVESYNC; ring->signal_mbox[BCS] = GEN6_BVESYNC; ring->signal_mbox[VECS] = GEN6_NOSYNC; ring->init = init_ring_common; if (IS_HASWELL(dev)) { ring->cmd_tables = hsw_vebox_cmds; ring->cmd_table_count = ARRAY_SIZE(hsw_vebox_cmds); /* VECS can use the same length_mask function as VCS */ ring->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask; } return intel_init_ring_buffer(dev, ring); } int intel_ring_flush_all_caches(struct intel_ring_buffer *ring) { int ret, i; if (!ring->gpu_caches_dirty) return 0; ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS); if (ret) return ret; /* WaReadAfterWriteHazard*/ /* Send a number of Store Data commands here to finish flushing hardware pipeline.This is needed in the case where the next workload tries reading from the same surface that this batch writes to. Without these StoreDWs, not all of the data will actually be flushd to the surface by the time the next batch starts reading it, possibly causing a small amount of corruption.*/ ret = intel_ring_begin(ring, 4 * 12); if (ret) return ret; for (i = 0; i < 12; i++) { intel_ring_emit(ring, MI_STORE_DWORD_INDEX); intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT); intel_ring_emit(ring, 0); intel_ring_emit(ring, MI_NOOP); } intel_ring_advance(ring); trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS); ring->gpu_caches_dirty = false; return 0; } int intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring) { uint32_t flush_domains; int ret, i; /* WaTlbInvalidateStoreDataBefore*/ /* Before pipecontrol with TLB invalidate set, need 2 store data commands (such as MI_STORE_DATA_IMM or MI_STORE_DATA_INDEX) Without this, hardware cannot guarantee the command after the PIPE_CONTROL with TLB inv will not use the old TLB values.*/ ret = intel_ring_begin(ring, 4 * 2); if (ret) return ret; for (i = 0; i < 2; i++) { intel_ring_emit(ring, MI_STORE_DWORD_INDEX); intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT); intel_ring_emit(ring, 0); intel_ring_emit(ring, MI_NOOP); } intel_ring_advance(ring); flush_domains = 0; if (ring->gpu_caches_dirty) flush_domains = I915_GEM_GPU_DOMAINS; ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains); if (ret) return ret; trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains); ring->gpu_caches_dirty = false; return 0; } int intel_ring_supports_watchdog(struct intel_ring_buffer *ring) { /* Return 1 if the ring supports watchdog reset, otherwise 0 */ if (ring) { switch (ring->id) { case RCS: case VCS: return 1; default: return 0; } } return 0; } int intel_ring_start_watchdog(struct intel_ring_buffer *ring) { int ret; drm_i915_private_t *dev_priv = ring->dev->dev_private; ret = intel_ring_begin(ring, 10); if (ret) return ret; /* i915_reg.h includes a warning to place a MI_NOOP * before a MI_LOAD_REGISTER_IMM*/ intel_ring_emit(ring, MI_NOOP); intel_ring_emit(ring, MI_NOOP); /* Set counter period */ intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); intel_ring_emit(ring, RING_THRESH(ring->mmio_base)); intel_ring_emit(ring, dev_priv->watchdog_threshold[ring->id]); intel_ring_emit(ring, MI_NOOP); /* Start counter */ intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); intel_ring_emit(ring, RING_CNTR(ring->mmio_base)); intel_ring_emit(ring, WATCHDOG_ENABLE); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); return 0; } int intel_ring_stop_watchdog(struct intel_ring_buffer *ring) { int ret; ret = intel_ring_begin(ring, 6); if (ret) return ret; /* i915_reg.h includes a warning to place a MI_NOOP * before a MI_LOAD_REGISTER_IMM*/ intel_ring_emit(ring, MI_NOOP); intel_ring_emit(ring, MI_NOOP); intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); intel_ring_emit(ring, RING_CNTR(ring->mmio_base)); switch (ring->id) { default: case RCS: intel_ring_emit(ring, RCS_WATCHDOG_DISABLE); break; case VCS: intel_ring_emit(ring, VCS_WATCHDOG_DISABLE); break; } intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); return 0; }