/* * linux/arch/arm/kernel/arch_timer.c * * Copyright (C) 2011 ARM Ltd. * All Rights Reserved * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static unsigned long arch_timer_rate; static int arch_timer_ppi; static int arch_timer_ppi2; static int is_irq_percpu; static struct clock_event_device __percpu **arch_timer_evt; static void __iomem *timer_base; static u32 timer_reg_read_cp15(int reg); static void timer_reg_write_cp15(int reg, u32 val); static inline cycle_t counter_get_cntpct_cp15(void); static inline cycle_t counter_get_cntvct_cp15(void); static u32 timer_reg_read_mem(int reg); static void timer_reg_write_mem(int reg, u32 val); static inline cycle_t counter_get_cntpct_mem(void); static inline cycle_t counter_get_cntvct_mem(void); struct arch_timer_operations { void (*reg_write)(int, u32); u32 (*reg_read)(int); cycle_t (*get_cntpct)(void); cycle_t (*get_cntvct)(void); }; static struct arch_timer_operations arch_timer_ops_cp15 = { .reg_read = &timer_reg_read_cp15, .reg_write = &timer_reg_write_cp15, .get_cntpct = &counter_get_cntpct_cp15, .get_cntvct = &counter_get_cntvct_cp15, }; static struct arch_timer_operations arch_timer_ops_mem = { .reg_read = &timer_reg_read_mem, .reg_write = &timer_reg_write_mem, .get_cntpct = &counter_get_cntpct_mem, .get_cntvct = &counter_get_cntvct_mem, }; static struct arch_timer_operations *arch_specific_timer = &arch_timer_ops_cp15; /* * Architected system timer support. */ #define ARCH_TIMER_CTRL_ENABLE (1 << 0) #define ARCH_TIMER_CTRL_IT_MASK (1 << 1) #define ARCH_TIMER_CTRL_IT_STAT (1 << 2) #define ARCH_TIMER_REG_CTRL 0 #define ARCH_TIMER_REG_FREQ 1 #define ARCH_TIMER_REG_TVAL 2 /* Iomapped Register Offsets */ #define QTIMER_CNTP_LOW_REG 0x000 #define QTIMER_CNTP_HIGH_REG 0x004 #define QTIMER_CNTV_LOW_REG 0x008 #define QTIMER_CNTV_HIGH_REG 0x00C #define QTIMER_CTRL_REG 0x02C #define QTIMER_FREQ_REG 0x010 #define QTIMER_CNTP_TVAL_REG 0x028 #define QTIMER_CNTV_TVAL_REG 0x038 static void timer_reg_write_mem(int reg, u32 val) { switch (reg) { case ARCH_TIMER_REG_CTRL: __raw_writel(val, timer_base + QTIMER_CTRL_REG); break; case ARCH_TIMER_REG_TVAL: __raw_writel(val, timer_base + QTIMER_CNTP_TVAL_REG); break; } } static void timer_reg_write_cp15(int reg, u32 val) { switch (reg) { case ARCH_TIMER_REG_CTRL: asm volatile("mcr p15, 0, %0, c14, c2, 1" : : "r" (val)); break; case ARCH_TIMER_REG_TVAL: asm volatile("mcr p15, 0, %0, c14, c2, 0" : : "r" (val)); break; } isb(); } static u32 timer_reg_read_mem(int reg) { u32 val; switch (reg) { case ARCH_TIMER_REG_CTRL: val = __raw_readl(timer_base + QTIMER_CTRL_REG); break; case ARCH_TIMER_REG_FREQ: val = __raw_readl(timer_base + QTIMER_FREQ_REG); break; case ARCH_TIMER_REG_TVAL: val = __raw_readl(timer_base + QTIMER_CNTP_TVAL_REG); break; default: BUG(); } return val; } static u32 timer_reg_read_cp15(int reg) { u32 val; switch (reg) { case ARCH_TIMER_REG_CTRL: asm volatile("mrc p15, 0, %0, c14, c2, 1" : "=r" (val)); break; case ARCH_TIMER_REG_FREQ: asm volatile("mrc p15, 0, %0, c14, c0, 0" : "=r" (val)); break; case ARCH_TIMER_REG_TVAL: asm volatile("mrc p15, 0, %0, c14, c2, 0" : "=r" (val)); break; default: BUG(); } return val; } static irqreturn_t arch_timer_handler(int irq, void *dev_id) { struct clock_event_device *evt; unsigned long ctrl; ctrl = arch_specific_timer->reg_read(ARCH_TIMER_REG_CTRL); if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { ctrl |= ARCH_TIMER_CTRL_IT_MASK; arch_specific_timer->reg_write(ARCH_TIMER_REG_CTRL, ctrl); evt = *__this_cpu_ptr(arch_timer_evt); evt->event_handler(evt); return IRQ_HANDLED; } return IRQ_NONE; } static void arch_timer_disable(void) { unsigned long ctrl; ctrl = arch_specific_timer->reg_read(ARCH_TIMER_REG_CTRL); ctrl &= ~ARCH_TIMER_CTRL_ENABLE; arch_specific_timer->reg_write(ARCH_TIMER_REG_CTRL, ctrl); } static void arch_timer_set_mode(enum clock_event_mode mode, struct clock_event_device *clk) { unsigned long ctrl; switch (mode) { case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_SHUTDOWN: arch_timer_disable(); break; case CLOCK_EVT_MODE_ONESHOT: ctrl = arch_specific_timer->reg_read(ARCH_TIMER_REG_CTRL); ctrl |= ARCH_TIMER_CTRL_ENABLE; arch_specific_timer->reg_write(ARCH_TIMER_REG_CTRL, ctrl); default: break; } } static int arch_timer_set_next_event(unsigned long evt, struct clock_event_device *unused) { unsigned long ctrl; ctrl = arch_specific_timer->reg_read(ARCH_TIMER_REG_CTRL); ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; arch_specific_timer->reg_write(ARCH_TIMER_REG_CTRL, ctrl); arch_specific_timer->reg_write(ARCH_TIMER_REG_TVAL, evt); return 0; } static int __cpuinit arch_timer_setup(struct clock_event_device *clk) { /* setup clock event only once for CPU 0 */ if (!smp_processor_id() && clk->irq == arch_timer_ppi) return 0; /* Be safe... */ arch_timer_disable(); clk->features = CLOCK_EVT_FEAT_ONESHOT; clk->name = "arch_sys_timer"; clk->rating = 450; clk->set_mode = arch_timer_set_mode; clk->set_next_event = arch_timer_set_next_event; clk->irq = arch_timer_ppi; clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff); *__this_cpu_ptr(arch_timer_evt) = clk; enable_percpu_irq(clk->irq, 0); if (arch_timer_ppi2) enable_percpu_irq(arch_timer_ppi2, 0); return 0; } /* Is the optional system timer available? */ static int local_timer_is_architected(void) { return (cpu_architecture() >= CPU_ARCH_ARMv7) && ((read_cpuid_ext(CPUID_EXT_PFR1) >> 16) & 0xf) == 1; } static int arch_timer_available(void) { unsigned long freq; if (arch_timer_rate == 0) { arch_specific_timer->reg_write(ARCH_TIMER_REG_CTRL, 0); freq = arch_specific_timer->reg_read(ARCH_TIMER_REG_FREQ); /* Check the timer frequency. */ if (freq == 0) { pr_warn("Architected timer frequency not available\n"); return -EINVAL; } arch_timer_rate = freq; pr_info("Architected local timer running at %lu.%02luMHz.\n", freq / 1000000, (freq / 10000) % 100); } return 0; } static inline cycle_t counter_get_cntpct_mem(void) { u32 cvall, cvalh, thigh; do { cvalh = __raw_readl(timer_base + QTIMER_CNTP_HIGH_REG); cvall = __raw_readl(timer_base + QTIMER_CNTP_LOW_REG); thigh = __raw_readl(timer_base + QTIMER_CNTP_HIGH_REG); } while (cvalh != thigh); return ((cycle_t) cvalh << 32) | cvall; } static inline cycle_t counter_get_cntpct_cp15(void) { u32 cvall, cvalh; asm volatile("mrrc p15, 0, %0, %1, c14" : "=r" (cvall), "=r" (cvalh)); return ((cycle_t) cvalh << 32) | cvall; } static inline cycle_t counter_get_cntvct_mem(void) { u32 cvall, cvalh, thigh; do { cvalh = __raw_readl(timer_base + QTIMER_CNTV_HIGH_REG); cvall = __raw_readl(timer_base + QTIMER_CNTV_LOW_REG); thigh = __raw_readl(timer_base + QTIMER_CNTV_HIGH_REG); } while (cvalh != thigh); return ((cycle_t) cvalh << 32) | cvall; } static inline cycle_t counter_get_cntvct_cp15(void) { u32 cvall, cvalh; asm volatile("mrrc p15, 1, %0, %1, c14" : "=r" (cvall), "=r" (cvalh)); return ((cycle_t) cvalh << 32) | cvall; } cycle_t arch_counter_get_cntpct(void) { return arch_specific_timer->get_cntpct(); } EXPORT_SYMBOL(arch_counter_get_cntpct); static cycle_t arch_counter_read(struct clocksource *cs) { return arch_counter_get_cntpct(); } #ifdef ARCH_HAS_READ_CURRENT_TIMER int read_current_timer(unsigned long *timer_val) { *timer_val = (unsigned long)arch_specific_timer->get_cntpct(); return 0; } #endif static struct clocksource clocksource_counter = { .name = "arch_sys_counter", .rating = 400, .read = arch_counter_read, .mask = CLOCKSOURCE_MASK(56), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static u32 arch_counter_get_cntvct32(void) { cycle_t cntvct; cntvct = arch_specific_timer->get_cntvct(); /* * The sched_clock infrastructure only knows about counters * with at most 32bits. Forget about the upper 24 bits for the * time being... */ return (u32)(cntvct & (u32)~0); } static u32 notrace arch_timer_update_sched_clock(void) { return arch_counter_get_cntvct32(); } static void __cpuinit arch_timer_stop(struct clock_event_device *clk) { pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id()); disable_percpu_irq(clk->irq); if (arch_timer_ppi2) disable_percpu_irq(arch_timer_ppi2); arch_timer_set_mode(CLOCK_EVT_MODE_UNUSED, clk); } static struct local_timer_ops arch_timer_ops __cpuinitdata = { .setup = arch_timer_setup, .stop = arch_timer_stop, }; static int __init arch_timer_common_register(void) { int err; if (timer_base) arch_specific_timer = &arch_timer_ops_mem; else if (!local_timer_is_architected()) return -ENXIO; err = arch_timer_available(); if (err) return err; arch_timer_evt = alloc_percpu(struct clock_event_device *); if (!arch_timer_evt) return -ENOMEM; clocksource_register_hz(&clocksource_counter, arch_timer_rate); setup_sched_clock(arch_timer_update_sched_clock, 32, arch_timer_rate); #ifdef ARCH_HAS_READ_CURRENT_TIMER set_delay_fn(read_current_timer_delay_loop); #endif if (is_irq_percpu) err = request_percpu_irq(arch_timer_ppi, arch_timer_handler, "arch_timer", arch_timer_evt); else err = request_irq(arch_timer_ppi, arch_timer_handler, 0, "arch_timer", arch_timer_evt); if (err) { pr_err("arch_timer: can't register interrupt %d (%d)\n", arch_timer_ppi, err); goto out_free; } if (arch_timer_ppi2) { if (is_irq_percpu) err = request_percpu_irq(arch_timer_ppi2, arch_timer_handler, "arch_timer", arch_timer_evt); else err = request_irq(arch_timer_ppi2, arch_timer_handler, 0, "arch_timer", arch_timer_evt); if (err) { pr_err("arch_timer: can't register interrupt %d (%d)\n", arch_timer_ppi2, err); arch_timer_ppi2 = 0; goto out_free_irq; } } err = local_timer_register(&arch_timer_ops); if (err) goto out_free_irq; percpu_timer_setup(); return 0; out_free_irq: free_percpu_irq(arch_timer_ppi, arch_timer_evt); if (arch_timer_ppi2) free_percpu_irq(arch_timer_ppi2, arch_timer_evt); out_free: free_percpu(arch_timer_evt); return err; } int __init arch_timer_register(struct arch_timer *at) { if (at->res[0].start <= 0 || !(at->res[0].flags & IORESOURCE_IRQ)) return -EINVAL; arch_timer_ppi = at->res[0].start; if (at->res[1].start > 0 && (at->res[1].flags & IORESOURCE_IRQ)) arch_timer_ppi2 = at->res[1].start; if (at->res[2].start > 0 && at->res[2].end > 0 && (at->res[2].flags & IORESOURCE_MEM)) timer_base = ioremap(at->res[2].start, resource_size(&at->res[2])); if (!timer_base) { pr_err("arch_timer: cant map timer base\n"); return -ENOMEM; } return arch_timer_common_register(); } #ifdef CONFIG_OF static const struct of_device_id arch_timer_of_match[] __initconst = { { .compatible = "arm,armv7-timer", }, {}, }; int __init arch_timer_of_register(void) { struct device_node *np; u32 freq; int ret; np = of_find_matching_node(NULL, arch_timer_of_match); if (!np) { pr_err("arch_timer: can't find DT node\n"); return -ENODEV; } /* Try to determine the frequency from the device tree or CNTFRQ */ if (!of_property_read_u32(np, "clock-frequency", &freq)) arch_timer_rate = freq; ret = irq_of_parse_and_map(np, 0); if (ret <= 0) { pr_err("arch_timer: interrupt not specified in timer node\n"); return -ENODEV; } if (of_get_address(np, 0, NULL, NULL)) { timer_base = of_iomap(np, 0); if (!timer_base) { pr_err("arch_timer: cant map timer base\n"); return -ENOMEM; } } if (of_get_property(np, "irq-is-not-percpu", NULL)) is_irq_percpu = 0; else is_irq_percpu = 1; arch_timer_ppi = ret; ret = irq_of_parse_and_map(np, 1); if (ret > 0) arch_timer_ppi2 = ret; pr_info("arch_timer: found %s irqs %d %d\n", np->name, arch_timer_ppi, arch_timer_ppi2); return arch_timer_common_register(); } #endif