/* * drivers/gpu/ion/ion_priv.h * * Copyright (C) 2011 Google, Inc. * Copyright (c) 2011-2012, The Linux Foundation. All rights reserved. * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #ifndef _ION_PRIV_H #define _ION_PRIV_H #include #include #include #include #include #include #include enum { DI_PARTITION_NUM = 0, DI_DOMAIN_NUM = 1, DI_MAX, }; /** * struct ion_iommu_map - represents a mapping of an ion buffer to an iommu * @iova_addr - iommu virtual address * @node - rb node to exist in the buffer's tree of iommu mappings * @domain_info - contains the partition number and domain number * domain_info[1] = domain number * domain_info[0] = partition number * @ref - for reference counting this mapping * @mapped_size - size of the iova space mapped * (may not be the same as the buffer size) * @flags - iommu domain/partition specific flags. * * Represents a mapping of one ion buffer to a particular iommu domain * and address range. There may exist other mappings of this buffer in * different domains or address ranges. All mappings will have the same * cacheability and security. */ struct ion_iommu_map { unsigned long iova_addr; struct rb_node node; union { int domain_info[DI_MAX]; uint64_t key; }; struct ion_buffer *buffer; struct kref ref; int mapped_size; unsigned long flags; }; struct ion_buffer *ion_handle_buffer(struct ion_handle *handle); /** * struct ion_buffer - metadata for a particular buffer * @ref: refernce count * @node: node in the ion_device buffers tree * @dev: back pointer to the ion_device * @heap: back pointer to the heap the buffer came from * @flags: buffer specific flags * @size: size of the buffer * @priv_virt: private data to the buffer representable as * a void * * @priv_phys: private data to the buffer representable as * an ion_phys_addr_t (and someday a phys_addr_t) * @lock: protects the buffers cnt fields * @kmap_cnt: number of times the buffer is mapped to the kernel * @vaddr: the kenrel mapping if kmap_cnt is not zero * @dmap_cnt: number of times the buffer is mapped for dma * @sg_table: the sg table for the buffer if dmap_cnt is not zero */ struct ion_buffer { struct kref ref; struct rb_node node; struct ion_device *dev; struct ion_heap *heap; unsigned long flags; size_t size; union { void *priv_virt; ion_phys_addr_t priv_phys; }; struct mutex lock; int kmap_cnt; void *vaddr; int dmap_cnt; struct sg_table *sg_table; int umap_cnt; unsigned int iommu_map_cnt; struct rb_root iommu_maps; int marked; }; /** * struct ion_heap_ops - ops to operate on a given heap * @allocate: allocate memory * @free: free memory * @phys get physical address of a buffer (only define on * physically contiguous heaps) * @map_dma map the memory for dma to a scatterlist * @unmap_dma unmap the memory for dma * @map_kernel map memory to the kernel * @unmap_kernel unmap memory to the kernel * @map_user map memory to userspace * @unmap_user unmap memory to userspace */ struct ion_heap_ops { int (*allocate) (struct ion_heap *heap, struct ion_buffer *buffer, unsigned long len, unsigned long align, unsigned long flags); void (*free) (struct ion_buffer *buffer); int (*phys) (struct ion_heap *heap, struct ion_buffer *buffer, ion_phys_addr_t *addr, size_t *len); struct sg_table *(*map_dma) (struct ion_heap *heap, struct ion_buffer *buffer); void (*unmap_dma) (struct ion_heap *heap, struct ion_buffer *buffer); void * (*map_kernel) (struct ion_heap *heap, struct ion_buffer *buffer); void (*unmap_kernel) (struct ion_heap *heap, struct ion_buffer *buffer); int (*map_user) (struct ion_heap *mapper, struct ion_buffer *buffer, struct vm_area_struct *vma); void (*unmap_user) (struct ion_heap *mapper, struct ion_buffer *buffer); int (*cache_op)(struct ion_heap *heap, struct ion_buffer *buffer, void *vaddr, unsigned int offset, unsigned int length, unsigned int cmd); int (*map_iommu)(struct ion_buffer *buffer, struct ion_iommu_map *map_data, unsigned int domain_num, unsigned int partition_num, unsigned long align, unsigned long iova_length, unsigned long flags); void (*unmap_iommu)(struct ion_iommu_map *data); int (*print_debug)(struct ion_heap *heap, struct seq_file *s, const struct rb_root *mem_map); int (*secure_heap)(struct ion_heap *heap, int version, void *data); int (*unsecure_heap)(struct ion_heap *heap, int version, void *data); }; /** * struct ion_heap - represents a heap in the system * @node: rb node to put the heap on the device's tree of heaps * @dev: back pointer to the ion_device * @type: type of heap * @ops: ops struct as above * @id: id of heap, also indicates priority of this heap when * allocating. These are specified by platform data and * MUST be unique * @name: used for debugging * @priv: private heap data * * Represents a pool of memory from which buffers can be made. In some * systems the only heap is regular system memory allocated via vmalloc. * On others, some blocks might require large physically contiguous buffers * that are allocated from a specially reserved heap. */ struct ion_heap { struct rb_node node; struct ion_device *dev; enum ion_heap_type type; struct ion_heap_ops *ops; int id; const char *name; void *priv; }; /** * struct mem_map_data - represents information about the memory map for a heap * @node: rb node used to store in the tree of mem_map_data * @addr: start address of memory region. * @addr: end address of memory region. * @size: size of memory region * @client_name: name of the client who owns this buffer. * */ struct mem_map_data { struct rb_node node; unsigned long addr; unsigned long addr_end; unsigned long size; const char *client_name; }; #define iommu_map_domain(__m) ((__m)->domain_info[1]) #define iommu_map_partition(__m) ((__m)->domain_info[0]) /** * ion_device_create - allocates and returns an ion device * @custom_ioctl: arch specific ioctl function if applicable * * returns a valid device or -PTR_ERR */ struct ion_device *ion_device_create(long (*custom_ioctl) (struct ion_client *client, unsigned int cmd, unsigned long arg)); /** * ion_device_destroy - free and device and it's resource * @dev: the device */ void ion_device_destroy(struct ion_device *dev); /** * ion_device_add_heap - adds a heap to the ion device * @dev: the device * @heap: the heap to add */ void ion_device_add_heap(struct ion_device *dev, struct ion_heap *heap); /** * functions for creating and destroying the built in ion heaps. * architectures can add their own custom architecture specific * heaps as appropriate. */ struct ion_heap *ion_heap_create(struct ion_platform_heap *); void ion_heap_destroy(struct ion_heap *); struct ion_heap *ion_system_heap_create(struct ion_platform_heap *); void ion_system_heap_destroy(struct ion_heap *); struct ion_heap *ion_system_contig_heap_create(struct ion_platform_heap *); void ion_system_contig_heap_destroy(struct ion_heap *); struct ion_heap *ion_carveout_heap_create(struct ion_platform_heap *); void ion_carveout_heap_destroy(struct ion_heap *); struct ion_heap *ion_iommu_heap_create(struct ion_platform_heap *); void ion_iommu_heap_destroy(struct ion_heap *); struct ion_heap *ion_cp_heap_create(struct ion_platform_heap *); void ion_cp_heap_destroy(struct ion_heap *); struct ion_heap *ion_reusable_heap_create(struct ion_platform_heap *); void ion_reusable_heap_destroy(struct ion_heap *); /** * kernel api to allocate/free from carveout -- used when carveout is * used to back an architecture specific custom heap */ ion_phys_addr_t ion_carveout_allocate(struct ion_heap *heap, unsigned long size, unsigned long align); void ion_carveout_free(struct ion_heap *heap, ion_phys_addr_t addr, unsigned long size); #ifdef CONFIG_CMA struct ion_heap *ion_cma_heap_create(struct ion_platform_heap *); void ion_cma_heap_destroy(struct ion_heap *); #endif struct ion_heap *msm_get_contiguous_heap(void); /** * The carveout/cp heap returns physical addresses, since 0 may be a valid * physical address, this is used to indicate allocation failed */ #define ION_CARVEOUT_ALLOCATE_FAIL -1 #define ION_CP_ALLOCATE_FAIL -1 /** * The reserved heap returns physical addresses, since 0 may be a valid * physical address, this is used to indicate allocation failed */ #define ION_RESERVED_ALLOCATE_FAIL -1 /** * ion_map_fmem_buffer - map fmem allocated memory into the kernel * @buffer - buffer to map * @phys_base - physical base of the heap * @virt_base - virtual base of the heap * @flags - flags for the heap * * Map fmem allocated memory into the kernel address space. This * is designed to be used by other heaps that need fmem behavior. * The virtual range must be pre-allocated. */ void *ion_map_fmem_buffer(struct ion_buffer *buffer, unsigned long phys_base, void *virt_base, unsigned long flags); /** * ion_do_cache_op - do cache operations. * * @client - pointer to ION client. * @handle - pointer to buffer handle. * @uaddr - virtual address to operate on. * @offset - offset from physical address. * @len - Length of data to do cache operation on. * @cmd - Cache operation to perform: * ION_IOC_CLEAN_CACHES * ION_IOC_INV_CACHES * ION_IOC_CLEAN_INV_CACHES * * Returns 0 on success */ int ion_do_cache_op(struct ion_client *client, struct ion_handle *handle, void *uaddr, unsigned long offset, unsigned long len, unsigned int cmd); void ion_cp_heap_get_base(struct ion_heap *heap, unsigned long *base, unsigned long *size); void ion_mem_map_show(struct ion_heap *heap); #endif /* _ION_PRIV_H */