/* Copyright (c) 2014, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "leds.h" #define FLASH_LED_PERIPHERAL_SUBTYPE(base) (base + 0x05) #define FLASH_SAFETY_TIMER(base) (base + 0x40) #define FLASH_MAX_CURRENT(base) (base + 0x41) #define FLASH_LED0_CURRENT(base) (base + 0x42) #define FLASH_LED1_CURRENT(base) (base + 0x43) #define FLASH_CLAMP_CURRENT(base) (base + 0x44) #define FLASH_MODULE_ENABLE_CTRL(base) (base + 0x46) #define FLASH_LED_STROBE_CTRL(base) (base + 0x47) #define FLASH_LED_TMR_CTRL(base) (base + 0x48) #define FLASH_HEADROOM(base) (base + 0x4A) #define FLASH_STARTUP_DELAY(base) (base + 0x4B) #define FLASH_VREG_OK_FORCE(base) (base + 0x4F) #define FLASH_FAULT_DETECT(base) (base + 0x51) #define FLASH_THERMAL_DRATE(base) (base + 0x52) #define FLASH_CURRENT_RAMP(base) (base + 0x54) #define FLASH_VPH_PWR_DROOP(base) (base + 0x5A) #define FLASH_HDRM_SNS_ENABLE_CTRL0(base) (base + 0x5C) #define FLASH_HDRM_SNS_ENABLE_CTRL1(base) (base + 0x5D) #define FLASH_LED_UNLOCK_SECURE(base) (base + 0xD0) #define FLASH_TORCH(base) (base + 0xE4) #define FLASH_HEADROOM_MASK 0x03 #define FLASH_STARTUP_DLY_MASK 0x03 #define FLASH_VREG_OK_FORCE_MASK 0xC0 #define FLASH_FAULT_DETECT_MASK 0x80 #define FLASH_THERMAL_DERATE_MASK 0xBF #define FLASH_SECURE_MASK 0xFF #define FLASH_TORCH_MASK 0x03 #define FLASH_CURRENT_MASK 0x7F #define FLASH_TMR_MASK 0x03 #define FLASH_TMR_SAFETY 0x00 #define FLASH_SAFETY_TIMER_MASK 0x7F #define FLASH_MODULE_ENABLE_MASK 0xE0 #define FLASH_STROBE_MASK 0xC0 #define FLASH_CURRENT_RAMP_MASK 0xBF #define FLASH_VPH_PWR_DROOP_MASK 0xF3 #define FLASH_LED_HDRM_SNS_ENABLE_MASK 0x81 #define FLASH_LED_TRIGGER_DEFAULT "none" #define FLASH_LED_HEADROOM_DEFAULT_MV 500 #define FLASH_LED_STARTUP_DELAY_DEFAULT_US 128 #define FLASH_LED_CLAMP_CURRENT_DEFAULT_MA 200 #define FLASH_LED_THERMAL_DERATE_THRESHOLD_DEFAULT_C 80 #define FLASH_LED_RAMP_UP_STEP_DEFAULT_US 3 #define FLASH_LED_RAMP_DN_STEP_DEFAULT_US 3 #define FLASH_LED_VPH_PWR_DROOP_THRESHOLD_DEFAULT_MV 3200 #define FLASH_LED_VPH_PWR_DROOP_DEBOUNCE_TIME_DEFAULT_US 10 #define FLASH_LED_THERMAL_DERATE_RATE_DEFAULT_PERCENT 2 #define FLASH_RAMP_UP_DELAY_US 1000 #define FLASH_RAMP_DN_DELAY_US 2160 #define FLASH_BOOST_REGULATOR_PROBE_DELAY_MS 2000 #define FLASH_TORCH_MAX_LEVEL 0x0F #define FLASH_MAX_LEVEL 0x4F #define FLASH_LED_FLASH_HW_VREG_OK 0x40 #define FLASH_LED_FLASH_SW_VREG_OK 0x80 #define FLASH_LED_STROBE_TYPE_HW 0x40 #define FLASH_DURATION_DIVIDER 10 #define FLASH_LED_HEADROOM_DIVIDER 100 #define FLASH_LED_HEADROOM_OFFSET 2 #define FLASH_LED_MAX_CURRENT_MA 1000 #define FLASH_LED_THERMAL_THRESHOLD_MIN 80 #define FLASH_LED_THERMAL_DEVIDER 10 #define FLASH_LED_VPH_DROOP_THRESHOLD_MIN_MV 2500 #define FLASH_LED_VPH_DROOP_THRESHOLD_DIVIDER 100 #define FLASH_LED_HDRM_SNS_ENABLE 0x81 #define FLASH_LED_UA_PER_MA 1000 #define FLASH_UNLOCK_SECURE 0xA5 #define FLASH_LED_TORCH_ENABLE 0x00 #define FLASH_LED_TORCH_DISABLE 0x03 #define FLASH_MODULE_ENABLE 0x80 #define FLASH_LED0_TRIGGER 0x80 #define FLASH_LED1_TRIGGER 0x40 #define FLASH_LED0_ENABLEMENT 0x40 #define FLASH_LED1_ENABLEMENT 0x20 #define FLASH_LED_DISABLE 0x00 #define FLASH_LED_MIN_CURRENT_MA 13 #define FLASH_SUBTYPE_DUAL 0x01 #define FLASH_SUBTYPE_SINGLE 0x02 /* * ID represents physical LEDs for individual control purpose. */ enum flash_led_id { FLASH_LED_0 = 0, FLASH_LED_1, }; enum flash_led_type { FLASH = 0, TORCH, }; enum thermal_derate_rate { RATE_1_PERCENT = 0, RATE_1P25_PERCENT, RATE_2_PERCENT, RATE_2P5_PERCENT, RATE_5_PERCENT, }; enum current_ramp_steps { RAMP_STEP_0P2_US = 0, RAMP_STEP_0P4_US, RAMP_STEP_0P8_US, RAMP_STEP_1P6_US, RAMP_STEP_3P3_US, RAMP_STEP_6P7_US, RAMP_STEP_13P5_US, RAMP_STEP_27US, }; /* * Configurations for each individual LED */ struct flash_node_data { struct spmi_device *spmi_dev; struct led_classdev cdev; struct regulator *boost_regulator; struct work_struct work; struct delayed_work dwork; u32 boost_voltage_max; u16 duration; u16 max_current; u16 current_addr; u16 prgm_current; u8 id; u8 type; u8 trigger; u8 enable; bool flash_on; }; /* * Flash LED configuration read from device tree */ struct flash_led_platform_data { u16 ramp_up_step; u16 ramp_dn_step; u16 vph_pwr_droop_threshold; u16 headroom; u16 clamp_current; u8 thermal_derate_threshold; u8 vph_pwr_droop_debounce_time; u8 startup_dly; u8 thermal_derate_rate; bool pmic_charger_support; bool self_check_en; bool thermal_derate_en; bool current_ramp_en; bool vph_pwr_droop_en; bool hdrm_sns_ch0_en; bool hdrm_sns_ch1_en; bool power_detect_en; }; /* * Flash LED data structure containing flash LED attributes */ struct qpnp_flash_led { struct spmi_device *spmi_dev; struct flash_led_platform_data *pdata; struct flash_node_data *flash_node; struct power_supply *battery_psy; struct mutex flash_led_lock; int num_leds; u16 base; u8 peripheral_type; }; static u8 qpnp_flash_led_ctrl_dbg_regs[] = { 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x4A, 0x4B, 0x4F, 0x51, 0x52, 0x54, 0x55, 0x5A }; static ssize_t qpnp_led_strobe_type_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct flash_node_data *flash_node; unsigned long state; struct led_classdev *led_cdev = dev_get_drvdata(dev); ssize_t ret = -EINVAL; ret = kstrtoul(buf, 10, &state); if (ret) return ret; flash_node = container_of(led_cdev, struct flash_node_data, cdev); /* '0' for sw strobe; '1' for hw strobe */ if (state == 1) flash_node->trigger |= FLASH_LED_STROBE_TYPE_HW; else flash_node->trigger &= ~FLASH_LED_STROBE_TYPE_HW; return count; } static ssize_t qpnp_flash_led_dump_regs_show(struct device *dev, struct device_attribute *attr, char *buf) { struct qpnp_flash_led *led; struct flash_node_data *flash_node; struct led_classdev *led_cdev = dev_get_drvdata(dev); int rc, i, count = 0; u16 addr; u8 val; flash_node = container_of(led_cdev, struct flash_node_data, cdev); led = dev_get_drvdata(&flash_node->spmi_dev->dev); for (i = 0; i < ARRAY_SIZE(qpnp_flash_led_ctrl_dbg_regs); i++) { addr = led->base + qpnp_flash_led_ctrl_dbg_regs[i]; rc = spmi_ext_register_readl(led->spmi_dev->ctrl, led->spmi_dev->sid, addr, &val, 1); if (rc) { dev_err(&led->spmi_dev->dev, "Unable to read from addr=%x, rc(%d)\n", addr, rc); return -EINVAL; } count += snprintf(buf + count, PAGE_SIZE - count, "REG_0x%x = 0x%x\n", addr, val); if (count >= PAGE_SIZE) return PAGE_SIZE - 1; } return count; } static struct device_attribute qpnp_flash_led_attrs[] = { __ATTR(strobe, (S_IRUGO | S_IWUSR | S_IWGRP), NULL, qpnp_led_strobe_type_store), __ATTR(reg_dump, (S_IRUGO | S_IWUSR | S_IWGRP), qpnp_flash_led_dump_regs_show, NULL), }; static int qpnp_led_masked_write(struct spmi_device *spmi_dev, u16 addr, u8 mask, u8 val) { int rc; u8 reg; rc = spmi_ext_register_readl(spmi_dev->ctrl, spmi_dev->sid, addr, ®, 1); if (rc) dev_err(&spmi_dev->dev, "Unable to read from addr=%x, rc(%d)\n", addr, rc); reg &= ~mask; reg |= val; rc = spmi_ext_register_writel(spmi_dev->ctrl, spmi_dev->sid, addr, ®, 1); if (rc) dev_err(&spmi_dev->dev, "Unable to write to addr=%x, rc(%d)\n", addr, rc); dev_dbg(&spmi_dev->dev, "Write 0x%02X to addr 0x%02X\n", val, addr); return rc; } static int qpnp_flash_led_get_thermal_derate_rate(const char *rate) { /* * return 5% derate as default value if user specifies * a value un-supported */ if (strcmp(rate, "1_PERCENT") == 0) return RATE_1_PERCENT; else if (strcmp(rate, "1P25_PERCENT") == 0) return RATE_1P25_PERCENT; else if (strcmp(rate, "2_PERCENT") == 0) return RATE_2_PERCENT; else if (strcmp(rate, "2P5_PERCENT") == 0) return RATE_2P5_PERCENT; else if (strcmp(rate, "5_PERCENT") == 0) return RATE_5_PERCENT; else return RATE_5_PERCENT; } static int qpnp_flash_led_get_ramp_step(const char *step) { /* * return 27 us as default value if user specifies * a value un-supported */ if (strcmp(step, "0P2_US") == 0) return RAMP_STEP_0P2_US; else if (strcmp(step, "0P4_US") == 0) return RAMP_STEP_0P4_US; else if (strcmp(step, "0P8_US") == 0) return RAMP_STEP_0P8_US; else if (strcmp(step, "1P6_US") == 0) return RAMP_STEP_1P6_US; else if (strcmp(step, "3P3_US") == 0) return RAMP_STEP_3P3_US; else if (strcmp(step, "6P7_US") == 0) return RAMP_STEP_6P7_US; else if (strcmp(step, "13P5_US") == 0) return RAMP_STEP_13P5_US; else return RAMP_STEP_27US; } static u8 qpnp_flash_led_get_droop_debounce_time(u8 val) { /* * return 10 us as default value if user specifies * a value un-supported */ switch (val) { case 0: return 0; case 10: return 1; case 32: return 2; case 64: return 3; default: return 1; } } static u8 qpnp_flash_led_get_startup_dly(u8 val) { /* * return 128 us as default value if user specifies * a value un-supported */ switch (val) { case 10: return 0; case 32: return 1; case 64: return 2; case 128: return 3; default: return 3; } } static int qpnp_flash_led_get_peripheral_type(struct qpnp_flash_led *led) { int rc; u8 val; rc = spmi_ext_register_readl(led->spmi_dev->ctrl, led->spmi_dev->sid, FLASH_LED_PERIPHERAL_SUBTYPE(led->base), &val, 1); if (rc) { dev_err(&led->spmi_dev->dev, "Unable to read peripheral subtype\n"); return -EINVAL; } return val; } static int qpnp_flash_led_module_disable(struct qpnp_flash_led *led, struct flash_node_data *flash_node) { int rc; u8 val, tmp; rc = spmi_ext_register_readl(led->spmi_dev->ctrl, led->spmi_dev->sid, FLASH_LED_STROBE_CTRL(led->base), &val, 1); if (rc) { dev_err(&led->spmi_dev->dev, "Unable to read module enable reg\n"); return -EINVAL; } tmp = ~flash_node->trigger & val; if (!tmp) { rc = qpnp_led_masked_write(led->spmi_dev, FLASH_MODULE_ENABLE_CTRL(led->base), FLASH_MODULE_ENABLE_MASK, FLASH_LED_DISABLE); if (rc) { dev_err(&led->spmi_dev->dev, "Module disable failed\n"); return -EINVAL; } } else { rc = qpnp_led_masked_write(led->spmi_dev, FLASH_MODULE_ENABLE_CTRL(led->base), flash_node->enable, flash_node->enable); if (rc) { dev_err(&led->spmi_dev->dev, "Module disable failed\n"); return -EINVAL; } } return 0; } static enum led_brightness qpnp_flash_led_brightness_get(struct led_classdev *led_cdev) { return led_cdev->brightness; } static void qpnp_flash_led_work(struct work_struct *work) { struct flash_node_data *flash_node = container_of(work, struct flash_node_data, work); struct qpnp_flash_led *led = dev_get_drvdata(&flash_node->spmi_dev->dev); union power_supply_propval prop; int rc, brightness = flash_node->cdev.brightness; u16 max_curr_avail_ma; u8 val; mutex_lock(&led->flash_led_lock); if (!brightness) goto turn_off; if (brightness < FLASH_LED_MIN_CURRENT_MA) brightness = FLASH_LED_MIN_CURRENT_MA; flash_node->prgm_current = brightness; if (flash_node->boost_regulator && !flash_node->flash_on) { if (regulator_count_voltages(flash_node->boost_regulator) > 0) { rc = regulator_set_voltage(flash_node->boost_regulator, flash_node->boost_voltage_max, flash_node->boost_voltage_max); if (rc) { dev_err(&led->spmi_dev->dev, "boost regulator set voltage failed\n"); mutex_unlock(&led->flash_led_lock); return; } } rc = regulator_enable(flash_node->boost_regulator); if (rc) { dev_err(&led->spmi_dev->dev, "Boost regulator enablement failed\n"); goto error_regulator_enable; } } if (flash_node->type == TORCH) { rc = qpnp_led_masked_write(led->spmi_dev, FLASH_LED_UNLOCK_SECURE(led->base), FLASH_SECURE_MASK, FLASH_UNLOCK_SECURE); if (rc) { dev_err(&led->spmi_dev->dev, "Secure reg write failed\n"); goto exit_flash_led_work; } rc = qpnp_led_masked_write(led->spmi_dev, FLASH_TORCH(led->base), FLASH_TORCH_MASK, FLASH_LED_TORCH_ENABLE); if (rc) { dev_err(&led->spmi_dev->dev, "Torch reg write failed\n"); goto exit_flash_led_work; } val = (u8)(flash_node->prgm_current * FLASH_TORCH_MAX_LEVEL / flash_node->max_current); rc = qpnp_led_masked_write(led->spmi_dev, flash_node->current_addr, FLASH_CURRENT_MASK, val); if (rc) { dev_err(&led->spmi_dev->dev, "Current reg write failed\n"); goto exit_flash_led_work; } rc = qpnp_led_masked_write(led->spmi_dev, FLASH_MAX_CURRENT(led->base), FLASH_CURRENT_MASK, FLASH_TORCH_MAX_LEVEL); if (rc) { dev_err(&led->spmi_dev->dev, "Max current reg write failed\n"); goto exit_flash_led_work; } rc = qpnp_led_masked_write(led->spmi_dev, FLASH_MODULE_ENABLE_CTRL(led->base), FLASH_MODULE_ENABLE | flash_node->enable, FLASH_MODULE_ENABLE | flash_node->enable); if (rc) { dev_err(&led->spmi_dev->dev, "Module enable reg write failed\n"); goto exit_flash_led_work; } rc = qpnp_led_masked_write(led->spmi_dev, FLASH_LED_STROBE_CTRL(led->base), flash_node->trigger, flash_node->trigger); if (rc) { dev_err(&led->spmi_dev->dev, "Strobe ctrl reg write failed\n"); goto exit_flash_led_work; } } else if (flash_node->type == FLASH) { if (led->pdata->power_detect_en) { if (!led->battery_psy) led->battery_psy = power_supply_get_by_name("battery"); if (led->battery_psy) { led->battery_psy->get_property(led->battery_psy, POWER_SUPPLY_PROP_FLASH_CURRENT_MAX, &prop); if (!prop.intval) { dev_err(&led->spmi_dev->dev, "battery too low for flash\n"); goto exit_flash_led_work; } } else { dev_err(&led->spmi_dev->dev, "failed to query battery level\n"); goto exit_flash_led_work; } max_curr_avail_ma = (u16)(prop.intval / FLASH_LED_UA_PER_MA); max_curr_avail_ma = max_curr_avail_ma / 2; if (max_curr_avail_ma < flash_node->prgm_current) { dev_err(&led->spmi_dev->dev, "battery only supports %d mA.\n", max_curr_avail_ma); flash_node->prgm_current = max_curr_avail_ma; } } val = (u8)((flash_node->duration - FLASH_DURATION_DIVIDER) / FLASH_DURATION_DIVIDER); rc = qpnp_led_masked_write(led->spmi_dev, FLASH_SAFETY_TIMER(led->base), FLASH_SAFETY_TIMER_MASK, val); if (rc) { dev_err(&led->spmi_dev->dev, "Safety timer reg write failed\n"); goto exit_flash_led_work; } rc = qpnp_led_masked_write(led->spmi_dev, FLASH_MAX_CURRENT(led->base), FLASH_CURRENT_MASK, FLASH_MAX_LEVEL); if (rc) { dev_err(&led->spmi_dev->dev, "Max current reg write failed\n"); goto exit_flash_led_work; } val = (u8)(flash_node->prgm_current * FLASH_MAX_LEVEL / flash_node->max_current); rc = qpnp_led_masked_write(led->spmi_dev, flash_node->current_addr, FLASH_CURRENT_MASK, val); if (rc) { dev_err(&led->spmi_dev->dev, "Current reg write failed\n"); goto exit_flash_led_work; } rc = qpnp_led_masked_write(led->spmi_dev, FLASH_MODULE_ENABLE_CTRL(led->base), FLASH_MODULE_ENABLE | flash_node->enable, FLASH_MODULE_ENABLE | flash_node->enable); if (rc) { dev_err(&led->spmi_dev->dev, "Module enable reg write failed\n"); goto exit_flash_led_work; } usleep(FLASH_RAMP_UP_DELAY_US); rc = qpnp_led_masked_write(led->spmi_dev, FLASH_LED_STROBE_CTRL(led->base), flash_node->trigger, flash_node->trigger); if (rc) { dev_err(&led->spmi_dev->dev, "Strobe reg write failed\n"); goto exit_flash_led_work; } } flash_node->flash_on = true; mutex_unlock(&led->flash_led_lock); return; turn_off: rc = qpnp_led_masked_write(led->spmi_dev, FLASH_LED_STROBE_CTRL(led->base), flash_node->trigger, FLASH_LED_DISABLE); if (rc) { dev_err(&led->spmi_dev->dev, "Strobe disable failed\n"); goto exit_flash_led_work; } if (flash_node->type == TORCH) { rc = qpnp_led_masked_write(led->spmi_dev, FLASH_LED_UNLOCK_SECURE(led->base), FLASH_SECURE_MASK, FLASH_UNLOCK_SECURE); if (rc) { dev_err(&led->spmi_dev->dev, "Secure reg write failed\n"); goto exit_flash_led_work; } rc = qpnp_led_masked_write(led->spmi_dev, FLASH_TORCH(led->base), FLASH_TORCH_MASK, FLASH_LED_TORCH_DISABLE); if (rc) { dev_err(&led->spmi_dev->dev, "Torch reg write failed\n"); goto exit_flash_led_work; } } usleep(FLASH_RAMP_DN_DELAY_US); rc = qpnp_flash_led_module_disable(led, flash_node); if (rc) { dev_err(&led->spmi_dev->dev, "Module disable failed\n"); goto exit_flash_led_work; } exit_flash_led_work: if (flash_node->boost_regulator && flash_node->flash_on) { regulator_disable(flash_node->boost_regulator); error_regulator_enable: if (regulator_count_voltages(flash_node->boost_regulator) > 0) regulator_set_voltage(flash_node->boost_regulator, 0, flash_node->boost_voltage_max); } flash_node->flash_on = false; mutex_unlock(&led->flash_led_lock); return; } static void qpnp_flash_led_brightness_set(struct led_classdev *led_cdev, enum led_brightness value) { struct flash_node_data *flash_node; flash_node = container_of(led_cdev, struct flash_node_data, cdev); if (value < LED_OFF) { pr_err("Invalid brightness value\n"); return; } if (value > flash_node->cdev.max_brightness) value = flash_node->cdev.max_brightness; flash_node->cdev.brightness = value; schedule_work(&flash_node->work); return; } static int qpnp_flash_led_init_settings(struct qpnp_flash_led *led) { int rc; u8 val, temp_val; rc = qpnp_led_masked_write(led->spmi_dev, FLASH_MODULE_ENABLE_CTRL(led->base), FLASH_MODULE_ENABLE_MASK, FLASH_LED_DISABLE); if (rc) { dev_err(&led->spmi_dev->dev, "Module disable failed\n"); return rc; } rc = qpnp_led_masked_write(led->spmi_dev, FLASH_LED_STROBE_CTRL(led->base), FLASH_STROBE_MASK, FLASH_LED_DISABLE); if (rc) { dev_err(&led->spmi_dev->dev, "Strobe disable failed\n"); return rc; } rc = qpnp_led_masked_write(led->spmi_dev, FLASH_LED_TMR_CTRL(led->base), FLASH_TMR_MASK, FLASH_TMR_SAFETY); if (rc) { dev_err(&led->spmi_dev->dev, "LED timer ctrl reg write failed(%d)\n", rc); return rc; } val = (u8)(led->pdata->headroom / FLASH_LED_HEADROOM_DIVIDER - FLASH_LED_HEADROOM_OFFSET); rc = qpnp_led_masked_write(led->spmi_dev, FLASH_HEADROOM(led->base), FLASH_HEADROOM_MASK, val); if (rc) { dev_err(&led->spmi_dev->dev, "Headroom reg write failed\n"); return rc; } val = qpnp_flash_led_get_startup_dly(led->pdata->startup_dly); rc = qpnp_led_masked_write(led->spmi_dev, FLASH_STARTUP_DELAY(led->base), FLASH_STARTUP_DLY_MASK, val); if (rc) { dev_err(&led->spmi_dev->dev, "Startup delay reg write failed\n"); return rc; } val = (u8)(led->pdata->clamp_current * FLASH_MAX_LEVEL / FLASH_LED_MAX_CURRENT_MA); rc = qpnp_led_masked_write(led->spmi_dev, FLASH_CLAMP_CURRENT(led->base), FLASH_CURRENT_MASK, val); if (rc) { dev_err(&led->spmi_dev->dev, "Clamp current reg write failed\n"); return rc; } if (led->pdata->pmic_charger_support) val = FLASH_LED_FLASH_HW_VREG_OK; else val = FLASH_LED_FLASH_SW_VREG_OK; rc = qpnp_led_masked_write(led->spmi_dev, FLASH_VREG_OK_FORCE(led->base), FLASH_VREG_OK_FORCE_MASK, val); if (rc) { dev_err(&led->spmi_dev->dev, "VREG OK force reg write failed\n"); return rc; } if (led->pdata->self_check_en) val = FLASH_MODULE_ENABLE; else val = FLASH_LED_DISABLE; rc = qpnp_led_masked_write(led->spmi_dev, FLASH_FAULT_DETECT(led->base), FLASH_FAULT_DETECT_MASK, val); if (rc) { dev_err(&led->spmi_dev->dev, "Fault detect reg write failed\n"); return rc; } if (!led->pdata->thermal_derate_en) val = 0x0; else { val = led->pdata->thermal_derate_en << 7; val |= led->pdata->thermal_derate_rate << 3; val |= (led->pdata->thermal_derate_threshold - FLASH_LED_THERMAL_THRESHOLD_MIN) / FLASH_LED_THERMAL_DEVIDER; } rc = qpnp_led_masked_write(led->spmi_dev, FLASH_THERMAL_DRATE(led->base), FLASH_THERMAL_DERATE_MASK, val); if (rc) { dev_err(&led->spmi_dev->dev, "Thermal derate reg write failed\n"); return rc; } if (!led->pdata->current_ramp_en) val = 0x0; else { val = led->pdata->current_ramp_en << 7; val |= led->pdata->ramp_up_step << 3; val |= led->pdata->ramp_dn_step; } rc = qpnp_led_masked_write(led->spmi_dev, FLASH_CURRENT_RAMP(led->base), FLASH_CURRENT_RAMP_MASK, val); if (rc) { dev_err(&led->spmi_dev->dev, "Current ramp reg write failed\n"); return rc; } if (!led->pdata->vph_pwr_droop_en) val = 0x0; else { val = led->pdata->vph_pwr_droop_en << 7; val |= ((led->pdata->vph_pwr_droop_threshold - FLASH_LED_VPH_DROOP_THRESHOLD_MIN_MV) / FLASH_LED_VPH_DROOP_THRESHOLD_DIVIDER) << 4; temp_val = qpnp_flash_led_get_droop_debounce_time( led->pdata->vph_pwr_droop_debounce_time); if (temp_val == 0xFF) { dev_err(&led->spmi_dev->dev, "Invalid debounce time\n"); return temp_val; } val |= temp_val; } rc = qpnp_led_masked_write(led->spmi_dev, FLASH_VPH_PWR_DROOP(led->base), FLASH_VPH_PWR_DROOP_MASK, val); if (rc) { dev_err(&led->spmi_dev->dev, "VPH PWR droop reg write failed\n"); return rc; } if (led->pdata->hdrm_sns_ch0_en) { rc = qpnp_led_masked_write(led->spmi_dev, FLASH_HDRM_SNS_ENABLE_CTRL0(led->base), FLASH_LED_HDRM_SNS_ENABLE_MASK, FLASH_LED_HDRM_SNS_ENABLE); if (rc) { dev_err(&led->spmi_dev->dev, "Headroom sense enable failed\n"); return rc; } } if (led->pdata->hdrm_sns_ch1_en) { rc = qpnp_led_masked_write(led->spmi_dev, FLASH_HDRM_SNS_ENABLE_CTRL1(led->base), FLASH_LED_HDRM_SNS_ENABLE_MASK, FLASH_LED_HDRM_SNS_ENABLE); if (rc) { dev_err(&led->spmi_dev->dev, "Headroom sense enable failed\n"); return rc; } } return 0; } /* * Boost regulator probes later than flash. * Delay 2s to make sure it has been registered. */ static void qpnp_flash_led_delayed_reg_work(struct work_struct *work) { struct flash_node_data *flash_node = container_of(work, struct flash_node_data, dwork.work); int rc; flash_node->boost_regulator = regulator_get(flash_node->cdev.dev, "boost"); if (IS_ERR(flash_node->boost_regulator)) { rc = PTR_ERR(flash_node->boost_regulator); flash_node->boost_regulator = NULL; pr_err("boost regulator get failed\n"); return; } return; } static int qpnp_flash_led_parse_each_led_dt(struct qpnp_flash_led *led, struct flash_node_data *flash_node) { const char *temp_string; struct device_node *node = flash_node->cdev.dev->of_node; int rc = 0; u32 val; rc = of_property_read_string(node, "label", &temp_string); if (!rc) { if (strcmp(temp_string, "flash") == 0) flash_node->type = FLASH; else if (strcmp(temp_string, "torch") == 0) flash_node->type = TORCH; else { dev_err(&led->spmi_dev->dev, "Wrong flash LED type\n"); return -EINVAL; } } else if (rc < 0) { dev_err(&led->spmi_dev->dev, "Unable to read flash type\n"); return rc; } rc = of_property_read_u32(node, "qcom,current", &val); if (!rc) { if (val < FLASH_LED_MIN_CURRENT_MA) val = FLASH_LED_MIN_CURRENT_MA; flash_node->prgm_current = (u16)val; } else if (rc != -EINVAL) { dev_err(&led->spmi_dev->dev, "Unable to read current settings\n"); return rc; } rc = of_property_read_u32(node, "qcom,duration", &val); if (!rc) flash_node->duration = (u16)val; else if (rc != -EINVAL) { dev_err(&led->spmi_dev->dev, "Unable to read clamp current\n"); return rc; } rc = of_property_read_u32(node, "qcom,id", &val); if (!rc) flash_node->id = (u8)val; else if (rc != -EINVAL) { dev_err(&led->spmi_dev->dev, "Unable to read led ID\n"); return rc; } switch (led->peripheral_type) { case FLASH_SUBTYPE_SINGLE: flash_node->current_addr = FLASH_LED0_CURRENT(led->base); flash_node->enable = FLASH_LED0_ENABLEMENT; flash_node->trigger = FLASH_LED0_TRIGGER; break; case FLASH_SUBTYPE_DUAL: if (flash_node->id == FLASH_LED_0) { flash_node->enable = FLASH_LED0_ENABLEMENT; if (flash_node->type == TORCH) flash_node->enable = FLASH_MODULE_ENABLE; flash_node->current_addr = FLASH_LED0_CURRENT(led->base); flash_node->trigger = FLASH_LED0_TRIGGER; } else if (flash_node->id == FLASH_LED_1) { flash_node->enable = FLASH_LED1_ENABLEMENT; if (flash_node->type == TORCH) flash_node->enable = FLASH_MODULE_ENABLE; flash_node->current_addr = FLASH_LED1_CURRENT(led->base); flash_node->trigger = FLASH_LED1_TRIGGER; } break; default: dev_err(&led->spmi_dev->dev, "Invalid peripheral type\n"); } if (of_find_property(node, "boost-supply", NULL)) { INIT_DELAYED_WORK(&flash_node->dwork, qpnp_flash_led_delayed_reg_work); flash_node->boost_regulator = regulator_get(flash_node->cdev.dev, "boost"); if (!flash_node->boost_regulator || IS_ERR(flash_node->boost_regulator)) schedule_delayed_work(&flash_node->dwork, FLASH_BOOST_REGULATOR_PROBE_DELAY_MS); rc = of_property_read_u32(node, "boost-voltage-max", &val); if (!rc) flash_node->boost_voltage_max = val; else { dev_err(&led->spmi_dev->dev, "Unable to read maximum boost regulator voltage\n"); goto error_regulator_config; } } return rc; error_regulator_config: regulator_put(flash_node->boost_regulator); return rc; } static int qpnp_flash_led_parse_common_dt( struct qpnp_flash_led *led, struct device_node *node) { int rc; u32 val, temp_val; const char *temp; led->pdata->headroom = FLASH_LED_HEADROOM_DEFAULT_MV; rc = of_property_read_u32(node, "qcom,headroom", &val); if (!rc) led->pdata->headroom = (u16)val; else if (rc != -EINVAL) { dev_err(&led->spmi_dev->dev, "Unable to read headroom\n"); return rc; } led->pdata->startup_dly = FLASH_LED_STARTUP_DELAY_DEFAULT_US; rc = of_property_read_u32(node, "qcom,startup-dly", &val); if (!rc) led->pdata->startup_dly = (u8)val; else if (rc != -EINVAL) { dev_err(&led->spmi_dev->dev, "Unable to read startup delay\n"); return rc; } led->pdata->clamp_current = FLASH_LED_CLAMP_CURRENT_DEFAULT_MA; rc = of_property_read_u32(node, "qcom,clamp-current", &val); if (!rc) { if (val < FLASH_LED_MIN_CURRENT_MA) val = FLASH_LED_MIN_CURRENT_MA; led->pdata->clamp_current = (u16)val; } else if (rc != -EINVAL) { dev_err(&led->spmi_dev->dev, "Unable to read clamp current\n"); return rc; } led->pdata->pmic_charger_support = of_property_read_bool(node, "qcom,pmic-charger-support"); led->pdata->self_check_en = of_property_read_bool(node, "qcom,self-check-enabled"); led->pdata->thermal_derate_en = of_property_read_bool(node, "qcom,thermal-derate-enabled"); if (led->pdata->thermal_derate_en) { led->pdata->thermal_derate_rate = FLASH_LED_THERMAL_DERATE_RATE_DEFAULT_PERCENT; rc = of_property_read_string(node, "qcom,thermal-derate-rate", &temp); if (!rc) { temp_val = qpnp_flash_led_get_thermal_derate_rate(temp); if (temp_val < 0) { dev_err(&led->spmi_dev->dev, "Invalid thermal derate rate\n"); return -EINVAL; } led->pdata->thermal_derate_rate = (u8)temp_val; } else { dev_err(&led->spmi_dev->dev, "Unable to read thermal derate rate\n"); return -EINVAL; } led->pdata->thermal_derate_threshold = FLASH_LED_THERMAL_DERATE_THRESHOLD_DEFAULT_C; rc = of_property_read_u32(node, "qcom,thermal-derate-threshold", &val); if (!rc) led->pdata->thermal_derate_threshold = (u8)val; else if (rc != -EINVAL) { dev_err(&led->spmi_dev->dev, "Unable to read thermal derate threshold\n"); return rc; } } led->pdata->current_ramp_en = of_property_read_bool(node, "qcom,current-ramp-enabled"); if (led->pdata->current_ramp_en) { led->pdata->ramp_up_step = FLASH_LED_RAMP_UP_STEP_DEFAULT_US; rc = of_property_read_string(node, "qcom,ramp_up_step", &temp); if (!rc) { temp_val = qpnp_flash_led_get_ramp_step(temp); if (temp_val < 0) { dev_err(&led->spmi_dev->dev, "Invalid ramp up step values\n"); return -EINVAL; } led->pdata->ramp_up_step = (u8)temp_val; } else if (rc != -EINVAL) { dev_err(&led->spmi_dev->dev, "Unable to read ramp up steps\n"); return rc; } led->pdata->ramp_dn_step = FLASH_LED_RAMP_DN_STEP_DEFAULT_US; rc = of_property_read_string(node, "qcom,ramp_dn_step", &temp); if (!rc) { temp_val = qpnp_flash_led_get_ramp_step(temp); if (temp_val < 0) { dev_err(&led->spmi_dev->dev, "Invalid ramp down step values\n"); return rc; } led->pdata->ramp_dn_step = (u8)temp_val; } else if (rc != -EINVAL) { dev_err(&led->spmi_dev->dev, "Unable to read ramp down steps\n"); return rc; } } led->pdata->vph_pwr_droop_en = of_property_read_bool(node, "qcom,vph-pwr-droop-enabled"); if (led->pdata->vph_pwr_droop_en) { led->pdata->vph_pwr_droop_threshold = FLASH_LED_VPH_PWR_DROOP_THRESHOLD_DEFAULT_MV; rc = of_property_read_u32(node, "qcom,vph-pwr-droop-threshold", &val); if (!rc) { led->pdata->vph_pwr_droop_threshold = (u16)val; } else if (rc != -EINVAL) { dev_err(&led->spmi_dev->dev, "Unable to read VPH PWR droop threshold\n"); return rc; } led->pdata->vph_pwr_droop_debounce_time = FLASH_LED_VPH_PWR_DROOP_DEBOUNCE_TIME_DEFAULT_US; rc = of_property_read_u32(node, "qcom,vph-pwr-droop-debounce-time", &val); if (!rc) led->pdata->vph_pwr_droop_debounce_time = (u8)val; else if (rc != -EINVAL) { dev_err(&led->spmi_dev->dev, "Unable to read VPH PWR droop debounce time\n"); return rc; } } led->pdata->hdrm_sns_ch0_en = of_property_read_bool(node, "qcom,headroom-sense-ch0-enabled"); led->pdata->hdrm_sns_ch1_en = of_property_read_bool(node, "qcom,headroom-sense-ch1-enabled"); led->pdata->power_detect_en = of_property_read_bool(node, "qcom,power-detect-enabled"); return 0; } static int qpnp_flash_led_probe(struct spmi_device *spmi) { struct qpnp_flash_led *led; struct resource *flash_resource; struct device_node *node, *temp; int rc, i = 0, j, num_leds = 0; u32 val; node = spmi->dev.of_node; if (node == NULL) { dev_info(&spmi->dev, "No flash device defined\n"); return -ENODEV; } flash_resource = spmi_get_resource(spmi, 0, IORESOURCE_MEM, 0); if (!flash_resource) { dev_err(&spmi->dev, "Unable to get flash LED base address\n"); return -EINVAL; } led = devm_kzalloc(&spmi->dev, sizeof(struct qpnp_flash_led), GFP_KERNEL); if (!led) { dev_err(&spmi->dev, "Unable to allocate memory for flash LED\n"); return -ENOMEM; } led->base = flash_resource->start; led->spmi_dev = spmi; led->pdata = devm_kzalloc(&spmi->dev, sizeof(struct flash_led_platform_data), GFP_KERNEL); if (!led->pdata) { dev_err(&spmi->dev, "Unable to allocate memory for platform data\n"); return -ENOMEM; } led->peripheral_type = (u8)qpnp_flash_led_get_peripheral_type(led); if (led->peripheral_type < 0) { dev_err(&spmi->dev, "Failed to get peripheral type\n"); return rc; } rc = qpnp_flash_led_parse_common_dt(led, node); if (rc) { dev_err(&spmi->dev, "Failed to get common config for flash LEDs\n"); return rc; } rc = qpnp_flash_led_init_settings(led); if (rc) { dev_err(&spmi->dev, "Failed to initialize flash LED\n"); return rc; } temp = NULL; while ((temp = of_get_next_child(node, temp))) num_leds++; if (!num_leds) return -ECHILD; led->flash_node = devm_kzalloc(&spmi->dev, (sizeof(struct flash_node_data) * num_leds), GFP_KERNEL); if (!led->flash_node) { dev_err(&spmi->dev, "Unable to allocate memory\n"); return -ENOMEM; } mutex_init(&led->flash_led_lock); for_each_child_of_node(node, temp) { led->flash_node[i].cdev.brightness_set = qpnp_flash_led_brightness_set; led->flash_node[i].cdev.brightness_get = qpnp_flash_led_brightness_get; led->flash_node[i].spmi_dev = spmi; INIT_WORK(&led->flash_node[i].work, qpnp_flash_led_work); rc = of_property_read_string(temp, "qcom,led-name", &led->flash_node[i].cdev.name); if (rc < 0) { dev_err(&led->spmi_dev->dev, "Unable to read flash name\n"); return rc; } rc = of_property_read_string(temp, "qcom,default-led-trigger", &led->flash_node[i].cdev.default_trigger); if (rc < 0) { dev_err(&led->spmi_dev->dev, "Unable to read trigger name\n"); return rc; } rc = of_property_read_u32(temp, "qcom,max-current", &val); if (!rc) { if (val < FLASH_LED_MIN_CURRENT_MA) val = FLASH_LED_MIN_CURRENT_MA; led->flash_node[i].max_current = (u16)val; led->flash_node[i].cdev.max_brightness = val; } else if (rc < 0) { dev_err(&led->spmi_dev->dev, "Unable to read max current\n"); return rc; } rc = led_classdev_register(&spmi->dev, &led->flash_node[i].cdev); if (rc) { dev_err(&spmi->dev, "Unable to register led\n"); goto error_led_register; } led->flash_node[i].cdev.dev->of_node = temp; rc = qpnp_flash_led_parse_each_led_dt(led, &led->flash_node[i]); if (rc) { dev_err(&spmi->dev, "Failed to parse config for each LED\n"); goto error_led_register; } for (j = 0; j < ARRAY_SIZE(qpnp_flash_led_attrs); j++) { rc = sysfs_create_file(&led->flash_node[i].cdev.dev->kobj, &qpnp_flash_led_attrs[j].attr); if (rc) goto error_led_register; } i++; } led->num_leds = i; dev_set_drvdata(&spmi->dev, led); return 0; error_led_register: for (; i >= 0; i--) { for (; j >= 0; j--) sysfs_remove_file(&led->flash_node[i].cdev.dev->kobj, &qpnp_flash_led_attrs[j].attr); j = ARRAY_SIZE(qpnp_flash_led_attrs) - 1; led_classdev_unregister(&led->flash_node[i].cdev); } mutex_destroy(&led->flash_led_lock); return rc; } static int qpnp_flash_led_remove(struct spmi_device *spmi) { struct qpnp_flash_led *led = dev_get_drvdata(&spmi->dev); int i, j; for (i = led->num_leds - 1; i >= 0; i--) { if (led->flash_node[i].boost_regulator) regulator_put(led->flash_node[i].boost_regulator); for (j = 0; j < ARRAY_SIZE(qpnp_flash_led_attrs); j++) sysfs_remove_file(&led->flash_node[i].cdev.dev->kobj, &qpnp_flash_led_attrs[j].attr); led_classdev_unregister(&led->flash_node[i].cdev); } mutex_destroy(&led->flash_led_lock); return 0; } static struct of_device_id spmi_match_table[] = { { .compatible = "qcom,qpnp-flash-led",}, { }, }; static struct spmi_driver qpnp_flash_led_driver = { .driver = { .name = "qcom,qpnp-flash-led", .of_match_table = spmi_match_table, }, .probe = qpnp_flash_led_probe, .remove = qpnp_flash_led_remove, }; static int __init qpnp_flash_led_init(void) { return spmi_driver_register(&qpnp_flash_led_driver); } module_init(qpnp_flash_led_init); static void __exit qpnp_flash_led_exit(void) { spmi_driver_unregister(&qpnp_flash_led_driver); } module_exit(qpnp_flash_led_exit); MODULE_DESCRIPTION("QPNP Flash LED driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("leds:leds-qpnp-flash");