/* ehci-msm2.c - HSUSB Host Controller Driver Implementation * * Copyright (c) 2008-2014, The Linux Foundation. All rights reserved. * * Partly derived from ehci-fsl.c and ehci-hcd.c * Copyright (c) 2000-2004 by David Brownell * Copyright (c) 2005 MontaVista Software * * All source code in this file is licensed under the following license except * where indicated. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * See the GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, you can find it at http://www.fsf.org */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ehci.h" #define DRIVER_DESC "Qualcomm EHCI Host Controller" static const char hcd_name[] = "ehci-msm2"; #define MSM_USB_BASE (hcd->regs) #define PDEV_NAME_LEN 20 static bool uicc_card_present; module_param(uicc_card_present, bool, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(uicc_card_present, "UICC card inserted"); struct msm_hcd { struct ehci_hcd ehci; spinlock_t wakeup_lock; struct device *dev; struct clk *xo_clk; struct clk *iface_clk; struct clk *core_clk; long core_clk_rate; struct clk *alt_core_clk; struct clk *phy_sleep_clk; struct regulator *hsusb_vddcx; struct regulator *hsusb_3p3; struct regulator *hsusb_1p8; struct regulator *vbus; bool vbus_on; atomic_t in_lpm; int pmic_gpio_dp_irq; bool pmic_gpio_dp_irq_enabled; uint32_t pmic_gpio_int_cnt; atomic_t pm_usage_cnt; struct wakeup_source ws; struct work_struct phy_susp_fail_work; int async_irq; bool async_irq_enabled; uint32_t async_int_cnt; int resume_gpio; int wakeup_int_cnt; bool wakeup_irq_enabled; int wakeup_irq; void __iomem *usb_phy_ctrl_reg; struct pinctrl *hsusb_pinctrl; }; static inline struct msm_hcd *hcd_to_mhcd(struct usb_hcd *hcd) { return (struct msm_hcd *) (hcd->hcd_priv); } static inline struct usb_hcd *mhcd_to_hcd(struct msm_hcd *mhcd) { return container_of((void *) mhcd, struct usb_hcd, hcd_priv); } #define HSUSB_PHY_3P3_VOL_MIN 3050000 /* uV */ #define HSUSB_PHY_3P3_VOL_MAX 3300000 /* uV */ #define HSUSB_PHY_3P3_HPM_LOAD 50000 /* uA */ #define HSUSB_PHY_1P8_VOL_MIN 1800000 /* uV */ #define HSUSB_PHY_1P8_VOL_MAX 1800000 /* uV */ #define HSUSB_PHY_1P8_HPM_LOAD 50000 /* uA */ #define HSUSB_PHY_VDD_DIG_VOL_NONE 0 /* uV */ #define HSUSB_PHY_VDD_DIG_VOL_MIN 1045000 /* uV */ #define HSUSB_PHY_VDD_DIG_VOL_MAX 1320000 /* uV */ #define HSUSB_PHY_VDD_DIG_LOAD 49360 /* uA */ #define HSUSB_PHY_SUSP_DIG_VOL_P50 500000 #define HSUSB_PHY_SUSP_DIG_VOL_P75 750000 enum hsusb_vdd_value { VDD_MIN_NONE = 0, VDD_MIN_P50, VDD_MIN_P75, VDD_MIN_OP, VDD_MAX_OP, VDD_VAL_MAX_OP, }; static int hsusb_vdd_val[VDD_VAL_MAX_OP]; static int msm_ehci_init_vddcx(struct msm_hcd *mhcd, int init) { int ret = 0; int none_vol, min_vol, max_vol; u32 tmp[5]; int len = 0; if (!init) { none_vol = hsusb_vdd_val[VDD_MIN_NONE]; max_vol = hsusb_vdd_val[VDD_MAX_OP]; goto disable_reg; } mhcd->hsusb_vddcx = devm_regulator_get(mhcd->dev, "hsusb_vdd_dig"); if (IS_ERR(mhcd->hsusb_vddcx)) { mhcd->hsusb_vddcx = devm_regulator_get(mhcd->dev, "HSUSB_VDDCX"); if (IS_ERR(mhcd->hsusb_vddcx)) { dev_err(mhcd->dev, "unable to get ehci vddcx\n"); return PTR_ERR(mhcd->hsusb_vddcx); } } if (of_get_property(mhcd->dev->of_node, "qcom,vdd-voltage-level", &len)) { if (len == sizeof(tmp)) { of_property_read_u32_array(mhcd->dev->of_node, "qcom,vdd-voltage-level", tmp, len/sizeof(*tmp)); hsusb_vdd_val[VDD_MIN_NONE] = tmp[0]; hsusb_vdd_val[VDD_MIN_P50] = tmp[1]; hsusb_vdd_val[VDD_MIN_P75] = tmp[2]; hsusb_vdd_val[VDD_MIN_OP] = tmp[3]; hsusb_vdd_val[VDD_MAX_OP] = tmp[4]; } else { dev_dbg(mhcd->dev, "Use default vdd config\n"); return -ENODEV; } } else { return -ENODEV; } none_vol = hsusb_vdd_val[VDD_MIN_NONE]; min_vol = hsusb_vdd_val[VDD_MIN_OP]; max_vol = hsusb_vdd_val[VDD_MAX_OP]; ret = regulator_set_voltage(mhcd->hsusb_vddcx, min_vol, max_vol); if (ret) { dev_err(mhcd->dev, "unable to set the voltage" "for ehci vddcx\n"); return ret; } ret = regulator_set_optimum_mode(mhcd->hsusb_vddcx, HSUSB_PHY_VDD_DIG_LOAD); if (ret < 0) { dev_err(mhcd->dev, "%s: Unable to set optimum mode of the" " regulator: VDDCX\n", __func__); goto reg_optimum_mode_err; } ret = regulator_enable(mhcd->hsusb_vddcx); if (ret) { dev_err(mhcd->dev, "unable to enable ehci vddcx\n"); goto reg_enable_err; } return 0; disable_reg: regulator_disable(mhcd->hsusb_vddcx); reg_enable_err: regulator_set_optimum_mode(mhcd->hsusb_vddcx, 0); reg_optimum_mode_err: regulator_set_voltage(mhcd->hsusb_vddcx, none_vol, max_vol); return ret; } static int msm_ehci_ldo_init(struct msm_hcd *mhcd, int init) { int rc = 0; if (!init) goto put_1p8; mhcd->hsusb_3p3 = devm_regulator_get(mhcd->dev, "HSUSB_3p3"); if (IS_ERR(mhcd->hsusb_3p3)) { dev_err(mhcd->dev, "unable to get hsusb 3p3\n"); return PTR_ERR(mhcd->hsusb_3p3); } rc = regulator_set_voltage(mhcd->hsusb_3p3, HSUSB_PHY_3P3_VOL_MIN, HSUSB_PHY_3P3_VOL_MAX); if (rc) { dev_err(mhcd->dev, "unable to set voltage level for" "hsusb 3p3\n"); return rc; } mhcd->hsusb_1p8 = devm_regulator_get(mhcd->dev, "HSUSB_1p8"); if (IS_ERR(mhcd->hsusb_1p8)) { dev_err(mhcd->dev, "unable to get hsusb 1p8\n"); rc = PTR_ERR(mhcd->hsusb_1p8); goto put_3p3_lpm; } rc = regulator_set_voltage(mhcd->hsusb_1p8, HSUSB_PHY_1P8_VOL_MIN, HSUSB_PHY_1P8_VOL_MAX); if (rc) { dev_err(mhcd->dev, "unable to set voltage level for" "hsusb 1p8\n"); goto put_1p8; } return 0; put_1p8: regulator_set_voltage(mhcd->hsusb_1p8, 0, HSUSB_PHY_1P8_VOL_MAX); put_3p3_lpm: regulator_set_voltage(mhcd->hsusb_3p3, 0, HSUSB_PHY_3P3_VOL_MAX); return rc; } #ifdef CONFIG_PM_SLEEP static int msm_ehci_config_vddcx(struct msm_hcd *mhcd, int high) { struct msm_usb_host_platform_data *pdata; int max_vol = hsusb_vdd_val[VDD_MAX_OP]; int min_vol; int ret; pdata = mhcd->dev->platform_data; if (high) min_vol = hsusb_vdd_val[VDD_MIN_OP]; else if (pdata && pdata->dock_connect_irq && !irq_read_line(pdata->dock_connect_irq)) min_vol = hsusb_vdd_val[VDD_MIN_P75]; else min_vol = hsusb_vdd_val[VDD_MIN_P50]; ret = regulator_set_voltage(mhcd->hsusb_vddcx, min_vol, max_vol); if (ret) { dev_err(mhcd->dev, "%s: unable to set the voltage of regulator" " HSUSB_VDDCX\n", __func__); return ret; } dev_dbg(mhcd->dev, "%s: min_vol:%d max_vol:%d\n", __func__, min_vol, max_vol); return ret; } #else static int msm_ehci_config_vddcx(struct msm_hcd *mhcd, int high) { return 0; } #endif static void msm_ehci_vbus_power(struct msm_hcd *mhcd, bool on) { int ret; if (!mhcd->vbus) return; if (mhcd->vbus_on == on) return; if (on) { ret = regulator_enable(mhcd->vbus); if (ret) { pr_err("unable to enable vbus\n"); return; } mhcd->vbus_on = true; } else { ret = regulator_disable(mhcd->vbus); if (ret) { pr_err("unable to disable vbus\n"); return; } mhcd->vbus_on = false; } } static irqreturn_t msm_ehci_dock_connect_irq(int irq, void *data) { const struct msm_usb_host_platform_data *pdata; struct msm_hcd *mhcd = data; struct usb_hcd *hcd = mhcd_to_hcd(mhcd); pdata = mhcd->dev->platform_data; if (atomic_read(&mhcd->in_lpm)) usb_hcd_resume_root_hub(hcd); if (irq_read_line(pdata->dock_connect_irq)) { dev_dbg(mhcd->dev, "%s:Dock removed disable vbus\n", __func__); msm_ehci_vbus_power(mhcd, 0); } else { dev_dbg(mhcd->dev, "%s:Dock connected enable vbus\n", __func__); msm_ehci_vbus_power(mhcd, 1); } return IRQ_HANDLED; } static int msm_ehci_init_vbus(struct msm_hcd *mhcd, int init) { int rc = 0; struct usb_hcd *hcd = mhcd_to_hcd(mhcd); const struct msm_usb_host_platform_data *pdata; pdata = mhcd->dev->platform_data; if (!init) { if (pdata && pdata->dock_connect_irq) free_irq(pdata->dock_connect_irq, mhcd); return rc; } mhcd->vbus = devm_regulator_get(mhcd->dev, "vbus"); if (PTR_ERR(mhcd->vbus) == -EPROBE_DEFER) { dev_dbg(mhcd->dev, "failed to get vbus handle, defer probe\n"); return -EPROBE_DEFER; } else { dev_dbg(mhcd->dev, "vbus-supply not specified\n"); mhcd->vbus = NULL; } if (pdata) { hcd->power_budget = pdata->power_budget; if (pdata->dock_connect_irq) { rc = request_threaded_irq(pdata->dock_connect_irq, NULL, msm_ehci_dock_connect_irq, IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING | IRQF_ONESHOT, "msm_ehci_host", mhcd); if (!rc) enable_irq_wake(pdata->dock_connect_irq); } } return rc; } static int msm_ehci_ldo_enable(struct msm_hcd *mhcd, int on) { int ret = 0; if (IS_ERR(mhcd->hsusb_1p8)) { dev_err(mhcd->dev, "%s: HSUSB_1p8 is not initialized\n", __func__); return -ENODEV; } if (IS_ERR(mhcd->hsusb_3p3)) { dev_err(mhcd->dev, "%s: HSUSB_3p3 is not initialized\n", __func__); return -ENODEV; } if (on) { ret = regulator_set_optimum_mode(mhcd->hsusb_1p8, HSUSB_PHY_1P8_HPM_LOAD); if (ret < 0) { dev_err(mhcd->dev, "%s: Unable to set HPM of the" " regulator: HSUSB_1p8\n", __func__); return ret; } ret = regulator_enable(mhcd->hsusb_1p8); if (ret) { dev_err(mhcd->dev, "%s: unable to enable the hsusb" " 1p8\n", __func__); regulator_set_optimum_mode(mhcd->hsusb_1p8, 0); return ret; } ret = regulator_set_optimum_mode(mhcd->hsusb_3p3, HSUSB_PHY_3P3_HPM_LOAD); if (ret < 0) { dev_err(mhcd->dev, "%s: Unable to set HPM of the " "regulator: HSUSB_3p3\n", __func__); regulator_set_optimum_mode(mhcd->hsusb_1p8, 0); regulator_disable(mhcd->hsusb_1p8); return ret; } ret = regulator_enable(mhcd->hsusb_3p3); if (ret) { dev_err(mhcd->dev, "%s: unable to enable the " "hsusb 3p3\n", __func__); regulator_set_optimum_mode(mhcd->hsusb_3p3, 0); regulator_set_optimum_mode(mhcd->hsusb_1p8, 0); regulator_disable(mhcd->hsusb_1p8); return ret; } } else { ret = regulator_disable(mhcd->hsusb_1p8); if (ret) { dev_err(mhcd->dev, "%s: unable to disable the " "hsusb 1p8\n", __func__); return ret; } ret = regulator_set_optimum_mode(mhcd->hsusb_1p8, 0); if (ret < 0) dev_err(mhcd->dev, "%s: Unable to set LPM of the " "regulator: HSUSB_1p8\n", __func__); ret = regulator_disable(mhcd->hsusb_3p3); if (ret) { dev_err(mhcd->dev, "%s: unable to disable the " "hsusb 3p3\n", __func__); return ret; } ret = regulator_set_optimum_mode(mhcd->hsusb_3p3, 0); if (ret < 0) dev_err(mhcd->dev, "%s: Unable to set LPM of the " "regulator: HSUSB_3p3\n", __func__); } dev_dbg(mhcd->dev, "reg (%s)\n", on ? "HPM" : "LPM"); return ret < 0 ? ret : 0; } #define ULPI_IO_TIMEOUT_USECS (10 * 1000) static int msm_ulpi_read(struct msm_hcd *mhcd, u32 reg) { struct usb_hcd *hcd = mhcd_to_hcd(mhcd); unsigned long timeout; /* initiate read operation */ writel_relaxed(ULPI_RUN | ULPI_READ | ULPI_ADDR(reg), USB_ULPI_VIEWPORT); /* wait for completion */ timeout = jiffies + usecs_to_jiffies(ULPI_IO_TIMEOUT_USECS); while (readl_relaxed(USB_ULPI_VIEWPORT) & ULPI_RUN) { if (time_after(jiffies, timeout)) { dev_err(mhcd->dev, "msm_ulpi_read: timeout %08x\n", readl_relaxed(USB_ULPI_VIEWPORT)); dev_err(mhcd->dev, "PORTSC: %08x USBCMD: %08x\n", readl_relaxed(USB_PORTSC), readl_relaxed(USB_USBCMD)); return -ETIMEDOUT; } udelay(1); } return ULPI_DATA_READ(readl_relaxed(USB_ULPI_VIEWPORT)); } static int msm_ulpi_write(struct msm_hcd *mhcd, u32 val, u32 reg) { struct usb_hcd *hcd = mhcd_to_hcd(mhcd); unsigned long timeout; /* initiate write operation */ writel_relaxed(ULPI_RUN | ULPI_WRITE | ULPI_ADDR(reg) | ULPI_DATA(val), USB_ULPI_VIEWPORT); /* wait for completion */ timeout = jiffies + usecs_to_jiffies(ULPI_IO_TIMEOUT_USECS); while (readl_relaxed(USB_ULPI_VIEWPORT) & ULPI_RUN) { if (time_after(jiffies, timeout)) { dev_err(mhcd->dev, "msm_ulpi_write: timeout\n"); dev_err(mhcd->dev, "PORTSC: %08x USBCMD: %08x\n", readl_relaxed(USB_PORTSC), readl_relaxed(USB_USBCMD)); return -ETIMEDOUT; } udelay(1); } return 0; } /** * Do hard reset to USB hardware block using one of reset methodology based * on availablity of alt_core_clk. There are two kinds of hardware resets. * 1. Conventional synchronous reset where clocks to blocks to be ON while * issuing the reset. 2. Asynchronous reset which requires clocks to be OFF. */ static int msm_ehci_link_clk_reset(struct msm_hcd *mhcd, bool assert) { int ret; if (assert) { if (mhcd->alt_core_clk) { ret = clk_reset(mhcd->alt_core_clk, CLK_RESET_ASSERT); } else { /* Using asynchronous block reset to the hardware */ clk_disable_unprepare(mhcd->iface_clk); clk_disable_unprepare(mhcd->core_clk); ret = clk_reset(mhcd->core_clk, CLK_RESET_ASSERT); } if (ret) dev_err(mhcd->dev, "usb clk assert failed\n"); } else { if (mhcd->alt_core_clk) { ret = clk_reset(mhcd->alt_core_clk, CLK_RESET_DEASSERT); } else { ret = clk_reset(mhcd->core_clk, CLK_RESET_DEASSERT); ndelay(200); clk_prepare_enable(mhcd->core_clk); clk_prepare_enable(mhcd->iface_clk); } if (ret) dev_err(mhcd->dev, "usb clk deassert failed\n"); } return ret; } static int msm_ehci_phy_reset(struct msm_hcd *mhcd) { struct usb_hcd *hcd = mhcd_to_hcd(mhcd); struct msm_usb_host_platform_data *pdata; u32 val; int ret; ret = msm_ehci_link_clk_reset(mhcd, 1); if (ret) return ret; /* Minimum 10msec delay for block reset as per hardware spec */ usleep_range(10000, 12000); ret = msm_ehci_link_clk_reset(mhcd, 0); if (ret) return ret; pdata = mhcd->dev->platform_data; if (pdata && pdata->use_sec_phy) /* select secondary phy if offset is set for USB operation */ writel_relaxed(readl_relaxed(USB_PHY_CTRL2) | (1<<16), USB_PHY_CTRL2); val = readl_relaxed(USB_PORTSC) & ~PORTSC_PTS_MASK; writel_relaxed(val | PORTSC_PTS_ULPI, USB_PORTSC); dev_info(mhcd->dev, "phy_reset: success\n"); return 0; } static void msm_usb_phy_reset(struct msm_hcd *mhcd) { u32 val; /* Assert USB PHY_PON */ val = readl_relaxed(mhcd->usb_phy_ctrl_reg); val &= ~PHY_POR_BIT_MASK; val |= PHY_POR_ASSERT; writel_relaxed(val, mhcd->usb_phy_ctrl_reg); /* wait for minimum 10 microseconds as suggested in hardware spec */ usleep_range(10, 15); /* Deassert USB PHY_PON */ val = readl_relaxed(mhcd->usb_phy_ctrl_reg); val &= ~PHY_POR_BIT_MASK; val |= PHY_POR_DEASSERT; writel_relaxed(val, mhcd->usb_phy_ctrl_reg); /* Ensure that RESET operation is completed. */ mb(); } #define LINK_RESET_TIMEOUT_USEC (250 * 1000) static int msm_hsusb_reset(struct msm_hcd *mhcd) { struct usb_hcd *hcd = mhcd_to_hcd(mhcd); struct msm_usb_host_platform_data *pdata; unsigned long timeout; int ret; if (mhcd->alt_core_clk) clk_prepare_enable(mhcd->alt_core_clk); ret = msm_ehci_phy_reset(mhcd); if (ret) { dev_err(mhcd->dev, "phy_reset failed\n"); return ret; } writel_relaxed(USBCMD_RESET, USB_USBCMD); timeout = jiffies + usecs_to_jiffies(LINK_RESET_TIMEOUT_USEC); while (readl_relaxed(USB_USBCMD) & USBCMD_RESET) { if (time_after(jiffies, timeout)) return -ETIMEDOUT; udelay(1); } /* select ULPI phy */ writel_relaxed(0x80000000, USB_PORTSC); pdata = mhcd->dev->platform_data; if (pdata && pdata->use_sec_phy) writel_relaxed(readl_relaxed(USB_PHY_CTRL2) | (1<<16), USB_PHY_CTRL2); /* Reset USB PHY after performing USB Link RESET */ if (hcd->phy) { usb_phy_reset(hcd->phy); usb_phy_init(hcd->phy); } else { msm_usb_phy_reset(mhcd); } msleep(100); writel_relaxed(0x0, USB_AHBBURST); writel_relaxed(0x08, USB_AHBMODE); /* Ensure that RESET operation is completed before turning off clock */ mb(); if (mhcd->alt_core_clk) clk_disable_unprepare(mhcd->alt_core_clk); /*rising edge interrupts with Dp rise and fall enabled*/ msm_ulpi_write(mhcd, ULPI_INT_DP, ULPI_USB_INT_EN_RISE); msm_ulpi_write(mhcd, ULPI_INT_DP, ULPI_USB_INT_EN_FALL); /*Clear the PHY interrupts by reading the PHY interrupt latch register*/ msm_ulpi_read(mhcd, ULPI_USB_INT_LATCH); return 0; } static void msm_ehci_phy_susp_fail_work(struct work_struct *w) { struct msm_hcd *mhcd = container_of(w, struct msm_hcd, phy_susp_fail_work); struct usb_hcd *hcd = mhcd_to_hcd(mhcd); pm_runtime_disable(mhcd->dev); msm_ehci_vbus_power(mhcd, 0); usb_remove_hcd(hcd); msm_hsusb_reset(mhcd); usb_add_hcd(hcd, hcd->irq, IRQF_SHARED); msm_ehci_vbus_power(mhcd, 1); pm_runtime_set_active(mhcd->dev); pm_runtime_enable(mhcd->dev); } #define PHY_SUSP_TIMEOUT_MSEC 500 #define PHY_RESUME_TIMEOUT_USEC (100 * 1000) #ifdef CONFIG_PM_SLEEP static int msm_ehci_suspend(struct msm_hcd *mhcd) { struct usb_hcd *hcd = mhcd_to_hcd(mhcd); unsigned long timeout; u32 portsc; const struct msm_usb_host_platform_data *pdata; u32 func_ctrl; if (atomic_read(&mhcd->in_lpm)) { dev_dbg(mhcd->dev, "%s called in lpm\n", __func__); return 0; } disable_irq(hcd->irq); /* make sure we don't race against a remote wakeup */ if (test_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags) || readl_relaxed(USB_PORTSC) & PORT_RESUME) { dev_dbg(mhcd->dev, "wakeup pending, aborting suspend\n"); enable_irq(hcd->irq); return -EBUSY; } pdata = mhcd->dev->platform_data; if (pdata && pdata->is_uicc) { /* put the controller in non-driving mode */ func_ctrl = msm_ulpi_read(mhcd, ULPI_FUNC_CTRL); func_ctrl &= ~ULPI_FUNC_CTRL_OPMODE_MASK; func_ctrl |= ULPI_FUNC_CTRL_OPMODE_NONDRIVING; msm_ulpi_write(mhcd, func_ctrl, ULPI_FUNC_CTRL); } /* If port is enabled wait 5ms for PHCD to come up. Reset PHY * and link if it fails to do so. * If port is not enabled set the PHCD bit and poll for it to * come up with in 500ms. Reset phy and link if it fails to do so. */ portsc = readl_relaxed(USB_PORTSC); if (portsc & PORT_PE) { usleep_range(5000, 5000); if (!(readl_relaxed(USB_PORTSC) & PORTSC_PHCD)) { dev_err(mhcd->dev, "Unable to suspend PHY. portsc: %8x\n", readl_relaxed(USB_PORTSC)); goto reset_phy_and_link; } } else { writel_relaxed(portsc | PORTSC_PHCD, USB_PORTSC); timeout = jiffies + msecs_to_jiffies(PHY_SUSP_TIMEOUT_MSEC); while (!(readl_relaxed(USB_PORTSC) & PORTSC_PHCD)) { if (time_after(jiffies, timeout)) { dev_err(mhcd->dev, "Unable to suspend PHY. portsc: %8x\n", readl_relaxed(USB_PORTSC)); goto reset_phy_and_link; } usleep_range(10000, 10000); } } /* * PHY has capability to generate interrupt asynchronously in low * power mode (LPM). This interrupt is level triggered. So USB IRQ * line must be disabled till async interrupt enable bit is cleared * in USBCMD register. Assert STP (ULPI interface STOP signal) to * block data communication from PHY. Enable asynchronous interrupt * only when wakeup gpio IRQ is not present. */ if (mhcd->wakeup_irq) writel_relaxed(readl_relaxed(USB_USBCMD) | ULPI_STP_CTRL, USB_USBCMD); else writel_relaxed(readl_relaxed(USB_USBCMD) | ASYNC_INTR_CTRL | ULPI_STP_CTRL, USB_USBCMD); /* * Ensure that hardware is put in low power mode before * clocks are turned OFF and VDD is allowed to minimize. */ mb(); clk_disable_unprepare(mhcd->iface_clk); clk_disable_unprepare(mhcd->core_clk); /* usb phy does not require TCXO clock, hence vote for TCXO disable */ if (mhcd->xo_clk) clk_disable_unprepare(mhcd->xo_clk); clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); msm_ehci_config_vddcx(mhcd, 0); atomic_set(&mhcd->in_lpm, 1); enable_irq(hcd->irq); if (mhcd->wakeup_irq) { mhcd->wakeup_irq_enabled = 1; enable_irq_wake(mhcd->wakeup_irq); enable_irq(mhcd->wakeup_irq); } if (mhcd->pmic_gpio_dp_irq) { mhcd->pmic_gpio_dp_irq_enabled = 1; enable_irq_wake(mhcd->pmic_gpio_dp_irq); enable_irq(mhcd->pmic_gpio_dp_irq); } if (mhcd->async_irq) { mhcd->async_irq_enabled = 1; enable_irq_wake(mhcd->async_irq); enable_irq(mhcd->async_irq); } pm_relax(mhcd->dev); dev_info(mhcd->dev, "EHCI USB in low power mode\n"); return 0; reset_phy_and_link: schedule_work(&mhcd->phy_susp_fail_work); return -ETIMEDOUT; } static int msm_ehci_resume(struct msm_hcd *mhcd) { struct usb_hcd *hcd = mhcd_to_hcd(mhcd); unsigned long timeout; unsigned temp; unsigned long flags; u32 func_ctrl; const struct msm_usb_host_platform_data *pdata; if (!atomic_read(&mhcd->in_lpm)) { dev_dbg(mhcd->dev, "%s called in !in_lpm\n", __func__); return 0; } /* Handles race with Async interrupt */ disable_irq(hcd->irq); if (mhcd->pmic_gpio_dp_irq_enabled) { disable_irq_wake(mhcd->pmic_gpio_dp_irq); disable_irq_nosync(mhcd->pmic_gpio_dp_irq); mhcd->pmic_gpio_dp_irq_enabled = 0; } spin_lock_irqsave(&mhcd->wakeup_lock, flags); if (mhcd->async_irq_enabled) { disable_irq_wake(mhcd->async_irq); disable_irq_nosync(mhcd->async_irq); mhcd->async_irq_enabled = 0; } if (mhcd->wakeup_irq) { if (mhcd->wakeup_irq_enabled) { disable_irq_wake(mhcd->wakeup_irq); disable_irq_nosync(mhcd->wakeup_irq); mhcd->wakeup_irq_enabled = 0; } } spin_unlock_irqrestore(&mhcd->wakeup_lock, flags); pm_stay_awake(mhcd->dev); /* Vote for TCXO when waking up the phy */ if (mhcd->xo_clk) clk_prepare_enable(mhcd->xo_clk); clk_prepare_enable(mhcd->core_clk); clk_prepare_enable(mhcd->iface_clk); msm_ehci_config_vddcx(mhcd, 1); temp = readl_relaxed(USB_USBCMD); temp &= ~ASYNC_INTR_CTRL; temp &= ~ULPI_STP_CTRL; writel_relaxed(temp, USB_USBCMD); if (!(readl_relaxed(USB_PORTSC) & PORTSC_PHCD)) goto skip_phy_resume; temp = readl_relaxed(USB_PORTSC) & ~PORTSC_PHCD; writel_relaxed(temp, USB_PORTSC); timeout = jiffies + usecs_to_jiffies(PHY_RESUME_TIMEOUT_USEC); while ((readl_relaxed(USB_PORTSC) & PORTSC_PHCD) || !(readl_relaxed(USB_ULPI_VIEWPORT) & ULPI_SYNC_STATE)) { if (time_after(jiffies, timeout)) { /*This is a fatal error. Reset the link and PHY*/ dev_err(mhcd->dev, "Unable to resume USB. Resetting the h/w\n"); msm_hsusb_reset(mhcd); break; } udelay(1); } skip_phy_resume: pdata = mhcd->dev->platform_data; if (pdata && pdata->is_uicc) { /* put the controller in normal mode */ func_ctrl = msm_ulpi_read(mhcd, ULPI_FUNC_CTRL); func_ctrl &= ~ULPI_FUNC_CTRL_OPMODE_MASK; func_ctrl |= ULPI_FUNC_CTRL_OPMODE_NORMAL; msm_ulpi_write(mhcd, func_ctrl, ULPI_FUNC_CTRL); } set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); usb_hcd_resume_root_hub(hcd); atomic_set(&mhcd->in_lpm, 0); if (atomic_read(&mhcd->pm_usage_cnt)) { atomic_set(&mhcd->pm_usage_cnt, 0); pm_runtime_put_noidle(mhcd->dev); } enable_irq(hcd->irq); dev_info(mhcd->dev, "EHCI USB exited from low power mode\n"); return 0; } #endif static irqreturn_t msm_async_irq(int irq, void *data) { struct msm_hcd *mhcd = data; int ret; mhcd->async_int_cnt++; dev_dbg(mhcd->dev, "%s: hsusb host remote wakeup interrupt cnt: %u\n", __func__, mhcd->async_int_cnt); pm_stay_awake(mhcd->dev); spin_lock(&mhcd->wakeup_lock); if (mhcd->async_irq_enabled) { mhcd->async_irq_enabled = 0; disable_irq_wake(irq); disable_irq_nosync(irq); } spin_unlock(&mhcd->wakeup_lock); if (!atomic_read(&mhcd->pm_usage_cnt)) { ret = pm_runtime_get(mhcd->dev); if ((ret == 1) || (ret == -EINPROGRESS)) pm_runtime_put_noidle(mhcd->dev); else atomic_set(&mhcd->pm_usage_cnt, 1); } return IRQ_HANDLED; } static irqreturn_t msm_ehci_host_wakeup_irq(int irq, void *data) { struct msm_hcd *mhcd = data; mhcd->pmic_gpio_int_cnt++; dev_dbg(mhcd->dev, "%s: hsusb host remote wakeup interrupt cnt: %u\n", __func__, mhcd->pmic_gpio_int_cnt); pm_stay_awake(mhcd->dev); if (mhcd->pmic_gpio_dp_irq_enabled) { mhcd->pmic_gpio_dp_irq_enabled = 0; disable_irq_wake(irq); disable_irq_nosync(irq); } if (!atomic_read(&mhcd->pm_usage_cnt)) { atomic_set(&mhcd->pm_usage_cnt, 1); pm_runtime_get(mhcd->dev); } return IRQ_HANDLED; } static int msm_ehci_reset(struct usb_hcd *hcd) { struct ehci_hcd *ehci = hcd_to_ehci(hcd); struct msm_hcd *mhcd = hcd_to_mhcd(hcd); struct msm_usb_host_platform_data *pdata; int retval; ehci->caps = USB_CAPLENGTH; hcd->has_tt = 1; ehci->no_testmode_suspend = true; retval = ehci_setup(hcd); if (retval) return retval; /* bursts of unspecified length. */ writel_relaxed(0, USB_AHBBURST); /* Use the AHB transactor */ writel_relaxed(0x08, USB_AHBMODE); /* Disable streaming mode and select host mode */ writel_relaxed(0x13, USB_USBMODE); pdata = mhcd->dev->platform_data; if (pdata && pdata->use_sec_phy) writel_relaxed(readl_relaxed(USB_PHY_CTRL2) | (1<<16), USB_PHY_CTRL2); /* Disable ULPI_TX_PKT_EN_CLR_FIX which is valid only for HSIC */ writel_relaxed(readl_relaxed(USB_GENCONFIG2) & ~(1<<19), USB_GENCONFIG2); return 0; } static int (*ehci_bus_resume_func)(struct usb_hcd *hcd); static int msm_ehci_bus_resume_with_gpio(struct usb_hcd *hcd) { struct msm_hcd *mhcd = hcd_to_mhcd(hcd); int ret; gpio_direction_output(mhcd->resume_gpio, 1); /* call ehci_bus_resume from ehci-hcd library */ ret = ehci_bus_resume_func(hcd); gpio_direction_output(mhcd->resume_gpio, 0); return ret; } #if defined(CONFIG_DEBUG_FS) static u32 addr; #define BUF_SIZE 32 static ssize_t debug_read_phy_data(struct file *file, char __user *ubuf, size_t count, loff_t *ppos) { struct msm_hcd *mhcd = file->private_data; char *kbuf; size_t c = 0; u32 data = 0; int ret = 0; kbuf = kzalloc(sizeof(char) * BUF_SIZE, GFP_KERNEL); if (!kbuf) return -ENOMEM; pm_runtime_get(mhcd->dev); data = msm_ulpi_read(mhcd, addr); pm_runtime_put(mhcd->dev); if (data < 0) { dev_err(mhcd->dev, "%s(): ulpi read timeout\n", __func__); return -ETIMEDOUT; } c = scnprintf(kbuf, BUF_SIZE, "addr: 0x%x: data: 0x%x\n", addr, data); ret = simple_read_from_buffer(ubuf, count, ppos, kbuf, c); kfree(kbuf); return ret; } static ssize_t debug_write_phy_data(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { struct msm_hcd *mhcd = file->private_data; char kbuf[10]; u32 data = 0; memset(kbuf, 0, 10); if (copy_from_user(kbuf, buf, min_t(size_t, sizeof(kbuf) - 1, count))) return -EFAULT; if (sscanf(kbuf, "%x", &data) != 1) return -EINVAL; pm_runtime_get(mhcd->dev); if (msm_ulpi_write(mhcd, data, addr) < 0) { dev_err(mhcd->dev, "%s(): ulpi write timeout\n", __func__); return -ETIMEDOUT; } pm_runtime_put(mhcd->dev); return count; } static ssize_t debug_phy_write_addr(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { char kbuf[10]; u32 temp; memset(kbuf, 0, 10); if (copy_from_user(kbuf, buf, min_t(size_t, sizeof(kbuf) - 1, count))) return -EFAULT; if (sscanf(kbuf, "%x", &temp) != 1) return -EINVAL; if (temp > 0x3F) return -EINVAL; addr = temp; return count; } static int debug_open(struct inode *inode, struct file *file) { file->private_data = inode->i_private; return 0; } const struct file_operations debug_rw_phy_ops = { .open = debug_open, .read = debug_read_phy_data, .write = debug_write_phy_data, }; const struct file_operations debug_write_phy_ops = { .open = debug_open, .write = debug_phy_write_addr, }; static struct dentry *dent_ehci; static int ehci_debugfs_init(struct msm_hcd *mhcd) { struct dentry *debug_phy_data; struct dentry *debug_phy_addr; dent_ehci = debugfs_create_dir(dev_name(mhcd->dev), 0); if (IS_ERR(dent_ehci)) return -ENOENT; debug_phy_data = debugfs_create_file("phy_reg_data", 0666, dent_ehci, mhcd, &debug_rw_phy_ops); if (!debug_phy_data) { debugfs_remove(dent_ehci); return -ENOENT; } debug_phy_addr = debugfs_create_file("phy_reg_addr", 0666, dent_ehci, mhcd, &debug_write_phy_ops); if (!debug_phy_addr) { debugfs_remove_recursive(dent_ehci); return -ENOENT; } return 0; } #else static int ehci_debugfs_init(struct msm_hcd *mhcd) { return 0; } #endif static const struct ehci_driver_overrides ehci_msm2_overrides __initdata = { .reset = msm_ehci_reset, .extra_priv_size = sizeof(struct msm_hcd), }; static struct hc_driver __read_mostly ehci_msm2_hc_driver; static irqreturn_t msm_hsusb_wakeup_irq(int irq, void *data) { struct msm_hcd *mhcd = data; int ret; mhcd->wakeup_int_cnt++; dev_dbg(mhcd->dev, "%s: hsic remote wakeup interrupt cnt: %u\n", __func__, mhcd->wakeup_int_cnt); pm_stay_awake(mhcd->dev); spin_lock(&mhcd->wakeup_lock); if (mhcd->wakeup_irq_enabled) { mhcd->wakeup_irq_enabled = 0; disable_irq_wake(irq); disable_irq_nosync(irq); } spin_unlock(&mhcd->wakeup_lock); if (!atomic_read(&mhcd->pm_usage_cnt)) { ret = pm_runtime_get(mhcd->dev); /* * controller runtime resume can race with us. * if we are active (ret == 1) or resuming * (ret == -EINPROGRESS), decrement the * PM usage counter before returning. */ if ((ret == 1) || (ret == -EINPROGRESS)) { pm_runtime_put_noidle(mhcd->dev); } else { /* Let khubd know of hub port status change */ if (mhcd->ehci.no_selective_suspend) mhcd->ehci.suspended_ports = 1; atomic_set(&mhcd->pm_usage_cnt, 1); } } return IRQ_HANDLED; } static int msm_ehci_init_clocks(struct msm_hcd *mhcd, u32 init) { int ret = 0; if (!init) goto put_clocks; /* iface_clk is required for data transfers */ mhcd->iface_clk = devm_clk_get(mhcd->dev, "iface_clk"); if (IS_ERR(mhcd->iface_clk)) { ret = PTR_ERR(mhcd->iface_clk); mhcd->iface_clk = NULL; if (ret != -EPROBE_DEFER) dev_err(mhcd->dev, "failed to get iface_clk\n"); return ret; } /* Link's protocol engine is based on pclk which must * be running >55Mhz and frequency should also not change. * Hence, vote for maximum clk frequency on its source */ mhcd->core_clk = devm_clk_get(mhcd->dev, "core_clk"); if (IS_ERR(mhcd->core_clk)) { ret = PTR_ERR(mhcd->core_clk); mhcd->core_clk = NULL; if (ret != -EPROBE_DEFER) dev_err(mhcd->dev, "failed to get core_clk\n"); return ret; } /* * Get Max supported clk frequency for USB Core CLK and request * to set the same. */ mhcd->core_clk_rate = clk_round_rate(mhcd->core_clk, LONG_MAX); if (IS_ERR_VALUE(mhcd->core_clk_rate)) { ret = mhcd->core_clk_rate; dev_err(mhcd->dev, "fail to get core clk max freq\n"); return ret; } ret = clk_set_rate(mhcd->core_clk, mhcd->core_clk_rate); if (ret) { dev_err(mhcd->dev, "fail to set core_clk: %d\n", ret); return ret; } clk_prepare_enable(mhcd->core_clk); clk_prepare_enable(mhcd->iface_clk); mhcd->phy_sleep_clk = devm_clk_get(mhcd->dev, "sleep_clk"); if (IS_ERR(mhcd->phy_sleep_clk)) { mhcd->phy_sleep_clk = NULL; dev_dbg(mhcd->dev, "failed to get sleep_clk\n"); } else { clk_prepare_enable(mhcd->phy_sleep_clk); } /* 60MHz alt_core_clk is for LINK to be used during PHY RESET */ mhcd->alt_core_clk = devm_clk_get(mhcd->dev, "alt_core_clk"); if (IS_ERR(mhcd->alt_core_clk)) { mhcd->alt_core_clk = NULL; dev_dbg(mhcd->dev, "failed to get alt_core_clk\n"); } else { clk_set_rate(mhcd->alt_core_clk, 60000000); } return 0; put_clocks: if (!atomic_read(&mhcd->in_lpm)) { clk_disable_unprepare(mhcd->iface_clk); clk_disable_unprepare(mhcd->core_clk); } if (mhcd->phy_sleep_clk) clk_disable_unprepare(mhcd->phy_sleep_clk); return 0; } struct msm_usb_host_platform_data *ehci_msm2_dt_to_pdata( struct platform_device *pdev) { struct device_node *node = pdev->dev.of_node; struct msm_usb_host_platform_data *pdata; pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) { dev_err(&pdev->dev, "unable to allocate platform data\n"); return NULL; } pdata->use_sec_phy = of_property_read_bool(node, "qcom,usb2-enable-hsphy2"); of_property_read_u32(node, "qcom,usb2-power-budget", &pdata->power_budget); pdata->no_selective_suspend = of_property_read_bool(node, "qcom,no-selective-suspend"); pdata->resume_gpio = of_get_named_gpio(node, "qcom,resume-gpio", 0); pdata->ext_hub_reset_gpio = of_get_named_gpio(node, "qcom,ext-hub-reset-gpio", 0); pdata->is_uicc = of_property_read_bool(node, "qcom,usb2-enable-uicc"); return pdata; } static u64 ehci_msm_dma_mask = DMA_BIT_MASK(32); static int ehci_msm2_probe(struct platform_device *pdev) { struct usb_hcd *hcd; struct resource *res; struct msm_hcd *mhcd; struct pinctrl_state *set_state; const struct msm_usb_host_platform_data *pdata; char pdev_name[PDEV_NAME_LEN]; int ret; dev_dbg(&pdev->dev, "ehci_msm2 probe\n"); /* * Fail probe in case of uicc till userspace activates driver through * sysfs entry. */ if (!uicc_card_present && pdev->dev.of_node && of_property_read_bool( pdev->dev.of_node, "qcom,usb2-enable-uicc")) return -ENODEV; hcd = usb_create_hcd(&ehci_msm2_hc_driver, &pdev->dev, dev_name(&pdev->dev)); if (!hcd) { dev_err(&pdev->dev, "Unable to create HCD\n"); return -ENOMEM; } mhcd = hcd_to_mhcd(hcd); mhcd->dev = &pdev->dev; mhcd->xo_clk = clk_get(&pdev->dev, "xo"); if (IS_ERR(mhcd->xo_clk)) { ret = PTR_ERR(mhcd->xo_clk); mhcd->xo_clk = NULL; if (ret == -EPROBE_DEFER) goto put_hcd; } ret = msm_ehci_init_clocks(mhcd, 1); if (ret) goto xo_put; if (pdev->dev.of_node) { dev_dbg(&pdev->dev, "device tree enabled\n"); pdev->dev.platform_data = ehci_msm2_dt_to_pdata(pdev); } if (!pdev->dev.platform_data) dev_dbg(&pdev->dev, "No platform data given\n"); pdata = pdev->dev.platform_data; if (!pdev->dev.dma_mask) pdev->dev.dma_mask = &ehci_msm_dma_mask; if (!pdev->dev.coherent_dma_mask) pdev->dev.coherent_dma_mask = DMA_BIT_MASK(32); hcd_to_bus(hcd)->skip_resume = true; hcd->irq = platform_get_irq(pdev, 0); if (hcd->irq < 0) { dev_err(&pdev->dev, "Unable to get IRQ resource\n"); ret = hcd->irq; goto deinit_clocks; } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(&pdev->dev, "Unable to get memory resource\n"); ret = -ENODEV; goto deinit_clocks; } hcd->rsrc_start = res->start; hcd->rsrc_len = resource_size(res); hcd->regs = ioremap(hcd->rsrc_start, hcd->rsrc_len); if (!hcd->regs) { dev_err(&pdev->dev, "ioremap failed\n"); ret = -ENOMEM; goto deinit_clocks; } spin_lock_init(&mhcd->wakeup_lock); mhcd->async_irq = platform_get_irq_byname(pdev, "async_irq"); if (mhcd->async_irq < 0) { dev_dbg(&pdev->dev, "platform_get_irq for async_int failed\n"); mhcd->async_irq = 0; } else { ret = request_irq(mhcd->async_irq, msm_async_irq, IRQF_TRIGGER_RISING, "msm_ehci_host", mhcd); if (ret) { dev_err(&pdev->dev, "request irq failed (ASYNC INT)\n"); goto unmap; } disable_irq(mhcd->async_irq); } snprintf(pdev_name, PDEV_NAME_LEN, "%s.%d", pdev->name, pdev->id); if (mhcd->xo_clk) ret = clk_prepare_enable(mhcd->xo_clk); if (ret) { dev_err(&pdev->dev, "%s failed to vote for TCXO %d\n", __func__, ret); goto free_xo_handle; } /* Get pinctrl if target uses pinctrl */ mhcd->hsusb_pinctrl = devm_pinctrl_get(&pdev->dev); if (IS_ERR(mhcd->hsusb_pinctrl)) { if (of_property_read_bool(pdev->dev.of_node, "pinctrl-names")) { dev_err(&pdev->dev, "Error encountered while getting pinctrl"); ret = PTR_ERR(mhcd->hsusb_pinctrl); goto devote_xo_handle; } pr_debug("Target does not use pinctrl\n"); mhcd->hsusb_pinctrl = NULL; } if (mhcd->hsusb_pinctrl) { set_state = pinctrl_lookup_state(mhcd->hsusb_pinctrl, "ehci_active"); if (IS_ERR(set_state)) { pr_err("cannot get hsusb pinctrl active state\n"); ret = PTR_ERR(set_state); goto devote_xo_handle; } ret = pinctrl_select_state(mhcd->hsusb_pinctrl, set_state); if (ret) { pr_err("cannot set hsusb pinctrl active state\n"); goto devote_xo_handle; } } if (pdata && gpio_is_valid(pdata->resume_gpio)) { mhcd->resume_gpio = pdata->resume_gpio; ret = devm_gpio_request(&pdev->dev, mhcd->resume_gpio, "hsusb_resume"); if (ret) { dev_err(&pdev->dev, "resume gpio(%d) request failed:%d\n", mhcd->resume_gpio, ret); mhcd->resume_gpio = -EINVAL; } else { /* to override ehci_bus_resume from ehci-hcd library */ ehci_bus_resume_func = ehci_msm2_hc_driver.bus_resume; ehci_msm2_hc_driver.bus_resume = msm_ehci_bus_resume_with_gpio; } } if (pdata && gpio_is_valid(pdata->ext_hub_reset_gpio)) { ret = devm_gpio_request(&pdev->dev, pdata->ext_hub_reset_gpio, "hsusb_reset"); if (ret) { dev_err(&pdev->dev, "reset gpio(%d) request failed:%d\n", pdata->ext_hub_reset_gpio, ret); goto pinctrl_sleep; } else { /* reset external hub */ gpio_direction_output(pdata->ext_hub_reset_gpio, 0); /* * Hub reset should be asserted for minimum 5microsec * before deasserting. */ usleep_range(5, 1000); gpio_direction_output(pdata->ext_hub_reset_gpio, 1); } } spin_lock_init(&mhcd->wakeup_lock); ret = msm_ehci_init_vddcx(mhcd, 1); if (ret) { dev_err(&pdev->dev, "unable to initialize VDDCX\n"); ret = -ENODEV; goto pinctrl_sleep; } ret = msm_ehci_config_vddcx(mhcd, 1); if (ret) { dev_err(&pdev->dev, "hsusb vddcx configuration failed\n"); goto deinit_vddcx; } ret = msm_ehci_ldo_init(mhcd, 1); if (ret) { dev_err(&pdev->dev, "hsusb vreg configuration failed\n"); goto deinit_vddcx; } ret = msm_ehci_ldo_enable(mhcd, 1); if (ret) { dev_err(&pdev->dev, "hsusb vreg enable failed\n"); goto deinit_ldo; } ret = msm_ehci_init_vbus(mhcd, 1); if (ret) goto disable_ldo; hcd->phy = devm_usb_get_phy_by_phandle(&pdev->dev, "usb-phy", 0); if (IS_ERR(hcd->phy)) { if (PTR_ERR(hcd->phy) == -EPROBE_DEFER) { dev_dbg(&pdev->dev, "usb-phy not probed yet\n"); ret = -EPROBE_DEFER; goto vbus_deinit; } hcd->phy = NULL; } if (hcd->phy) usb_phy_init(hcd->phy); else if (pdata && pdata->use_sec_phy) mhcd->usb_phy_ctrl_reg = USB_PHY_CTRL2; else mhcd->usb_phy_ctrl_reg = USB_PHY_CTRL; ret = msm_hsusb_reset(mhcd); if (ret) { dev_err(&pdev->dev, "hsusb PHY initialization failed\n"); goto vbus_deinit; } ret = usb_add_hcd(hcd, hcd->irq, IRQF_SHARED); if (ret) { dev_err(&pdev->dev, "unable to register HCD\n"); goto vbus_deinit; } pdata = mhcd->dev->platform_data; if (pdata && (!pdata->dock_connect_irq || !irq_read_line(pdata->dock_connect_irq))) msm_ehci_vbus_power(mhcd, 1); /* For peripherals directly conneted to downstream port of root hub * and require to drive suspend and resume by controller driver instead * of root hub. */ if (pdata) mhcd->ehci.no_selective_suspend = pdata->no_selective_suspend; mhcd->wakeup_irq = platform_get_irq_byname(pdev, "wakeup_irq"); if (mhcd->wakeup_irq > 0) { dev_dbg(&pdev->dev, "wakeup irq:%d\n", mhcd->wakeup_irq); irq_set_status_flags(mhcd->wakeup_irq, IRQ_NOAUTOEN); ret = request_irq(mhcd->wakeup_irq, msm_hsusb_wakeup_irq, IRQF_TRIGGER_HIGH, "msm_hsusb_wakeup", mhcd); if (ret) { dev_err(&pdev->dev, "request_irq(%d) failed:%d\n", mhcd->wakeup_irq, ret); mhcd->wakeup_irq = 0; } } else { mhcd->wakeup_irq = 0; } device_init_wakeup(&pdev->dev, 1); wakeup_source_init(&mhcd->ws, dev_name(&pdev->dev)); pm_stay_awake(mhcd->dev); INIT_WORK(&mhcd->phy_susp_fail_work, msm_ehci_phy_susp_fail_work); /* * This pdev->dev is assigned parent of root-hub by USB core, * hence, runtime framework automatically calls this driver's * runtime APIs based on root-hub's state. */ /* configure pmic_gpio_irq for D+ change */ if (pdata && pdata->pmic_gpio_dp_irq) mhcd->pmic_gpio_dp_irq = pdata->pmic_gpio_dp_irq; if (mhcd->pmic_gpio_dp_irq) { ret = request_threaded_irq(mhcd->pmic_gpio_dp_irq, NULL, msm_ehci_host_wakeup_irq, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, "msm_ehci_host_wakeup", mhcd); if (!ret) { disable_irq_nosync(mhcd->pmic_gpio_dp_irq); } else { dev_err(&pdev->dev, "request_irq(%d) failed: %d\n", mhcd->pmic_gpio_dp_irq, ret); mhcd->pmic_gpio_dp_irq = 0; } } pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); if (ehci_debugfs_init(mhcd) < 0) dev_err(mhcd->dev, "%s: debugfs init failed\n", __func__); return 0; vbus_deinit: msm_ehci_init_vbus(mhcd, 0); disable_ldo: msm_ehci_ldo_enable(mhcd, 0); deinit_ldo: msm_ehci_ldo_init(mhcd, 0); deinit_vddcx: msm_ehci_init_vddcx(mhcd, 0); pinctrl_sleep: if (mhcd->hsusb_pinctrl) { set_state = pinctrl_lookup_state(mhcd->hsusb_pinctrl, "ehci_sleep"); if (IS_ERR(set_state)) pr_err("cannot get hsusb pinctrl sleep state\n"); else pinctrl_select_state(mhcd->hsusb_pinctrl, set_state); } devote_xo_handle: if (mhcd->xo_clk) clk_disable_unprepare(mhcd->xo_clk); free_xo_handle: if (mhcd->xo_clk) { clk_put(mhcd->xo_clk); mhcd->xo_clk = NULL; } if (mhcd->async_irq) free_irq(mhcd->async_irq, mhcd); unmap: iounmap(hcd->regs); deinit_clocks: msm_ehci_init_clocks(mhcd, 0); xo_put: if (mhcd->xo_clk) clk_put(mhcd->xo_clk); put_hcd: usb_put_hcd(hcd); return ret; } static int ehci_msm2_remove(struct platform_device *pdev) { struct usb_hcd *hcd = platform_get_drvdata(pdev); struct msm_hcd *mhcd = hcd_to_mhcd(hcd); struct pinctrl_state *set_state; if (mhcd->pmic_gpio_dp_irq) { if (mhcd->pmic_gpio_dp_irq_enabled) disable_irq_wake(mhcd->pmic_gpio_dp_irq); free_irq(mhcd->pmic_gpio_dp_irq, mhcd); } if (mhcd->async_irq) { if (mhcd->async_irq_enabled) disable_irq_wake(mhcd->async_irq); free_irq(mhcd->async_irq, mhcd); } if (mhcd->wakeup_irq) { if (mhcd->wakeup_irq_enabled) disable_irq_wake(mhcd->wakeup_irq); free_irq(mhcd->wakeup_irq, mhcd); } /* If the device was removed no need to call pm_runtime_disable */ if (pdev->dev.power.power_state.event != PM_EVENT_INVALID) pm_runtime_disable(&pdev->dev); device_init_wakeup(&pdev->dev, 0); pm_runtime_set_suspended(&pdev->dev); usb_remove_hcd(hcd); if (hcd->phy) usb_phy_shutdown(hcd->phy); if (mhcd->xo_clk) { clk_disable_unprepare(mhcd->xo_clk); clk_put(mhcd->xo_clk); } msm_ehci_vbus_power(mhcd, 0); msm_ehci_init_vbus(mhcd, 0); msm_ehci_ldo_enable(mhcd, 0); msm_ehci_ldo_init(mhcd, 0); msm_ehci_init_vddcx(mhcd, 0); if (mhcd->hsusb_pinctrl) { set_state = pinctrl_lookup_state(mhcd->hsusb_pinctrl, "ehci_sleep"); if (IS_ERR(set_state)) pr_err("cannot get hsusb pinctrl sleep state\n"); else pinctrl_select_state(mhcd->hsusb_pinctrl, set_state); } msm_ehci_init_clocks(mhcd, 0); wakeup_source_trash(&mhcd->ws); iounmap(hcd->regs); usb_put_hcd(hcd); #if defined(CONFIG_DEBUG_FS) debugfs_remove_recursive(dent_ehci); #endif return 0; } #ifdef CONFIG_PM_SLEEP static int ehci_msm2_pm_suspend(struct device *dev) { struct usb_hcd *hcd = dev_get_drvdata(dev); struct msm_hcd *mhcd = hcd_to_mhcd(hcd); dev_dbg(dev, "ehci-msm2 PM suspend\n"); if (device_may_wakeup(dev) && !mhcd->async_irq_enabled && !mhcd->wakeup_irq_enabled && !mhcd->pmic_gpio_dp_irq_enabled) enable_irq_wake(hcd->irq); return msm_ehci_suspend(mhcd); } static int ehci_msm2_pm_resume(struct device *dev) { int ret; struct usb_hcd *hcd = dev_get_drvdata(dev); struct msm_hcd *mhcd = hcd_to_mhcd(hcd); dev_dbg(dev, "ehci-msm2 PM resume\n"); if (device_may_wakeup(dev) && !mhcd->async_irq_enabled && !mhcd->wakeup_irq_enabled && !mhcd->pmic_gpio_dp_irq_enabled) disable_irq_wake(hcd->irq); ret = msm_ehci_resume(mhcd); if (ret) return ret; /* Bring the device to full powered state upon system resume */ pm_runtime_disable(dev); pm_runtime_set_active(dev); pm_runtime_enable(dev); return 0; } #endif #ifdef CONFIG_PM_RUNTIME static int ehci_msm2_runtime_idle(struct device *dev) { dev_dbg(dev, "EHCI runtime idle\n"); return 0; } static int ehci_msm2_runtime_suspend(struct device *dev) { struct usb_hcd *hcd = dev_get_drvdata(dev); struct msm_hcd *mhcd = hcd_to_mhcd(hcd); dev_dbg(dev, "EHCI runtime suspend\n"); return msm_ehci_suspend(mhcd); } static int ehci_msm2_runtime_resume(struct device *dev) { struct usb_hcd *hcd = dev_get_drvdata(dev); struct msm_hcd *mhcd = hcd_to_mhcd(hcd); dev_dbg(dev, "EHCI runtime resume\n"); return msm_ehci_resume(mhcd); } #endif #ifdef CONFIG_PM static const struct dev_pm_ops ehci_msm2_dev_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(ehci_msm2_pm_suspend, ehci_msm2_pm_resume) SET_RUNTIME_PM_OPS(ehci_msm2_runtime_suspend, ehci_msm2_runtime_resume, ehci_msm2_runtime_idle) }; #endif static const struct of_device_id ehci_msm2_dt_match[] = { { .compatible = "qcom,ehci-host", }, {} }; static struct platform_driver ehci_msm2_driver = { .probe = ehci_msm2_probe, .remove = ehci_msm2_remove, .driver = { .name = "msm_ehci_host", #ifdef CONFIG_PM .pm = &ehci_msm2_dev_pm_ops, #endif .of_match_table = ehci_msm2_dt_match, }, }; static int __init ehci_msm2_init(void) { if (usb_disabled()) return -ENODEV; pr_info("%s: " DRIVER_DESC "\n", hcd_name); ehci_init_driver(&ehci_msm2_hc_driver, &ehci_msm2_overrides); return platform_driver_register(&ehci_msm2_driver); } module_init(ehci_msm2_init); static void __exit ehci_msm2_cleanup(void) { platform_driver_unregister(&ehci_msm2_driver); } module_exit(ehci_msm2_cleanup);