/* * Definitions for the 'struct sk_buff' memory handlers. * * Authors: * Alan Cox, * Florian La Roche, * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #ifndef _LINUX_SKBUFF_H #define _LINUX_SKBUFF_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CHECKSUM_NONE 0 #define CHECKSUM_UNNECESSARY 1 #define CHECKSUM_COMPLETE 2 #define CHECKSUM_PARTIAL 3 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ ~(SMP_CACHE_BYTES - 1)) #define SKB_WITH_OVERHEAD(X) \ ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) #define SKB_MAX_ORDER(X, ORDER) \ SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) #define SKB_TRUESIZE(X) ((X) + \ SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) struct net_device; struct scatterlist; struct pipe_inode_info; #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) struct nf_conntrack { atomic_t use; }; #endif #ifdef CONFIG_BRIDGE_NETFILTER struct nf_bridge_info { atomic_t use; struct net_device *physindev; struct net_device *physoutdev; unsigned int mask; unsigned long data[32 / sizeof(unsigned long)]; }; #endif struct sk_buff_head { struct sk_buff *next; struct sk_buff *prev; __u32 qlen; spinlock_t lock; }; struct sk_buff; #if (65536/PAGE_SIZE + 1) < 16 #define MAX_SKB_FRAGS 16UL #else #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) #endif typedef struct skb_frag_struct skb_frag_t; struct skb_frag_struct { struct { struct page *p; } page; #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) __u32 page_offset; __u32 size; #else __u16 page_offset; __u16 size; #endif }; static inline unsigned int skb_frag_size(const skb_frag_t *frag) { return frag->size; } static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) { frag->size = size; } static inline void skb_frag_size_add(skb_frag_t *frag, int delta) { frag->size += delta; } static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) { frag->size -= delta; } #define HAVE_HW_TIME_STAMP struct skb_shared_hwtstamps { ktime_t hwtstamp; ktime_t syststamp; }; enum { SKBTX_HW_TSTAMP = 1 << 0, SKBTX_SW_TSTAMP = 1 << 1, SKBTX_IN_PROGRESS = 1 << 2, SKBTX_DEV_ZEROCOPY = 1 << 3, SKBTX_WIFI_STATUS = 1 << 4, }; struct ubuf_info { void (*callback)(struct ubuf_info *); void *ctx; unsigned long desc; }; struct skb_shared_info { unsigned char nr_frags; __u8 tx_flags; unsigned short gso_size; unsigned short gso_segs; unsigned short gso_type; struct sk_buff *frag_list; struct skb_shared_hwtstamps hwtstamps; __be32 ip6_frag_id; atomic_t dataref; void * destructor_arg; skb_frag_t frags[MAX_SKB_FRAGS]; }; #define SKB_DATAREF_SHIFT 16 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) enum { SKB_FCLONE_UNAVAILABLE, SKB_FCLONE_ORIG, SKB_FCLONE_CLONE, }; enum { SKB_GSO_TCPV4 = 1 << 0, SKB_GSO_UDP = 1 << 1, SKB_GSO_DODGY = 1 << 2, SKB_GSO_TCP_ECN = 1 << 3, SKB_GSO_TCPV6 = 1 << 4, SKB_GSO_FCOE = 1 << 5, }; #if BITS_PER_LONG > 32 #define NET_SKBUFF_DATA_USES_OFFSET 1 #endif #ifdef NET_SKBUFF_DATA_USES_OFFSET typedef unsigned int sk_buff_data_t; #else typedef unsigned char *sk_buff_data_t; #endif #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \ defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE) #define NET_SKBUFF_NF_DEFRAG_NEEDED 1 #endif struct sk_buff { struct sk_buff *next; struct sk_buff *prev; ktime_t tstamp; struct sock *sk; struct net_device *dev; char cb[48] __aligned(8); unsigned long _skb_refdst; #ifdef CONFIG_XFRM struct sec_path *sp; #endif unsigned int len, data_len; __u16 mac_len, hdr_len; union { __wsum csum; struct { __u16 csum_start; __u16 csum_offset; }; }; __u32 priority; kmemcheck_bitfield_begin(flags1); __u8 local_df:1, cloned:1, ip_summed:2, nohdr:1, nfctinfo:3; __u8 pkt_type:3, fclone:2, ipvs_property:1, peeked:1, nf_trace:1; kmemcheck_bitfield_end(flags1); __be16 protocol; void (*destructor)(struct sk_buff *skb); #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) struct nf_conntrack *nfct; #endif #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED struct sk_buff *nfct_reasm; #endif #ifdef CONFIG_BRIDGE_NETFILTER struct nf_bridge_info *nf_bridge; #endif int skb_iif; __u32 rxhash; __u16 vlan_tci; #ifdef CONFIG_NET_SCHED __u16 tc_index; #ifdef CONFIG_NET_CLS_ACT __u16 tc_verd; #endif #endif __u16 queue_mapping; kmemcheck_bitfield_begin(flags2); #ifdef CONFIG_IPV6_NDISC_NODETYPE __u8 ndisc_nodetype:2; #endif __u8 ooo_okay:1; __u8 l4_rxhash:1; __u8 wifi_acked_valid:1; __u8 wifi_acked:1; __u8 no_fcs:1; kmemcheck_bitfield_end(flags2); #ifdef CONFIG_NET_DMA dma_cookie_t dma_cookie; #endif #ifdef CONFIG_NETWORK_SECMARK __u32 secmark; #endif union { __u32 mark; __u32 dropcount; __u32 avail_size; }; sk_buff_data_t transport_header; sk_buff_data_t network_header; sk_buff_data_t mac_header; sk_buff_data_t tail; sk_buff_data_t end; unsigned char *head, *data; unsigned int truesize; atomic_t users; }; #ifdef __KERNEL__ #include #define SKB_DST_NOREF 1UL #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) static inline struct dst_entry *skb_dst(const struct sk_buff *skb) { WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && !rcu_read_lock_held() && !rcu_read_lock_bh_held()); return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); } static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) { skb->_skb_refdst = (unsigned long)dst; } extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst); static inline bool skb_dst_is_noref(const struct sk_buff *skb) { return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); } static inline struct rtable *skb_rtable(const struct sk_buff *skb) { return (struct rtable *)skb_dst(skb); } extern void kfree_skb(struct sk_buff *skb); extern void consume_skb(struct sk_buff *skb); extern void __kfree_skb(struct sk_buff *skb); extern struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int fclone, int node); extern struct sk_buff *build_skb(void *data); static inline struct sk_buff *alloc_skb(unsigned int size, gfp_t priority) { return __alloc_skb(size, priority, 0, NUMA_NO_NODE); } static inline struct sk_buff *alloc_skb_fclone(unsigned int size, gfp_t priority) { return __alloc_skb(size, priority, 1, NUMA_NO_NODE); } extern void skb_recycle(struct sk_buff *skb); extern bool skb_recycle_check(struct sk_buff *skb, int skb_size); extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); extern struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); extern struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); extern struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask); extern int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom); extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, int newtailroom, gfp_t priority); extern int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len); extern int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); extern int skb_pad(struct sk_buff *skb, int pad); #define dev_kfree_skb(a) consume_skb(a) extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, int getfrag(void *from, char *to, int offset, int len,int odd, struct sk_buff *skb), void *from, int length); struct skb_seq_state { __u32 lower_offset; __u32 upper_offset; __u32 frag_idx; __u32 stepped_offset; struct sk_buff *root_skb; struct sk_buff *cur_skb; __u8 *frag_data; }; extern void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, unsigned int to, struct skb_seq_state *st); extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, struct skb_seq_state *st); extern void skb_abort_seq_read(struct skb_seq_state *st); extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, unsigned int to, struct ts_config *config, struct ts_state *state); extern void __skb_get_rxhash(struct sk_buff *skb); static inline __u32 skb_get_rxhash(struct sk_buff *skb) { if (!skb->rxhash) __skb_get_rxhash(skb); return skb->rxhash; } #ifdef NET_SKBUFF_DATA_USES_OFFSET static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) { return skb->head + skb->end; } static inline unsigned int skb_end_offset(const struct sk_buff *skb) { return skb->end; } #else static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) { return skb->end; } static inline unsigned int skb_end_offset(const struct sk_buff *skb) { return skb->end - skb->head; } #endif #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) { return &skb_shinfo(skb)->hwtstamps; } static inline int skb_queue_empty(const struct sk_buff_head *list) { #ifdef CONFIG_HTC_NETWORK_MODIFY if ((list->next != (struct sk_buff *)list) && (list->qlen == 0)) WARN_ON(1); if ((list->next == (struct sk_buff *)list) && (list->qlen > 0)) WARN_ON(1); #endif return list->next == (struct sk_buff *)list; } static inline bool skb_queue_is_last(const struct sk_buff_head *list, const struct sk_buff *skb) { return skb->next == (struct sk_buff *)list; } static inline bool skb_queue_is_first(const struct sk_buff_head *list, const struct sk_buff *skb) { return skb->prev == (struct sk_buff *)list; } static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, const struct sk_buff *skb) { BUG_ON(skb_queue_is_last(list, skb)); return skb->next; } static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, const struct sk_buff *skb) { BUG_ON(skb_queue_is_first(list, skb)); return skb->prev; } static inline struct sk_buff *skb_get(struct sk_buff *skb) { atomic_inc(&skb->users); return skb; } /** * skb_cloned - is the buffer a clone * @skb: buffer to check * * Returns true if the buffer was generated with skb_clone() and is * one of multiple shared copies of the buffer. Cloned buffers are * shared data so must not be written to under normal circumstances. */ static inline int skb_cloned(const struct sk_buff *skb) { return skb->cloned && (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; } static inline int skb_header_cloned(const struct sk_buff *skb) { int dataref; if (!skb->cloned) return 0; dataref = atomic_read(&skb_shinfo(skb)->dataref); dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); return dataref != 1; } static inline void skb_header_release(struct sk_buff *skb) { BUG_ON(skb->nohdr); skb->nohdr = 1; atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); } static inline int skb_shared(const struct sk_buff *skb) { return atomic_read(&skb->users) != 1; } static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) { might_sleep_if(pri & __GFP_WAIT); if (skb_shared(skb)) { struct sk_buff *nskb = skb_clone(skb, pri); kfree_skb(skb); skb = nskb; } return skb; } static inline struct sk_buff *skb_unshare(struct sk_buff *skb, gfp_t pri) { might_sleep_if(pri & __GFP_WAIT); if (skb_cloned(skb)) { struct sk_buff *nskb = skb_copy(skb, pri); kfree_skb(skb); skb = nskb; } return skb; } static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) { struct sk_buff *list = ((const struct sk_buff *)list_)->next; if (list == (struct sk_buff *)list_) list = NULL; return list; } static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, const struct sk_buff_head *list_) { struct sk_buff *next = skb->next; if (next == (struct sk_buff *)list_) next = NULL; return next; } static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) { struct sk_buff *list = ((const struct sk_buff *)list_)->prev; if (list == (struct sk_buff *)list_) list = NULL; return list; } static inline __u32 skb_queue_len(const struct sk_buff_head *list_) { return list_->qlen; } static inline void __skb_queue_head_init(struct sk_buff_head *list) { list->prev = list->next = (struct sk_buff *)list; list->qlen = 0; } static inline void skb_queue_head_init(struct sk_buff_head *list) { spin_lock_init(&list->lock); __skb_queue_head_init(list); } static inline void skb_queue_head_init_class(struct sk_buff_head *list, struct lock_class_key *class) { skb_queue_head_init(list); lockdep_set_class(&list->lock, class); } extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); static inline void __skb_insert(struct sk_buff *newsk, struct sk_buff *prev, struct sk_buff *next, struct sk_buff_head *list) { newsk->next = next; newsk->prev = prev; next->prev = prev->next = newsk; list->qlen++; } static inline void __skb_queue_splice(const struct sk_buff_head *list, struct sk_buff *prev, struct sk_buff *next) { struct sk_buff *first = list->next; struct sk_buff *last = list->prev; first->prev = prev; prev->next = first; last->next = next; next->prev = last; } static inline void skb_queue_splice(const struct sk_buff_head *list, struct sk_buff_head *head) { if (!skb_queue_empty(list)) { __skb_queue_splice(list, (struct sk_buff *) head, head->next); head->qlen += list->qlen; } } static inline void skb_queue_splice_init(struct sk_buff_head *list, struct sk_buff_head *head) { if (!skb_queue_empty(list)) { __skb_queue_splice(list, (struct sk_buff *) head, head->next); head->qlen += list->qlen; __skb_queue_head_init(list); } } static inline void skb_queue_splice_tail(const struct sk_buff_head *list, struct sk_buff_head *head) { if (!skb_queue_empty(list)) { __skb_queue_splice(list, head->prev, (struct sk_buff *) head); head->qlen += list->qlen; } } static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, struct sk_buff_head *head) { if (!skb_queue_empty(list)) { __skb_queue_splice(list, head->prev, (struct sk_buff *) head); head->qlen += list->qlen; __skb_queue_head_init(list); } } static inline void __skb_queue_after(struct sk_buff_head *list, struct sk_buff *prev, struct sk_buff *newsk) { __skb_insert(newsk, prev, prev->next, list); } extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); static inline void __skb_queue_before(struct sk_buff_head *list, struct sk_buff *next, struct sk_buff *newsk) { __skb_insert(newsk, next->prev, next, list); } extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); static inline void __skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) { __skb_queue_after(list, (struct sk_buff *)list, newsk); } extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); static inline void __skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) { __skb_queue_before(list, (struct sk_buff *)list, newsk); } extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) { struct sk_buff *next, *prev; list->qlen--; next = skb->next; prev = skb->prev; skb->next = skb->prev = NULL; next->prev = prev; prev->next = next; } extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) { struct sk_buff *skb = skb_peek(list); if (skb) __skb_unlink(skb, list); return skb; } extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) { struct sk_buff *skb = skb_peek_tail(list); if (skb) __skb_unlink(skb, list); return skb; } static inline bool skb_is_nonlinear(const struct sk_buff *skb) { return skb->data_len; } static inline unsigned int skb_headlen(const struct sk_buff *skb) { return skb->len - skb->data_len; } static inline int skb_pagelen(const struct sk_buff *skb) { int i, len = 0; for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) len += skb_frag_size(&skb_shinfo(skb)->frags[i]); return len + skb_headlen(skb); } static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, struct page *page, int off, int size) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; frag->page.p = page; frag->page_offset = off; skb_frag_size_set(frag, size); } static inline void skb_fill_page_desc(struct sk_buff *skb, int i, struct page *page, int off, int size) { __skb_fill_page_desc(skb, i, page, off, size); skb_shinfo(skb)->nr_frags = i + 1; } extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, int size, unsigned int truesize); #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) #ifdef NET_SKBUFF_DATA_USES_OFFSET static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) { return skb->head + skb->tail; } static inline void skb_reset_tail_pointer(struct sk_buff *skb) { skb->tail = skb->data - skb->head; } static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) { skb_reset_tail_pointer(skb); skb->tail += offset; } #else static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) { return skb->tail; } static inline void skb_reset_tail_pointer(struct sk_buff *skb) { skb->tail = skb->data; } static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) { skb->tail = skb->data + offset; } #endif extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) { unsigned char *tmp = skb_tail_pointer(skb); SKB_LINEAR_ASSERT(skb); skb->tail += len; skb->len += len; return tmp; } extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) { skb->data -= len; skb->len += len; return skb->data; } extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) { skb->len -= len; BUG_ON(skb->len < skb->data_len); return skb->data += len; } static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) { return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); } extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) { if (len > skb_headlen(skb) && !__pskb_pull_tail(skb, len - skb_headlen(skb))) return NULL; skb->len -= len; return skb->data += len; } static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) { return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); } static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) { if (likely(len <= skb_headlen(skb))) return 1; if (unlikely(len > skb->len)) return 0; return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; } static inline unsigned int skb_headroom(const struct sk_buff *skb) { return skb->data - skb->head; } static inline int skb_tailroom(const struct sk_buff *skb) { return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; } static inline int skb_availroom(const struct sk_buff *skb) { return skb_is_nonlinear(skb) ? 0 : skb->avail_size - skb->len; } static inline void skb_reserve(struct sk_buff *skb, int len) { skb->data += len; skb->tail += len; } static inline void skb_reset_mac_len(struct sk_buff *skb) { skb->mac_len = skb->network_header - skb->mac_header; } #ifdef NET_SKBUFF_DATA_USES_OFFSET static inline unsigned char *skb_transport_header(const struct sk_buff *skb) { return skb->head + skb->transport_header; } static inline void skb_reset_transport_header(struct sk_buff *skb) { skb->transport_header = skb->data - skb->head; } static inline void skb_set_transport_header(struct sk_buff *skb, const int offset) { skb_reset_transport_header(skb); skb->transport_header += offset; } static inline unsigned char *skb_network_header(const struct sk_buff *skb) { return skb->head + skb->network_header; } static inline void skb_reset_network_header(struct sk_buff *skb) { skb->network_header = skb->data - skb->head; } static inline void skb_set_network_header(struct sk_buff *skb, const int offset) { skb_reset_network_header(skb); skb->network_header += offset; } static inline unsigned char *skb_mac_header(const struct sk_buff *skb) { return skb->head + skb->mac_header; } static inline int skb_mac_header_was_set(const struct sk_buff *skb) { return skb->mac_header != ~0U; } static inline void skb_reset_mac_header(struct sk_buff *skb) { skb->mac_header = skb->data - skb->head; } static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) { skb_reset_mac_header(skb); skb->mac_header += offset; } #else static inline unsigned char *skb_transport_header(const struct sk_buff *skb) { return skb->transport_header; } static inline void skb_reset_transport_header(struct sk_buff *skb) { skb->transport_header = skb->data; } static inline void skb_set_transport_header(struct sk_buff *skb, const int offset) { skb->transport_header = skb->data + offset; } static inline unsigned char *skb_network_header(const struct sk_buff *skb) { return skb->network_header; } static inline void skb_reset_network_header(struct sk_buff *skb) { skb->network_header = skb->data; } static inline void skb_set_network_header(struct sk_buff *skb, const int offset) { skb->network_header = skb->data + offset; } static inline unsigned char *skb_mac_header(const struct sk_buff *skb) { return skb->mac_header; } static inline int skb_mac_header_was_set(const struct sk_buff *skb) { return skb->mac_header != NULL; } static inline void skb_reset_mac_header(struct sk_buff *skb) { skb->mac_header = skb->data; } static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) { skb->mac_header = skb->data + offset; } #endif static inline void skb_mac_header_rebuild(struct sk_buff *skb) { if (skb_mac_header_was_set(skb)) { const unsigned char *old_mac = skb_mac_header(skb); skb_set_mac_header(skb, -skb->mac_len); memmove(skb_mac_header(skb), old_mac, skb->mac_len); } } static inline int skb_checksum_start_offset(const struct sk_buff *skb) { return skb->csum_start - skb_headroom(skb); } static inline int skb_transport_offset(const struct sk_buff *skb) { return skb_transport_header(skb) - skb->data; } static inline u32 skb_network_header_len(const struct sk_buff *skb) { return skb->transport_header - skb->network_header; } static inline int skb_network_offset(const struct sk_buff *skb) { return skb_network_header(skb) - skb->data; } static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) { return pskb_may_pull(skb, skb_network_offset(skb) + len); } #ifndef NET_IP_ALIGN #define NET_IP_ALIGN 2 #endif #ifndef NET_SKB_PAD #define NET_SKB_PAD max(32, L1_CACHE_BYTES) #endif extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); static inline void __skb_trim(struct sk_buff *skb, unsigned int len) { if (unlikely(skb_is_nonlinear(skb))) { WARN_ON(1); return; } skb->len = len; skb_set_tail_pointer(skb, len); } extern void skb_trim(struct sk_buff *skb, unsigned int len); static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) { if (skb->data_len) return ___pskb_trim(skb, len); __skb_trim(skb, len); return 0; } static inline int pskb_trim(struct sk_buff *skb, unsigned int len) { return (len < skb->len) ? __pskb_trim(skb, len) : 0; } static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) { int err = pskb_trim(skb, len); BUG_ON(err); } static inline void skb_orphan(struct sk_buff *skb) { if (skb->destructor) skb->destructor(skb); skb->destructor = NULL; skb->sk = NULL; } /** * skb_orphan_frags - orphan the frags contained in a buffer * @skb: buffer to orphan frags from * @gfp_mask: allocation mask for replacement pages * * For each frag in the SKB which needs a destructor (i.e. has an * owner) create a copy of that frag and release the original * page by calling the destructor. */ static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) { if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) return 0; return skb_copy_ubufs(skb, gfp_mask); } /** * __skb_queue_purge - empty a list * @list: list to empty * * Delete all buffers on an &sk_buff list. Each buffer is removed from * the list and one reference dropped. This function does not take the * list lock and the caller must hold the relevant locks to use it. */ extern void skb_queue_purge(struct sk_buff_head *list); static inline void __skb_queue_purge(struct sk_buff_head *list) { struct sk_buff *skb; while ((skb = __skb_dequeue(list)) != NULL) kfree_skb(skb); } static inline struct sk_buff *__dev_alloc_skb(unsigned int length, gfp_t gfp_mask) { struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); if (likely(skb)) skb_reserve(skb, NET_SKB_PAD); return skb; } extern struct sk_buff *dev_alloc_skb(unsigned int length); extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, gfp_t gfp_mask); static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, unsigned int length) { return __netdev_alloc_skb(dev, length, GFP_ATOMIC); } static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, unsigned int length, gfp_t gfp) { struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); if (NET_IP_ALIGN && skb) skb_reserve(skb, NET_IP_ALIGN); return skb; } static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, unsigned int length) { return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); } static inline struct page *skb_frag_page(const skb_frag_t *frag) { return frag->page.p; } static inline void __skb_frag_ref(skb_frag_t *frag) { get_page(skb_frag_page(frag)); } static inline void skb_frag_ref(struct sk_buff *skb, int f) { __skb_frag_ref(&skb_shinfo(skb)->frags[f]); } static inline void __skb_frag_unref(skb_frag_t *frag) { put_page(skb_frag_page(frag)); } static inline void skb_frag_unref(struct sk_buff *skb, int f) { __skb_frag_unref(&skb_shinfo(skb)->frags[f]); } static inline void *skb_frag_address(const skb_frag_t *frag) { return page_address(skb_frag_page(frag)) + frag->page_offset; } static inline void *skb_frag_address_safe(const skb_frag_t *frag) { void *ptr = page_address(skb_frag_page(frag)); if (unlikely(!ptr)) return NULL; return ptr + frag->page_offset; } static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) { frag->page.p = page; } static inline void skb_frag_set_page(struct sk_buff *skb, int f, struct page *page) { __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); } static inline dma_addr_t skb_frag_dma_map(struct device *dev, const skb_frag_t *frag, size_t offset, size_t size, enum dma_data_direction dir) { return dma_map_page(dev, skb_frag_page(frag), frag->page_offset + offset, size, dir); } static inline struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) { return __pskb_copy(skb, skb_headroom(skb), gfp_mask); } static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) { return !skb_header_cloned(skb) && skb_headroom(skb) + len <= skb->hdr_len; } static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, int cloned) { int delta = 0; if (headroom > skb_headroom(skb)) delta = headroom - skb_headroom(skb); if (delta || cloned) return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, GFP_ATOMIC); return 0; } static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) { return __skb_cow(skb, headroom, skb_cloned(skb)); } static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) { return __skb_cow(skb, headroom, skb_header_cloned(skb)); } static inline int skb_padto(struct sk_buff *skb, unsigned int len) { unsigned int size = skb->len; if (likely(size >= len)) return 0; return skb_pad(skb, len - size); } static inline int skb_add_data(struct sk_buff *skb, char __user *from, int copy) { const int off = skb->len; if (skb->ip_summed == CHECKSUM_NONE) { int err = 0; __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), copy, 0, &err); if (!err) { skb->csum = csum_block_add(skb->csum, csum, off); return 0; } } else if (!copy_from_user(skb_put(skb, copy), from, copy)) return 0; __skb_trim(skb, off); return -EFAULT; } static inline int skb_can_coalesce(struct sk_buff *skb, int i, const struct page *page, int off) { if (i) { const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; return page == skb_frag_page(frag) && off == frag->page_offset + skb_frag_size(frag); } return 0; } static inline int __skb_linearize(struct sk_buff *skb) { return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; } static inline int skb_linearize(struct sk_buff *skb) { return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; } static inline int skb_linearize_cow(struct sk_buff *skb) { return skb_is_nonlinear(skb) || skb_cloned(skb) ? __skb_linearize(skb) : 0; } static inline void skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len) { if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); } unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) { if (likely(len >= skb->len)) return 0; if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE; return __pskb_trim(skb, len); } #define skb_queue_walk(queue, skb) \ for (skb = (queue)->next; \ skb != (struct sk_buff *)(queue); \ skb = skb->next) #define skb_queue_walk_safe(queue, skb, tmp) \ for (skb = (queue)->next, tmp = skb->next; \ skb != (struct sk_buff *)(queue); \ skb = tmp, tmp = skb->next) #define skb_queue_walk_from(queue, skb) \ for (; skb != (struct sk_buff *)(queue); \ skb = skb->next) #define skb_queue_walk_from_safe(queue, skb, tmp) \ for (tmp = skb->next; \ skb != (struct sk_buff *)(queue); \ skb = tmp, tmp = skb->next) #define skb_queue_reverse_walk(queue, skb) \ for (skb = (queue)->prev; \ skb != (struct sk_buff *)(queue); \ skb = skb->prev) #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ for (skb = (queue)->prev, tmp = skb->prev; \ skb != (struct sk_buff *)(queue); \ skb = tmp, tmp = skb->prev) #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ for (tmp = skb->prev; \ skb != (struct sk_buff *)(queue); \ skb = tmp, tmp = skb->prev) static inline bool skb_has_frag_list(const struct sk_buff *skb) { return skb_shinfo(skb)->frag_list != NULL; } static inline void skb_frag_list_init(struct sk_buff *skb) { skb_shinfo(skb)->frag_list = NULL; } static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) { frag->next = skb_shinfo(skb)->frag_list; skb_shinfo(skb)->frag_list = frag; } #define skb_walk_frags(skb, iter) \ for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, int *peeked, int *off, int *err); extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, int *err); extern unsigned int datagram_poll(struct file *file, struct socket *sock, struct poll_table_struct *wait); extern int skb_copy_datagram_iovec(const struct sk_buff *from, int offset, struct iovec *to, int size); extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, int hlen, struct iovec *iov); extern int skb_copy_datagram_from_iovec(struct sk_buff *skb, int offset, const struct iovec *from, int from_offset, int len); extern int skb_copy_datagram_const_iovec(const struct sk_buff *from, int offset, const struct iovec *to, int to_offset, int size); extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); extern void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb); extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); extern __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum); extern int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); extern int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, int len, __wsum csum); extern int skb_splice_bits(struct sk_buff *skb, unsigned int offset, struct pipe_inode_info *pipe, unsigned int len, unsigned int flags); extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); extern void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); extern struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); unsigned int skb_gso_transport_seglen(const struct sk_buff *skb); static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) { int hlen = skb_headlen(skb); if (hlen - offset >= len) return skb->data + offset; if (skb_copy_bits(skb, offset, buffer, len) < 0) return NULL; return buffer; } static inline void skb_copy_from_linear_data(const struct sk_buff *skb, void *to, const unsigned int len) { memcpy(to, skb->data, len); } static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, const int offset, void *to, const unsigned int len) { memcpy(to, skb->data + offset, len); } static inline void skb_copy_to_linear_data(struct sk_buff *skb, const void *from, const unsigned int len) { memcpy(skb->data, from, len); } static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, const int offset, const void *from, const unsigned int len) { memcpy(skb->data + offset, from, len); } extern void skb_init(void); static inline ktime_t skb_get_ktime(const struct sk_buff *skb) { return skb->tstamp; } static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp) { *stamp = ktime_to_timeval(skb->tstamp); } static inline void skb_get_timestampns(const struct sk_buff *skb, struct timespec *stamp) { *stamp = ktime_to_timespec(skb->tstamp); } static inline void __net_timestamp(struct sk_buff *skb) { skb->tstamp = ktime_get_real(); } static inline ktime_t net_timedelta(ktime_t t) { return ktime_sub(ktime_get_real(), t); } static inline ktime_t net_invalid_timestamp(void) { return ktime_set(0, 0); } extern void skb_timestamping_init(void); #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING extern void skb_clone_tx_timestamp(struct sk_buff *skb); extern bool skb_defer_rx_timestamp(struct sk_buff *skb); #else static inline void skb_clone_tx_timestamp(struct sk_buff *skb) { } static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) { return false; } #endif void skb_complete_tx_timestamp(struct sk_buff *skb, struct skb_shared_hwtstamps *hwtstamps); extern void skb_tstamp_tx(struct sk_buff *orig_skb, struct skb_shared_hwtstamps *hwtstamps); static inline void sw_tx_timestamp(struct sk_buff *skb) { if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) skb_tstamp_tx(skb, NULL); } static inline void skb_tx_timestamp(struct sk_buff *skb) { skb_clone_tx_timestamp(skb); sw_tx_timestamp(skb); } void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); extern __sum16 __skb_checksum_complete(struct sk_buff *skb); static inline int skb_csum_unnecessary(const struct sk_buff *skb) { return skb->ip_summed & CHECKSUM_UNNECESSARY; } static inline __sum16 skb_checksum_complete(struct sk_buff *skb) { return skb_csum_unnecessary(skb) ? 0 : __skb_checksum_complete(skb); } #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) extern void nf_conntrack_destroy(struct nf_conntrack *nfct); static inline void nf_conntrack_put(struct nf_conntrack *nfct) { if (nfct && atomic_dec_and_test(&nfct->use)) nf_conntrack_destroy(nfct); } static inline void nf_conntrack_get(struct nf_conntrack *nfct) { if (nfct) atomic_inc(&nfct->use); } #endif #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED static inline void nf_conntrack_get_reasm(struct sk_buff *skb) { if (skb) atomic_inc(&skb->users); } static inline void nf_conntrack_put_reasm(struct sk_buff *skb) { if (skb) kfree_skb(skb); } #endif #ifdef CONFIG_BRIDGE_NETFILTER static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) { if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) kfree(nf_bridge); } static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) { if (nf_bridge) atomic_inc(&nf_bridge->use); } #endif static inline void nf_reset(struct sk_buff *skb) { #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) nf_conntrack_put(skb->nfct); skb->nfct = NULL; #endif #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED nf_conntrack_put_reasm(skb->nfct_reasm); skb->nfct_reasm = NULL; #endif #ifdef CONFIG_BRIDGE_NETFILTER nf_bridge_put(skb->nf_bridge); skb->nf_bridge = NULL; #endif } static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) { #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) dst->nfct = src->nfct; nf_conntrack_get(src->nfct); dst->nfctinfo = src->nfctinfo; #endif #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED dst->nfct_reasm = src->nfct_reasm; nf_conntrack_get_reasm(src->nfct_reasm); #endif #ifdef CONFIG_BRIDGE_NETFILTER dst->nf_bridge = src->nf_bridge; nf_bridge_get(src->nf_bridge); #endif } static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) { #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) nf_conntrack_put(dst->nfct); #endif #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED nf_conntrack_put_reasm(dst->nfct_reasm); #endif #ifdef CONFIG_BRIDGE_NETFILTER nf_bridge_put(dst->nf_bridge); #endif __nf_copy(dst, src); } #ifdef CONFIG_NETWORK_SECMARK static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) { to->secmark = from->secmark; } static inline void skb_init_secmark(struct sk_buff *skb) { skb->secmark = 0; } #else static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) { } static inline void skb_init_secmark(struct sk_buff *skb) { } #endif static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) { skb->queue_mapping = queue_mapping; } static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) { return skb->queue_mapping; } static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) { to->queue_mapping = from->queue_mapping; } static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) { skb->queue_mapping = rx_queue + 1; } static inline u16 skb_get_rx_queue(const struct sk_buff *skb) { return skb->queue_mapping - 1; } static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) { return skb->queue_mapping != 0; } extern u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, unsigned int num_tx_queues); #ifdef CONFIG_XFRM static inline struct sec_path *skb_sec_path(struct sk_buff *skb) { return skb->sp; } #else static inline struct sec_path *skb_sec_path(struct sk_buff *skb) { return NULL; } #endif static inline bool skb_is_gso(const struct sk_buff *skb) { return skb_shinfo(skb)->gso_size; } static inline bool skb_is_gso_v6(const struct sk_buff *skb) { return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; } extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); static inline bool skb_warn_if_lro(const struct sk_buff *skb) { const struct skb_shared_info *shinfo = skb_shinfo(skb); if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) { __skb_warn_lro_forwarding(skb); return true; } return false; } static inline void skb_forward_csum(struct sk_buff *skb) { if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE; } static inline void skb_checksum_none_assert(const struct sk_buff *skb) { #ifdef DEBUG BUG_ON(skb->ip_summed != CHECKSUM_NONE); #endif } bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size) { if (irqs_disabled()) return false; if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) return false; if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE) return false; skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD); if (skb_end_offset(skb) < skb_size) return false; if (skb_shared(skb) || skb_cloned(skb)) return false; return true; } #endif /* __KERNEL__ */ #endif /* _LINUX_SKBUFF_H */