#include #include #include #include #include "cpupri.h" extern __read_mostly int scheduler_running; #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) #define USER_PRIO(p) ((p)-MAX_RT_PRIO) #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) #define NICE_0_LOAD SCHED_LOAD_SCALE #define NICE_0_SHIFT SCHED_LOAD_SHIFT #define RUNTIME_INF ((u64)~0ULL) static inline int rt_policy(int policy) { if (policy == SCHED_FIFO || policy == SCHED_RR) return 1; return 0; } static inline int task_has_rt_policy(struct task_struct *p) { return rt_policy(p->policy); } struct rt_prio_array { DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); struct list_head queue[MAX_RT_PRIO]; }; struct rt_bandwidth { raw_spinlock_t rt_runtime_lock; ktime_t rt_period; u64 rt_runtime; struct hrtimer rt_period_timer; }; extern struct mutex sched_domains_mutex; #ifdef CONFIG_CGROUP_SCHED #include struct cfs_rq; struct rt_rq; static LIST_HEAD(task_groups); struct cfs_bandwidth { #ifdef CONFIG_CFS_BANDWIDTH raw_spinlock_t lock; ktime_t period; u64 quota, runtime; s64 hierarchal_quota; u64 runtime_expires; int idle, timer_active; struct hrtimer period_timer, slack_timer; struct list_head throttled_cfs_rq; int nr_periods, nr_throttled; u64 throttled_time; #endif }; struct task_group { struct cgroup_subsys_state css; bool notify_on_migrate; #ifdef CONFIG_FAIR_GROUP_SCHED struct sched_entity **se; struct cfs_rq **cfs_rq; unsigned long shares; atomic_t load_weight; #endif #ifdef CONFIG_RT_GROUP_SCHED struct sched_rt_entity **rt_se; struct rt_rq **rt_rq; struct rt_bandwidth rt_bandwidth; #endif struct rcu_head rcu; struct list_head list; struct task_group *parent; struct list_head siblings; struct list_head children; #ifdef CONFIG_SCHED_AUTOGROUP struct autogroup *autogroup; #endif struct cfs_bandwidth cfs_bandwidth; }; #ifdef CONFIG_FAIR_GROUP_SCHED #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD #define MIN_SHARES (1UL << 1) #define MAX_SHARES (1UL << 18) #endif extern struct task_group root_task_group; typedef int (*tg_visitor)(struct task_group *, void *); extern int walk_tg_tree_from(struct task_group *from, tg_visitor down, tg_visitor up, void *data); static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) { return walk_tg_tree_from(&root_task_group, down, up, data); } extern int tg_nop(struct task_group *tg, void *data); extern void free_fair_sched_group(struct task_group *tg); extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); extern void unregister_fair_sched_group(struct task_group *tg, int cpu); extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, struct sched_entity *se, int cpu, struct sched_entity *parent); extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); extern void free_rt_sched_group(struct task_group *tg); extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int cpu, struct sched_rt_entity *parent); #else struct cfs_bandwidth { }; #endif struct cfs_rq { struct load_weight load; unsigned long nr_running, h_nr_running; u64 exec_clock; u64 min_vruntime; #ifndef CONFIG_64BIT u64 min_vruntime_copy; #endif struct rb_root tasks_timeline; struct rb_node *rb_leftmost; struct sched_entity *curr, *next, *last, *skip; #ifdef CONFIG_SCHED_DEBUG unsigned int nr_spread_over; #endif #ifdef CONFIG_FAIR_GROUP_SCHED struct rq *rq; int on_list; struct list_head leaf_cfs_rq_list; struct task_group *tg; #ifdef CONFIG_SMP unsigned long h_load; u64 load_avg; u64 load_period; u64 load_stamp, load_last, load_unacc_exec_time; unsigned long load_contribution; #endif #ifdef CONFIG_CFS_BANDWIDTH int runtime_enabled; u64 runtime_expires; s64 runtime_remaining; u64 throttled_timestamp; int throttled, throttle_count; struct list_head throttled_list; #endif #endif }; static inline int rt_bandwidth_enabled(void) { return sysctl_sched_rt_runtime >= 0; } struct rt_rq { struct rt_prio_array active; unsigned long rt_nr_running; #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED struct { int curr; #ifdef CONFIG_SMP int next; #endif } highest_prio; #endif #ifdef CONFIG_SMP unsigned long rt_nr_migratory; unsigned long rt_nr_total; int overloaded; struct plist_head pushable_tasks; #endif int rt_throttled; u64 rt_time; u64 rt_runtime; raw_spinlock_t rt_runtime_lock; #ifdef CONFIG_RT_GROUP_SCHED unsigned long rt_nr_boosted; struct rq *rq; struct list_head leaf_rt_rq_list; struct task_group *tg; #endif }; #ifdef CONFIG_SMP struct root_domain { atomic_t refcount; atomic_t rto_count; struct rcu_head rcu; cpumask_var_t span; cpumask_var_t online; cpumask_var_t rto_mask; struct cpupri cpupri; }; extern struct root_domain def_root_domain; #endif struct rq { raw_spinlock_t lock; unsigned long nr_running; #define CPU_LOAD_IDX_MAX 5 unsigned long cpu_load[CPU_LOAD_IDX_MAX]; unsigned long last_load_update_tick; #ifdef CONFIG_NO_HZ u64 nohz_stamp; unsigned long nohz_flags; #endif int skip_clock_update; /* time-based average load */ u64 nr_last_stamp; unsigned int ave_nr_running; seqcount_t ave_seqcnt; /* capture load from *all* tasks on this cpu: */ struct load_weight load; unsigned long nr_load_updates; u64 nr_switches; struct cfs_rq cfs; struct rt_rq rt; #ifdef CONFIG_FAIR_GROUP_SCHED struct list_head leaf_cfs_rq_list; #endif #ifdef CONFIG_RT_GROUP_SCHED struct list_head leaf_rt_rq_list; #endif unsigned long nr_uninterruptible; struct task_struct *curr, *idle, *stop; unsigned long next_balance; struct mm_struct *prev_mm; u64 clock; u64 clock_task; atomic_t nr_iowait; #ifdef CONFIG_SMP struct root_domain *rd; struct sched_domain *sd; unsigned long cpu_power; unsigned char idle_balance; int post_schedule; int active_balance; int push_cpu; struct cpu_stop_work active_balance_work; int cpu; int online; struct list_head cfs_tasks; u64 rt_avg; u64 age_stamp; u64 idle_stamp; u64 avg_idle; #endif #ifdef CONFIG_IRQ_TIME_ACCOUNTING u64 prev_irq_time; #endif #ifdef CONFIG_PARAVIRT u64 prev_steal_time; #endif #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING u64 prev_steal_time_rq; #endif unsigned long calc_load_update; long calc_load_active; #ifdef CONFIG_SCHED_HRTICK #ifdef CONFIG_SMP int hrtick_csd_pending; struct call_single_data hrtick_csd; #endif struct hrtimer hrtick_timer; #endif #ifdef CONFIG_SCHEDSTATS struct sched_info rq_sched_info; unsigned long long rq_cpu_time; unsigned int yld_count; unsigned int sched_count; unsigned int sched_goidle; unsigned int ttwu_count; unsigned int ttwu_local; #endif #ifdef CONFIG_SMP struct llist_head wake_list; #endif }; static inline int cpu_of(struct rq *rq) { #ifdef CONFIG_SMP return rq->cpu; #else return 0; #endif } DECLARE_PER_CPU(struct rq, runqueues); #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) #define this_rq() (&__get_cpu_var(runqueues)) #define task_rq(p) cpu_rq(task_cpu(p)) #define cpu_curr(cpu) (cpu_rq(cpu)->curr) #define raw_rq() (&__raw_get_cpu_var(runqueues)) #ifdef CONFIG_SMP #define rcu_dereference_check_sched_domain(p) \ rcu_dereference_check((p), \ lockdep_is_held(&sched_domains_mutex)) #define for_each_domain(cpu, __sd) \ for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ __sd; __sd = __sd->parent) #define for_each_lower_domain(sd) for (; sd; sd = sd->child) static inline struct sched_domain *highest_flag_domain(int cpu, int flag) { struct sched_domain *sd, *hsd = NULL; for_each_domain(cpu, sd) { if (!(sd->flags & flag)) break; hsd = sd; } return hsd; } DECLARE_PER_CPU(struct sched_domain *, sd_llc); DECLARE_PER_CPU(int, sd_llc_id); #endif #include "stats.h" #include "auto_group.h" #ifdef CONFIG_CGROUP_SCHED static inline struct task_group *task_group(struct task_struct *p) { struct task_group *tg; struct cgroup_subsys_state *css; css = task_subsys_state_check(p, cpu_cgroup_subsys_id, lockdep_is_held(&p->pi_lock) || lockdep_is_held(&task_rq(p)->lock)); tg = container_of(css, struct task_group, css); return autogroup_task_group(p, tg); } static inline bool task_notify_on_migrate(struct task_struct *p) { return task_group(p)->notify_on_migrate; } /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) struct task_group *tg = task_group(p); #endif #ifdef CONFIG_FAIR_GROUP_SCHED p->se.cfs_rq = tg->cfs_rq[cpu]; p->se.parent = tg->se[cpu]; #endif #ifdef CONFIG_RT_GROUP_SCHED p->rt.rt_rq = tg->rt_rq[cpu]; p->rt.parent = tg->rt_se[cpu]; #endif } #else static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } static inline struct task_group *task_group(struct task_struct *p) { return NULL; } static inline bool task_notify_on_migrate(struct task_struct *p) { return false; } #endif /* CONFIG_CGROUP_SCHED */ static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) { set_task_rq(p, cpu); #ifdef CONFIG_SMP smp_wmb(); task_thread_info(p)->cpu = cpu; #endif } #ifdef CONFIG_SCHED_DEBUG # include # define const_debug __read_mostly #else # define const_debug const #endif extern const_debug unsigned int sysctl_sched_features; #define SCHED_FEAT(name, enabled) \ __SCHED_FEAT_##name , enum { #include "features.h" __SCHED_FEAT_NR, }; #undef SCHED_FEAT #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) static __always_inline bool static_branch__true(struct static_key *key) { return static_key_true(key); } static __always_inline bool static_branch__false(struct static_key *key) { return static_key_false(key); } #define SCHED_FEAT(name, enabled) \ static __always_inline bool static_branch_##name(struct static_key *key) \ { \ return static_branch__##enabled(key); \ } #include "features.h" #undef SCHED_FEAT extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) #else #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) #endif static inline u64 global_rt_period(void) { return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; } static inline u64 global_rt_runtime(void) { if (sysctl_sched_rt_runtime < 0) return RUNTIME_INF; return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; } static inline int task_current(struct rq *rq, struct task_struct *p) { return rq->curr == p; } static inline int task_running(struct rq *rq, struct task_struct *p) { #ifdef CONFIG_SMP return p->on_cpu; #else return task_current(rq, p); #endif } #ifndef prepare_arch_switch # define prepare_arch_switch(next) do { } while (0) #endif #ifndef finish_arch_switch # define finish_arch_switch(prev) do { } while (0) #endif #ifndef finish_arch_post_lock_switch # define finish_arch_post_lock_switch() do { } while (0) #endif #ifndef __ARCH_WANT_UNLOCKED_CTXSW static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) { #ifdef CONFIG_SMP next->on_cpu = 1; #endif } static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) { #ifdef CONFIG_SMP smp_wmb(); prev->on_cpu = 0; #endif #ifdef CONFIG_DEBUG_SPINLOCK rq->lock.owner = current; #endif spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); raw_spin_unlock_irq(&rq->lock); } #else static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) { #ifdef CONFIG_SMP next->on_cpu = 1; #endif #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW raw_spin_unlock_irq(&rq->lock); #else raw_spin_unlock(&rq->lock); #endif } static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) { #ifdef CONFIG_SMP smp_wmb(); prev->on_cpu = 0; #endif #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW local_irq_enable(); #endif } #endif static inline void update_load_add(struct load_weight *lw, unsigned long inc) { lw->weight += inc; lw->inv_weight = 0; } static inline void update_load_sub(struct load_weight *lw, unsigned long dec) { lw->weight -= dec; lw->inv_weight = 0; } static inline void update_load_set(struct load_weight *lw, unsigned long w) { lw->weight = w; lw->inv_weight = 0; } #define WEIGHT_IDLEPRIO 3 #define WMULT_IDLEPRIO 1431655765 static const int prio_to_weight[40] = { 88761, 71755, 56483, 46273, 36291, 29154, 23254, 18705, 14949, 11916, 9548, 7620, 6100, 4904, 3906, 3121, 2501, 1991, 1586, 1277, 1024, 820, 655, 526, 423, 335, 272, 215, 172, 137, 110, 87, 70, 56, 45, 36, 29, 23, 18, 15, }; static const u32 prio_to_wmult[40] = { 48388, 59856, 76040, 92818, 118348, 147320, 184698, 229616, 287308, 360437, 449829, 563644, 704093, 875809, 1099582, 1376151, 1717300, 2157191, 2708050, 3363326, 4194304, 5237765, 6557202, 8165337, 10153587, 12820798, 15790321, 19976592, 24970740, 31350126, 39045157, 49367440, 61356676, 76695844, 95443717, 119304647, 148102320, 186737708, 238609294, 286331153, }; enum cpuacct_stat_index { CPUACCT_STAT_USER, CPUACCT_STAT_SYSTEM, CPUACCT_STAT_NSTATS, }; #define sched_class_highest (&stop_sched_class) #define for_each_class(class) \ for (class = sched_class_highest; class; class = class->next) extern const struct sched_class stop_sched_class; extern const struct sched_class rt_sched_class; extern const struct sched_class fair_sched_class; extern const struct sched_class idle_sched_class; #ifdef CONFIG_SMP extern void trigger_load_balance(struct rq *rq, int cpu); extern void idle_balance(int this_cpu, struct rq *this_rq); #else static inline void idle_balance(int cpu, struct rq *rq) { } #endif extern void sysrq_sched_debug_show(void); extern void sched_init_granularity(void); extern void update_max_interval(void); extern void update_group_power(struct sched_domain *sd, int cpu); extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu); extern void init_sched_rt_class(void); extern void init_sched_fair_class(void); extern void resched_task(struct task_struct *p); extern void resched_cpu(int cpu); extern struct rt_bandwidth def_rt_bandwidth; extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); extern void update_cpu_load(struct rq *this_rq); #ifdef CONFIG_CGROUP_CPUACCT #include struct cpuacct { struct cgroup_subsys_state css; u64 __percpu *cpuusage; struct kernel_cpustat __percpu *cpustat; }; static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp) { return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id), struct cpuacct, css); } static inline struct cpuacct *task_ca(struct task_struct *tsk) { return container_of(task_subsys_state(tsk, cpuacct_subsys_id), struct cpuacct, css); } static inline struct cpuacct *parent_ca(struct cpuacct *ca) { if (!ca || !ca->css.cgroup->parent) return NULL; return cgroup_ca(ca->css.cgroup->parent); } extern void cpuacct_charge(struct task_struct *tsk, u64 cputime); #else static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} #endif /* 27 ~= 134217728ns = 134.2ms * 26 ~= 67108864ns = 67.1ms * 25 ~= 33554432ns = 33.5ms * 24 ~= 16777216ns = 16.8ms */ #define NR_AVE_PERIOD_EXP 27 #define NR_AVE_SCALE(x) ((x) << FSHIFT) #define NR_AVE_PERIOD (1 << NR_AVE_PERIOD_EXP) #define NR_AVE_DIV_PERIOD(x) ((x) >> NR_AVE_PERIOD_EXP) static inline unsigned int do_avg_nr_running(struct rq *rq) { s64 nr, deltax; unsigned int ave_nr_running = rq->ave_nr_running; deltax = rq->clock_task - rq->nr_last_stamp; nr = NR_AVE_SCALE(rq->nr_running); if (deltax > NR_AVE_PERIOD) ave_nr_running = nr; else ave_nr_running += NR_AVE_DIV_PERIOD(deltax * (nr - ave_nr_running)); return ave_nr_running; } static inline void inc_nr_running(struct rq *rq) { write_seqcount_begin(&rq->ave_seqcnt); rq->ave_nr_running = do_avg_nr_running(rq); rq->nr_last_stamp = rq->clock_task; rq->nr_running++; write_seqcount_end(&rq->ave_seqcnt); } static inline void dec_nr_running(struct rq *rq) { write_seqcount_begin(&rq->ave_seqcnt); rq->ave_nr_running = do_avg_nr_running(rq); rq->nr_last_stamp = rq->clock_task; rq->nr_running--; write_seqcount_end(&rq->ave_seqcnt); } extern void update_rq_clock(struct rq *rq); extern void activate_task(struct rq *rq, struct task_struct *p, int flags); extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); extern const_debug unsigned int sysctl_sched_time_avg; extern const_debug unsigned int sysctl_sched_nr_migrate; extern const_debug unsigned int sysctl_sched_migration_cost; static inline u64 sched_avg_period(void) { return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; } #ifdef CONFIG_SCHED_HRTICK static inline int hrtick_enabled(struct rq *rq) { if (!sched_feat(HRTICK)) return 0; if (!cpu_active(cpu_of(rq))) return 0; return hrtimer_is_hres_active(&rq->hrtick_timer); } void hrtick_start(struct rq *rq, u64 delay); #else static inline int hrtick_enabled(struct rq *rq) { return 0; } #endif #ifdef CONFIG_SMP extern void sched_avg_update(struct rq *rq); static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { rq->rt_avg += rt_delta; sched_avg_update(rq); } #else static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { } static inline void sched_avg_update(struct rq *rq) { } #endif extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period); #ifdef CONFIG_SMP #ifdef CONFIG_PREEMPT static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) __releases(this_rq->lock) __acquires(busiest->lock) __acquires(this_rq->lock) { raw_spin_unlock(&this_rq->lock); double_rq_lock(this_rq, busiest); return 1; } #else static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) __releases(this_rq->lock) __acquires(busiest->lock) __acquires(this_rq->lock) { int ret = 0; if (unlikely(!raw_spin_trylock(&busiest->lock))) { if (busiest < this_rq) { raw_spin_unlock(&this_rq->lock); raw_spin_lock(&busiest->lock); raw_spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING); ret = 1; } else raw_spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING); } return ret; } #endif static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) { if (unlikely(!irqs_disabled())) { raw_spin_unlock(&this_rq->lock); BUG_ON(1); } return _double_lock_balance(this_rq, busiest); } static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) __releases(busiest->lock) { raw_spin_unlock(&busiest->lock); lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); } static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) __acquires(rq1->lock) __acquires(rq2->lock) { BUG_ON(!irqs_disabled()); if (rq1 == rq2) { raw_spin_lock(&rq1->lock); __acquire(rq2->lock); } else { if (rq1 < rq2) { raw_spin_lock(&rq1->lock); raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); } else { raw_spin_lock(&rq2->lock); raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); } } } static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) __releases(rq1->lock) __releases(rq2->lock) { raw_spin_unlock(&rq1->lock); if (rq1 != rq2) raw_spin_unlock(&rq2->lock); else __release(rq2->lock); } #else static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) __acquires(rq1->lock) __acquires(rq2->lock) { BUG_ON(!irqs_disabled()); BUG_ON(rq1 != rq2); raw_spin_lock(&rq1->lock); __acquire(rq2->lock); } static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) __releases(rq1->lock) __releases(rq2->lock) { BUG_ON(rq1 != rq2); raw_spin_unlock(&rq1->lock); __release(rq2->lock); } #endif extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); extern void print_cfs_stats(struct seq_file *m, int cpu); extern void print_rt_stats(struct seq_file *m, int cpu); extern void init_cfs_rq(struct cfs_rq *cfs_rq); extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq); extern void cfs_bandwidth_usage_inc(void); extern void cfs_bandwidth_usage_dec(void); #ifdef CONFIG_NO_HZ enum rq_nohz_flag_bits { NOHZ_TICK_STOPPED, NOHZ_BALANCE_KICK, }; #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) #endif