/* * linux/kernel/signal.c * * Copyright (C) 1991, 1992 Linus Torvalds * * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson * * 2003-06-02 Jim Houston - Concurrent Computer Corp. * Changes to use preallocated sigqueue structures * to allow signals to be sent reliably. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include #include #include #include #include #include #include "audit.h" static struct dying_pid dying_pid_buf[MAX_DYING_PROC_COUNT]; static unsigned int dying_pid_buf_idx; static struct kmem_cache *sigqueue_cachep; int print_fatal_signals __read_mostly; static void __user *sig_handler(struct task_struct *t, int sig) { return t->sighand->action[sig - 1].sa.sa_handler; } static int sig_handler_ignored(void __user *handler, int sig) { return handler == SIG_IGN || (handler == SIG_DFL && sig_kernel_ignore(sig)); } static int sig_task_ignored(struct task_struct *t, int sig, bool force) { void __user *handler; handler = sig_handler(t, sig); if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && handler == SIG_DFL && !force) return 1; return sig_handler_ignored(handler, sig); } static int sig_ignored(struct task_struct *t, int sig, bool force) { if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) return 0; if (!sig_task_ignored(t, sig, force)) return 0; return !t->ptrace; } static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) { unsigned long ready; long i; switch (_NSIG_WORDS) { default: for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) ready |= signal->sig[i] &~ blocked->sig[i]; break; case 4: ready = signal->sig[3] &~ blocked->sig[3]; ready |= signal->sig[2] &~ blocked->sig[2]; ready |= signal->sig[1] &~ blocked->sig[1]; ready |= signal->sig[0] &~ blocked->sig[0]; break; case 2: ready = signal->sig[1] &~ blocked->sig[1]; ready |= signal->sig[0] &~ blocked->sig[0]; break; case 1: ready = signal->sig[0] &~ blocked->sig[0]; } return ready != 0; } #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) static int recalc_sigpending_tsk(struct task_struct *t) { if ((t->jobctl & JOBCTL_PENDING_MASK) || PENDING(&t->pending, &t->blocked) || PENDING(&t->signal->shared_pending, &t->blocked)) { set_tsk_thread_flag(t, TIF_SIGPENDING); return 1; } return 0; } void recalc_sigpending_and_wake(struct task_struct *t) { if (recalc_sigpending_tsk(t)) signal_wake_up(t, 0); } void recalc_sigpending(void) { if (!recalc_sigpending_tsk(current) && !freezing(current)) clear_thread_flag(TIF_SIGPENDING); } #define SYNCHRONOUS_MASK \ (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ sigmask(SIGTRAP) | sigmask(SIGFPE)) int next_signal(struct sigpending *pending, sigset_t *mask) { unsigned long i, *s, *m, x; int sig = 0; s = pending->signal.sig; m = mask->sig; x = *s &~ *m; if (x) { if (x & SYNCHRONOUS_MASK) x &= SYNCHRONOUS_MASK; sig = ffz(~x) + 1; return sig; } switch (_NSIG_WORDS) { default: for (i = 1; i < _NSIG_WORDS; ++i) { x = *++s &~ *++m; if (!x) continue; sig = ffz(~x) + i*_NSIG_BPW + 1; break; } break; case 2: x = s[1] &~ m[1]; if (!x) break; sig = ffz(~x) + _NSIG_BPW + 1; break; case 1: break; } return sig; } static inline void print_dropped_signal(int sig) { static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); if (!print_fatal_signals) return; if (!__ratelimit(&ratelimit_state)) return; printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", current->comm, current->pid, sig); } bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask) { BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) return false; if (mask & JOBCTL_STOP_SIGMASK) task->jobctl &= ~JOBCTL_STOP_SIGMASK; task->jobctl |= mask; return true; } void task_clear_jobctl_trapping(struct task_struct *task) { if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { task->jobctl &= ~JOBCTL_TRAPPING; wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); } } void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask) { BUG_ON(mask & ~JOBCTL_PENDING_MASK); if (mask & JOBCTL_STOP_PENDING) mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; task->jobctl &= ~mask; if (!(task->jobctl & JOBCTL_PENDING_MASK)) task_clear_jobctl_trapping(task); } static bool task_participate_group_stop(struct task_struct *task) { struct signal_struct *sig = task->signal; bool consume = task->jobctl & JOBCTL_STOP_CONSUME; WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); if (!consume) return false; if (!WARN_ON_ONCE(sig->group_stop_count == 0)) sig->group_stop_count--; if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { sig->flags = SIGNAL_STOP_STOPPED; return true; } return false; } static struct sigqueue * __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) { struct sigqueue *q = NULL; struct user_struct *user; rcu_read_lock(); user = get_uid(__task_cred(t)->user); atomic_inc(&user->sigpending); rcu_read_unlock(); if (override_rlimit || atomic_read(&user->sigpending) <= task_rlimit(t, RLIMIT_SIGPENDING)) { q = kmem_cache_alloc(sigqueue_cachep, flags); } else { print_dropped_signal(sig); } if (unlikely(q == NULL)) { atomic_dec(&user->sigpending); free_uid(user); } else { INIT_LIST_HEAD(&q->list); q->flags = 0; q->user = user; } return q; } static void __sigqueue_free(struct sigqueue *q) { if (q->flags & SIGQUEUE_PREALLOC) return; atomic_dec(&q->user->sigpending); free_uid(q->user); kmem_cache_free(sigqueue_cachep, q); } void flush_sigqueue(struct sigpending *queue) { struct sigqueue *q; sigemptyset(&queue->signal); while (!list_empty(&queue->list)) { q = list_entry(queue->list.next, struct sigqueue , list); list_del_init(&q->list); __sigqueue_free(q); } } void __flush_signals(struct task_struct *t) { clear_tsk_thread_flag(t, TIF_SIGPENDING); flush_sigqueue(&t->pending); flush_sigqueue(&t->signal->shared_pending); } void flush_signals(struct task_struct *t) { unsigned long flags; spin_lock_irqsave(&t->sighand->siglock, flags); __flush_signals(t); spin_unlock_irqrestore(&t->sighand->siglock, flags); } static void __flush_itimer_signals(struct sigpending *pending) { sigset_t signal, retain; struct sigqueue *q, *n; signal = pending->signal; sigemptyset(&retain); list_for_each_entry_safe(q, n, &pending->list, list) { int sig = q->info.si_signo; if (likely(q->info.si_code != SI_TIMER)) { sigaddset(&retain, sig); } else { sigdelset(&signal, sig); list_del_init(&q->list); __sigqueue_free(q); } } sigorsets(&pending->signal, &signal, &retain); } void flush_itimer_signals(void) { struct task_struct *tsk = current; unsigned long flags; spin_lock_irqsave(&tsk->sighand->siglock, flags); __flush_itimer_signals(&tsk->pending); __flush_itimer_signals(&tsk->signal->shared_pending); spin_unlock_irqrestore(&tsk->sighand->siglock, flags); } void ignore_signals(struct task_struct *t) { int i; for (i = 0; i < _NSIG; ++i) t->sighand->action[i].sa.sa_handler = SIG_IGN; flush_signals(t); } void flush_signal_handlers(struct task_struct *t, int force_default) { int i; struct k_sigaction *ka = &t->sighand->action[0]; for (i = _NSIG ; i != 0 ; i--) { if (force_default || ka->sa.sa_handler != SIG_IGN) ka->sa.sa_handler = SIG_DFL; ka->sa.sa_flags = 0; sigemptyset(&ka->sa.sa_mask); ka++; } } int unhandled_signal(struct task_struct *tsk, int sig) { void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; if (is_global_init(tsk)) return 1; if (handler != SIG_IGN && handler != SIG_DFL) return 0; return !tsk->ptrace; } void block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) { unsigned long flags; spin_lock_irqsave(¤t->sighand->siglock, flags); current->notifier_mask = mask; current->notifier_data = priv; current->notifier = notifier; spin_unlock_irqrestore(¤t->sighand->siglock, flags); } void unblock_all_signals(void) { unsigned long flags; spin_lock_irqsave(¤t->sighand->siglock, flags); current->notifier = NULL; current->notifier_data = NULL; recalc_sigpending(); spin_unlock_irqrestore(¤t->sighand->siglock, flags); } static void collect_signal(int sig, struct sigpending *list, siginfo_t *info) { struct sigqueue *q, *first = NULL; list_for_each_entry(q, &list->list, list) { if (q->info.si_signo == sig) { if (first) goto still_pending; first = q; } } sigdelset(&list->signal, sig); if (first) { still_pending: list_del_init(&first->list); copy_siginfo(info, &first->info); __sigqueue_free(first); } else { info->si_signo = sig; info->si_errno = 0; info->si_code = SI_USER; info->si_pid = 0; info->si_uid = 0; } } static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, siginfo_t *info) { int sig = next_signal(pending, mask); if (sig) { if (current->notifier) { if (sigismember(current->notifier_mask, sig)) { if (!(current->notifier)(current->notifier_data)) { clear_thread_flag(TIF_SIGPENDING); return 0; } } } collect_signal(sig, pending, info); } return sig; } int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) { int signr; signr = __dequeue_signal(&tsk->pending, mask, info); if (!signr) { signr = __dequeue_signal(&tsk->signal->shared_pending, mask, info); if (unlikely(signr == SIGALRM)) { struct hrtimer *tmr = &tsk->signal->real_timer; if (!hrtimer_is_queued(tmr) && tsk->signal->it_real_incr.tv64 != 0) { hrtimer_forward(tmr, tmr->base->get_time(), tsk->signal->it_real_incr); hrtimer_restart(tmr); } } } recalc_sigpending(); if (!signr) return 0; if (unlikely(sig_kernel_stop(signr))) { current->jobctl |= JOBCTL_STOP_DEQUEUED; } if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) { spin_unlock(&tsk->sighand->siglock); do_schedule_next_timer(info); spin_lock(&tsk->sighand->siglock); } return signr; } void signal_wake_up(struct task_struct *t, int resume) { unsigned int mask; set_tsk_thread_flag(t, TIF_SIGPENDING); mask = TASK_INTERRUPTIBLE; if (resume) mask |= TASK_WAKEKILL; if (!wake_up_state(t, mask)) kick_process(t); } static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) { struct sigqueue *q, *n; sigset_t m; sigandsets(&m, mask, &s->signal); if (sigisemptyset(&m)) return 0; sigandnsets(&s->signal, &s->signal, mask); list_for_each_entry_safe(q, n, &s->list, list) { if (sigismember(mask, q->info.si_signo)) { list_del_init(&q->list); __sigqueue_free(q); } } return 1; } static int rm_from_queue(unsigned long mask, struct sigpending *s) { struct sigqueue *q, *n; if (!sigtestsetmask(&s->signal, mask)) return 0; sigdelsetmask(&s->signal, mask); list_for_each_entry_safe(q, n, &s->list, list) { if (q->info.si_signo < SIGRTMIN && (mask & sigmask(q->info.si_signo))) { list_del_init(&q->list); __sigqueue_free(q); } } return 1; } static inline int is_si_special(const struct siginfo *info) { return info <= SEND_SIG_FORCED; } static inline bool si_fromuser(const struct siginfo *info) { return info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)); } static int kill_ok_by_cred(struct task_struct *t) { const struct cred *cred = current_cred(); const struct cred *tcred = __task_cred(t); if (cred->user->user_ns == tcred->user->user_ns && (cred->euid == tcred->suid || cred->euid == tcred->uid || cred->uid == tcred->suid || cred->uid == tcred->uid)) return 1; if (ns_capable(tcred->user->user_ns, CAP_KILL)) return 1; return 0; } static int check_kill_permission(int sig, struct siginfo *info, struct task_struct *t) { struct pid *sid; int error; if (!valid_signal(sig)) return -EINVAL; if (!si_fromuser(info)) return 0; error = audit_signal_info(sig, t); if (error) return error; if (!same_thread_group(current, t) && !kill_ok_by_cred(t)) { switch (sig) { case SIGCONT: sid = task_session(t); if (!sid || sid == task_session(current)) break; default: return -EPERM; } } return security_task_kill(t, info, sig, 0); } static void ptrace_trap_notify(struct task_struct *t) { WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); assert_spin_locked(&t->sighand->siglock); task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); } static int prepare_signal(int sig, struct task_struct *p, bool force) { struct signal_struct *signal = p->signal; struct task_struct *t; if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) { } else if (sig_kernel_stop(sig)) { rm_from_queue(sigmask(SIGCONT), &signal->shared_pending); t = p; do { rm_from_queue(sigmask(SIGCONT), &t->pending); } while_each_thread(p, t); } else if (sig == SIGCONT) { unsigned int why; rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending); t = p; do { task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); if (likely(!(t->ptrace & PT_SEIZED))) wake_up_state(t, __TASK_STOPPED); else ptrace_trap_notify(t); } while_each_thread(p, t); why = 0; if (signal->flags & SIGNAL_STOP_STOPPED) why |= SIGNAL_CLD_CONTINUED; else if (signal->group_stop_count) why |= SIGNAL_CLD_STOPPED; if (why) { signal->flags = why | SIGNAL_STOP_CONTINUED; signal->group_stop_count = 0; signal->group_exit_code = 0; } } return !sig_ignored(p, sig, force); } static inline int wants_signal(int sig, struct task_struct *p) { if (sigismember(&p->blocked, sig)) return 0; if (p->flags & PF_EXITING) return 0; if (sig == SIGKILL) return 1; if (task_is_stopped_or_traced(p)) return 0; return task_curr(p) || !signal_pending(p); } static void complete_signal(int sig, struct task_struct *p, int group) { struct signal_struct *signal = p->signal; struct task_struct *t; if (wants_signal(sig, p)) t = p; else if (!group || thread_group_empty(p)) return; else { t = signal->curr_target; while (!wants_signal(sig, t)) { t = next_thread(t); if (t == signal->curr_target) return; } signal->curr_target = t; } if (sig_fatal(p, sig) && !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && !sigismember(&t->real_blocked, sig) && (sig == SIGKILL || !t->ptrace)) { if (!sig_kernel_coredump(sig)) { signal->flags = SIGNAL_GROUP_EXIT; signal->group_exit_code = sig; signal->group_stop_count = 0; t = p; do { task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); sigaddset(&t->pending.signal, SIGKILL); signal_wake_up(t, 1); } while_each_thread(p, t); return; } } signal_wake_up(t, sig == SIGKILL); return; } static inline int legacy_queue(struct sigpending *signals, int sig) { return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); } static inline uid_t map_cred_ns(const struct cred *cred, struct user_namespace *ns) { return user_ns_map_uid(ns, cred, cred->uid); } #ifdef CONFIG_USER_NS static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) { if (current_user_ns() == task_cred_xxx(t, user_ns)) return; if (SI_FROMKERNEL(info)) return; info->si_uid = user_ns_map_uid(task_cred_xxx(t, user_ns), current_cred(), info->si_uid); } #else static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) { return; } #endif static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, int group, int from_ancestor_ns) { struct sigpending *pending; struct sigqueue *q; int override_rlimit; int ret = 0, result; assert_spin_locked(&t->sighand->siglock); result = TRACE_SIGNAL_IGNORED; if (!prepare_signal(sig, t, from_ancestor_ns || (info == SEND_SIG_FORCED))) goto ret; pending = group ? &t->signal->shared_pending : &t->pending; result = TRACE_SIGNAL_ALREADY_PENDING; if (legacy_queue(pending, sig)) goto ret; result = TRACE_SIGNAL_DELIVERED; if (info == SEND_SIG_FORCED) goto out_set; if (sig < SIGRTMIN) override_rlimit = (is_si_special(info) || info->si_code >= 0); else override_rlimit = 0; q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE, override_rlimit); if (q) { list_add_tail(&q->list, &pending->list); switch ((unsigned long) info) { case (unsigned long) SEND_SIG_NOINFO: q->info.si_signo = sig; q->info.si_errno = 0; q->info.si_code = SI_USER; q->info.si_pid = task_tgid_nr_ns(current, task_active_pid_ns(t)); q->info.si_uid = current_uid(); break; case (unsigned long) SEND_SIG_PRIV: q->info.si_signo = sig; q->info.si_errno = 0; q->info.si_code = SI_KERNEL; q->info.si_pid = 0; q->info.si_uid = 0; break; default: copy_siginfo(&q->info, info); if (from_ancestor_ns) q->info.si_pid = 0; break; } userns_fixup_signal_uid(&q->info, t); } else if (!is_si_special(info)) { if (sig >= SIGRTMIN && info->si_code != SI_USER) { result = TRACE_SIGNAL_OVERFLOW_FAIL; ret = -EAGAIN; goto ret; } else { result = TRACE_SIGNAL_LOSE_INFO; } } out_set: signalfd_notify(t, sig); sigaddset(&pending->signal, sig); complete_signal(sig, t, group); ret: trace_signal_generate(sig, info, t, group, result); return ret; } int dying_processors_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data) { char *p = page; unsigned long jiffy = jiffies; int i; for (i = 0; i < MAX_DYING_PROC_COUNT; i++) p += sprintf(p, "%ld:%ld\n", (long int)dying_pid_buf[i].pid, (dying_pid_buf[i].pid == 0? 0: (jiffy - dying_pid_buf[i].jiffy))); return p - page; } #ifdef CONFIG_MSM_SEND_SIGNAL_DEBUG #define process_attr(_name) \ static struct kobj_attribute _name##_attr = { \ .attr = { \ .name = __stringify(_name), \ .mode = 0644, \ }, \ .show = _name##_show, \ .store = _name##_store, \ } struct kobject *process_kobj; static DEFINE_RWLOCK(task_comm_lock); static LIST_HEAD(task_comm_list); struct task_comm { struct list_head list; char comm[TASK_COMM_LEN]; }; #endif static int send_signal(int sig, struct siginfo *info, struct task_struct *t, int group) { int from_ancestor_ns = 0; #ifdef CONFIG_MSM_SEND_SIGNAL_DEBUG struct task_comm *tc; if (t->comm) { read_lock(&task_comm_lock); list_for_each_entry(tc, &task_comm_list, list) { if (sig != SIGCHLD && (!strcmp(t->comm, tc->comm)) ) { printk("%s: %s(%d) send signal %d to %s(%d)\n", __func__ , current->comm, current->pid, sig, t->comm, t->pid); dump_stack(); } } read_unlock(&task_comm_lock); } #endif if (sig == SIGKILL) { dying_pid_buf[dying_pid_buf_idx].pid = t->pid; dying_pid_buf[dying_pid_buf_idx].jiffy = jiffies; dying_pid_buf_idx++; dying_pid_buf_idx = (dying_pid_buf_idx % MAX_DYING_PROC_COUNT); } #ifdef CONFIG_PID_NS from_ancestor_ns = si_fromuser(info) && !task_pid_nr_ns(current, task_active_pid_ns(t)); #endif return __send_signal(sig, info, t, group, from_ancestor_ns); } static void print_fatal_signal(struct pt_regs *regs, int signr) { printk("%s/%d: potentially unexpected fatal signal %d.\n", current->comm, task_pid_nr(current), signr); #if defined(__i386__) && !defined(__arch_um__) printk("code at %08lx: ", regs->ip); { int i; for (i = 0; i < 16; i++) { unsigned char insn; if (get_user(insn, (unsigned char *)(regs->ip + i))) break; printk("%02x ", insn); } } #endif printk("\n"); preempt_disable(); show_regs(regs); preempt_enable(); } static int __init setup_print_fatal_signals(char *str) { get_option (&str, &print_fatal_signals); return 1; } __setup("print-fatal-signals=", setup_print_fatal_signals); int __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) { return send_signal(sig, info, p, 1); } static int specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) { return send_signal(sig, info, t, 0); } int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, bool group) { unsigned long flags; int ret = -ESRCH; if (lock_task_sighand(p, &flags)) { ret = send_signal(sig, info, p, group); unlock_task_sighand(p, &flags); } return ret; } int force_sig_info(int sig, struct siginfo *info, struct task_struct *t) { unsigned long int flags; int ret, blocked, ignored; struct k_sigaction *action; spin_lock_irqsave(&t->sighand->siglock, flags); action = &t->sighand->action[sig-1]; ignored = action->sa.sa_handler == SIG_IGN; blocked = sigismember(&t->blocked, sig); if (blocked || ignored) { action->sa.sa_handler = SIG_DFL; if (blocked) { sigdelset(&t->blocked, sig); recalc_sigpending_and_wake(t); } } if (action->sa.sa_handler == SIG_DFL) t->signal->flags &= ~SIGNAL_UNKILLABLE; ret = specific_send_sig_info(sig, info, t); spin_unlock_irqrestore(&t->sighand->siglock, flags); return ret; } int zap_other_threads(struct task_struct *p) { struct task_struct *t = p; int count = 0; p->signal->group_stop_count = 0; while_each_thread(p, t) { task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); count++; if (t->exit_state) continue; sigaddset(&t->pending.signal, SIGKILL); signal_wake_up(t, 1); } return count; } struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, unsigned long *flags) { struct sighand_struct *sighand; for (;;) { local_irq_save(*flags); rcu_read_lock(); sighand = rcu_dereference(tsk->sighand); if (unlikely(sighand == NULL)) { rcu_read_unlock(); local_irq_restore(*flags); break; } spin_lock(&sighand->siglock); if (likely(sighand == tsk->sighand)) { rcu_read_unlock(); break; } spin_unlock(&sighand->siglock); rcu_read_unlock(); local_irq_restore(*flags); } return sighand; } int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) { int ret; rcu_read_lock(); ret = check_kill_permission(sig, info, p); rcu_read_unlock(); if (!ret && sig) ret = do_send_sig_info(sig, info, p, true); return ret; } int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) { struct task_struct *p = NULL; int retval, success; success = 0; retval = -ESRCH; do_each_pid_task(pgrp, PIDTYPE_PGID, p) { int err = group_send_sig_info(sig, info, p); success |= !err; retval = err; } while_each_pid_task(pgrp, PIDTYPE_PGID, p); return success ? 0 : retval; } int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) { int error = -ESRCH; struct task_struct *p; rcu_read_lock(); retry: p = pid_task(pid, PIDTYPE_PID); if (p) { error = group_send_sig_info(sig, info, p); if (unlikely(error == -ESRCH)) goto retry; } rcu_read_unlock(); return error; } int kill_proc_info(int sig, struct siginfo *info, pid_t pid) { int error; rcu_read_lock(); error = kill_pid_info(sig, info, find_vpid(pid)); rcu_read_unlock(); return error; } static int kill_as_cred_perm(const struct cred *cred, struct task_struct *target) { const struct cred *pcred = __task_cred(target); if (cred->user_ns != pcred->user_ns) return 0; if (cred->euid != pcred->suid && cred->euid != pcred->uid && cred->uid != pcred->suid && cred->uid != pcred->uid) return 0; return 1; } int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid, const struct cred *cred, u32 secid) { int ret = -EINVAL; struct task_struct *p; unsigned long flags; if (!valid_signal(sig)) return ret; rcu_read_lock(); p = pid_task(pid, PIDTYPE_PID); if (!p) { ret = -ESRCH; goto out_unlock; } if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) { ret = -EPERM; goto out_unlock; } ret = security_task_kill(p, info, sig, secid); if (ret) goto out_unlock; if (sig) { if (lock_task_sighand(p, &flags)) { ret = __send_signal(sig, info, p, 1, 0); unlock_task_sighand(p, &flags); } else ret = -ESRCH; } out_unlock: rcu_read_unlock(); return ret; } EXPORT_SYMBOL_GPL(kill_pid_info_as_cred); static int kill_something_info(int sig, struct siginfo *info, pid_t pid) { int ret; if (pid > 0) { rcu_read_lock(); ret = kill_pid_info(sig, info, find_vpid(pid)); rcu_read_unlock(); return ret; } read_lock(&tasklist_lock); if (pid != -1) { ret = __kill_pgrp_info(sig, info, pid ? find_vpid(-pid) : task_pgrp(current)); } else { int retval = 0, count = 0; struct task_struct * p; for_each_process(p) { if (task_pid_vnr(p) > 1 && !same_thread_group(p, current)) { int err = group_send_sig_info(sig, info, p); ++count; if (err != -EPERM) retval = err; } } ret = count ? retval : -ESRCH; } read_unlock(&tasklist_lock); return ret; } int send_sig_info(int sig, struct siginfo *info, struct task_struct *p) { if (!valid_signal(sig)) return -EINVAL; return do_send_sig_info(sig, info, p, false); } #define __si_special(priv) \ ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) int send_sig(int sig, struct task_struct *p, int priv) { return send_sig_info(sig, __si_special(priv), p); } void force_sig(int sig, struct task_struct *p) { force_sig_info(sig, SEND_SIG_PRIV, p); } int force_sigsegv(int sig, struct task_struct *p) { if (sig == SIGSEGV) { unsigned long flags; spin_lock_irqsave(&p->sighand->siglock, flags); p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; spin_unlock_irqrestore(&p->sighand->siglock, flags); } force_sig(SIGSEGV, p); return 0; } int kill_pgrp(struct pid *pid, int sig, int priv) { int ret; read_lock(&tasklist_lock); ret = __kill_pgrp_info(sig, __si_special(priv), pid); read_unlock(&tasklist_lock); return ret; } EXPORT_SYMBOL(kill_pgrp); int kill_pid(struct pid *pid, int sig, int priv) { return kill_pid_info(sig, __si_special(priv), pid); } EXPORT_SYMBOL(kill_pid); struct sigqueue *sigqueue_alloc(void) { struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); if (q) q->flags |= SIGQUEUE_PREALLOC; return q; } void sigqueue_free(struct sigqueue *q) { unsigned long flags; spinlock_t *lock = ¤t->sighand->siglock; BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); spin_lock_irqsave(lock, flags); q->flags &= ~SIGQUEUE_PREALLOC; if (!list_empty(&q->list)) q = NULL; spin_unlock_irqrestore(lock, flags); if (q) __sigqueue_free(q); } int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) { int sig = q->info.si_signo; struct sigpending *pending; unsigned long flags; int ret, result; BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); ret = -1; if (!likely(lock_task_sighand(t, &flags))) goto ret; ret = 1; result = TRACE_SIGNAL_IGNORED; if (!prepare_signal(sig, t, false)) goto out; ret = 0; if (unlikely(!list_empty(&q->list))) { BUG_ON(q->info.si_code != SI_TIMER); q->info.si_overrun++; result = TRACE_SIGNAL_ALREADY_PENDING; goto out; } q->info.si_overrun = 0; signalfd_notify(t, sig); pending = group ? &t->signal->shared_pending : &t->pending; list_add_tail(&q->list, &pending->list); sigaddset(&pending->signal, sig); complete_signal(sig, t, group); result = TRACE_SIGNAL_DELIVERED; out: trace_signal_generate(sig, &q->info, t, group, result); unlock_task_sighand(t, &flags); ret: return ret; } bool do_notify_parent(struct task_struct *tsk, int sig) { struct siginfo info; unsigned long flags; struct sighand_struct *psig; bool autoreap = false; BUG_ON(sig == -1); BUG_ON(task_is_stopped_or_traced(tsk)); BUG_ON(!tsk->ptrace && (tsk->group_leader != tsk || !thread_group_empty(tsk))); if (sig != SIGCHLD) { if (tsk->parent_exec_id != tsk->parent->self_exec_id) sig = SIGCHLD; } info.si_signo = sig; info.si_errno = 0; rcu_read_lock(); info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns); info.si_uid = map_cred_ns(__task_cred(tsk), task_cred_xxx(tsk->parent, user_ns)); rcu_read_unlock(); info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime); info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime); info.si_status = tsk->exit_code & 0x7f; if (tsk->exit_code & 0x80) info.si_code = CLD_DUMPED; else if (tsk->exit_code & 0x7f) info.si_code = CLD_KILLED; else { info.si_code = CLD_EXITED; info.si_status = tsk->exit_code >> 8; } psig = tsk->parent->sighand; spin_lock_irqsave(&psig->siglock, flags); if (!tsk->ptrace && sig == SIGCHLD && (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { autoreap = true; if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) sig = 0; } if (valid_signal(sig) && sig) __group_send_sig_info(sig, &info, tsk->parent); __wake_up_parent(tsk, tsk->parent); spin_unlock_irqrestore(&psig->siglock, flags); return autoreap; } static void do_notify_parent_cldstop(struct task_struct *tsk, bool for_ptracer, int why) { struct siginfo info; unsigned long flags; struct task_struct *parent; struct sighand_struct *sighand; if (for_ptracer) { parent = tsk->parent; } else { tsk = tsk->group_leader; parent = tsk->real_parent; } info.si_signo = SIGCHLD; info.si_errno = 0; rcu_read_lock(); info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns); info.si_uid = map_cred_ns(__task_cred(tsk), task_cred_xxx(parent, user_ns)); rcu_read_unlock(); info.si_utime = cputime_to_clock_t(tsk->utime); info.si_stime = cputime_to_clock_t(tsk->stime); info.si_code = why; switch (why) { case CLD_CONTINUED: info.si_status = SIGCONT; break; case CLD_STOPPED: info.si_status = tsk->signal->group_exit_code & 0x7f; break; case CLD_TRAPPED: info.si_status = tsk->exit_code & 0x7f; break; default: BUG(); } sighand = parent->sighand; spin_lock_irqsave(&sighand->siglock, flags); if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) __group_send_sig_info(SIGCHLD, &info, parent); __wake_up_parent(tsk, parent); spin_unlock_irqrestore(&sighand->siglock, flags); } static inline int may_ptrace_stop(void) { if (!likely(current->ptrace)) return 0; if (unlikely(current->mm->core_state) && unlikely(current->mm == current->parent->mm)) return 0; return 1; } static int sigkill_pending(struct task_struct *tsk) { return sigismember(&tsk->pending.signal, SIGKILL) || sigismember(&tsk->signal->shared_pending.signal, SIGKILL); } static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info) __releases(¤t->sighand->siglock) __acquires(¤t->sighand->siglock) { bool gstop_done = false; if (arch_ptrace_stop_needed(exit_code, info)) { spin_unlock_irq(¤t->sighand->siglock); arch_ptrace_stop(exit_code, info); spin_lock_irq(¤t->sighand->siglock); if (sigkill_pending(current)) return; } set_current_state(TASK_TRACED); current->last_siginfo = info; current->exit_code = exit_code; if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) gstop_done = task_participate_group_stop(current); task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); task_clear_jobctl_trapping(current); spin_unlock_irq(¤t->sighand->siglock); read_lock(&tasklist_lock); if (may_ptrace_stop()) { do_notify_parent_cldstop(current, true, why); if (gstop_done && ptrace_reparented(current)) do_notify_parent_cldstop(current, false, why); preempt_disable(); read_unlock(&tasklist_lock); preempt_enable_no_resched(); schedule(); } else { if (gstop_done) do_notify_parent_cldstop(current, false, why); __set_current_state(TASK_RUNNING); if (clear_code) current->exit_code = 0; read_unlock(&tasklist_lock); } try_to_freeze(); spin_lock_irq(¤t->sighand->siglock); current->last_siginfo = NULL; current->jobctl &= ~JOBCTL_LISTENING; recalc_sigpending_tsk(current); } static void ptrace_do_notify(int signr, int exit_code, int why) { siginfo_t info; memset(&info, 0, sizeof info); info.si_signo = signr; info.si_code = exit_code; info.si_pid = task_pid_vnr(current); info.si_uid = current_uid(); ptrace_stop(exit_code, why, 1, &info); } void ptrace_notify(int exit_code) { BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); spin_lock_irq(¤t->sighand->siglock); ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); spin_unlock_irq(¤t->sighand->siglock); } static bool do_signal_stop(int signr) __releases(¤t->sighand->siglock) { struct signal_struct *sig = current->signal; if (!(current->jobctl & JOBCTL_STOP_PENDING)) { unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; struct task_struct *t; WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || unlikely(signal_group_exit(sig))) return false; if (!(sig->flags & SIGNAL_STOP_STOPPED)) sig->group_exit_code = signr; sig->group_stop_count = 0; if (task_set_jobctl_pending(current, signr | gstop)) sig->group_stop_count++; for (t = next_thread(current); t != current; t = next_thread(t)) { if (!task_is_stopped(t) && task_set_jobctl_pending(t, signr | gstop)) { sig->group_stop_count++; if (likely(!(t->ptrace & PT_SEIZED))) signal_wake_up(t, 0); else ptrace_trap_notify(t); } } } if (likely(!current->ptrace)) { int notify = 0; if (task_participate_group_stop(current)) notify = CLD_STOPPED; __set_current_state(TASK_STOPPED); spin_unlock_irq(¤t->sighand->siglock); if (notify) { read_lock(&tasklist_lock); do_notify_parent_cldstop(current, false, notify); read_unlock(&tasklist_lock); } schedule(); return true; } else { task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); return false; } } static void do_jobctl_trap(void) { struct signal_struct *signal = current->signal; int signr = current->jobctl & JOBCTL_STOP_SIGMASK; if (current->ptrace & PT_SEIZED) { if (!signal->group_stop_count && !(signal->flags & SIGNAL_STOP_STOPPED)) signr = SIGTRAP; WARN_ON_ONCE(!signr); ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), CLD_STOPPED); } else { WARN_ON_ONCE(!signr); ptrace_stop(signr, CLD_STOPPED, 0, NULL); current->exit_code = 0; } } static int ptrace_signal(int signr, siginfo_t *info, struct pt_regs *regs, void *cookie) { ptrace_signal_deliver(regs, cookie); current->jobctl |= JOBCTL_STOP_DEQUEUED; ptrace_stop(signr, CLD_TRAPPED, 0, info); signr = current->exit_code; if (signr == 0) return signr; current->exit_code = 0; if (signr != info->si_signo) { info->si_signo = signr; info->si_errno = 0; info->si_code = SI_USER; rcu_read_lock(); info->si_pid = task_pid_vnr(current->parent); info->si_uid = map_cred_ns(__task_cred(current->parent), current_user_ns()); rcu_read_unlock(); } if (sigismember(¤t->blocked, signr)) { specific_send_sig_info(signr, info, current); signr = 0; } return signr; } int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, struct pt_regs *regs, void *cookie) { struct sighand_struct *sighand = current->sighand; struct signal_struct *signal = current->signal; int signr; relock: /* * We'll jump back here after any time we were stopped in TASK_STOPPED. * While in TASK_STOPPED, we were considered "frozen enough". * Now that we woke up, it's crucial if we're supposed to be * frozen that we freeze now before running anything substantial. */ try_to_freeze_nowarn(); spin_lock_irq(&sighand->siglock); if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { int why; if (signal->flags & SIGNAL_CLD_CONTINUED) why = CLD_CONTINUED; else why = CLD_STOPPED; signal->flags &= ~SIGNAL_CLD_MASK; spin_unlock_irq(&sighand->siglock); read_lock(&tasklist_lock); do_notify_parent_cldstop(current, false, why); if (ptrace_reparented(current->group_leader)) do_notify_parent_cldstop(current->group_leader, true, why); read_unlock(&tasklist_lock); goto relock; } for (;;) { struct k_sigaction *ka; if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && do_signal_stop(0)) goto relock; if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) { do_jobctl_trap(); spin_unlock_irq(&sighand->siglock); goto relock; } signr = dequeue_signal(current, ¤t->blocked, info); if (!signr) break; if (unlikely(current->ptrace) && signr != SIGKILL) { signr = ptrace_signal(signr, info, regs, cookie); if (!signr) continue; } ka = &sighand->action[signr-1]; trace_signal_deliver(signr, info, ka); if (ka->sa.sa_handler == SIG_IGN) continue; if (ka->sa.sa_handler != SIG_DFL) { *return_ka = *ka; if (ka->sa.sa_flags & SA_ONESHOT) ka->sa.sa_handler = SIG_DFL; break; } if (sig_kernel_ignore(signr)) continue; if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && !sig_kernel_only(signr)) continue; if (sig_kernel_stop(signr)) { if (signr != SIGSTOP) { spin_unlock_irq(&sighand->siglock); if (is_current_pgrp_orphaned()) goto relock; spin_lock_irq(&sighand->siglock); } if (likely(do_signal_stop(info->si_signo))) { goto relock; } continue; } spin_unlock_irq(&sighand->siglock); current->flags |= PF_SIGNALED; if (sig_kernel_coredump(signr)) { if (print_fatal_signals) print_fatal_signal(regs, info->si_signo); do_coredump(info->si_signo, info->si_signo, regs); } do_group_exit(info->si_signo); } spin_unlock_irq(&sighand->siglock); return signr; } void block_sigmask(struct k_sigaction *ka, int signr) { sigset_t blocked; sigorsets(&blocked, ¤t->blocked, &ka->sa.sa_mask); if (!(ka->sa.sa_flags & SA_NODEFER)) sigaddset(&blocked, signr); set_current_blocked(&blocked); } static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) { sigset_t retarget; struct task_struct *t; sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); if (sigisemptyset(&retarget)) return; t = tsk; while_each_thread(tsk, t) { if (t->flags & PF_EXITING) continue; if (!has_pending_signals(&retarget, &t->blocked)) continue; sigandsets(&retarget, &retarget, &t->blocked); if (!signal_pending(t)) signal_wake_up(t, 0); if (sigisemptyset(&retarget)) break; } } void exit_signals(struct task_struct *tsk) { int group_stop = 0; sigset_t unblocked; threadgroup_change_begin(tsk); if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { tsk->flags |= PF_EXITING; threadgroup_change_end(tsk); return; } spin_lock_irq(&tsk->sighand->siglock); tsk->flags |= PF_EXITING; threadgroup_change_end(tsk); if (!signal_pending(tsk)) goto out; unblocked = tsk->blocked; signotset(&unblocked); retarget_shared_pending(tsk, &unblocked); if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && task_participate_group_stop(tsk)) group_stop = CLD_STOPPED; out: spin_unlock_irq(&tsk->sighand->siglock); if (unlikely(group_stop)) { read_lock(&tasklist_lock); do_notify_parent_cldstop(tsk, false, group_stop); read_unlock(&tasklist_lock); } } EXPORT_SYMBOL(recalc_sigpending); EXPORT_SYMBOL_GPL(dequeue_signal); EXPORT_SYMBOL(flush_signals); EXPORT_SYMBOL(force_sig); EXPORT_SYMBOL(send_sig); EXPORT_SYMBOL(send_sig_info); EXPORT_SYMBOL(sigprocmask); EXPORT_SYMBOL(block_all_signals); EXPORT_SYMBOL(unblock_all_signals); SYSCALL_DEFINE0(restart_syscall) { struct restart_block *restart = ¤t_thread_info()->restart_block; return restart->fn(restart); } long do_no_restart_syscall(struct restart_block *param) { return -EINTR; } static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) { if (signal_pending(tsk) && !thread_group_empty(tsk)) { sigset_t newblocked; sigandnsets(&newblocked, newset, ¤t->blocked); retarget_shared_pending(tsk, &newblocked); } tsk->blocked = *newset; recalc_sigpending(); } void set_current_blocked(const sigset_t *newset) { struct task_struct *tsk = current; spin_lock_irq(&tsk->sighand->siglock); __set_task_blocked(tsk, newset); spin_unlock_irq(&tsk->sighand->siglock); } int sigprocmask(int how, sigset_t *set, sigset_t *oldset) { struct task_struct *tsk = current; sigset_t newset; if (oldset) *oldset = tsk->blocked; switch (how) { case SIG_BLOCK: sigorsets(&newset, &tsk->blocked, set); break; case SIG_UNBLOCK: sigandnsets(&newset, &tsk->blocked, set); break; case SIG_SETMASK: newset = *set; break; default: return -EINVAL; } set_current_blocked(&newset); return 0; } SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, sigset_t __user *, oset, size_t, sigsetsize) { sigset_t old_set, new_set; int error; if (sigsetsize != sizeof(sigset_t)) return -EINVAL; old_set = current->blocked; if (nset) { if (copy_from_user(&new_set, nset, sizeof(sigset_t))) return -EFAULT; sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); error = sigprocmask(how, &new_set, NULL); if (error) return error; } if (oset) { if (copy_to_user(oset, &old_set, sizeof(sigset_t))) return -EFAULT; } return 0; } long do_sigpending(void __user *set, unsigned long sigsetsize) { long error = -EINVAL; sigset_t pending; if (sigsetsize > sizeof(sigset_t)) goto out; spin_lock_irq(¤t->sighand->siglock); sigorsets(&pending, ¤t->pending.signal, ¤t->signal->shared_pending.signal); spin_unlock_irq(¤t->sighand->siglock); sigandsets(&pending, ¤t->blocked, &pending); error = -EFAULT; if (!copy_to_user(set, &pending, sigsetsize)) error = 0; out: return error; } SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize) { return do_sigpending(set, sigsetsize); } #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) { int err; if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) return -EFAULT; if (from->si_code < 0) return __copy_to_user(to, from, sizeof(siginfo_t)) ? -EFAULT : 0; err = __put_user(from->si_signo, &to->si_signo); err |= __put_user(from->si_errno, &to->si_errno); err |= __put_user((short)from->si_code, &to->si_code); switch (from->si_code & __SI_MASK) { case __SI_KILL: err |= __put_user(from->si_pid, &to->si_pid); err |= __put_user(from->si_uid, &to->si_uid); break; case __SI_TIMER: err |= __put_user(from->si_tid, &to->si_tid); err |= __put_user(from->si_overrun, &to->si_overrun); err |= __put_user(from->si_ptr, &to->si_ptr); break; case __SI_POLL: err |= __put_user(from->si_band, &to->si_band); err |= __put_user(from->si_fd, &to->si_fd); break; case __SI_FAULT: err |= __put_user(from->si_addr, &to->si_addr); #ifdef __ARCH_SI_TRAPNO err |= __put_user(from->si_trapno, &to->si_trapno); #endif #ifdef BUS_MCEERR_AO if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO) err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb); #endif break; case __SI_CHLD: err |= __put_user(from->si_pid, &to->si_pid); err |= __put_user(from->si_uid, &to->si_uid); err |= __put_user(from->si_status, &to->si_status); err |= __put_user(from->si_utime, &to->si_utime); err |= __put_user(from->si_stime, &to->si_stime); break; case __SI_RT: case __SI_MESGQ: err |= __put_user(from->si_pid, &to->si_pid); err |= __put_user(from->si_uid, &to->si_uid); err |= __put_user(from->si_ptr, &to->si_ptr); break; default: err |= __put_user(from->si_pid, &to->si_pid); err |= __put_user(from->si_uid, &to->si_uid); break; } return err; } #endif int do_sigtimedwait(const sigset_t *which, siginfo_t *info, const struct timespec *ts) { struct task_struct *tsk = current; long timeout = MAX_SCHEDULE_TIMEOUT; sigset_t mask = *which; int sig; if (ts) { if (!timespec_valid(ts)) return -EINVAL; timeout = timespec_to_jiffies(ts); if (ts->tv_sec || ts->tv_nsec) timeout++; } sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); signotset(&mask); spin_lock_irq(&tsk->sighand->siglock); sig = dequeue_signal(tsk, &mask, info); if (!sig && timeout) { tsk->real_blocked = tsk->blocked; sigandsets(&tsk->blocked, &tsk->blocked, &mask); recalc_sigpending(); spin_unlock_irq(&tsk->sighand->siglock); timeout = freezable_schedule_timeout_interruptible(timeout); spin_lock_irq(&tsk->sighand->siglock); __set_task_blocked(tsk, &tsk->real_blocked); siginitset(&tsk->real_blocked, 0); sig = dequeue_signal(tsk, &mask, info); } spin_unlock_irq(&tsk->sighand->siglock); if (sig) return sig; return timeout ? -EINTR : -EAGAIN; } SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, siginfo_t __user *, uinfo, const struct timespec __user *, uts, size_t, sigsetsize) { sigset_t these; struct timespec ts; siginfo_t info; int ret; if (sigsetsize != sizeof(sigset_t)) return -EINVAL; if (copy_from_user(&these, uthese, sizeof(these))) return -EFAULT; if (uts) { if (copy_from_user(&ts, uts, sizeof(ts))) return -EFAULT; } ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); if (ret > 0 && uinfo) { if (copy_siginfo_to_user(uinfo, &info)) ret = -EFAULT; } return ret; } #ifdef CONFIG_MSM_SEND_SIGNAL_DEBUG static ssize_t task_comm_list_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t n) { struct task_comm *tc, *tc1; if(n > 0 && n < TASK_COMM_LEN) { tc1 = kmalloc(sizeof(struct task_comm), GFP_KERNEL); memcpy(tc1->comm, buf, n); tc1->comm[n-1] = '\0'; write_lock(&task_comm_lock); list_for_each_entry(tc, &task_comm_list, list) { if (!strcmp(tc->comm, tc1->comm)) { write_unlock(&task_comm_lock); kfree(tc1); printk("%s: %s is existed, so ignore it.\n", __func__, tc->comm); return n; } } list_add_tail(&tc1->list, &task_comm_list); write_unlock(&task_comm_lock); printk("%s: Add %s to monitor list tail successfully\n", __func__, tc1->comm); } return n; } static ssize_t task_comm_list_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct task_comm *tc; char *s = buf; read_lock(&task_comm_lock); list_for_each_entry(tc, &task_comm_list, list) { s += sprintf(s, "%s\n", tc->comm); } read_unlock(&task_comm_lock); return (s - buf); } process_attr(task_comm_list); static struct attribute *g[] = { &task_comm_list_attr.attr, NULL, }; static struct attribute_group attr_group = { .attrs = g, }; #endif SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) { struct siginfo info; info.si_signo = sig; info.si_errno = 0; info.si_code = SI_USER; info.si_pid = task_tgid_vnr(current); info.si_uid = current_uid(); return kill_something_info(sig, &info, pid); } static int do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) { struct task_struct *p; int error = -ESRCH; rcu_read_lock(); p = find_task_by_vpid(pid); if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { error = check_kill_permission(sig, info, p); if (!error && sig) { error = do_send_sig_info(sig, info, p, false); if (unlikely(error == -ESRCH)) error = 0; } } rcu_read_unlock(); return error; } static int do_tkill(pid_t tgid, pid_t pid, int sig) { struct siginfo info; info.si_signo = sig; info.si_errno = 0; info.si_code = SI_TKILL; info.si_pid = task_tgid_vnr(current); info.si_uid = current_uid(); return do_send_specific(tgid, pid, sig, &info); } SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) { if (pid <= 0 || tgid <= 0) return -EINVAL; return do_tkill(tgid, pid, sig); } SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) { if (pid <= 0) return -EINVAL; return do_tkill(0, pid, sig); } SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t __user *, uinfo) { siginfo_t info; if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) return -EFAULT; if (info.si_code >= 0 || info.si_code == SI_TKILL) { WARN_ON_ONCE(info.si_code < 0); return -EPERM; } info.si_signo = sig; return kill_proc_info(sig, &info, pid); } long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) { if (pid <= 0 || tgid <= 0) return -EINVAL; if (info->si_code >= 0 || info->si_code == SI_TKILL) { WARN_ON_ONCE(info->si_code < 0); return -EPERM; } info->si_signo = sig; return do_send_specific(tgid, pid, sig, info); } SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, siginfo_t __user *, uinfo) { siginfo_t info; if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) return -EFAULT; return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); } int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) { struct task_struct *t = current; struct k_sigaction *k; sigset_t mask; if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) return -EINVAL; k = &t->sighand->action[sig-1]; spin_lock_irq(¤t->sighand->siglock); if (oact) *oact = *k; if (act) { sigdelsetmask(&act->sa.sa_mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); *k = *act; if (sig_handler_ignored(sig_handler(t, sig), sig)) { sigemptyset(&mask); sigaddset(&mask, sig); rm_from_queue_full(&mask, &t->signal->shared_pending); do { rm_from_queue_full(&mask, &t->pending); t = next_thread(t); } while (t != current); } } spin_unlock_irq(¤t->sighand->siglock); return 0; } int do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) { stack_t oss; int error; oss.ss_sp = (void __user *) current->sas_ss_sp; oss.ss_size = current->sas_ss_size; oss.ss_flags = sas_ss_flags(sp); if (uss) { void __user *ss_sp; size_t ss_size; int ss_flags; error = -EFAULT; if (!access_ok(VERIFY_READ, uss, sizeof(*uss))) goto out; error = __get_user(ss_sp, &uss->ss_sp) | __get_user(ss_flags, &uss->ss_flags) | __get_user(ss_size, &uss->ss_size); if (error) goto out; error = -EPERM; if (on_sig_stack(sp)) goto out; error = -EINVAL; /* * Note - this code used to test ss_flags incorrectly: * old code may have been written using ss_flags==0 * to mean ss_flags==SS_ONSTACK (as this was the only * way that worked) - this fix preserves that older * mechanism. */ if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) goto out; if (ss_flags == SS_DISABLE) { ss_size = 0; ss_sp = NULL; } else { error = -ENOMEM; if (ss_size < MINSIGSTKSZ) goto out; } current->sas_ss_sp = (unsigned long) ss_sp; current->sas_ss_size = ss_size; } error = 0; if (uoss) { error = -EFAULT; if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss))) goto out; error = __put_user(oss.ss_sp, &uoss->ss_sp) | __put_user(oss.ss_size, &uoss->ss_size) | __put_user(oss.ss_flags, &uoss->ss_flags); } out: return error; } #ifdef __ARCH_WANT_SYS_SIGPENDING SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set) { return do_sigpending(set, sizeof(*set)); } #endif #ifdef __ARCH_WANT_SYS_SIGPROCMASK SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, old_sigset_t __user *, oset) { old_sigset_t old_set, new_set; sigset_t new_blocked; old_set = current->blocked.sig[0]; if (nset) { if (copy_from_user(&new_set, nset, sizeof(*nset))) return -EFAULT; new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); new_blocked = current->blocked; switch (how) { case SIG_BLOCK: sigaddsetmask(&new_blocked, new_set); break; case SIG_UNBLOCK: sigdelsetmask(&new_blocked, new_set); break; case SIG_SETMASK: new_blocked.sig[0] = new_set; break; default: return -EINVAL; } set_current_blocked(&new_blocked); } if (oset) { if (copy_to_user(oset, &old_set, sizeof(*oset))) return -EFAULT; } return 0; } #endif #ifdef __ARCH_WANT_SYS_RT_SIGACTION SYSCALL_DEFINE4(rt_sigaction, int, sig, const struct sigaction __user *, act, struct sigaction __user *, oact, size_t, sigsetsize) { struct k_sigaction new_sa, old_sa; int ret = -EINVAL; if (sigsetsize != sizeof(sigset_t)) goto out; if (act) { if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) return -EFAULT; } ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); if (!ret && oact) { if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) return -EFAULT; } out: return ret; } #endif #ifdef __ARCH_WANT_SYS_SGETMASK SYSCALL_DEFINE0(sgetmask) { return current->blocked.sig[0]; } SYSCALL_DEFINE1(ssetmask, int, newmask) { int old = current->blocked.sig[0]; sigset_t newset; siginitset(&newset, newmask & ~(sigmask(SIGKILL) | sigmask(SIGSTOP))); set_current_blocked(&newset); return old; } #endif #ifdef __ARCH_WANT_SYS_SIGNAL SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) { struct k_sigaction new_sa, old_sa; int ret; new_sa.sa.sa_handler = handler; new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; sigemptyset(&new_sa.sa.sa_mask); ret = do_sigaction(sig, &new_sa, &old_sa); return ret ? ret : (unsigned long)old_sa.sa.sa_handler; } #endif #ifdef __ARCH_WANT_SYS_PAUSE SYSCALL_DEFINE0(pause) { while (!signal_pending(current)) { current->state = TASK_INTERRUPTIBLE; schedule(); } return -ERESTARTNOHAND; } #endif #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) { sigset_t newset; if (sigsetsize != sizeof(sigset_t)) return -EINVAL; if (copy_from_user(&newset, unewset, sizeof(newset))) return -EFAULT; sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP)); current->saved_sigmask = current->blocked; set_current_blocked(&newset); current->state = TASK_INTERRUPTIBLE; schedule(); set_restore_sigmask(); return -ERESTARTNOHAND; } #endif __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma) { return NULL; } void __init signals_init(void) { sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); } #ifdef CONFIG_MSM_SEND_SIGNAL_DEBUG static int __init track_process_init(void) { process_kobj = kobject_create_and_add("process", NULL); if (!process_kobj) return -ENOMEM; else return sysfs_create_group(process_kobj, &attr_group); } core_initcall(track_process_init); #endif #ifdef CONFIG_KGDB_KDB #include void kdb_send_sig_info(struct task_struct *t, struct siginfo *info) { static struct task_struct *kdb_prev_t; int sig, new_t; if (!spin_trylock(&t->sighand->siglock)) { kdb_printf("Can't do kill command now.\n" "The sigmask lock is held somewhere else in " "kernel, try again later\n"); return; } spin_unlock(&t->sighand->siglock); new_t = kdb_prev_t != t; kdb_prev_t = t; if (t->state != TASK_RUNNING && new_t) { kdb_printf("Process is not RUNNING, sending a signal from " "kdb risks deadlock\n" "on the run queue locks. " "The signal has _not_ been sent.\n" "Reissue the kill command if you want to risk " "the deadlock.\n"); return; } sig = info->si_signo; if (send_sig_info(sig, info, t)) kdb_printf("Fail to deliver Signal %d to process %d.\n", sig, t->pid); else kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); } #endif