/* * kernel/stop_machine.c * * Copyright (C) 2008, 2005 IBM Corporation. * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au * Copyright (C) 2010 SUSE Linux Products GmbH * Copyright (C) 2010 Tejun Heo * * This file is released under the GPLv2 and any later version. */ #include #include #include #include #include #include #include #include #include #include #include struct cpu_stop_done { atomic_t nr_todo; bool executed; int ret; struct completion completion; }; struct cpu_stopper { spinlock_t lock; bool enabled; struct list_head works; struct task_struct *thread; }; static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper); static bool stop_machine_initialized = false; static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo) { memset(done, 0, sizeof(*done)); atomic_set(&done->nr_todo, nr_todo); init_completion(&done->completion); } static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed) { if (done) { if (executed) done->executed = true; if (atomic_dec_and_test(&done->nr_todo)) complete(&done->completion); } } static void cpu_stop_queue_work(struct cpu_stopper *stopper, struct cpu_stop_work *work) { unsigned long flags; spin_lock_irqsave(&stopper->lock, flags); if (stopper->enabled) { list_add_tail(&work->list, &stopper->works); wake_up_process(stopper->thread); } else cpu_stop_signal_done(work->done, false); spin_unlock_irqrestore(&stopper->lock, flags); } int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg) { struct cpu_stop_done done; struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done }; cpu_stop_init_done(&done, 1); cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), &work); wait_for_completion(&done.completion); return done.executed ? done.ret : -ENOENT; } void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, struct cpu_stop_work *work_buf) { *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, }; cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), work_buf); } DEFINE_MUTEX(stop_cpus_mutex); static DEFINE_PER_CPU(struct cpu_stop_work, stop_cpus_work); static void queue_stop_cpus_work(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg, struct cpu_stop_done *done) { struct cpu_stop_work *work; unsigned int cpu; for_each_cpu(cpu, cpumask) { work = &per_cpu(stop_cpus_work, cpu); work->fn = fn; work->arg = arg; work->done = done; } preempt_disable(); for_each_cpu(cpu, cpumask) cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), &per_cpu(stop_cpus_work, cpu)); preempt_enable(); } static int __stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) { struct cpu_stop_done done; cpu_stop_init_done(&done, cpumask_weight(cpumask)); queue_stop_cpus_work(cpumask, fn, arg, &done); wait_for_completion(&done.completion); return done.executed ? done.ret : -ENOENT; } int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) { int ret; mutex_lock(&stop_cpus_mutex); ret = __stop_cpus(cpumask, fn, arg); mutex_unlock(&stop_cpus_mutex); return ret; } int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) { int ret; if (!mutex_trylock(&stop_cpus_mutex)) return -EAGAIN; ret = __stop_cpus(cpumask, fn, arg); mutex_unlock(&stop_cpus_mutex); return ret; } static int cpu_stopper_thread(void *data) { struct cpu_stopper *stopper = data; struct cpu_stop_work *work; int ret; repeat: set_current_state(TASK_INTERRUPTIBLE); if (kthread_should_stop()) { __set_current_state(TASK_RUNNING); return 0; } work = NULL; spin_lock_irq(&stopper->lock); if (!list_empty(&stopper->works)) { work = list_first_entry(&stopper->works, struct cpu_stop_work, list); list_del_init(&work->list); } spin_unlock_irq(&stopper->lock); if (work) { cpu_stop_fn_t fn = work->fn; void *arg = work->arg; struct cpu_stop_done *done = work->done; char ksym_buf[KSYM_NAME_LEN] __maybe_unused; __set_current_state(TASK_RUNNING); preempt_disable(); ret = fn(arg); if (ret) done->ret = ret; preempt_enable(); WARN_ONCE(preempt_count(), "cpu_stop: %s(%p) leaked preempt count\n", kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL, ksym_buf), arg); cpu_stop_signal_done(done, true); } else schedule(); goto repeat; } extern void sched_set_stop_task(int cpu, struct task_struct *stop); static int __cpuinit cpu_stop_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { unsigned int cpu = (unsigned long)hcpu; struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); struct task_struct *p; switch (action & ~CPU_TASKS_FROZEN) { case CPU_UP_PREPARE: BUG_ON(stopper->thread || stopper->enabled || !list_empty(&stopper->works)); p = kthread_create_on_node(cpu_stopper_thread, stopper, cpu_to_node(cpu), "migration/%d", cpu); if (IS_ERR(p)) return notifier_from_errno(PTR_ERR(p)); get_task_struct(p); kthread_bind(p, cpu); sched_set_stop_task(cpu, p); stopper->thread = p; break; case CPU_ONLINE: wake_up_process(stopper->thread); spin_lock_irq(&stopper->lock); stopper->enabled = true; spin_unlock_irq(&stopper->lock); break; #ifdef CONFIG_HOTPLUG_CPU case CPU_UP_CANCELED: case CPU_POST_DEAD: { struct cpu_stop_work *work; sched_set_stop_task(cpu, NULL); kthread_stop(stopper->thread); spin_lock_irq(&stopper->lock); list_for_each_entry(work, &stopper->works, list) cpu_stop_signal_done(work->done, false); stopper->enabled = false; spin_unlock_irq(&stopper->lock); put_task_struct(stopper->thread); stopper->thread = NULL; break; } #endif } return NOTIFY_OK; } static struct notifier_block __cpuinitdata cpu_stop_cpu_notifier = { .notifier_call = cpu_stop_cpu_callback, .priority = 10, }; static int __init cpu_stop_init(void) { void *bcpu = (void *)(long)smp_processor_id(); unsigned int cpu; int err; for_each_possible_cpu(cpu) { struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); spin_lock_init(&stopper->lock); INIT_LIST_HEAD(&stopper->works); } err = cpu_stop_cpu_callback(&cpu_stop_cpu_notifier, CPU_UP_PREPARE, bcpu); BUG_ON(err != NOTIFY_OK); cpu_stop_cpu_callback(&cpu_stop_cpu_notifier, CPU_ONLINE, bcpu); register_cpu_notifier(&cpu_stop_cpu_notifier); stop_machine_initialized = true; return 0; } early_initcall(cpu_stop_init); #ifdef CONFIG_STOP_MACHINE enum stopmachine_state { STOPMACHINE_NONE, STOPMACHINE_PREPARE, STOPMACHINE_DISABLE_IRQ, STOPMACHINE_RUN, STOPMACHINE_EXIT, }; struct stop_machine_data { int (*fn)(void *); void *data; unsigned int num_threads; const struct cpumask *active_cpus; enum stopmachine_state state; atomic_t thread_ack; }; static void set_state(struct stop_machine_data *smdata, enum stopmachine_state newstate) { atomic_set(&smdata->thread_ack, smdata->num_threads); smp_wmb(); smdata->state = newstate; } static void ack_state(struct stop_machine_data *smdata) { if (atomic_dec_and_test(&smdata->thread_ack)) set_state(smdata, smdata->state + 1); } static int stop_machine_cpu_stop(void *data) { struct stop_machine_data *smdata = data; enum stopmachine_state curstate = STOPMACHINE_NONE; int cpu = smp_processor_id(), err = 0; unsigned long flags; bool is_active; local_save_flags(flags); if (!smdata->active_cpus) is_active = cpu == cpumask_first(cpu_online_mask); else is_active = cpumask_test_cpu(cpu, smdata->active_cpus); do { cpu_relax(); if (smdata->state != curstate) { curstate = smdata->state; switch (curstate) { case STOPMACHINE_DISABLE_IRQ: local_irq_disable(); hard_irq_disable(); break; case STOPMACHINE_RUN: if (is_active) err = smdata->fn(smdata->data); break; default: break; } ack_state(smdata); } } while (curstate != STOPMACHINE_EXIT); local_irq_restore(flags); return err; } int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus) { struct stop_machine_data smdata = { .fn = fn, .data = data, .num_threads = num_online_cpus(), .active_cpus = cpus }; if (!stop_machine_initialized) { unsigned long flags; int ret; WARN_ON_ONCE(smdata.num_threads != 1); local_irq_save(flags); hard_irq_disable(); ret = (*fn)(data); local_irq_restore(flags); return ret; } set_state(&smdata, STOPMACHINE_PREPARE); return stop_cpus(cpu_online_mask, stop_machine_cpu_stop, &smdata); } int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus) { int ret; get_online_cpus(); ret = __stop_machine(fn, data, cpus); put_online_cpus(); return ret; } EXPORT_SYMBOL_GPL(stop_machine); int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data, const struct cpumask *cpus) { struct stop_machine_data smdata = { .fn = fn, .data = data, .active_cpus = cpus }; struct cpu_stop_done done; int ret; BUG_ON(cpu_active(raw_smp_processor_id())); smdata.num_threads = num_active_cpus() + 1; while (!mutex_trylock(&stop_cpus_mutex)) cpu_relax(); set_state(&smdata, STOPMACHINE_PREPARE); cpu_stop_init_done(&done, num_active_cpus()); queue_stop_cpus_work(cpu_active_mask, stop_machine_cpu_stop, &smdata, &done); ret = stop_machine_cpu_stop(&smdata); while (!completion_done(&done.completion)) cpu_relax(); mutex_unlock(&stop_cpus_mutex); return ret ?: done.ret; } #endif