/* * linux/kernel/time/tick-sched.c * * Copyright(C) 2005-2006, Thomas Gleixner * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner * * No idle tick implementation for low and high resolution timers * * Started by: Thomas Gleixner and Ingo Molnar * * Distribute under GPLv2. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "tick-internal.h" struct rq_data rq_info; struct workqueue_struct *rq_wq; spinlock_t rq_lock; /* * Per cpu nohz control structure */ DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); static ktime_t last_jiffies_update; struct tick_sched *tick_get_tick_sched(int cpu) { return &per_cpu(tick_cpu_sched, cpu); } static void tick_do_update_jiffies64(ktime_t now) { unsigned long ticks = 0; ktime_t delta; delta = ktime_sub(now, last_jiffies_update); if (delta.tv64 < tick_period.tv64) return; write_seqlock(&xtime_lock); delta = ktime_sub(now, last_jiffies_update); if (delta.tv64 >= tick_period.tv64) { delta = ktime_sub(delta, tick_period); last_jiffies_update = ktime_add(last_jiffies_update, tick_period); if (unlikely(delta.tv64 >= tick_period.tv64)) { s64 incr = ktime_to_ns(tick_period); ticks = ktime_divns(delta, incr); last_jiffies_update = ktime_add_ns(last_jiffies_update, incr * ticks); } do_timer(++ticks); tick_next_period = ktime_add(last_jiffies_update, tick_period); } write_sequnlock(&xtime_lock); } static ktime_t tick_init_jiffy_update(void) { ktime_t period; write_seqlock(&xtime_lock); if (last_jiffies_update.tv64 == 0) last_jiffies_update = tick_next_period; period = last_jiffies_update; write_sequnlock(&xtime_lock); return period; } #ifdef CONFIG_NO_HZ static int tick_nohz_enabled __read_mostly = 1; static int __init setup_tick_nohz(char *str) { if (!strcmp(str, "off")) tick_nohz_enabled = 0; else if (!strcmp(str, "on")) tick_nohz_enabled = 1; else return 0; return 1; } __setup("nohz=", setup_tick_nohz); static void tick_nohz_update_jiffies(ktime_t now) { int cpu = smp_processor_id(); struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); unsigned long flags; ts->idle_waketime = now; local_irq_save(flags); tick_do_update_jiffies64(now); local_irq_restore(flags); touch_softlockup_watchdog(); } static void update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) { ktime_t delta; if (ts->idle_active) { delta = ktime_sub(now, ts->idle_entrytime); if (nr_iowait_cpu(cpu) > 0) ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); else ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); ts->idle_entrytime = now; } if (last_update_time) *last_update_time = ktime_to_us(now); } static void tick_nohz_stop_idle(int cpu, ktime_t now) { struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); update_ts_time_stats(cpu, ts, now, NULL); ts->idle_active = 0; sched_clock_idle_wakeup_event(0); } static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts) { ktime_t now = ktime_get(); ts->idle_entrytime = now; ts->idle_active = 1; sched_clock_idle_sleep_event(); return now; } u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) { struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); ktime_t now, idle; if (!tick_nohz_enabled) return -1; now = ktime_get(); if (last_update_time) { update_ts_time_stats(cpu, ts, now, last_update_time); idle = ts->idle_sleeptime; } else { if (ts->idle_active && !nr_iowait_cpu(cpu)) { ktime_t delta = ktime_sub(now, ts->idle_entrytime); idle = ktime_add(ts->idle_sleeptime, delta); } else { idle = ts->idle_sleeptime; } } return ktime_to_us(idle); } EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) { struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); ktime_t now, iowait; if (!tick_nohz_enabled) return -1; now = ktime_get(); if (last_update_time) { update_ts_time_stats(cpu, ts, now, last_update_time); iowait = ts->iowait_sleeptime; } else { if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { ktime_t delta = ktime_sub(now, ts->idle_entrytime); iowait = ktime_add(ts->iowait_sleeptime, delta); } else { iowait = ts->iowait_sleeptime; } } return ktime_to_us(iowait); } EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts, ktime_t now, int cpu) { unsigned long seq, last_jiffies, next_jiffies, delta_jiffies; ktime_t last_update, expires, ret = { .tv64 = 0 }; struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev; u64 time_delta; /* Read jiffies and the time when jiffies were updated last */ do { seq = read_seqbegin(&xtime_lock); last_update = last_jiffies_update; last_jiffies = jiffies; time_delta = timekeeping_max_deferment(); } while (read_seqretry(&xtime_lock, seq)); if (rcu_needs_cpu(cpu) ||arch_needs_cpu(cpu) || irq_work_needs_cpu()) { next_jiffies = last_jiffies + 1; delta_jiffies = 1; } else { next_jiffies = get_next_timer_interrupt(last_jiffies); delta_jiffies = next_jiffies - last_jiffies; } if (!ts->tick_stopped && delta_jiffies == 1) goto out; if ((long)delta_jiffies >= 1) { if (cpu == tick_do_timer_cpu) { tick_do_timer_cpu = TICK_DO_TIMER_NONE; ts->do_timer_last = 1; } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { time_delta = KTIME_MAX; ts->do_timer_last = 0; } else if (!ts->do_timer_last) { time_delta = KTIME_MAX; } if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) { time_delta = min_t(u64, time_delta, tick_period.tv64 * delta_jiffies); } if (time_delta < KTIME_MAX) expires = ktime_add_ns(last_update, time_delta); else expires.tv64 = KTIME_MAX; if (ts->tick_stopped && ktime_equal(expires, dev->next_event)) goto out; ret = expires; /* * nohz_stop_sched_tick can be called several times before * the nohz_restart_sched_tick is called. This happens when * interrupts arrive which do not cause a reschedule. In the * first call we save the current tick time, so we can restart * the scheduler tick in nohz_restart_sched_tick. */ if (!ts->tick_stopped) { nohz_balance_enter_idle(cpu); calc_load_enter_idle(); ts->last_tick = hrtimer_get_expires(&ts->sched_timer); ts->tick_stopped = 1; } /* * If the expiration time == KTIME_MAX, then * in this case we simply stop the tick timer. */ if (unlikely(expires.tv64 == KTIME_MAX)) { if (ts->nohz_mode == NOHZ_MODE_HIGHRES) hrtimer_cancel(&ts->sched_timer); goto out; } if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { hrtimer_start(&ts->sched_timer, expires, HRTIMER_MODE_ABS_PINNED); if (hrtimer_active(&ts->sched_timer)) goto out; } else if (!tick_program_event(expires, 0)) goto out; tick_do_update_jiffies64(ktime_get()); } raise_softirq_irqoff(TIMER_SOFTIRQ); out: ts->next_jiffies = next_jiffies; ts->last_jiffies = last_jiffies; return ret; } static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) { /* * If this cpu is offline and it is the one which updates * jiffies, then give up the assignment and let it be taken by * the cpu which runs the tick timer next. If we don't drop * this here the jiffies might be stale and do_timer() never * invoked. */ if (unlikely(!cpu_online(cpu))) { if (cpu == tick_do_timer_cpu) tick_do_timer_cpu = TICK_DO_TIMER_NONE; } if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) return false; if (need_resched()) return false; if (unlikely(local_softirq_pending() && cpu_online(cpu))) { static int ratelimit; if (ratelimit < 10) { printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n", (unsigned int) local_softirq_pending()); ratelimit++; } return false; } return true; } static void __tick_nohz_idle_enter(struct tick_sched *ts) { ktime_t now, expires; int cpu = smp_processor_id(); now = tick_nohz_start_idle(cpu, ts); if (can_stop_idle_tick(cpu, ts)) { int was_stopped = ts->tick_stopped; ts->idle_calls++; expires = tick_nohz_stop_sched_tick(ts, now, cpu); if (expires.tv64 > 0LL) { ts->idle_sleeps++; ts->idle_expires = expires; } if (!was_stopped && ts->tick_stopped) ts->idle_jiffies = ts->last_jiffies; } } /** * tick_nohz_idle_enter - stop the idle tick from the idle task * * When the next event is more than a tick into the future, stop the idle tick * Called when we start the idle loop. * * The arch is responsible of calling: * * - rcu_idle_enter() after its last use of RCU before the CPU is put * to sleep. * - rcu_idle_exit() before the first use of RCU after the CPU is woken up. */ void tick_nohz_idle_enter(void) { struct tick_sched *ts; WARN_ON_ONCE(irqs_disabled()); set_cpu_sd_state_idle(); local_irq_disable(); ts = &__get_cpu_var(tick_cpu_sched); ts->inidle = 1; __tick_nohz_idle_enter(ts); local_irq_enable(); } void tick_nohz_irq_exit(void) { unsigned long flags; struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); if (!ts->inidle) return; local_irq_save(flags); __tick_nohz_idle_enter(ts); local_irq_restore(flags); } ktime_t tick_nohz_get_sleep_length(void) { struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); return ts->sleep_length; } static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) { hrtimer_cancel(&ts->sched_timer); hrtimer_set_expires(&ts->sched_timer, ts->last_tick); while (1) { hrtimer_forward(&ts->sched_timer, now, tick_period); if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); if (hrtimer_active(&ts->sched_timer)) break; } else { if (!tick_program_event( hrtimer_get_expires(&ts->sched_timer), 0)) break; } now = ktime_get(); tick_do_update_jiffies64(now); } } static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) { /* Update jiffies first */ tick_do_update_jiffies64(now); calc_load_exit_idle(); touch_softlockup_watchdog(); /* * Cancel the scheduled timer and restore the tick */ ts->tick_stopped = 0; ts->idle_exittime = now; tick_nohz_restart(ts, now); } static void tick_nohz_account_idle_ticks(struct tick_sched *ts) { #ifndef CONFIG_VIRT_CPU_ACCOUNTING unsigned long ticks; /* * We stopped the tick in idle. Update process times would miss the * time we slept as update_process_times does only a 1 tick * accounting. Enforce that this is accounted to idle ! */ ticks = jiffies - ts->idle_jiffies; if (ticks && ticks < LONG_MAX) account_idle_ticks(ticks); #endif } /** * tick_nohz_idle_exit - restart the idle tick from the idle task * * Restart the idle tick when the CPU is woken up from idle * This also exit the RCU extended quiescent state. The CPU * can use RCU again after this function is called. */ void tick_nohz_idle_exit(void) { int cpu = smp_processor_id(); struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); ktime_t now; local_irq_disable(); WARN_ON_ONCE(!ts->inidle); ts->inidle = 0; if (ts->idle_active || ts->tick_stopped) now = ktime_get(); if (ts->idle_active) tick_nohz_stop_idle(cpu, now); if (ts->tick_stopped) { tick_nohz_restart_sched_tick(ts, now); tick_nohz_account_idle_ticks(ts); } local_irq_enable(); } static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) { hrtimer_forward(&ts->sched_timer, now, tick_period); return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0); } static void tick_nohz_handler(struct clock_event_device *dev) { struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); struct pt_regs *regs = get_irq_regs(); int cpu = smp_processor_id(); ktime_t now = ktime_get(); dev->next_event.tv64 = KTIME_MAX; if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) tick_do_timer_cpu = cpu; if (tick_do_timer_cpu == cpu) tick_do_update_jiffies64(now); if (ts->tick_stopped) { touch_softlockup_watchdog(); ts->idle_jiffies++; } update_process_times(user_mode(regs)); profile_tick(CPU_PROFILING); while (tick_nohz_reprogram(ts, now)) { now = ktime_get(); tick_do_update_jiffies64(now); } } static void tick_nohz_switch_to_nohz(void) { struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); ktime_t next; if (!tick_nohz_enabled) return; local_irq_disable(); if (tick_switch_to_oneshot(tick_nohz_handler)) { local_irq_enable(); return; } ts->nohz_mode = NOHZ_MODE_LOWRES; hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); next = tick_init_jiffy_update(); for (;;) { hrtimer_set_expires(&ts->sched_timer, next); if (!tick_program_event(next, 0)) break; next = ktime_add(next, tick_period); } local_irq_enable(); } static void tick_nohz_kick_tick(int cpu, ktime_t now) { #if 0 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); ktime_t delta; delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now); if (delta.tv64 <= tick_period.tv64) return; tick_nohz_restart(ts, now); #endif } static inline void tick_check_nohz(int cpu) { struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); ktime_t now; if (!ts->idle_active && !ts->tick_stopped) return; now = ktime_get(); if (ts->idle_active) tick_nohz_stop_idle(cpu, now); if (ts->tick_stopped) { tick_nohz_update_jiffies(now); tick_nohz_kick_tick(cpu, now); } } #else static inline void tick_nohz_switch_to_nohz(void) { } static inline void tick_check_nohz(int cpu) { } #endif void tick_check_idle(int cpu) { tick_check_oneshot_broadcast(cpu); tick_check_nohz(cpu); } #ifdef CONFIG_HIGH_RES_TIMERS static void update_rq_stats(void) { unsigned long jiffy_gap = 0; unsigned int rq_avg = 0; unsigned long flags = 0; jiffy_gap = jiffies - rq_info.rq_poll_last_jiffy; if (jiffy_gap >= rq_info.rq_poll_jiffies) { spin_lock_irqsave(&rq_lock, flags); if (!rq_info.rq_avg) rq_info.rq_poll_total_jiffies = 0; rq_avg = nr_running() * 10; if (rq_info.rq_poll_total_jiffies) { rq_avg = (rq_avg * jiffy_gap) + (rq_info.rq_avg * rq_info.rq_poll_total_jiffies); do_div(rq_avg, rq_info.rq_poll_total_jiffies + jiffy_gap); } rq_info.rq_avg = rq_avg; rq_info.rq_poll_total_jiffies += jiffy_gap; rq_info.rq_poll_last_jiffy = jiffies; spin_unlock_irqrestore(&rq_lock, flags); } } static void wakeup_user(void) { unsigned long jiffy_gap; jiffy_gap = jiffies - rq_info.def_timer_last_jiffy; if (jiffy_gap >= rq_info.def_timer_jiffies) { rq_info.def_timer_last_jiffy = jiffies; queue_work(rq_wq, &rq_info.def_timer_work); } } static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) { struct tick_sched *ts = container_of(timer, struct tick_sched, sched_timer); struct pt_regs *regs = get_irq_regs(); ktime_t now = ktime_get(); int cpu = smp_processor_id(); #ifdef CONFIG_NO_HZ if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) tick_do_timer_cpu = cpu; #endif if (tick_do_timer_cpu == cpu) tick_do_update_jiffies64(now); if (regs) { if (ts->tick_stopped) { touch_softlockup_watchdog(); if (is_idle_task(current)) ts->idle_jiffies++; } update_process_times(user_mode(regs)); profile_tick(CPU_PROFILING); if ((rq_info.init == 1) && (tick_do_timer_cpu == cpu)) { update_rq_stats(); wakeup_user(); } } hrtimer_forward(timer, now, tick_period); return HRTIMER_RESTART; } void tick_setup_sched_timer(void) { struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); ktime_t now = ktime_get(); hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); ts->sched_timer.function = tick_sched_timer; hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); for (;;) { hrtimer_forward(&ts->sched_timer, now, tick_period); hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED); if (hrtimer_active(&ts->sched_timer)) break; now = ktime_get(); } #ifdef CONFIG_NO_HZ if (tick_nohz_enabled) ts->nohz_mode = NOHZ_MODE_HIGHRES; #endif } #endif #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS void tick_cancel_sched_timer(int cpu) { struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); # ifdef CONFIG_HIGH_RES_TIMERS if (ts->sched_timer.base) hrtimer_cancel(&ts->sched_timer); # endif ts->nohz_mode = NOHZ_MODE_INACTIVE; } #endif void tick_clock_notify(void) { int cpu; for_each_possible_cpu(cpu) set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); } void tick_oneshot_notify(void) { struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); set_bit(0, &ts->check_clocks); } int tick_check_oneshot_change(int allow_nohz) { struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); if (!test_and_clear_bit(0, &ts->check_clocks)) return 0; if (ts->nohz_mode != NOHZ_MODE_INACTIVE) return 0; if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) return 0; if (!allow_nohz) return 1; tick_nohz_switch_to_nohz(); return 0; }