/* * linux/kernel/seccomp.c * * Copyright 2004-2005 Andrea Arcangeli * * Copyright (C) 2012 Google, Inc. * Will Drewry * * This defines a simple but solid secure-computing facility. * * Mode 1 uses a fixed list of allowed system calls. * Mode 2 allows user-defined system call filters in the form * of Berkeley Packet Filters/Linux Socket Filters. */ #include #include #include #include #include #include #include #ifdef CONFIG_SECCOMP_FILTER #include #include #include #include #include #include #include struct seccomp_filter { atomic_t usage; struct seccomp_filter *prev; unsigned short len; struct sock_filter insns[]; }; #define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter)) static inline u32 get_u32(u64 data, int index) { return ((u32 *)&data)[index]; } #define BPF_DATA(_name) offsetof(struct seccomp_data, _name) u32 seccomp_bpf_load(int off) { struct pt_regs *regs = task_pt_regs(current); if (off == BPF_DATA(nr)) return syscall_get_nr(current, regs); if (off == BPF_DATA(arch)) return syscall_get_arch(); if (off >= BPF_DATA(args[0]) && off < BPF_DATA(args[6])) { unsigned long value; int arg = (off - BPF_DATA(args[0])) / sizeof(u64); int index = !!(off % sizeof(u64)); syscall_get_arguments(current, regs, arg, 1, &value); return get_u32(value, index); } if (off == BPF_DATA(instruction_pointer)) return get_u32(KSTK_EIP(current), 0); if (off == BPF_DATA(instruction_pointer) + sizeof(u32)) return get_u32(KSTK_EIP(current), 1); BUG(); } static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen) { int pc; for (pc = 0; pc < flen; pc++) { struct sock_filter *ftest = &filter[pc]; u16 code = ftest->code; u32 k = ftest->k; switch (code) { case BPF_S_LD_W_ABS: ftest->code = BPF_S_ANC_SECCOMP_LD_W; if (k >= sizeof(struct seccomp_data) || k & 3) return -EINVAL; continue; case BPF_S_LD_W_LEN: ftest->code = BPF_S_LD_IMM; ftest->k = sizeof(struct seccomp_data); continue; case BPF_S_LDX_W_LEN: ftest->code = BPF_S_LDX_IMM; ftest->k = sizeof(struct seccomp_data); continue; case BPF_S_RET_K: case BPF_S_RET_A: case BPF_S_ALU_ADD_K: case BPF_S_ALU_ADD_X: case BPF_S_ALU_SUB_K: case BPF_S_ALU_SUB_X: case BPF_S_ALU_MUL_K: case BPF_S_ALU_MUL_X: case BPF_S_ALU_DIV_X: case BPF_S_ALU_AND_K: case BPF_S_ALU_AND_X: case BPF_S_ALU_OR_K: case BPF_S_ALU_OR_X: case BPF_S_ALU_XOR_K: case BPF_S_ALU_XOR_X: case BPF_S_ALU_LSH_K: case BPF_S_ALU_LSH_X: case BPF_S_ALU_RSH_K: case BPF_S_ALU_RSH_X: case BPF_S_ALU_NEG: case BPF_S_LD_IMM: case BPF_S_LDX_IMM: case BPF_S_MISC_TAX: case BPF_S_MISC_TXA: case BPF_S_ALU_DIV_K: case BPF_S_LD_MEM: case BPF_S_LDX_MEM: case BPF_S_ST: case BPF_S_STX: case BPF_S_JMP_JA: case BPF_S_JMP_JEQ_K: case BPF_S_JMP_JEQ_X: case BPF_S_JMP_JGE_K: case BPF_S_JMP_JGE_X: case BPF_S_JMP_JGT_K: case BPF_S_JMP_JGT_X: case BPF_S_JMP_JSET_K: case BPF_S_JMP_JSET_X: continue; default: return -EINVAL; } } return 0; } static u32 seccomp_run_filters(int syscall) { struct seccomp_filter *f = ACCESS_ONCE(current->seccomp.filter); u32 ret = SECCOMP_RET_ALLOW; if (unlikely(WARN_ON(f == NULL))) return SECCOMP_RET_KILL; smp_read_barrier_depends(); for (; f; f = f->prev) { u32 cur_ret = sk_run_filter(NULL, f->insns); if ((cur_ret & SECCOMP_RET_ACTION) < (ret & SECCOMP_RET_ACTION)) ret = cur_ret; } return ret; } #endif static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode) { assert_spin_locked(¤t->sighand->siglock); if (current->seccomp.mode && current->seccomp.mode != seccomp_mode) return false; return true; } static inline void seccomp_assign_mode(struct task_struct *task, unsigned long seccomp_mode) { assert_spin_locked(&task->sighand->siglock); task->seccomp.mode = seccomp_mode; smp_mb(); set_tsk_thread_flag(task, TIF_SECCOMP); } #ifdef CONFIG_SECCOMP_FILTER static int is_ancestor(struct seccomp_filter *parent, struct seccomp_filter *child) { if (parent == NULL) return 1; for (; child; child = child->prev) if (child == parent) return 1; return 0; } static inline pid_t seccomp_can_sync_threads(void) { struct task_struct *thread, *caller; BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex)); assert_spin_locked(¤t->sighand->siglock); caller = current; for_each_thread(caller, thread) { pid_t failed; if (thread == caller) continue; if (thread->seccomp.mode == SECCOMP_MODE_DISABLED || (thread->seccomp.mode == SECCOMP_MODE_FILTER && is_ancestor(thread->seccomp.filter, caller->seccomp.filter))) continue; failed = task_pid_vnr(thread); if (unlikely(WARN_ON(failed == 0))) failed = -ESRCH; return failed; } return 0; } static inline void seccomp_sync_threads(void) { struct task_struct *thread, *caller; BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex)); assert_spin_locked(¤t->sighand->siglock); caller = current; for_each_thread(caller, thread) { if (thread == caller) continue; get_seccomp_filter(caller); put_seccomp_filter(thread); smp_store_release(&thread->seccomp.filter, caller->seccomp.filter); /* * Don't let an unprivileged task work around * the no_new_privs restriction by creating * a thread that sets it up, enters seccomp, * then dies. */ if (task_no_new_privs(caller)) task_set_no_new_privs(thread); /* * Opt the other thread into seccomp if needed. * As threads are considered to be trust-realm * equivalent (see ptrace_may_access), it is safe to * allow one thread to transition the other. */ if (thread->seccomp.mode == SECCOMP_MODE_DISABLED) seccomp_assign_mode(thread, SECCOMP_MODE_FILTER); } } static struct seccomp_filter *seccomp_prepare_filter(struct sock_fprog *fprog) { struct seccomp_filter *filter; unsigned long fp_size = fprog->len * sizeof(struct sock_filter); unsigned long total_insns = fprog->len; long ret; if (fprog->len == 0 || fprog->len > BPF_MAXINSNS) return ERR_PTR(-EINVAL); BUG_ON(INT_MAX / fprog->len < sizeof(struct sock_filter)); for (filter = current->seccomp.filter; filter; filter = filter->prev) total_insns += filter->len + 4; if (total_insns > MAX_INSNS_PER_PATH) return ERR_PTR(-ENOMEM); if (!task_no_new_privs(current) && security_capable_noaudit(current_cred(), current_user_ns(), CAP_SYS_ADMIN) != 0) return ERR_PTR(-EACCES); filter = kzalloc(sizeof(struct seccomp_filter) + fp_size, GFP_KERNEL|__GFP_NOWARN); if (!filter) return ERR_PTR(-ENOMEM);; atomic_set(&filter->usage, 1); filter->len = fprog->len; ret = -EFAULT; if (copy_from_user(filter->insns, fprog->filter, fp_size)) goto fail; ret = sk_chk_filter(filter->insns, filter->len); if (ret) goto fail; ret = seccomp_check_filter(filter->insns, filter->len); if (ret) goto fail; return filter; fail: kfree(filter); return ERR_PTR(ret); } static struct seccomp_filter * seccomp_prepare_user_filter(const char __user *user_filter) { struct sock_fprog fprog; struct seccomp_filter *filter = ERR_PTR(-EFAULT); #ifdef CONFIG_COMPAT if (is_compat_task()) { struct compat_sock_fprog fprog32; if (copy_from_user(&fprog32, user_filter, sizeof(fprog32))) goto out; fprog.len = fprog32.len; fprog.filter = compat_ptr(fprog32.filter); } else #endif if (copy_from_user(&fprog, user_filter, sizeof(fprog))) goto out; filter = seccomp_prepare_filter(&fprog); out: return filter; } static long seccomp_attach_filter(unsigned int flags, struct seccomp_filter *filter) { unsigned long total_insns; struct seccomp_filter *walker; assert_spin_locked(¤t->sighand->siglock); total_insns = filter->len; for (walker = current->seccomp.filter; walker; walker = walker->prev) total_insns += walker->len + 4; if (total_insns > MAX_INSNS_PER_PATH) return -ENOMEM; if (flags & SECCOMP_FILTER_FLAG_TSYNC) { int ret; ret = seccomp_can_sync_threads(); if (ret) return ret; } filter->prev = current->seccomp.filter; current->seccomp.filter = filter; if (flags & SECCOMP_FILTER_FLAG_TSYNC) seccomp_sync_threads(); return 0; } void get_seccomp_filter(struct task_struct *tsk) { struct seccomp_filter *orig = tsk->seccomp.filter; if (!orig) return; atomic_inc(&orig->usage); } static inline void seccomp_filter_free(struct seccomp_filter *filter) { if (filter) { kfree(filter); } } void put_seccomp_filter(struct task_struct *tsk) { struct seccomp_filter *orig = tsk->seccomp.filter; while (orig && atomic_dec_and_test(&orig->usage)) { struct seccomp_filter *freeme = orig; orig = orig->prev; seccomp_filter_free(freeme); } } static void seccomp_send_sigsys(int syscall, int reason) { struct siginfo info; memset(&info, 0, sizeof(info)); info.si_signo = SIGSYS; info.si_code = SYS_SECCOMP; info.si_call_addr = (void __user *)KSTK_EIP(current); info.si_errno = reason; info.si_arch = syscall_get_arch(); info.si_syscall = syscall; force_sig_info(SIGSYS, &info, current); } #endif static int mode1_syscalls[] = { __NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn, 0, }; #ifdef CONFIG_COMPAT static int mode1_syscalls_32[] = { __NR_seccomp_read_32, __NR_seccomp_write_32, __NR_seccomp_exit_32, __NR_seccomp_sigreturn_32, 0, }; #endif int __secure_computing(int this_syscall) { int exit_sig = 0; int *syscall; u32 ret; rmb(); switch (current->seccomp.mode) { case SECCOMP_MODE_STRICT: syscall = mode1_syscalls; #ifdef CONFIG_COMPAT if (is_compat_task()) syscall = mode1_syscalls_32; #endif do { if (*syscall == this_syscall) return 0; } while (*++syscall); exit_sig = SIGKILL; ret = SECCOMP_RET_KILL; break; #ifdef CONFIG_SECCOMP_FILTER case SECCOMP_MODE_FILTER: { int data; struct pt_regs *regs = task_pt_regs(current); ret = seccomp_run_filters(this_syscall); data = ret & SECCOMP_RET_DATA; ret &= SECCOMP_RET_ACTION; switch (ret) { case SECCOMP_RET_ERRNO: /* Set low-order bits as an errno, capped at MAX_ERRNO. */ if (data > MAX_ERRNO) data = MAX_ERRNO; syscall_set_return_value(current, regs, -data, 0); goto skip; case SECCOMP_RET_TRAP: syscall_rollback(current, regs); seccomp_send_sigsys(this_syscall, data); goto skip; case SECCOMP_RET_TRACE: if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) { syscall_set_return_value(current, regs, -ENOSYS, 0); goto skip; } ptrace_event(PTRACE_EVENT_SECCOMP, data); if (fatal_signal_pending(current)) break; if (syscall_get_nr(current, regs) < 0) goto skip; return 0; case SECCOMP_RET_ALLOW: return 0; case SECCOMP_RET_KILL: default: break; } exit_sig = SIGSYS; break; } #endif default: BUG(); } #ifdef SECCOMP_DEBUG dump_stack(); #endif audit_seccomp(this_syscall, exit_sig, ret); do_exit(exit_sig); #ifdef CONFIG_SECCOMP_FILTER skip: audit_seccomp(this_syscall, exit_sig, ret); #endif return -1; } long prctl_get_seccomp(void) { return current->seccomp.mode; } static long seccomp_set_mode_strict(void) { const unsigned long seccomp_mode = SECCOMP_MODE_STRICT; long ret = -EINVAL; spin_lock_irq(¤t->sighand->siglock); if (!seccomp_may_assign_mode(seccomp_mode)) goto out; #ifdef TIF_NOTSC disable_TSC(); #endif seccomp_assign_mode(current, seccomp_mode); ret = 0; out: spin_unlock_irq(¤t->sighand->siglock); return ret; } #ifdef CONFIG_SECCOMP_FILTER static long seccomp_set_mode_filter(unsigned int flags, const char __user *filter) { const unsigned long seccomp_mode = SECCOMP_MODE_FILTER; struct seccomp_filter *prepared = NULL; long ret = -EINVAL; if (flags & ~SECCOMP_FILTER_FLAG_MASK) return -EINVAL; prepared = seccomp_prepare_user_filter(filter); if (IS_ERR(prepared)) return PTR_ERR(prepared); if (flags & SECCOMP_FILTER_FLAG_TSYNC && mutex_lock_killable(¤t->signal->cred_guard_mutex)) goto out_free; spin_lock_irq(¤t->sighand->siglock); if (!seccomp_may_assign_mode(seccomp_mode)) goto out; ret = seccomp_attach_filter(flags, prepared); if (ret) goto out; prepared = NULL; seccomp_assign_mode(current, seccomp_mode); out: spin_unlock_irq(¤t->sighand->siglock); if (flags & SECCOMP_FILTER_FLAG_TSYNC) mutex_unlock(¤t->signal->cred_guard_mutex); out_free: seccomp_filter_free(prepared); return ret; } #else static inline long seccomp_set_mode_filter(unsigned int flags, const char __user *filter) { return -EINVAL; } #endif static long do_seccomp(unsigned int op, unsigned int flags, const char __user *uargs) { switch (op) { case SECCOMP_SET_MODE_STRICT: if (flags != 0 || uargs != NULL) return -EINVAL; return seccomp_set_mode_strict(); case SECCOMP_SET_MODE_FILTER: return seccomp_set_mode_filter(flags, uargs); default: return -EINVAL; } } SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags, const char __user *, uargs) { return do_seccomp(op, flags, uargs); } long prctl_set_seccomp(unsigned long seccomp_mode, char __user *filter) { unsigned int op; char __user *uargs; switch (seccomp_mode) { case SECCOMP_MODE_STRICT: op = SECCOMP_SET_MODE_STRICT; uargs = NULL; break; case SECCOMP_MODE_FILTER: op = SECCOMP_SET_MODE_FILTER; uargs = filter; break; default: return -EINVAL; } return do_seccomp(op, 0, uargs); }