/* * linux/arch/arm/kernel/arch_timer.c * * Copyright (C) 2011 ARM Ltd. * All Rights Reserved * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static unsigned long arch_timer_rate; static int arch_timer_spi; static int arch_timer_ppi; static int arch_timer_ppi2; static struct clock_event_device __percpu **arch_timer_evt; static void __iomem *timer_base; static struct delay_timer arch_delay_timer; /* * Architected system timer support. */ #define ARCH_TIMER_CTRL_ENABLE (1 << 0) #define ARCH_TIMER_CTRL_IT_MASK (1 << 1) #define ARCH_TIMER_CTRL_IT_STAT (1 << 2) #define ARCH_TIMER_REG_CTRL 0 #define ARCH_TIMER_REG_FREQ 1 #define ARCH_TIMER_REG_TVAL 2 /* Iomapped Register Offsets */ #define QTIMER_CNTP_LOW_REG 0x000 #define QTIMER_CNTP_HIGH_REG 0x004 #define QTIMER_CNTV_LOW_REG 0x008 #define QTIMER_CNTV_HIGH_REG 0x00C #define QTIMER_CTRL_REG 0x02C #define QTIMER_FREQ_REG 0x010 #define QTIMER_CNTP_TVAL_REG 0x028 #define QTIMER_CNTV_TVAL_REG 0x038 static inline void timer_reg_write_mem(int reg, u32 val) { switch (reg) { case ARCH_TIMER_REG_CTRL: __raw_writel(val, timer_base + QTIMER_CTRL_REG); break; case ARCH_TIMER_REG_TVAL: __raw_writel(val, timer_base + QTIMER_CNTP_TVAL_REG); break; } } static inline void timer_reg_write_cp15(int reg, u32 val) { switch (reg) { case ARCH_TIMER_REG_CTRL: asm volatile("mcr p15, 0, %0, c14, c2, 1" : : "r" (val)); break; case ARCH_TIMER_REG_TVAL: asm volatile("mcr p15, 0, %0, c14, c2, 0" : : "r" (val)); break; } isb(); } static inline void arch_timer_reg_write(int cp15, int reg, u32 val) { if (cp15) timer_reg_write_cp15(reg, val); else timer_reg_write_mem(reg, val); } static inline u32 timer_reg_read_mem(int reg) { u32 val; switch (reg) { case ARCH_TIMER_REG_CTRL: val = __raw_readl(timer_base + QTIMER_CTRL_REG); break; case ARCH_TIMER_REG_FREQ: val = __raw_readl(timer_base + QTIMER_FREQ_REG); break; case ARCH_TIMER_REG_TVAL: val = __raw_readl(timer_base + QTIMER_CNTP_TVAL_REG); break; default: BUG(); } return val; } static inline u32 timer_reg_read_cp15(int reg) { u32 val; switch (reg) { case ARCH_TIMER_REG_CTRL: asm volatile("mrc p15, 0, %0, c14, c2, 1" : "=r" (val)); break; case ARCH_TIMER_REG_FREQ: asm volatile("mrc p15, 0, %0, c14, c0, 0" : "=r" (val)); break; case ARCH_TIMER_REG_TVAL: asm volatile("mrc p15, 0, %0, c14, c2, 0" : "=r" (val)); break; default: BUG(); } return val; } static inline u32 arch_timer_reg_read(int cp15, int reg) { if (cp15) return timer_reg_read_cp15(reg); else return timer_reg_read_mem(reg); } static inline irqreturn_t arch_timer_handler(int cp15, struct clock_event_device *evt) { unsigned long ctrl; ctrl = arch_timer_reg_read(cp15, ARCH_TIMER_REG_CTRL); if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { ctrl |= ARCH_TIMER_CTRL_IT_MASK; arch_timer_reg_write(cp15, ARCH_TIMER_REG_CTRL, ctrl); evt->event_handler(evt); return IRQ_HANDLED; } return IRQ_NONE; } static irqreturn_t arch_timer_handler_cp15(int irq, void *dev_id) { struct clock_event_device *evt = *(struct clock_event_device **)dev_id; return arch_timer_handler(1, evt); } static irqreturn_t arch_timer_handler_mem(int irq, void *dev_id) { return arch_timer_handler(0, dev_id); } static inline void arch_timer_set_mode(int cp15, enum clock_event_mode mode, struct clock_event_device *clk) { unsigned long ctrl; switch (mode) { case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_SHUTDOWN: ctrl = arch_timer_reg_read(cp15, ARCH_TIMER_REG_CTRL); ctrl &= ~ARCH_TIMER_CTRL_ENABLE; arch_timer_reg_write(cp15, ARCH_TIMER_REG_CTRL, ctrl); break; case CLOCK_EVT_MODE_ONESHOT: ctrl = arch_timer_reg_read(cp15, ARCH_TIMER_REG_CTRL); ctrl |= ARCH_TIMER_CTRL_ENABLE; arch_timer_reg_write(cp15, ARCH_TIMER_REG_CTRL, ctrl); default: break; } } static void arch_timer_set_mode_cp15(enum clock_event_mode mode, struct clock_event_device *clk) { arch_timer_set_mode(1, mode, clk); } static void arch_timer_set_mode_mem(enum clock_event_mode mode, struct clock_event_device *clk) { arch_timer_set_mode(0, mode, clk); } static int arch_timer_set_next_event(int cp15, unsigned long evt, struct clock_event_device *unused) { unsigned long ctrl; ctrl = arch_timer_reg_read(cp15, ARCH_TIMER_REG_CTRL); ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; arch_timer_reg_write(cp15, ARCH_TIMER_REG_CTRL, ctrl); arch_timer_reg_write(cp15, ARCH_TIMER_REG_TVAL, evt); return 0; } static int arch_timer_set_next_event_cp15(unsigned long evt, struct clock_event_device *unused) { return arch_timer_set_next_event(1, evt, unused); } static int arch_timer_set_next_event_mem(unsigned long evt, struct clock_event_device *unused) { return arch_timer_set_next_event(0, evt, unused); } static int __cpuinit arch_timer_setup(struct clock_event_device *clk) { /* setup clock event only once for CPU 0 */ if (!smp_processor_id() && clk->irq == arch_timer_ppi) return 0; clk->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP; clk->name = "arch_sys_timer"; clk->rating = 450; clk->set_mode = arch_timer_set_mode_cp15; clk->set_next_event = arch_timer_set_next_event_cp15; clk->irq = arch_timer_ppi; /* Be safe... */ clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk); clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff); *__this_cpu_ptr(arch_timer_evt) = clk; enable_percpu_irq(clk->irq, 0); if (arch_timer_ppi2) enable_percpu_irq(arch_timer_ppi2, 0); arch_counter_set_user_access(); return 0; } /* Is the optional system timer available? */ static int local_timer_is_architected(void) { return (cpu_architecture() >= CPU_ARCH_ARMv7) && ((read_cpuid_ext(CPUID_EXT_PFR1) >> 16) & 0xf) == 1; } static int arch_timer_available(void) { unsigned long freq; if (arch_timer_rate == 0) { arch_timer_reg_write(1, ARCH_TIMER_REG_CTRL, 0); freq = arch_timer_reg_read(1, ARCH_TIMER_REG_FREQ); /* Check the timer frequency. */ if (freq == 0) { pr_warn("Architected timer frequency not available\n"); return -EINVAL; } arch_timer_rate = freq; pr_info("Architected local timer running at %lu.%02luMHz.\n", freq / 1000000, (freq / 10000) % 100); } return 0; } static inline cycle_t notrace counter_get_cntpct_mem(void) { u32 cvall, cvalh, thigh; do { cvalh = __raw_readl(timer_base + QTIMER_CNTP_HIGH_REG); cvall = __raw_readl(timer_base + QTIMER_CNTP_LOW_REG); thigh = __raw_readl(timer_base + QTIMER_CNTP_HIGH_REG); } while (cvalh != thigh); return ((cycle_t) cvalh << 32) | cvall; } static inline cycle_t notrace counter_get_cntpct_cp15(void) { u32 cvall, cvalh; asm volatile("mrrc p15, 0, %0, %1, c14" : "=r" (cvall), "=r" (cvalh)); return ((cycle_t) cvalh << 32) | cvall; } static inline cycle_t notrace counter_get_cntvct_mem(void) { u32 cvall, cvalh, thigh; do { cvalh = __raw_readl(timer_base + QTIMER_CNTV_HIGH_REG); cvall = __raw_readl(timer_base + QTIMER_CNTV_LOW_REG); thigh = __raw_readl(timer_base + QTIMER_CNTV_HIGH_REG); } while (cvalh != thigh); return ((cycle_t) cvalh << 32) | cvall; } static inline cycle_t notrace counter_get_cntvct_cp15(void) { u32 cvall, cvalh; asm volatile("mrrc p15, 1, %0, %1, c14" : "=r" (cvall), "=r" (cvalh)); return ((cycle_t) cvalh << 32) | cvall; } static cycle_t (*get_cntpct_func)(void) = counter_get_cntpct_cp15; static cycle_t (*get_cntvct_func)(void) = counter_get_cntvct_cp15; cycle_t arch_counter_get_cntpct(void) { return get_cntpct_func(); } EXPORT_SYMBOL(arch_counter_get_cntpct); static cycle_t arch_counter_read(struct clocksource *cs) { return arch_counter_get_cntpct(); } static unsigned long arch_timer_read_current_timer(void) { return arch_counter_get_cntpct(); } static struct clocksource clocksource_counter = { .name = "arch_sys_counter", .rating = 400, .read = arch_counter_read, .mask = CLOCKSOURCE_MASK(56), .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP, }; static u32 arch_counter_get_cntvct32(void) { cycle_t cntvct; cntvct = get_cntvct_func(); /* * The sched_clock infrastructure only knows about counters * with at most 32bits. Forget about the upper 24 bits for the * time being... */ return (u32)(cntvct & (u32)~0); } static u64 notrace arch_timer_update_sched_clock(void) { return arch_counter_get_cntvct32(); } static void __cpuinit arch_timer_stop(struct clock_event_device *clk) { pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id()); disable_percpu_irq(clk->irq); if (arch_timer_ppi2) disable_percpu_irq(arch_timer_ppi2); clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk); } static struct local_timer_ops arch_timer_ops __cpuinitdata = { .setup = arch_timer_setup, .stop = arch_timer_stop, }; static struct clock_event_device arch_timer_global_evt; static void __init arch_timer_counter_init(void) { clocksource_register_hz(&clocksource_counter, arch_timer_rate); sched_clock_register(arch_timer_update_sched_clock, 32, arch_timer_rate); /* Use the architected timer for the delay loop. */ arch_delay_timer.read_current_timer = &arch_timer_read_current_timer; arch_delay_timer.freq = arch_timer_rate; register_current_timer_delay(&arch_delay_timer); } #ifdef CONFIG_CPU_PM static unsigned int saved_cntkctl; static int arch_timer_cpu_pm_notify(struct notifier_block *self, unsigned long action, void *hcpu) { if (action == CPU_PM_ENTER) saved_cntkctl = arch_timer_get_cntkctl(); else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) arch_timer_set_cntkctl(saved_cntkctl); return NOTIFY_OK; } static struct notifier_block arch_timer_cpu_pm_notifier = { .notifier_call = arch_timer_cpu_pm_notify, }; static int __init arch_timer_cpu_pm_init(void) { return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier); } #else static int __init arch_timer_cpu_pm_init(void) { return 0; } #endif static int __init arch_timer_common_register(void) { int err; if (!local_timer_is_architected()) return -ENXIO; err = arch_timer_available(); if (err) return err; arch_timer_evt = alloc_percpu(struct clock_event_device *); if (!arch_timer_evt) return -ENOMEM; err = request_percpu_irq(arch_timer_ppi, arch_timer_handler_cp15, "arch_timer", arch_timer_evt); if (err) { pr_err("arch_timer: can't register interrupt %d (%d)\n", arch_timer_ppi, err); goto out_free; } if (arch_timer_ppi2) { err = request_percpu_irq(arch_timer_ppi2, arch_timer_handler_cp15, "arch_timer", arch_timer_evt); if (err) { pr_err("arch_timer: can't register interrupt %d (%d)\n", arch_timer_ppi2, err); arch_timer_ppi2 = 0; goto out_free_irq; } } err = arch_timer_cpu_pm_init(); if (err) goto out_free_irq; err = local_timer_register(&arch_timer_ops); if (err) { /* * We couldn't register as a local timer (could be * because we're on a UP platform, or because some * other local timer is already present...). Try as a * global timer instead. */ arch_timer_global_evt.cpumask = cpumask_of(0); err = arch_timer_setup(&arch_timer_global_evt); } if (err) goto out_unreg_notify; return 0; out_unreg_notify: cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier); out_free_irq: free_percpu_irq(arch_timer_ppi, arch_timer_evt); if (arch_timer_ppi2) free_percpu_irq(arch_timer_ppi2, arch_timer_evt); out_free: free_percpu(arch_timer_evt); return err; } static int __init arch_timer_mem_register(void) { int err; struct clock_event_device *clk; clk = kzalloc(sizeof(*clk), GFP_KERNEL); if (!clk) return -ENOMEM; clk->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DYNIRQ; clk->name = "arch_mem_timer"; clk->rating = 400; clk->set_mode = arch_timer_set_mode_mem; clk->set_next_event = arch_timer_set_next_event_mem; clk->irq = arch_timer_spi; clk->cpumask = cpu_all_mask; clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk); clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff); err = request_irq(arch_timer_spi, arch_timer_handler_mem, IRQF_TIMER, "arch_timer", clk); return err; } int __init arch_timer_register(struct arch_timer *at) { if (at->res[0].start <= 0 || !(at->res[0].flags & IORESOURCE_IRQ)) return -EINVAL; arch_timer_ppi = at->res[0].start; if (at->res[1].start > 0 && (at->res[1].flags & IORESOURCE_IRQ)) arch_timer_ppi2 = at->res[1].start; if (at->res[2].start > 0 && at->res[2].end > 0 && (at->res[2].flags & IORESOURCE_MEM)) timer_base = ioremap(at->res[2].start, resource_size(&at->res[2])); if (!timer_base) { pr_err("arch_timer: cant map timer base\n"); return -ENOMEM; } return arch_timer_common_register(); } #ifdef CONFIG_OF static const struct of_device_id arch_timer_of_match[] __initconst = { { .compatible = "arm,armv7-timer", }, {}, }; static const struct of_device_id arch_timer_mem_of_match[] __initconst = { { .compatible = "arm,armv7-timer-mem", }, {}, }; int __init arch_timer_of_register(void) { struct device_node *np, *frame; u32 freq; int ret; int has_cp15 = false, has_mem = false; np = of_find_matching_node(NULL, arch_timer_of_match); if (np) { has_cp15 = true; /* * Try to determine the frequency from the device tree */ if (!of_property_read_u32(np, "clock-frequency", &freq)) arch_timer_rate = freq; ret = irq_of_parse_and_map(np, 0); if (ret <= 0) { pr_err("arch_timer: interrupt not specified in timer node\n"); return -ENODEV; } arch_timer_ppi = ret; ret = irq_of_parse_and_map(np, 1); if (ret > 0) arch_timer_ppi2 = ret; ret = arch_timer_common_register(); if (ret) return ret; } np = of_find_matching_node(NULL, arch_timer_mem_of_match); if (np) { has_mem = true; if (!has_cp15) { get_cntpct_func = counter_get_cntpct_mem; get_cntvct_func = counter_get_cntvct_mem; } /* * Try to determine the frequency from the device tree */ if (!of_property_read_u32(np, "clock-frequency", &freq)) arch_timer_rate = freq; frame = of_get_next_child(np, NULL); if (!frame) { pr_err("arch_timer: no child frame\n"); return -EINVAL; } timer_base = of_iomap(frame, 0); if (!timer_base) { pr_err("arch_timer: cant map timer base\n"); return -ENOMEM; } arch_timer_spi = irq_of_parse_and_map(frame, 0); if (!arch_timer_spi) { pr_err("arch_timer: no physical timer irq\n"); return -EINVAL; } ret = arch_timer_mem_register(); if (ret) return ret; } if (!has_cp15 && !has_mem) { pr_err("arch_timer: can't find DT node\n"); return -ENODEV; } arch_timer_counter_init(); return 0; } #endif