/* * drivers/gpu/ion/ion_system_heap.c * * Copyright (C) 2011 Google, Inc. * Copyright (c) 2011-2014, The Linux Foundation. All rights reserved. * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include "ion_priv.h" #include #include static gfp_t high_order_gfp_flags = (GFP_HIGHUSER | __GFP_NOWARN | __GFP_NO_KSWAPD | __GFP_NORETRY) & ~__GFP_WAIT; static gfp_t low_order_gfp_flags = (GFP_HIGHUSER | __GFP_NOWARN); static const unsigned int orders[] = {9, 8, 4, 0}; static const int num_orders = ARRAY_SIZE(orders); static int order_to_index(unsigned int order) { int i; for (i = 0; i < num_orders; i++) if (order == orders[i]) return i; BUG(); return -1; } static unsigned int order_to_size(int order) { return PAGE_SIZE << order; } struct ion_system_heap { struct ion_heap heap; struct ion_page_pool **uncached_pools; struct ion_page_pool **cached_pools; }; struct page_info { struct page *page; bool from_pool; unsigned int order; struct list_head list; }; static struct page *alloc_buffer_page(struct ion_system_heap *heap, struct ion_buffer *buffer, unsigned long order, bool *from_pool) { bool cached = ion_buffer_cached(buffer); struct page *page; struct ion_page_pool *pool; if (!cached) pool = heap->uncached_pools[order_to_index(order)]; else pool = heap->cached_pools[order_to_index(order)]; page = ion_page_pool_alloc(pool, from_pool); if (!page) return 0; return page; } static void free_buffer_page(struct ion_system_heap *heap, struct ion_buffer *buffer, struct page *page, unsigned int order) { bool cached = ion_buffer_cached(buffer); if (!(buffer->private_flags & ION_PRIV_FLAG_SHRINKER_FREE)) { struct ion_page_pool *pool; if (cached) pool = heap->cached_pools[order_to_index(order)]; else pool = heap->uncached_pools[order_to_index(order)]; ion_page_pool_free(pool, page); } else { __free_pages(page, order); } } static struct page_info *alloc_largest_available(struct ion_system_heap *heap, struct ion_buffer *buffer, unsigned long size, unsigned int max_order) { struct page *page; struct page_info *info; int i; bool from_pool; info = kmalloc(sizeof(struct page_info), GFP_KERNEL); for (i = 0; i < num_orders; i++) { if (size < order_to_size(orders[i])) continue; if (max_order < orders[i]) continue; page = alloc_buffer_page(heap, buffer, orders[i], &from_pool); if (!page) continue; info->page = page; info->order = orders[i]; info->from_pool = from_pool; INIT_LIST_HEAD(&info->list); return info; } return NULL; } static unsigned int process_info(struct page_info *info, struct scatterlist *sg, struct scatterlist *sg_sync, struct pages_mem *data, unsigned int i) { struct page *page = info->page; unsigned int j; if (sg_sync) { sg_set_page(sg_sync, page, (1 << info->order) * PAGE_SIZE, 0); sg_dma_address(sg_sync) = page_to_phys(page); } sg_set_page(sg, page, (1 << info->order) * PAGE_SIZE, 0); /* * This is not correct - sg_dma_address needs a dma_addr_t * that is valid for the the targeted device, but this works * on the currently targeted hardware. */ sg_dma_address(sg) = page_to_phys(page); if (data) { for (j = 0; j < (1 << info->order); ++j) data->pages[i++] = nth_page(page, j); } list_del(&info->list); kfree(info); return i; } static int ion_system_heap_allocate(struct ion_heap *heap, struct ion_buffer *buffer, unsigned long size, unsigned long align, unsigned long flags) { struct ion_system_heap *sys_heap = container_of(heap, struct ion_system_heap, heap); struct sg_table *table; struct sg_table table_sync; struct scatterlist *sg; struct scatterlist *sg_sync; int ret; struct list_head pages; struct list_head pages_from_pool; struct page_info *info, *tmp_info; int i = 0; unsigned int nents_sync = 0; unsigned long size_remaining = PAGE_ALIGN(size); unsigned int max_order = orders[0]; struct pages_mem data; unsigned int sz; if (align > PAGE_SIZE) return -EINVAL; if (size / PAGE_SIZE > totalram_pages / 2) return -ENOMEM; data.size = 0; INIT_LIST_HEAD(&pages); INIT_LIST_HEAD(&pages_from_pool); while (size_remaining > 0) { info = alloc_largest_available(sys_heap, buffer, size_remaining, max_order); if (!info) goto err; sz = (1 << info->order) * PAGE_SIZE; if (info->from_pool) { list_add_tail(&info->list, &pages_from_pool); } else { list_add_tail(&info->list, &pages); data.size += sz; ++nents_sync; } size_remaining -= sz; max_order = info->order; i++; } ret = msm_ion_heap_alloc_pages_mem(&data); if (ret) goto err; table = kzalloc(sizeof(struct sg_table), GFP_KERNEL); if (!table) goto err_free_data_pages; ret = sg_alloc_table(table, i, GFP_KERNEL); if (ret) goto err1; if (nents_sync) { ret = sg_alloc_table(&table_sync, nents_sync, GFP_KERNEL); if (ret) goto err_free_sg; } i = 0; sg = table->sgl; sg_sync = table_sync.sgl; /* * We now have two separate lists. One list contains pages from the * pool and the other pages from buddy. We want to merge these * together while preserving the ordering of the pages (higher order * first). */ do { info = list_first_entry_or_null(&pages, struct page_info, list); tmp_info = list_first_entry_or_null(&pages_from_pool, struct page_info, list); if (info && tmp_info) { if (info->order >= tmp_info->order) { i = process_info(info, sg, sg_sync, &data, i); sg_sync = sg_next(sg_sync); } else { i = process_info(tmp_info, sg, 0, 0, i); } } else if (info) { i = process_info(info, sg, sg_sync, &data, i); sg_sync = sg_next(sg_sync); } else if (tmp_info) { i = process_info(tmp_info, sg, 0, 0, i); } else { BUG(); } sg = sg_next(sg); } while (sg); ret = msm_ion_heap_pages_zero(data.pages, data.size >> PAGE_SHIFT); if (ret) { pr_err("Unable to zero pages\n"); goto err_free_sg2; } if (nents_sync) dma_sync_sg_for_device(NULL, table_sync.sgl, table_sync.nents, DMA_BIDIRECTIONAL); buffer->priv_virt = table; if (nents_sync) sg_free_table(&table_sync); msm_ion_heap_free_pages_mem(&data); return 0; err_free_sg2: /* We failed to zero buffers. Bypass pool */ buffer->flags |= ION_PRIV_FLAG_SHRINKER_FREE; for_each_sg(table->sgl, sg, table->nents, i) free_buffer_page(sys_heap, buffer, sg_page(sg), get_order(sg->length)); if (nents_sync) sg_free_table(&table_sync); err_free_sg: sg_free_table(table); err1: kfree(table); err_free_data_pages: msm_ion_heap_free_pages_mem(&data); err: list_for_each_entry_safe(info, tmp_info, &pages, list) { free_buffer_page(sys_heap, buffer, info->page, info->order); kfree(info); } list_for_each_entry_safe(info, tmp_info, &pages_from_pool, list) { free_buffer_page(sys_heap, buffer, info->page, info->order); kfree(info); } return -ENOMEM; } void ion_system_heap_free(struct ion_buffer *buffer) { struct ion_heap *heap = buffer->heap; struct ion_system_heap *sys_heap = container_of(heap, struct ion_system_heap, heap); struct sg_table *table = buffer->sg_table; struct scatterlist *sg; LIST_HEAD(pages); int i; if (!(buffer->private_flags & ION_PRIV_FLAG_SHRINKER_FREE)) msm_ion_heap_buffer_zero(buffer); for_each_sg(table->sgl, sg, table->nents, i) free_buffer_page(sys_heap, buffer, sg_page(sg), get_order(sg->length)); sg_free_table(table); kfree(table); } struct sg_table *ion_system_heap_map_dma(struct ion_heap *heap, struct ion_buffer *buffer) { return buffer->priv_virt; } void ion_system_heap_unmap_dma(struct ion_heap *heap, struct ion_buffer *buffer) { return; } static int ion_system_heap_shrink(struct ion_heap *heap, gfp_t gfp_mask, int nr_to_scan) { struct ion_system_heap *sys_heap; int nr_total = 0; int i; sys_heap = container_of(heap, struct ion_system_heap, heap); for (i = 0; i < num_orders; i++) { struct ion_page_pool *pool = sys_heap->uncached_pools[i]; nr_total += ion_page_pool_shrink(pool, gfp_mask, nr_to_scan); pool = sys_heap->cached_pools[i]; nr_total += ion_page_pool_shrink(pool, gfp_mask, nr_to_scan); } return nr_total; } static struct ion_heap_ops system_heap_ops = { .allocate = ion_system_heap_allocate, .free = ion_system_heap_free, .map_dma = ion_system_heap_map_dma, .unmap_dma = ion_system_heap_unmap_dma, .map_kernel = ion_heap_map_kernel, .unmap_kernel = ion_heap_unmap_kernel, .map_user = ion_heap_map_user, .shrink = ion_system_heap_shrink, }; static int ion_system_heap_debug_show(struct ion_heap *heap, struct seq_file *s, void *unused) { struct ion_system_heap *sys_heap = container_of(heap, struct ion_system_heap, heap); int i; for (i = 0; i < num_orders; i++) { struct ion_page_pool *pool = sys_heap->uncached_pools[i]; seq_printf(s, "%d order %u highmem pages in uncached pool = %lu total\n", pool->high_count, pool->order, (1 << pool->order) * PAGE_SIZE * pool->high_count); seq_printf(s, "%d order %u lowmem pages in uncached pool = %lu total\n", pool->low_count, pool->order, (1 << pool->order) * PAGE_SIZE * pool->low_count); } for (i = 0; i < num_orders; i++) { struct ion_page_pool *pool = sys_heap->cached_pools[i]; seq_printf(s, "%d order %u highmem pages in cached pool = %lu total\n", pool->high_count, pool->order, (1 << pool->order) * PAGE_SIZE * pool->high_count); seq_printf(s, "%d order %u lowmem pages in cached pool = %lu total\n", pool->low_count, pool->order, (1 << pool->order) * PAGE_SIZE * pool->low_count); } return 0; } static void ion_system_heap_destroy_pools(struct ion_page_pool **pools) { int i; for (i = 0; i < num_orders; i++) if (pools[i]) ion_page_pool_destroy(pools[i]); } /** * ion_system_heap_create_pools - Creates pools for all orders * * If this fails you don't need to destroy any pools. It's all or * nothing. If it succeeds you'll eventually need to use * ion_system_heap_destroy_pools to destroy the pools. */ static int ion_system_heap_create_pools(struct ion_page_pool **pools) { int i; for (i = 0; i < num_orders; i++) { struct ion_page_pool *pool; gfp_t gfp_flags = low_order_gfp_flags; if (orders[i]) gfp_flags = high_order_gfp_flags; pool = ion_page_pool_create(gfp_flags, orders[i]); if (!pool) goto err_create_pool; pools[i] = pool; } return 0; err_create_pool: ion_system_heap_destroy_pools(pools); return 1; } struct ion_heap *ion_system_heap_create(struct ion_platform_heap *unused) { struct ion_system_heap *heap; int pools_size = sizeof(struct ion_page_pool *) * num_orders; heap = kzalloc(sizeof(struct ion_system_heap), GFP_KERNEL); if (!heap) return ERR_PTR(-ENOMEM); heap->heap.ops = &system_heap_ops; heap->heap.type = ION_HEAP_TYPE_SYSTEM; heap->heap.flags = ION_HEAP_FLAG_DEFER_FREE; heap->uncached_pools = kzalloc(pools_size, GFP_KERNEL); if (!heap->uncached_pools) goto err_alloc_uncached_pools; heap->cached_pools = kzalloc(pools_size, GFP_KERNEL); if (!heap->cached_pools) goto err_alloc_cached_pools; if (ion_system_heap_create_pools(heap->uncached_pools)) goto err_create_uncached_pools; if (ion_system_heap_create_pools(heap->cached_pools)) goto err_create_cached_pools; heap->heap.debug_show = ion_system_heap_debug_show; return &heap->heap; err_create_cached_pools: ion_system_heap_destroy_pools(heap->uncached_pools); err_create_uncached_pools: kfree(heap->cached_pools); err_alloc_cached_pools: kfree(heap->uncached_pools); err_alloc_uncached_pools: kfree(heap); return ERR_PTR(-ENOMEM); } void ion_system_heap_destroy(struct ion_heap *heap) { struct ion_system_heap *sys_heap = container_of(heap, struct ion_system_heap, heap); ion_system_heap_destroy_pools(sys_heap->uncached_pools); ion_system_heap_destroy_pools(sys_heap->cached_pools); kfree(sys_heap->uncached_pools); kfree(sys_heap->cached_pools); kfree(sys_heap); } static int ion_system_contig_heap_allocate(struct ion_heap *heap, struct ion_buffer *buffer, unsigned long len, unsigned long align, unsigned long flags) { int order = get_order(len); struct page *page; struct sg_table *table; unsigned long i; int ret; page = alloc_pages(low_order_gfp_flags | __GFP_ZERO, order); if (!page) return -ENOMEM; split_page(page, order); len = PAGE_ALIGN(len); for (i = len >> PAGE_SHIFT; i < (1 << order); i++) __free_page(page + i); table = kzalloc(sizeof(struct sg_table), GFP_KERNEL); if (!table) { ret = -ENOMEM; goto out; } ret = sg_alloc_table(table, 1, GFP_KERNEL); if (ret) goto out; sg_set_page(table->sgl, page, len, 0); buffer->priv_virt = table; ion_pages_sync_for_device(NULL, page, len, DMA_BIDIRECTIONAL); return 0; out: for (i = 0; i < len >> PAGE_SHIFT; i++) __free_page(page + i); kfree(table); return ret; } void ion_system_contig_heap_free(struct ion_buffer *buffer) { struct sg_table *table = buffer->priv_virt; struct page *page = sg_page(table->sgl); unsigned long pages = PAGE_ALIGN(buffer->size) >> PAGE_SHIFT; unsigned long i; for (i = 0; i < pages; i++) __free_page(page + i); sg_free_table(table); kfree(table); } static int ion_system_contig_heap_phys(struct ion_heap *heap, struct ion_buffer *buffer, ion_phys_addr_t *addr, size_t *len) { struct sg_table *table = buffer->priv_virt; struct page *page = sg_page(table->sgl); *addr = page_to_phys(page); *len = buffer->size; return 0; } struct sg_table *ion_system_contig_heap_map_dma(struct ion_heap *heap, struct ion_buffer *buffer) { return buffer->priv_virt; } void ion_system_contig_heap_unmap_dma(struct ion_heap *heap, struct ion_buffer *buffer) { } static struct ion_heap_ops kmalloc_ops = { .allocate = ion_system_contig_heap_allocate, .free = ion_system_contig_heap_free, .phys = ion_system_contig_heap_phys, .map_dma = ion_system_contig_heap_map_dma, .unmap_dma = ion_system_contig_heap_unmap_dma, .map_kernel = ion_heap_map_kernel, .unmap_kernel = ion_heap_unmap_kernel, .map_user = ion_heap_map_user, }; struct ion_heap *ion_system_contig_heap_create(struct ion_platform_heap *unused) { struct ion_heap *heap; heap = kzalloc(sizeof(struct ion_heap), GFP_KERNEL); if (!heap) return ERR_PTR(-ENOMEM); heap->ops = &kmalloc_ops; heap->type = ION_HEAP_TYPE_SYSTEM_CONTIG; return heap; } void ion_system_contig_heap_destroy(struct ion_heap *heap) { kfree(heap); }