/* * Block driver for media (i.e., flash cards) * * Copyright 2002 Hewlett-Packard Company * Copyright 2005-2008 Pierre Ossman * * Use consistent with the GNU GPL is permitted, * provided that this copyright notice is * preserved in its entirety in all copies and derived works. * * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS * FITNESS FOR ANY PARTICULAR PURPOSE. * * Many thanks to Alessandro Rubini and Jonathan Corbet! * * Author: Andrew Christian * 28 May 2002 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "queue.h" #include "block.h" #include "core.h" #include "card.h" #include "host.h" #include "bus.h" #include "mmc_ops.h" #include "quirks.h" #include "sd_ops.h" MODULE_ALIAS("mmc:block"); #ifdef MODULE_PARAM_PREFIX #undef MODULE_PARAM_PREFIX #endif #define MODULE_PARAM_PREFIX "mmcblk." #define MMC_BLK_TIMEOUT_MS (30 * 1000) /* 30 secs timeout */ #define MMC_SANITIZE_REQ_TIMEOUT 240000 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8) #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \ (rq_data_dir(req) == WRITE)) #define MMC_BLK_MAX_RETRIES 5 /* max # of retries before aborting a command */ #define MMC_BLK_UPDATE_STOP_REASON(stats, reason) \ do { \ if (stats->enabled) \ stats->pack_stop_reason[reason]++; \ } while (0) #define MAX_RETRIES 5 static DEFINE_MUTEX(block_mutex); /* * The defaults come from config options but can be overriden by module * or bootarg options. */ static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; /* * We've only got one major, so number of mmcblk devices is * limited to (1 << 20) / number of minors per device. It is also * limited by the MAX_DEVICES below. */ static int max_devices; #define MAX_DEVICES 256 static DEFINE_IDA(mmc_blk_ida); /* * There is one mmc_blk_data per slot. */ struct mmc_blk_data { spinlock_t lock; struct device *parent; struct gendisk *disk; struct mmc_queue queue; struct list_head part; unsigned int flags; #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ #define MMC_BLK_PACKED_CMD (1 << 2) /* MMC packed command support */ #define MMC_BLK_CMD_QUEUE (1 << 3) /* MMC command queue support */ unsigned int usage; unsigned int read_only; unsigned int part_type; unsigned int reset_done; #define MMC_BLK_READ BIT(0) #define MMC_BLK_WRITE BIT(1) #define MMC_BLK_DISCARD BIT(2) #define MMC_BLK_SECDISCARD BIT(3) #define MMC_BLK_FLUSH BIT(4) #define MMC_BLK_PARTSWITCH BIT(5) /* * Only set in main mmc_blk_data associated * with mmc_card with dev_set_drvdata, and keeps * track of the current selected device partition. */ unsigned int part_curr; struct device_attribute force_ro; struct device_attribute power_ro_lock; int area_type; /* debugfs files (only in main mmc_blk_data) */ struct dentry *status_dentry; struct dentry *ext_csd_dentry; }; static DEFINE_MUTEX(open_lock); module_param(perdev_minors, int, 0444); MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); static inline int mmc_blk_part_switch(struct mmc_card *card, unsigned int part_type); static int mmc_blk_cmdq_switch(struct mmc_card *card, struct mmc_blk_data *md, bool enable); static void mmc_blk_cmdq_err(struct mmc_queue *mq); static enum blk_eh_timer_return mmc_blk_cmdq_req_timed_out(struct request *req); static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) { struct mmc_blk_data *md; mutex_lock(&open_lock); md = disk->private_data; if (md && md->usage == 0) md = NULL; if (md) md->usage++; mutex_unlock(&open_lock); return md; } static inline int mmc_get_devidx(struct gendisk *disk) { int devidx = disk->first_minor / perdev_minors; return devidx; } static void mmc_blk_put(struct mmc_blk_data *md) { mutex_lock(&open_lock); md->usage--; if (md->usage == 0) { int devidx = mmc_get_devidx(md->disk); ida_simple_remove(&mmc_blk_ida, devidx); put_disk(md->disk); kfree(md); } mutex_unlock(&open_lock); } static ssize_t power_ro_lock_show(struct device *dev, struct device_attribute *attr, char *buf) { int ret; struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); struct mmc_card *card; int locked = 0; if (!md) return -EINVAL; card = md->queue.card; if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) locked = 2; else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) locked = 1; ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); mmc_blk_put(md); return ret; } static ssize_t power_ro_lock_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; struct mmc_blk_data *md, *part_md; struct mmc_queue *mq; struct request *req; unsigned long set; if (kstrtoul(buf, 0, &set)) return -EINVAL; if (set != 1) return count; md = mmc_blk_get(dev_to_disk(dev)); if (!md) return -EINVAL; mq = &md->queue; /* Dispatch locking to the block layer */ req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, __GFP_RECLAIM); if (IS_ERR(req)) { count = PTR_ERR(req); goto out_put; } req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; blk_execute_rq(mq->queue, NULL, req, 0); ret = req_to_mmc_queue_req(req)->drv_op_result; blk_put_request(req); if (!ret) { pr_info("%s: Locking boot partition ro until next power on\n", md->disk->disk_name); set_disk_ro(md->disk, 1); list_for_each_entry(part_md, &md->part, part) if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); set_disk_ro(part_md->disk, 1); } } out_put: mmc_blk_put(md); return count; } static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, char *buf) { int ret; struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); if (!md) return -EINVAL; ret = snprintf(buf, PAGE_SIZE, "%d\n", get_disk_ro(dev_to_disk(dev)) ^ md->read_only); mmc_blk_put(md); return ret; } static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; char *end; struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); unsigned long set = simple_strtoul(buf, &end, 0); if (!md) return -EINVAL; if (end == buf) { ret = -EINVAL; goto out; } set_disk_ro(dev_to_disk(dev), set || md->read_only); ret = count; out: mmc_blk_put(md); return ret; } #ifdef CONFIG_MMC_SIMULATE_MAX_SPEED static int max_read_speed, max_write_speed, cache_size = 4; module_param(max_read_speed, int, S_IRUSR | S_IRGRP); MODULE_PARM_DESC(max_read_speed, "maximum KB/s read speed 0=off"); module_param(max_write_speed, int, S_IRUSR | S_IRGRP); MODULE_PARM_DESC(max_write_speed, "maximum KB/s write speed 0=off"); module_param(cache_size, int, S_IRUSR | S_IRGRP); MODULE_PARM_DESC(cache_size, "MB high speed memory or SLC cache"); /* * helper macros and expectations: * size - unsigned long number of bytes * jiffies - unsigned long HZ timestamp difference * speed - unsigned KB/s transfer rate */ #define size_and_speed_to_jiffies(size, speed) \ ((size) * HZ / (speed) / 1024UL) #define jiffies_and_speed_to_size(jiffies, speed) \ (((speed) * (jiffies) * 1024UL) / HZ) #define jiffies_and_size_to_speed(jiffies, size) \ ((size) * HZ / (jiffies) / 1024UL) /* Limits to report warning */ /* jiffies_and_size_to_speed(10*HZ, queue_max_hw_sectors(q) * 512UL) ~ 25 */ #define MIN_SPEED(q) 250 /* 10 times faster than a floppy disk */ #define MAX_SPEED(q) jiffies_and_size_to_speed(1, queue_max_sectors(q) * 512UL) #define speed_valid(speed) ((speed) > 0) static const char off[] = "off\n"; static int max_speed_show(int speed, char *buf) { if (speed) return scnprintf(buf, PAGE_SIZE, "%uKB/s\n", speed); else return scnprintf(buf, PAGE_SIZE, off); } static int max_speed_store(const char *buf, struct request_queue *q) { unsigned int limit, set = 0; if (!strncasecmp(off, buf, sizeof(off) - 2)) return set; if (kstrtouint(buf, 0, &set) || (set > INT_MAX)) return -EINVAL; if (set == 0) return set; limit = MAX_SPEED(q); if (set > limit) pr_warn("max speed %u ineffective above %u\n", set, limit); limit = MIN_SPEED(q); if (set < limit) pr_warn("max speed %u painful below %u\n", set, limit); return set; } static ssize_t max_write_speed_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); int ret = max_speed_show(atomic_read(&md->queue.max_write_speed), buf); mmc_blk_put(md); return ret; } static ssize_t max_write_speed_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); int set = max_speed_store(buf, md->queue.queue); if (set < 0) { mmc_blk_put(md); return set; } atomic_set(&md->queue.max_write_speed, set); mmc_blk_put(md); return count; } static const DEVICE_ATTR(max_write_speed, S_IRUGO | S_IWUSR, max_write_speed_show, max_write_speed_store); static ssize_t max_read_speed_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); int ret = max_speed_show(atomic_read(&md->queue.max_read_speed), buf); mmc_blk_put(md); return ret; } static ssize_t max_read_speed_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); int set = max_speed_store(buf, md->queue.queue); if (set < 0) { mmc_blk_put(md); return set; } atomic_set(&md->queue.max_read_speed, set); mmc_blk_put(md); return count; } static const DEVICE_ATTR(max_read_speed, S_IRUGO | S_IWUSR, max_read_speed_show, max_read_speed_store); static ssize_t cache_size_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); struct mmc_queue *mq = &md->queue; int cache_size = atomic_read(&mq->cache_size); int ret; if (!cache_size) ret = scnprintf(buf, PAGE_SIZE, off); else { int speed = atomic_read(&mq->max_write_speed); if (!speed_valid(speed)) ret = scnprintf(buf, PAGE_SIZE, "%uMB\n", cache_size); else { /* We accept race between cache_jiffies and cache_used */ unsigned long size = jiffies_and_speed_to_size( jiffies - mq->cache_jiffies, speed); long used = atomic_long_read(&mq->cache_used); if (size >= used) size = 0; else size = (used - size) * 100 / cache_size / 1024UL / 1024UL; ret = scnprintf(buf, PAGE_SIZE, "%uMB %lu%% used\n", cache_size, size); } } mmc_blk_put(md); return ret; } static ssize_t cache_size_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct mmc_blk_data *md; unsigned int set = 0; if (strncasecmp(off, buf, sizeof(off) - 2) && (kstrtouint(buf, 0, &set) || (set > INT_MAX))) return -EINVAL; md = mmc_blk_get(dev_to_disk(dev)); atomic_set(&md->queue.cache_size, set); mmc_blk_put(md); return count; } static const DEVICE_ATTR(cache_size, S_IRUGO | S_IWUSR, cache_size_show, cache_size_store); /* correct for write-back */ static long mmc_blk_cache_used(struct mmc_queue *mq, unsigned long waitfor) { long used = 0; int speed = atomic_read(&mq->max_write_speed); if (speed_valid(speed)) { unsigned long size = jiffies_and_speed_to_size( waitfor - mq->cache_jiffies, speed); used = atomic_long_read(&mq->cache_used); if (size >= used) used = 0; else used -= size; } atomic_long_set(&mq->cache_used, used); mq->cache_jiffies = waitfor; return used; } static void mmc_blk_simulate_delay( struct mmc_queue *mq, struct request *req, unsigned long waitfor) { int max_speed; if (!req) return; max_speed = (rq_data_dir(req) == READ) ? atomic_read(&mq->max_read_speed) : atomic_read(&mq->max_write_speed); if (speed_valid(max_speed)) { unsigned long bytes = blk_rq_bytes(req); if (rq_data_dir(req) != READ) { int cache_size = atomic_read(&mq->cache_size); if (cache_size) { unsigned long size = cache_size * 1024L * 1024L; long used = mmc_blk_cache_used(mq, waitfor); used += bytes; atomic_long_set(&mq->cache_used, used); bytes = 0; if (used > size) bytes = used - size; } } waitfor += size_and_speed_to_jiffies(bytes, max_speed); if (time_is_after_jiffies(waitfor)) { long msecs = jiffies_to_msecs(waitfor - jiffies); if (likely(msecs > 0)) msleep(msecs); } } } #else #define mmc_blk_simulate_delay(mq, req, waitfor) #endif static int mmc_blk_open(struct block_device *bdev, fmode_t mode) { struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk); int ret = -ENXIO; mutex_lock(&block_mutex); if (md) { if (md->usage == 2) check_disk_change(bdev); ret = 0; if ((mode & FMODE_WRITE) && md->read_only) { mmc_blk_put(md); ret = -EROFS; } } mutex_unlock(&block_mutex); return ret; } static void mmc_blk_release(struct gendisk *disk, fmode_t mode) { struct mmc_blk_data *md = disk->private_data; mutex_lock(&block_mutex); mmc_blk_put(md); mutex_unlock(&block_mutex); } static int mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) { geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); geo->heads = 4; geo->sectors = 16; return 0; } struct mmc_blk_ioc_data { struct mmc_ioc_cmd ic; unsigned char *buf; u64 buf_bytes; }; static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( struct mmc_ioc_cmd __user *user) { struct mmc_blk_ioc_data *idata; int err; idata = kmalloc(sizeof(*idata), GFP_KERNEL); if (!idata) { err = -ENOMEM; goto out; } if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { err = -EFAULT; goto idata_err; } idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { err = -EOVERFLOW; goto idata_err; } if (!idata->buf_bytes) { idata->buf = NULL; return idata; } idata->buf = kmalloc(idata->buf_bytes, GFP_KERNEL); if (!idata->buf) { err = -ENOMEM; goto idata_err; } if (copy_from_user(idata->buf, (void __user *)(unsigned long) idata->ic.data_ptr, idata->buf_bytes)) { err = -EFAULT; goto copy_err; } return idata; copy_err: kfree(idata->buf); idata_err: kfree(idata); out: return ERR_PTR(err); } static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, struct mmc_blk_ioc_data *idata) { struct mmc_ioc_cmd *ic = &idata->ic; if (copy_to_user(&(ic_ptr->response), ic->response, sizeof(ic->response))) return -EFAULT; if (!idata->ic.write_flag) { if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, idata->buf, idata->buf_bytes)) return -EFAULT; } return 0; } static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status, u32 retries_max) { int err; u32 retry_count = 0; if (!status || !retries_max) return -EINVAL; do { err = __mmc_send_status(card, status, 5); if (err) break; if (!R1_STATUS(*status) && (R1_CURRENT_STATE(*status) != R1_STATE_PRG)) break; /* RPMB programming operation complete */ /* * Rechedule to give the MMC device a chance to continue * processing the previous command without being polled too * frequently. */ usleep_range(1000, 5000); } while (++retry_count < retries_max); if (retry_count == retries_max) err = -EPERM; return err; } static int ioctl_do_sanitize(struct mmc_card *card) { int err; if (!mmc_can_sanitize(card) && (card->host->caps2 & MMC_CAP2_SANITIZE)) { pr_warn("%s: %s - SANITIZE is not supported\n", mmc_hostname(card->host), __func__); err = -EOPNOTSUPP; goto out; } pr_debug("%s: %s - SANITIZE IN PROGRESS...\n", mmc_hostname(card->host), __func__); err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_SANITIZE_START, 1, MMC_SANITIZE_REQ_TIMEOUT); if (err) pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n", mmc_hostname(card->host), __func__, err); pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host), __func__); out: return err; } static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, struct mmc_blk_ioc_data *idata) { struct mmc_command cmd = {}; struct mmc_data data = {}; struct mmc_request mrq = {}; struct scatterlist sg; int err; if (!card || !md || !idata) return -EINVAL; cmd.opcode = idata->ic.opcode; cmd.arg = idata->ic.arg; cmd.flags = idata->ic.flags; if (idata->buf_bytes) { data.sg = &sg; data.sg_len = 1; data.blksz = idata->ic.blksz; data.blocks = idata->ic.blocks; sg_init_one(data.sg, idata->buf, idata->buf_bytes); if (idata->ic.write_flag) data.flags = MMC_DATA_WRITE; else data.flags = MMC_DATA_READ; /* data.flags must already be set before doing this. */ mmc_set_data_timeout(&data, card); /* Allow overriding the timeout_ns for empirical tuning. */ if (idata->ic.data_timeout_ns) data.timeout_ns = idata->ic.data_timeout_ns; if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { /* * Pretend this is a data transfer and rely on the * host driver to compute timeout. When all host * drivers support cmd.cmd_timeout for R1B, this * can be changed to: * * mrq.data = NULL; * cmd.cmd_timeout = idata->ic.cmd_timeout_ms; */ data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000; } mrq.data = &data; } mrq.cmd = &cmd; err = mmc_blk_part_switch(card, md->part_type); if (err) return err; if (idata->ic.is_acmd) { err = mmc_app_cmd(card->host, card); if (err) return err; } if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && (cmd.opcode == MMC_SWITCH)) { err = ioctl_do_sanitize(card); if (err) pr_err("%s: ioctl_do_sanitize() failed. err = %d", __func__, err); return err; } mmc_wait_for_req(card->host, &mrq); if (cmd.error) { dev_err(mmc_dev(card->host), "%s: cmd error %d\n", __func__, cmd.error); return cmd.error; } if (data.error) { dev_err(mmc_dev(card->host), "%s: data error %d\n", __func__, data.error); return data.error; } /* * Make sure the cache of the PARTITION_CONFIG register and * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write * changed it successfully. */ if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) && (cmd.opcode == MMC_SWITCH)) { struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg); /* * Update cache so the next mmc_blk_part_switch call operates * on up-to-date data. */ card->ext_csd.part_config = value; main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK; } /* * According to the SD specs, some commands require a delay after * issuing the command. */ if (idata->ic.postsleep_min_us) usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp)); return err; } struct mmc_blk_ioc_rpmb_data { struct mmc_blk_ioc_data *data[MMC_IOC_MAX_RPMB_CMD]; }; static struct mmc_blk_ioc_rpmb_data *mmc_blk_ioctl_rpmb_copy_from_user( struct mmc_ioc_rpmb __user *user) { struct mmc_blk_ioc_rpmb_data *idata; int err, i; idata = kzalloc(sizeof(*idata), GFP_KERNEL); if (!idata) { err = -ENOMEM; goto out; } for (i = 0; i < MMC_IOC_MAX_RPMB_CMD; i++) { idata->data[i] = mmc_blk_ioctl_copy_from_user(&(user->cmds[i])); if (IS_ERR(idata->data[i])) { err = PTR_ERR(idata->data[i]); goto copy_err; } } return idata; copy_err: while (--i >= 0) { kfree(idata->data[i]->buf); kfree(idata->data[i]); } kfree(idata); out: return ERR_PTR(err); } static int mmc_blk_ioctl_rpmb_cmd(struct block_device *bdev, struct mmc_ioc_rpmb __user *ic_ptr) { struct mmc_blk_ioc_rpmb_data *idata; struct mmc_blk_data *md; struct mmc_card *card = NULL; struct mmc_command cmd = {0}; struct mmc_data data = {0}; struct mmc_request mrq = {NULL}; struct scatterlist sg; int err = 0, i = 0; u32 status = 0; /* The caller must have CAP_SYS_RAWIO */ if (!capable(CAP_SYS_RAWIO)) return -EPERM; md = mmc_blk_get(bdev->bd_disk); /* make sure this is a rpmb partition */ if ((!md) || (!(md->area_type & MMC_BLK_DATA_AREA_RPMB))) { err = -EINVAL; return err; } idata = mmc_blk_ioctl_rpmb_copy_from_user(ic_ptr); if (IS_ERR(idata)) { err = PTR_ERR(idata); goto cmd_done; } card = md->queue.card; if (IS_ERR(card)) { err = PTR_ERR(card); goto idata_free; } /* * Ensure rpmb_req_pending flag is synchronized between multiple * entities which may use rpmb ioclts with a lock. */ mutex_lock(&card->host->rpmb_req_mutex); atomic_set(&card->host->rpmb_req_pending, 1); mmc_get_card(card); if (mmc_card_doing_bkops(card)) { if (mmc_card_cmdq(card)) { err = mmc_cmdq_halt(card->host, true); if (err) goto cmd_rel_host; } err = mmc_stop_bkops(card); if (err) { dev_err(mmc_dev(card->host), "%s: stop_bkops failed %d\n", __func__, err); goto cmd_rel_host; } if (mmc_card_cmdq(card)) { err = mmc_cmdq_halt(card->host, false); if (err) goto cmd_rel_host; } } err = mmc_blk_part_switch(card, md->part_type); if (err) goto cmd_rel_host; for (i = 0; i < MMC_IOC_MAX_RPMB_CMD; i++) { struct mmc_blk_ioc_data *curr_data; struct mmc_ioc_cmd *curr_cmd; curr_data = idata->data[i]; curr_cmd = &curr_data->ic; if (!curr_cmd->opcode) break; cmd.opcode = curr_cmd->opcode; cmd.arg = curr_cmd->arg; cmd.flags = curr_cmd->flags; if (curr_data->buf_bytes) { data.sg = &sg; data.sg_len = 1; data.blksz = curr_cmd->blksz; data.blocks = curr_cmd->blocks; sg_init_one(data.sg, curr_data->buf, curr_data->buf_bytes); if (curr_cmd->write_flag) data.flags = MMC_DATA_WRITE; else data.flags = MMC_DATA_READ; /* data.flags must already be set before doing this. */ mmc_set_data_timeout(&data, card); /* * Allow overriding the timeout_ns for empirical tuning. */ if (curr_cmd->data_timeout_ns) data.timeout_ns = curr_cmd->data_timeout_ns; mrq.data = &data; } mrq.cmd = &cmd; err = mmc_set_blockcount(card, data.blocks, curr_cmd->write_flag & (1 << 31)); if (err) goto cmd_rel_host; mmc_wait_for_req(card->host, &mrq); if (cmd.error) { dev_err(mmc_dev(card->host), "%s: cmd error %d\n", __func__, cmd.error); err = cmd.error; goto cmd_rel_host; } if (data.error) { dev_err(mmc_dev(card->host), "%s: data error %d\n", __func__, data.error); err = data.error; goto cmd_rel_host; } if (copy_to_user(&(ic_ptr->cmds[i].response), cmd.resp, sizeof(cmd.resp))) { err = -EFAULT; goto cmd_rel_host; } if (!curr_cmd->write_flag) { if (copy_to_user((void __user *)(unsigned long) curr_cmd->data_ptr, curr_data->buf, curr_data->buf_bytes)) { err = -EFAULT; goto cmd_rel_host; } } /* * Ensure RPMB command has completed by polling CMD13 * "Send Status". */ err = ioctl_rpmb_card_status_poll(card, &status, 5); if (err) dev_err(mmc_dev(card->host), "%s: Card Status=0x%08X, error %d\n", __func__, status, err); } cmd_rel_host: mmc_put_card(card); atomic_set(&card->host->rpmb_req_pending, 0); mutex_unlock(&card->host->rpmb_req_mutex); idata_free: for (i = 0; i < MMC_IOC_MAX_RPMB_CMD; i++) { kfree(idata->data[i]->buf); kfree(idata->data[i]); } kfree(idata); cmd_done: mmc_blk_put(md); if (card && card->cmdq_init) wake_up(&card->host->cmdq_ctx.wait); return err; } static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, struct mmc_ioc_cmd __user *ic_ptr) { struct mmc_blk_ioc_data *idata; struct mmc_blk_ioc_data *idatas[1]; struct mmc_queue *mq; struct mmc_card *card; int err = 0, ioc_err = 0; struct request *req; idata = mmc_blk_ioctl_copy_from_user(ic_ptr); if (IS_ERR_OR_NULL(idata)) return PTR_ERR(idata); card = md->queue.card; if (IS_ERR_OR_NULL(card)) { err = PTR_ERR(card); goto cmd_done; } /* * Dispatch the ioctl() into the block request queue. */ mq = &md->queue; req = blk_get_request(mq->queue, idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, __GFP_RECLAIM); if (IS_ERR(req)) { err = PTR_ERR(req); goto cmd_done; } idatas[0] = idata; req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_IOCTL; req_to_mmc_queue_req(req)->drv_op_data = idatas; req_to_mmc_queue_req(req)->ioc_count = 1; blk_execute_rq(mq->queue, NULL, req, 0); ioc_err = req_to_mmc_queue_req(req)->drv_op_result; err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); blk_put_request(req); cmd_done: kfree(idata->buf); kfree(idata); return ioc_err ? ioc_err : err; } static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, struct mmc_ioc_multi_cmd __user *user) { struct mmc_blk_ioc_data **idata = NULL; struct mmc_ioc_cmd __user *cmds = user->cmds; struct mmc_card *card; struct mmc_queue *mq; int i, err = 0, ioc_err = 0; __u64 num_of_cmds; struct request *req; if (copy_from_user(&num_of_cmds, &user->num_of_cmds, sizeof(num_of_cmds))) return -EFAULT; if (!num_of_cmds) return 0; if (num_of_cmds > MMC_IOC_MAX_CMDS) return -EINVAL; idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL); if (!idata) return -ENOMEM; for (i = 0; i < num_of_cmds; i++) { idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); if (IS_ERR(idata[i])) { err = PTR_ERR(idata[i]); num_of_cmds = i; goto cmd_err; } } card = md->queue.card; if (IS_ERR(card)) { err = PTR_ERR(card); goto cmd_err; } /* * Dispatch the ioctl()s into the block request queue. */ mq = &md->queue; req = blk_get_request(mq->queue, idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, __GFP_RECLAIM); if (IS_ERR(req)) { err = PTR_ERR(req); goto cmd_err; } req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_IOCTL; req_to_mmc_queue_req(req)->drv_op_data = idata; req_to_mmc_queue_req(req)->ioc_count = num_of_cmds; blk_execute_rq(mq->queue, NULL, req, 0); ioc_err = req_to_mmc_queue_req(req)->drv_op_result; /* copy to user if data and response */ for (i = 0; i < num_of_cmds && !err; i++) err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); blk_put_request(req); cmd_err: for (i = 0; i < num_of_cmds; i++) { kfree(idata[i]->buf); kfree(idata[i]); } kfree(idata); return ioc_err ? ioc_err : err; } static int mmc_blk_check_blkdev(struct block_device *bdev) { /* * The caller must have CAP_SYS_RAWIO, and must be calling this on the * whole block device, not on a partition. This prevents overspray * between sibling partitions. */ if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains)) return -EPERM; return 0; } static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { struct mmc_blk_data *md; int ret; switch (cmd) { case MMC_IOC_CMD: ret = mmc_blk_check_blkdev(bdev); if (ret) return ret; md = mmc_blk_get(bdev->bd_disk); if (!md) return -EINVAL; ret = mmc_blk_ioctl_cmd(md, (struct mmc_ioc_cmd __user *)arg); mmc_blk_put(md); return ret; case MMC_IOC_RPMB_CMD: return mmc_blk_ioctl_rpmb_cmd(bdev, (struct mmc_ioc_rpmb __user *)arg); case MMC_IOC_MULTI_CMD: ret = mmc_blk_check_blkdev(bdev); if (ret) return ret; md = mmc_blk_get(bdev->bd_disk); if (!md) return -EINVAL; ret = mmc_blk_ioctl_multi_cmd(md, (struct mmc_ioc_multi_cmd __user *)arg); mmc_blk_put(md); return ret; default: return -EINVAL; } } #ifdef CONFIG_COMPAT static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); } #endif static const struct block_device_operations mmc_bdops = { .open = mmc_blk_open, .release = mmc_blk_release, .getgeo = mmc_blk_getgeo, .owner = THIS_MODULE, .ioctl = mmc_blk_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = mmc_blk_compat_ioctl, #endif }; static int mmc_blk_part_switch_pre(struct mmc_card *card, unsigned int part_type) { int ret = 0; if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { if (card->ext_csd.cmdq_en) { ret = mmc_cmdq_disable(card); if (ret) return ret; } mmc_retune_pause(card->host); } return ret; } static int mmc_blk_part_switch_post(struct mmc_card *card, unsigned int part_type) { int ret = 0; if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { mmc_retune_unpause(card->host); if (card->reenable_cmdq && !card->ext_csd.cmdq_en) ret = mmc_cmdq_enable(card); } return ret; } static inline int mmc_blk_part_switch(struct mmc_card *card, unsigned int part_type) { int ret = 0; struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); if ((main_md->part_curr == part_type) && (card->part_curr == part_type)) return 0; if (mmc_card_mmc(card)) { u8 part_config = card->ext_csd.part_config; if (part_type) { /* disable CQ mode for non-user data partitions */ ret = mmc_blk_cmdq_switch(card, main_md, false); if (ret) return ret; } ret = mmc_blk_part_switch_pre(card, part_type); if (ret) return ret; part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; part_config |= part_type; ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, part_config, card->ext_csd.part_time); if (ret) { pr_err("%s: %s: switch failure, %d -> %d\n", mmc_hostname(card->host), __func__, main_md->part_curr, part_type); mmc_blk_part_switch_post(card, part_type); return ret; } card->ext_csd.part_config = part_config; card->part_curr = part_type; ret = mmc_blk_part_switch_post(card, main_md->part_curr); } main_md->part_curr = part_type; return ret; } static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) { int err; u32 result; __be32 *blocks; struct mmc_request mrq = {}; struct mmc_command cmd = {}; struct mmc_data data = {}; struct scatterlist sg; cmd.opcode = MMC_APP_CMD; cmd.arg = card->rca << 16; cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; err = mmc_wait_for_cmd(card->host, &cmd, 0); if (err) return err; if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) return -EIO; memset(&cmd, 0, sizeof(struct mmc_command)); cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; cmd.arg = 0; cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; data.blksz = 4; data.blocks = 1; data.flags = MMC_DATA_READ; data.sg = &sg; data.sg_len = 1; mmc_set_data_timeout(&data, card); mrq.cmd = &cmd; mrq.data = &data; blocks = kmalloc(4, GFP_KERNEL); if (!blocks) return -ENOMEM; sg_init_one(&sg, blocks, 4); mmc_wait_for_req(card->host, &mrq); result = ntohl(*blocks); kfree(blocks); if (cmd.error || data.error) return -EIO; *written_blocks = result; return 0; } static int get_card_status(struct mmc_card *card, u32 *status, int retries) { struct mmc_command cmd = {0}; int err; cmd.opcode = MMC_SEND_STATUS; if (!mmc_host_is_spi(card->host)) cmd.arg = card->rca << 16; cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC; err = mmc_wait_for_cmd(card->host, &cmd, retries); if (err == 0) *status = cmd.resp[0]; return err; } static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms, bool hw_busy_detect, struct request *req, bool *gen_err) { unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); int err = 0; u32 status; do { err = __mmc_send_status(card, &status, 5); if (err) { pr_err("%s: error %d requesting status\n", req->rq_disk->disk_name, err); return err; } if (status & R1_ERROR) { pr_err("%s: %s: error sending status cmd, status %#x\n", req->rq_disk->disk_name, __func__, status); *gen_err = true; } /* We may rely on the host hw to handle busy detection.*/ if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && hw_busy_detect) break; /* * Timeout if the device never becomes ready for data and never * leaves the program state. */ if (time_after(jiffies, timeout)) { pr_err("%s: Card stuck in programming state! %s %s\n", mmc_hostname(card->host), req->rq_disk->disk_name, __func__); return -ETIMEDOUT; } /* * Some cards mishandle the status bits, * so make sure to check both the busy * indication and the card state. */ } while (!(status & R1_READY_FOR_DATA) || (R1_CURRENT_STATE(status) == R1_STATE_PRG)); return err; } static int send_stop(struct mmc_card *card, unsigned int timeout_ms, struct request *req, bool *gen_err, u32 *stop_status) { struct mmc_host *host = card->host; struct mmc_command cmd = {}; int err; bool use_r1b_resp = rq_data_dir(req) == WRITE; /* * Normally we use R1B responses for WRITE, but in cases where the host * has specified a max_busy_timeout we need to validate it. A failure * means we need to prevent the host from doing hw busy detection, which * is done by converting to a R1 response instead. */ if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) use_r1b_resp = false; cmd.opcode = MMC_STOP_TRANSMISSION; if (use_r1b_resp) { cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; cmd.busy_timeout = timeout_ms; } else { cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; } err = mmc_wait_for_cmd(host, &cmd, 5); if (err) return err; *stop_status = cmd.resp[0]; /* No need to check card status in case of READ. */ if (rq_data_dir(req) == READ) return 0; if (!mmc_host_is_spi(host) && (*stop_status & R1_ERROR)) { pr_err("%s: %s: general error sending stop command, resp %#x\n", req->rq_disk->disk_name, __func__, *stop_status); *gen_err = true; } return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err); } #define ERR_NOMEDIUM 3 #define ERR_RETRY 2 #define ERR_ABORT 1 #define ERR_CONTINUE 0 static int mmc_blk_cmd_error(struct request *req, const char *name, int error, bool status_valid, u32 status) { switch (error) { case -EILSEQ: /* response crc error, retry the r/w cmd */ pr_err_ratelimited( "%s: response CRC error sending %s command, card status %#x\n", req->rq_disk->disk_name, name, status); return ERR_RETRY; case -ETIMEDOUT: pr_err_ratelimited( "%s: timed out sending %s command, card status %#x\n", req->rq_disk->disk_name, name, status); /* If the status cmd initially failed, retry the r/w cmd */ if (!status_valid) { pr_err_ratelimited("%s: status not valid, retrying timeout\n", req->rq_disk->disk_name); return ERR_RETRY; } /* * If it was a r/w cmd crc error, or illegal command * (eg, issued in wrong state) then retry - we should * have corrected the state problem above. */ if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND)) { pr_err_ratelimited( "%s: command error, retrying timeout\n", req->rq_disk->disk_name); return ERR_RETRY; } /* Otherwise abort the command */ pr_err_ratelimited( "%s: not retrying timeout\n", req->rq_disk->disk_name); return ERR_ABORT; default: /* We don't understand the error code the driver gave us */ pr_err_ratelimited( "%s: unknown error %d sending read/write command, card status %#x\n", req->rq_disk->disk_name, error, status); return ERR_ABORT; } } /* * Initial r/w and stop cmd error recovery. * We don't know whether the card received the r/w cmd or not, so try to * restore things back to a sane state. Essentially, we do this as follows: * - Obtain card status. If the first attempt to obtain card status fails, * the status word will reflect the failed status cmd, not the failed * r/w cmd. If we fail to obtain card status, it suggests we can no * longer communicate with the card. * - Check the card state. If the card received the cmd but there was a * transient problem with the response, it might still be in a data transfer * mode. Try to send it a stop command. If this fails, we can't recover. * - If the r/w cmd failed due to a response CRC error, it was probably * transient, so retry the cmd. * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry. * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or * illegal cmd, retry. * Otherwise we don't understand what happened, so abort. */ static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req, struct mmc_blk_request *brq, bool *ecc_err, bool *gen_err) { bool prev_cmd_status_valid = true; u32 status, stop_status = 0; int err, retry; if (mmc_card_removed(card)) return ERR_NOMEDIUM; /* * Try to get card status which indicates both the card state * and why there was no response. If the first attempt fails, * we can't be sure the returned status is for the r/w command. */ for (retry = 2; retry >= 0; retry--) { err = __mmc_send_status(card, &status, 0); if (!err) break; /* Re-tune if needed */ mmc_retune_recheck(card->host); prev_cmd_status_valid = false; pr_err("%s: error %d sending status command, %sing\n", req->rq_disk->disk_name, err, retry ? "retry" : "abort"); } /* We couldn't get a response from the card. Give up. */ if (err) { /* Check if the card is removed */ if (mmc_detect_card_removed(card->host)) return ERR_NOMEDIUM; return ERR_ABORT; } /* Flag ECC errors */ if ((status & R1_CARD_ECC_FAILED) || (brq->stop.resp[0] & R1_CARD_ECC_FAILED) || (brq->cmd.resp[0] & R1_CARD_ECC_FAILED)) *ecc_err = true; /* Flag General errors */ if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) if ((status & R1_ERROR) || (brq->stop.resp[0] & R1_ERROR)) { pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n", req->rq_disk->disk_name, __func__, brq->stop.resp[0], status); *gen_err = true; } /* * Check the current card state. If it is in some data transfer * mode, tell it to stop (and hopefully transition back to TRAN.) */ if (R1_CURRENT_STATE(status) == R1_STATE_DATA || R1_CURRENT_STATE(status) == R1_STATE_RCV) { err = send_stop(card, DIV_ROUND_UP(brq->data.timeout_ns, 1000000), req, gen_err, &stop_status); if (err) { pr_err("%s: error %d sending stop command\n", req->rq_disk->disk_name, err); /* * If the stop cmd also timed out, the card is probably * not present, so abort. Other errors are bad news too. */ return ERR_ABORT; } if (stop_status & R1_CARD_ECC_FAILED) *ecc_err = true; } /* Check for set block count errors */ if (brq->sbc.error) return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error, prev_cmd_status_valid, status); /* Check for r/w command errors */ if (brq->cmd.error) return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error, prev_cmd_status_valid, status); /* Data errors */ if (!brq->stop.error) return ERR_CONTINUE; /* Now for stop errors. These aren't fatal to the transfer. */ pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n", req->rq_disk->disk_name, brq->stop.error, brq->cmd.resp[0], status); /* * Subsitute in our own stop status as this will give the error * state which happened during the execution of the r/w command. */ if (stop_status) { brq->stop.resp[0] = stop_status; brq->stop.error = 0; } return ERR_CONTINUE; } static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, int type) { int err; if (md->reset_done & type) return -EEXIST; md->reset_done |= type; err = mmc_hw_reset(host); if (err && err != -EOPNOTSUPP) { /* We failed to reset so we need to abort the request */ pr_err("%s: %s: failed to reset %d\n", mmc_hostname(host), __func__, err); return -ENODEV; } /* Ensure we switch back to the correct partition */ if (host->card) { struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev); int part_err; main_md->part_curr = main_md->part_type; part_err = mmc_blk_part_switch(host->card, md->part_type); if (part_err) { /* * We have failed to get back into the correct * partition, so we need to abort the whole request. */ return -ENODEV; } } return err; } static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) { md->reset_done &= ~type; } int mmc_access_rpmb(struct mmc_queue *mq) { struct mmc_blk_data *md = mq->blkdata; /* * If this is a RPMB partition access, return ture */ if (md && md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) return true; return false; } /* * The non-block commands come back from the block layer after it queued it and * processed it with all other requests and then they get issued in this * function. */ static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) { struct mmc_queue_req *mq_rq; struct mmc_card *card = mq->card; struct mmc_blk_data *md = mq->blkdata; struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); struct mmc_blk_ioc_data **idata; u8 **ext_csd; u32 status; int ret; int i; mq_rq = req_to_mmc_queue_req(req); switch (mq_rq->drv_op) { case MMC_DRV_OP_IOCTL: idata = mq_rq->drv_op_data; for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { ret = __mmc_blk_ioctl_cmd(card, md, idata[i]); if (ret) break; } /* Always switch back to main area after RPMB access */ if (md->area_type & MMC_BLK_DATA_AREA_RPMB) mmc_blk_part_switch(card, main_md->part_type); break; case MMC_DRV_OP_BOOT_WP: ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, card->ext_csd.boot_ro_lock | EXT_CSD_BOOT_WP_B_PWR_WP_EN, card->ext_csd.part_time); if (ret) pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret); else card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN; break; case MMC_DRV_OP_GET_CARD_STATUS: ret = mmc_send_status(card, &status); if (!ret) ret = status; break; case MMC_DRV_OP_GET_EXT_CSD: ext_csd = mq_rq->drv_op_data; ret = mmc_get_ext_csd(card, ext_csd); break; default: pr_err("%s: unknown driver specific operation\n", md->disk->disk_name); ret = -EINVAL; break; } mq_rq->drv_op_result = ret; blk_end_request_all(req, ret ? BLK_STS_IOERR : BLK_STS_OK); } static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) { struct mmc_blk_data *md = mq->blkdata; struct mmc_card *card = md->queue.card; unsigned int from, nr, arg; int err = 0, type = MMC_BLK_DISCARD; blk_status_t status = BLK_STS_OK; if (!mmc_can_erase(card)) { status = BLK_STS_NOTSUPP; goto fail; } from = blk_rq_pos(req); nr = blk_rq_sectors(req); if (mmc_can_discard(card)) arg = MMC_DISCARD_ARG; else if (mmc_can_trim(card)) arg = MMC_TRIM_ARG; else arg = MMC_ERASE_ARG; do { err = 0; if (card->quirks & MMC_QUIRK_INAND_CMD38) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, INAND_CMD38_ARG_EXT_CSD, arg == MMC_TRIM_ARG ? INAND_CMD38_ARG_TRIM : INAND_CMD38_ARG_ERASE, 0); } if (!err) err = mmc_erase(card, from, nr, arg); } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); if (err) status = BLK_STS_IOERR; else mmc_blk_reset_success(md, type); fail: blk_end_request(req, status, blk_rq_bytes(req)); } static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, struct request *req) { struct mmc_blk_data *md = mq->blkdata; struct mmc_card *card = md->queue.card; unsigned int from, nr, arg; int err = 0, type = MMC_BLK_SECDISCARD; blk_status_t status = BLK_STS_OK; if (!(mmc_can_secure_erase_trim(card))) { status = BLK_STS_NOTSUPP; goto out; } from = blk_rq_pos(req); nr = blk_rq_sectors(req); if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) arg = MMC_SECURE_TRIM1_ARG; else arg = MMC_SECURE_ERASE_ARG; retry: if (card->quirks & MMC_QUIRK_INAND_CMD38) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, INAND_CMD38_ARG_EXT_CSD, arg == MMC_SECURE_TRIM1_ARG ? INAND_CMD38_ARG_SECTRIM1 : INAND_CMD38_ARG_SECERASE, 0); if (err) goto out_retry; } err = mmc_erase(card, from, nr, arg); if (err == -EIO) goto out_retry; if (err) { status = BLK_STS_IOERR; goto out; } if (arg == MMC_SECURE_TRIM1_ARG) { if (card->quirks & MMC_QUIRK_INAND_CMD38) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, INAND_CMD38_ARG_EXT_CSD, INAND_CMD38_ARG_SECTRIM2, 0); if (err) goto out_retry; } err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); if (err == -EIO) goto out_retry; if (err) { status = BLK_STS_IOERR; goto out; } } out_retry: if (err && !mmc_blk_reset(md, card->host, type)) goto retry; if (!err) mmc_blk_reset_success(md, type); out: blk_end_request(req, status, blk_rq_bytes(req)); } static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) { struct mmc_blk_data *md = mq->blkdata; struct mmc_card *card = md->queue.card; int ret = 0; ret = mmc_flush_cache(card); if (ret == -ENODEV) { pr_err("%s: %s: restart mmc card", req->rq_disk->disk_name, __func__); if (mmc_blk_reset(md, card->host, MMC_BLK_FLUSH)) pr_err("%s: %s: fail to restart mmc", req->rq_disk->disk_name, __func__); else mmc_blk_reset_success(md, MMC_BLK_FLUSH); } if (ret) { pr_err("%s: %s: notify flush error to upper layers", req->rq_disk->disk_name, __func__); ret = -EIO; } #ifdef CONFIG_MMC_SIMULATE_MAX_SPEED else if (atomic_read(&mq->cache_size)) { long used = mmc_blk_cache_used(mq, jiffies); if (used) { int speed = atomic_read(&mq->max_write_speed); if (speed_valid(speed)) { unsigned long msecs = jiffies_to_msecs( size_and_speed_to_jiffies( used, speed)); if (msecs) msleep(msecs); } } } #endif blk_end_request_all(req, ret ? BLK_STS_IOERR : BLK_STS_OK); } /* * Reformat current write as a reliable write, supporting * both legacy and the enhanced reliable write MMC cards. * In each transfer we'll handle only as much as a single * reliable write can handle, thus finish the request in * partial completions. */ static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, struct mmc_card *card, struct request *req) { if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { /* Legacy mode imposes restrictions on transfers. */ if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) brq->data.blocks = 1; if (brq->data.blocks > card->ext_csd.rel_sectors) brq->data.blocks = card->ext_csd.rel_sectors; else if (brq->data.blocks < card->ext_csd.rel_sectors) brq->data.blocks = 1; } } #define CMD_ERRORS \ (R1_OUT_OF_RANGE | /* Command argument out of range */ \ R1_ADDRESS_ERROR | /* Misaligned address */ \ R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ R1_WP_VIOLATION | /* Tried to write to protected block */ \ R1_CARD_ECC_FAILED | /* Card ECC failed */ \ R1_CC_ERROR | /* Card controller error */ \ R1_ERROR) /* General/unknown error */ static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) { u32 val; /* * Per the SD specification(physical layer version 4.10)[1], * section 4.3.3, it explicitly states that "When the last * block of user area is read using CMD18, the host should * ignore OUT_OF_RANGE error that may occur even the sequence * is correct". And JESD84-B51 for eMMC also has a similar * statement on section 6.8.3. * * Multiple block read/write could be done by either predefined * method, namely CMD23, or open-ending mode. For open-ending mode, * we should ignore the OUT_OF_RANGE error as it's normal behaviour. * * However the spec[1] doesn't tell us whether we should also * ignore that for predefined method. But per the spec[1], section * 4.15 Set Block Count Command, it says"If illegal block count * is set, out of range error will be indicated during read/write * operation (For example, data transfer is stopped at user area * boundary)." In another word, we could expect a out of range error * in the response for the following CMD18/25. And if argument of * CMD23 + the argument of CMD18/25 exceed the max number of blocks, * we could also expect to get a -ETIMEDOUT or any error number from * the host drivers due to missing data response(for write)/data(for * read), as the cards will stop the data transfer by itself per the * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. */ if (!brq->stop.error) { bool oor_with_open_end; /* If there is no error yet, check R1 response */ val = brq->stop.resp[0] & CMD_ERRORS; oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; if (val && !oor_with_open_end) brq->stop.error = -EIO; } } static enum mmc_blk_status mmc_blk_err_check(struct mmc_card *card, struct mmc_async_req *areq) { struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req, areq); struct mmc_blk_request *brq = &mq_mrq->brq; struct request *req = mmc_queue_req_to_req(mq_mrq); int need_retune = card->host->need_retune; bool ecc_err = false; bool gen_err = false; /* * sbc.error indicates a problem with the set block count * command. No data will have been transferred. * * cmd.error indicates a problem with the r/w command. No * data will have been transferred. * * stop.error indicates a problem with the stop command. Data * may have been transferred, or may still be transferring. */ mmc_blk_eval_resp_error(brq); if (brq->sbc.error || brq->cmd.error || brq->stop.error || brq->data.error) { switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) { case ERR_RETRY: return MMC_BLK_RETRY; case ERR_ABORT: return MMC_BLK_ABORT; case ERR_NOMEDIUM: return MMC_BLK_NOMEDIUM; case ERR_CONTINUE: break; } } /* * Check for errors relating to the execution of the * initial command - such as address errors. No data * has been transferred. */ if (brq->cmd.resp[0] & CMD_ERRORS) { pr_err("%s: r/w command failed, status = %#x\n", req->rq_disk->disk_name, brq->cmd.resp[0]); return MMC_BLK_ABORT; } /* * Everything else is either success, or a data error of some * kind. If it was a write, we may have transitioned to * program mode, which we have to wait for it to complete. */ if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) { int err; /* Check stop command response */ if (brq->stop.resp[0] & R1_ERROR) { pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n", req->rq_disk->disk_name, __func__, brq->stop.resp[0]); gen_err = true; } err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req, &gen_err); if (err) return MMC_BLK_CMD_ERR; } /* if general error occurs, retry the write operation. */ if (gen_err) { pr_warn("%s: retrying write for general error\n", req->rq_disk->disk_name); return MMC_BLK_RETRY; } /* Some errors (ECC) are flagged on the next commmand, so check stop, too */ if (brq->data.error || brq->stop.error) { if (need_retune && !brq->retune_retry_done) { pr_debug("%s: retrying because a re-tune was needed\n", req->rq_disk->disk_name); brq->retune_retry_done = 1; return MMC_BLK_RETRY; } pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n", req->rq_disk->disk_name, brq->data.error ?: brq->stop.error, (unsigned)blk_rq_pos(req), (unsigned)blk_rq_sectors(req), brq->cmd.resp[0], brq->stop.resp[0]); if (rq_data_dir(req) == READ) { if (ecc_err) return MMC_BLK_ECC_ERR; return MMC_BLK_DATA_ERR; } else { return MMC_BLK_CMD_ERR; } } if (!brq->data.bytes_xfered) return MMC_BLK_RETRY; if (blk_rq_bytes(req) != brq->data.bytes_xfered) return MMC_BLK_PARTIAL; return MMC_BLK_SUCCESS; } static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, int disable_multi, bool *do_rel_wr, bool *do_data_tag) { struct mmc_blk_data *md = mq->blkdata; struct mmc_card *card = md->queue.card; struct mmc_blk_request *brq = &mqrq->brq; struct request *req = mmc_queue_req_to_req(mqrq); /* * Reliable writes are used to implement Forced Unit Access and * are supported only on MMCs. */ *do_rel_wr = (req->cmd_flags & REQ_FUA) && rq_data_dir(req) == WRITE && (md->flags & MMC_BLK_REL_WR); memset(brq, 0, sizeof(struct mmc_blk_request)); brq->mrq.data = &brq->data; brq->stop.opcode = MMC_STOP_TRANSMISSION; brq->stop.arg = 0; if (rq_data_dir(req) == READ) { brq->data.flags = MMC_DATA_READ; brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; } else { brq->data.flags = MMC_DATA_WRITE; brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; } brq->data.blksz = 512; brq->data.blocks = blk_rq_sectors(req); brq->data.fault_injected = false; /* * The block layer doesn't support all sector count * restrictions, so we need to be prepared for too big * requests. */ if (brq->data.blocks > card->host->max_blk_count) brq->data.blocks = card->host->max_blk_count; if (brq->data.blocks > 1) { /* * Some SD cards in SPI mode return a CRC error or even lock up * completely when trying to read the last block using a * multiblock read command. */ if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) && (blk_rq_pos(req) + blk_rq_sectors(req) == get_capacity(md->disk))) brq->data.blocks--; /* * After a read error, we redo the request one sector * at a time in order to accurately determine which * sectors can be read successfully. */ if (disable_multi) brq->data.blocks = 1; /* * Some controllers have HW issues while operating * in multiple I/O mode */ if (card->host->ops->multi_io_quirk) brq->data.blocks = card->host->ops->multi_io_quirk(card, (rq_data_dir(req) == READ) ? MMC_DATA_READ : MMC_DATA_WRITE, brq->data.blocks); } if (*do_rel_wr) mmc_apply_rel_rw(brq, card, req); /* * Data tag is used only during writing meta data to speed * up write and any subsequent read of this meta data */ *do_data_tag = card->ext_csd.data_tag_unit_size && (req->cmd_flags & REQ_META) && (rq_data_dir(req) == WRITE) && ((brq->data.blocks * brq->data.blksz) >= card->ext_csd.data_tag_unit_size); mmc_set_data_timeout(&brq->data, card); brq->data.sg = mqrq->sg; brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); /* * Adjust the sg list so it is the same size as the * request. */ if (brq->data.blocks != blk_rq_sectors(req)) { int i, data_size = brq->data.blocks << 9; struct scatterlist *sg; for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { data_size -= sg->length; if (data_size <= 0) { sg->length += data_size; i++; break; } } brq->data.sg_len = i; } mqrq->areq.mrq = &brq->mrq; mqrq->areq.mrq->req = req; mqrq->areq.err_check = mmc_blk_err_check; } static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, struct mmc_card *card, int disable_multi, struct mmc_queue *mq) { u32 readcmd, writecmd; struct mmc_blk_request *brq = &mqrq->brq; struct request *req = mmc_queue_req_to_req(mqrq); struct mmc_blk_data *md = mq->blkdata; bool do_rel_wr, do_data_tag; mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag); brq->mrq.cmd = &brq->cmd; brq->cmd.arg = blk_rq_pos(req); if (!mmc_card_blockaddr(card)) brq->cmd.arg <<= 9; brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; if (brq->data.blocks > 1 || do_rel_wr) { /* SPI multiblock writes terminate using a special * token, not a STOP_TRANSMISSION request. */ if (!mmc_host_is_spi(card->host) || rq_data_dir(req) == READ) brq->mrq.stop = &brq->stop; readcmd = MMC_READ_MULTIPLE_BLOCK; writecmd = MMC_WRITE_MULTIPLE_BLOCK; } else { brq->mrq.stop = NULL; readcmd = MMC_READ_SINGLE_BLOCK; writecmd = MMC_WRITE_BLOCK; } brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; /* * Pre-defined multi-block transfers are preferable to * open ended-ones (and necessary for reliable writes). * However, it is not sufficient to just send CMD23, * and avoid the final CMD12, as on an error condition * CMD12 (stop) needs to be sent anyway. This, coupled * with Auto-CMD23 enhancements provided by some * hosts, means that the complexity of dealing * with this is best left to the host. If CMD23 is * supported by card and host, we'll fill sbc in and let * the host deal with handling it correctly. This means * that for hosts that don't expose MMC_CAP_CMD23, no * change of behavior will be observed. * * N.B: Some MMC cards experience perf degradation. * We'll avoid using CMD23-bounded multiblock writes for * these, while retaining features like reliable writes. */ if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || do_data_tag)) { brq->sbc.opcode = MMC_SET_BLOCK_COUNT; brq->sbc.arg = brq->data.blocks | (do_rel_wr ? (1 << 31) : 0) | (do_data_tag ? (1 << 29) : 0); brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; brq->mrq.sbc = &brq->sbc; } mqrq->areq.err_check = mmc_blk_err_check; } static bool mmc_blk_rw_cmd_err(struct mmc_blk_data *md, struct mmc_card *card, struct mmc_blk_request *brq, struct request *req, bool old_req_pending) { bool req_pending; /* * If this is an SD card and we're writing, we can first * mark the known good sectors as ok. * * If the card is not SD, we can still ok written sectors * as reported by the controller (which might be less than * the real number of written sectors, but never more). */ if (mmc_card_sd(card)) { u32 blocks; int err; if (!brq->data.fault_injected) { err = mmc_sd_num_wr_blocks(card, &blocks); if (err) req_pending = old_req_pending; else req_pending = blk_end_request(req, BLK_STS_OK, blocks << 9); } else { req_pending = blk_end_request(req, BLK_STS_OK, brq->data.bytes_xfered); } } else { req_pending = blk_end_request(req, BLK_STS_OK, brq->data.bytes_xfered); } return req_pending; } static int mmc_blk_cmdq_switch(struct mmc_card *card, struct mmc_blk_data *md, bool enable) { int ret = 0; bool cmdq_mode = !!mmc_card_cmdq(card); struct mmc_host *host = card->host; struct mmc_cmdq_context_info *ctx = &host->cmdq_ctx; if (!(card->host->caps2 & MMC_CAP2_CMD_QUEUE) || !card->ext_csd.cmdq_support || (enable && !(md->flags & MMC_BLK_CMD_QUEUE)) || (cmdq_mode == enable)) return 0; if (enable) { ret = mmc_set_blocklen(card, MMC_CARD_CMDQ_BLK_SIZE); if (ret) { pr_err("%s: failed (%d) to set block-size to %d\n", __func__, ret, MMC_CARD_CMDQ_BLK_SIZE); goto out; } } else { if (!test_bit(CMDQ_STATE_HALT, &ctx->curr_state)) { ret = mmc_cmdq_halt(host, true); if (ret) { pr_err("%s: halt: failed: %d\n", mmc_hostname(host), ret); goto out; } } } ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN, enable, card->ext_csd.generic_cmd6_time); if (ret) { pr_err("%s: cmdq mode %sable failed %d\n", md->disk->disk_name, enable ? "en" : "dis", ret); goto out; } if (enable) mmc_card_set_cmdq(card); else mmc_card_clr_cmdq(card); out: return ret; } /* prepare for non-data commands */ static struct mmc_cmdq_req *mmc_cmdq_prep_dcmd( struct mmc_queue_req *mqrq, struct mmc_queue *mq) { struct request *req = mmc_queue_req_to_req(mqrq); struct mmc_cmdq_req *cmdq_req = &mqrq->cmdq_req; memset(&mqrq->cmdq_req, 0, sizeof(struct mmc_cmdq_req)); cmdq_req->mrq.data = NULL; cmdq_req->cmd_flags = req->cmd_flags; cmdq_req->mrq.req = req; req->special = mqrq; cmdq_req->cmdq_req_flags |= DCMD; cmdq_req->mrq.cmdq_req = cmdq_req; return &mqrq->cmdq_req; } static struct mmc_cmdq_req *mmc_blk_cmdq_prep_discard_req(struct mmc_queue *mq, struct request *req) { struct mmc_blk_data *md = mq->blkdata; struct mmc_card *card = md->queue.card; struct mmc_host *host = card->host; struct mmc_cmdq_context_info *ctx_info = &host->cmdq_ctx; struct mmc_cmdq_req *cmdq_req; struct mmc_queue_req *active_mqrq; active_mqrq = req_to_mmc_queue_req(req); cmdq_req = mmc_cmdq_prep_dcmd(active_mqrq, mq); cmdq_req->cmdq_req_flags |= QBR; cmdq_req->mrq.cmd = &cmdq_req->cmd; cmdq_req->tag = req->tag; init_completion(&cmdq_req->mrq.completion); BUG_ON(req->tag > card->ext_csd.cmdq_depth); BUG_ON(test_and_set_bit(req->tag, &host->cmdq_ctx.active_reqs)); set_bit(CMDQ_STATE_DCMD_ACTIVE, &ctx_info->curr_state); return cmdq_req; } static int mmc_blk_cmdq_issue_discard_rq(struct mmc_queue *mq, struct request *req) { struct mmc_blk_data *md = mq->blkdata; struct mmc_card *card = md->queue.card; struct mmc_cmdq_req *cmdq_req = NULL; unsigned int from, nr, arg; int err = 0; if (!mmc_can_erase(card)) { err = -EOPNOTSUPP; blk_end_request(req, err, blk_rq_bytes(req)); goto out; } from = blk_rq_pos(req); nr = blk_rq_sectors(req); if (mmc_can_discard(card)) arg = MMC_DISCARD_ARG; else if (mmc_can_trim(card)) arg = MMC_TRIM_ARG; else arg = MMC_ERASE_ARG; cmdq_req = mmc_blk_cmdq_prep_discard_req(mq, req); if (card->quirks & MMC_QUIRK_INAND_CMD38) { __mmc_switch_cmdq_mode(cmdq_req->mrq.cmd, EXT_CSD_CMD_SET_NORMAL, INAND_CMD38_ARG_EXT_CSD, arg == MMC_TRIM_ARG ? INAND_CMD38_ARG_TRIM : INAND_CMD38_ARG_ERASE, 0, true, false); err = mmc_cmdq_wait_for_dcmd(card->host, cmdq_req); if (err) goto clear_dcmd; } err = mmc_cmdq_erase(cmdq_req, card, from, nr, arg); clear_dcmd: if (err != -EAGAIN) { mmc_host_clk_hold(card->host); blk_complete_request(req); } else { pr_err("%s: err(%d) handled by cmdq-error handler\n", __func__, err); } out: return err ? 1 : 0; } static int mmc_blk_cmdq_issue_secdiscard_rq(struct mmc_queue *mq, struct request *req) { struct mmc_blk_data *md = mq->blkdata; struct mmc_card *card = md->queue.card; struct mmc_cmdq_req *cmdq_req = NULL; unsigned int from, nr, arg; int err = 0; if (!(mmc_can_secure_erase_trim(card))) { err = -EOPNOTSUPP; blk_end_request(req, err, blk_rq_bytes(req)); goto out; } from = blk_rq_pos(req); nr = blk_rq_sectors(req); if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) arg = MMC_SECURE_TRIM1_ARG; else arg = MMC_SECURE_ERASE_ARG; cmdq_req = mmc_blk_cmdq_prep_discard_req(mq, req); if (card->quirks & MMC_QUIRK_INAND_CMD38) { __mmc_switch_cmdq_mode(cmdq_req->mrq.cmd, EXT_CSD_CMD_SET_NORMAL, INAND_CMD38_ARG_EXT_CSD, arg == MMC_SECURE_TRIM1_ARG ? INAND_CMD38_ARG_SECTRIM1 : INAND_CMD38_ARG_SECERASE, 0, true, false); err = mmc_cmdq_wait_for_dcmd(card->host, cmdq_req); if (err) goto clear_dcmd; } err = mmc_cmdq_erase(cmdq_req, card, from, nr, arg); if (err) goto clear_dcmd; if (arg == MMC_SECURE_TRIM1_ARG) { if (card->quirks & MMC_QUIRK_INAND_CMD38) { __mmc_switch_cmdq_mode(cmdq_req->mrq.cmd, EXT_CSD_CMD_SET_NORMAL, INAND_CMD38_ARG_EXT_CSD, INAND_CMD38_ARG_SECTRIM2, 0, true, false); err = mmc_cmdq_wait_for_dcmd(card->host, cmdq_req); if (err) goto clear_dcmd; } err = mmc_cmdq_erase(cmdq_req, card, from, nr, MMC_SECURE_TRIM2_ARG); } clear_dcmd: if (err != -EAGAIN) { mmc_host_clk_hold(card->host); blk_complete_request(req); } else { pr_err("%s: err(%d) handled by cmdq-error handler\n", __func__, err); } out: return err ? 1 : 0; } static int mmc_blk_cmdq_start_req(struct mmc_host *host, struct mmc_cmdq_req *cmdq_req) { struct mmc_request *mrq = &cmdq_req->mrq; mrq->done = mmc_blk_cmdq_req_done; return mmc_cmdq_start_req(host, cmdq_req); } #define IS_RT_CLASS_REQ(x) \ (IOPRIO_PRIO_CLASS(req_get_ioprio(x)) == IOPRIO_CLASS_RT) static struct mmc_cmdq_req *mmc_blk_cmdq_rw_prep( struct mmc_queue_req *mqrq, struct mmc_queue *mq) { struct mmc_card *card = mq->card; struct request *req = mmc_queue_req_to_req(mqrq); struct mmc_blk_data *md = mq->blkdata; bool do_rel_wr = mmc_req_rel_wr(req) && (md->flags & MMC_BLK_REL_WR); bool do_data_tag; bool read_dir = (rq_data_dir(req) == READ); bool prio = IS_RT_CLASS_REQ(req); struct mmc_cmdq_req *cmdq_rq = &mqrq->cmdq_req; memset(&mqrq->cmdq_req, 0, sizeof(struct mmc_cmdq_req)); cmdq_rq->tag = req->tag; if (read_dir) { cmdq_rq->cmdq_req_flags |= DIR; cmdq_rq->data.flags = MMC_DATA_READ; } else { cmdq_rq->data.flags = MMC_DATA_WRITE; } if (prio) cmdq_rq->cmdq_req_flags |= PRIO; if (do_rel_wr) cmdq_rq->cmdq_req_flags |= REL_WR; cmdq_rq->data.blocks = blk_rq_sectors(req); cmdq_rq->blk_addr = blk_rq_pos(req); cmdq_rq->data.blksz = MMC_CARD_CMDQ_BLK_SIZE; mmc_set_data_timeout(&cmdq_rq->data, card); do_data_tag = (card->ext_csd.data_tag_unit_size) && (req->cmd_flags & REQ_META) && (rq_data_dir(req) == WRITE) && ((cmdq_rq->data.blocks * cmdq_rq->data.blksz) >= card->ext_csd.data_tag_unit_size); if (do_data_tag) cmdq_rq->cmdq_req_flags |= DAT_TAG; cmdq_rq->data.sg = mqrq->sg; cmdq_rq->data.sg_len = mmc_queue_map_sg(mq, mqrq); /* * Adjust the sg list so it is the same size as the * request. */ if (cmdq_rq->data.blocks > card->host->max_blk_count) cmdq_rq->data.blocks = card->host->max_blk_count; if (cmdq_rq->data.blocks != blk_rq_sectors(req)) { int i, data_size = cmdq_rq->data.blocks << 9; struct scatterlist *sg; for_each_sg(cmdq_rq->data.sg, sg, cmdq_rq->data.sg_len, i) { data_size -= sg->length; if (data_size <= 0) { sg->length += data_size; i++; break; } } cmdq_rq->data.sg_len = i; } mqrq->cmdq_req.cmd_flags = req->cmd_flags; mqrq->cmdq_req.mrq.req = req; mqrq->cmdq_req.mrq.cmdq_req = &mqrq->cmdq_req; mqrq->cmdq_req.mrq.data = &mqrq->cmdq_req.data; req->special = mqrq; pr_debug("%s: %s: mrq: 0x%p req: 0x%p mqrq: 0x%p bytes to xf: %d\n", mmc_hostname(card->host), __func__, &mqrq->cmdq_req.mrq, req, mqrq, (cmdq_rq->data.blocks * cmdq_rq->data.blksz)); pr_debug("%s: %s: mmc_cmdq_req: 0x%p card-addr: 0x%08x dir(r-1/w-0): %d\n", mmc_hostname(card->host), __func__, cmdq_rq, cmdq_rq->blk_addr, (cmdq_rq->cmdq_req_flags & DIR) ? 1 : 0); return &mqrq->cmdq_req; } static void mmc_blk_cmdq_requeue_rw_rq(struct mmc_queue *mq, struct request *req) { struct request_queue *q = req->q; spin_lock_irq(q->queue_lock); blk_requeue_request(q, req); spin_unlock_irq(q->queue_lock); } static int mmc_blk_cmdq_issue_rw_rq(struct mmc_queue *mq, struct request *req) { struct mmc_queue_req *active_mqrq; struct mmc_card *card = mq->card; struct mmc_host *host = card->host; struct mmc_cmdq_context_info *ctx = &host->cmdq_ctx; struct mmc_cmdq_req *mc_rq; u8 active_small_sector_read = 0; int ret = 0; mmc_cmdq_up_rwsem(host); mmc_deferred_scaling(host); ret = mmc_cmdq_down_rwsem(host, req); if (ret) return ret; mmc_cmdq_clk_scaling_start_busy(host, true); BUG_ON((req->tag < 0) || (req->tag > card->ext_csd.cmdq_depth)); BUG_ON(test_and_set_bit(req->tag, &host->cmdq_ctx.data_active_reqs)); BUG_ON(test_and_set_bit(req->tag, &host->cmdq_ctx.active_reqs)); active_mqrq = req_to_mmc_queue_req(req); mc_rq = mmc_blk_cmdq_rw_prep(active_mqrq, mq); if (card->quirks & MMC_QUIRK_CMDQ_EMPTY_BEFORE_DCMD) { unsigned int sectors = blk_rq_sectors(req); if (((sectors > 0) && (sectors < 8)) && (rq_data_dir(req) == READ)) active_small_sector_read = 1; } ret = mmc_blk_cmdq_start_req(card->host, mc_rq); if (!ret && active_small_sector_read) host->cmdq_ctx.active_small_sector_read_reqs++; /* * When in SVS2 on low load scenario and there are lots of requests * queued for CMDQ we need to wait till the queue is empty to scale * back up to Nominal even if there is a sudden increase in load. * This impacts performance where lots of IO get executed in SVS2 * frequency since the queue is full. As SVS2 is a low load use case * we can serialize the requests and not queue them in parallel * without impacting other use cases. This makes sure the queue gets * empty faster and we will be able to scale up to Nominal frequency * when needed. */ if (!ret && (host->clk_scaling.state == MMC_LOAD_LOW)) { mmc_cmdq_up_rwsem(host); ret = wait_event_interruptible_timeout(ctx->queue_empty_wq, (!ctx->active_reqs && !test_bit(CMDQ_STATE_ERR, &ctx->curr_state)), msecs_to_jiffies(MMC_CMDQ_WAIT_EVENT_TIMEOUT_MS)); if (!ret) pr_err("%s: queue_empty_wq timeout case? ret = (%d)\n", __func__, ret); ret = 0; mmc_cmdq_down_rwsem(host, NULL); } if (ret) { /* clear pending request */ WARN_ON(!test_and_clear_bit(req->tag, &host->cmdq_ctx.data_active_reqs)); WARN_ON(!test_and_clear_bit(req->tag, &host->cmdq_ctx.active_reqs)); mmc_cmdq_clk_scaling_stop_busy(host, true, false); } return ret; } /* * Issues a flush (dcmd) request */ int mmc_blk_cmdq_issue_flush_rq(struct mmc_queue *mq, struct request *req) { int err; struct mmc_queue_req *active_mqrq; struct mmc_card *card = mq->card; struct mmc_host *host; struct mmc_cmdq_req *cmdq_req; struct mmc_cmdq_context_info *ctx_info; BUG_ON(!card); host = card->host; BUG_ON(!host); BUG_ON(req->tag > card->ext_csd.cmdq_depth); BUG_ON(test_and_set_bit(req->tag, &host->cmdq_ctx.active_reqs)); ctx_info = &host->cmdq_ctx; set_bit(CMDQ_STATE_DCMD_ACTIVE, &ctx_info->curr_state); active_mqrq = req_to_mmc_queue_req(req); cmdq_req = mmc_cmdq_prep_dcmd(active_mqrq, mq); cmdq_req->cmdq_req_flags |= QBR; cmdq_req->mrq.cmd = &cmdq_req->cmd; cmdq_req->tag = req->tag; err = mmc_cmdq_prepare_flush(cmdq_req->mrq.cmd); if (err) { pr_err("%s: failed (%d) preparing flush req\n", mmc_hostname(host), err); return err; } err = mmc_blk_cmdq_start_req(card->host, cmdq_req); return err; } EXPORT_SYMBOL(mmc_blk_cmdq_issue_flush_rq); static void mmc_blk_cmdq_reset(struct mmc_host *host, bool clear_all) { int err = 0; if (mmc_cmdq_halt(host, true)) { pr_err("%s: halt failed\n", mmc_hostname(host)); goto reset; } if (clear_all) mmc_cmdq_discard_queue(host, 0); reset: mmc_host_clk_hold(host); host->cmdq_ops->disable(host, true); mmc_host_clk_release(host); err = mmc_cmdq_hw_reset(host); if (err && err != -EOPNOTSUPP) { pr_err("%s: failed to cmdq_hw_reset err = %d\n", mmc_hostname(host), err); mmc_host_clk_hold(host); host->cmdq_ops->enable(host); mmc_host_clk_release(host); mmc_cmdq_halt(host, false); goto out; } /* * CMDQ HW reset would have already made CQE * in unhalted state, but reflect the same * in software state of cmdq_ctx. */ mmc_host_clr_halt(host); out: return; } /** * get_cmdq_req_by_tag - returns cmdq_rq based on tag. * @q: request_queue pointer. * @tag: tag number of request to check. * */ static struct mmc_cmdq_req *get_cmdq_req_by_tag(struct request_queue *q, int tag) { struct request *req; struct mmc_queue_req *mq_rq; struct mmc_cmdq_req *cmdq_req = NULL; req = blk_queue_find_tag(q, tag); if (WARN_ON(!req)) goto out; mq_rq = req->special; if (WARN_ON(!mq_rq)) goto out; cmdq_req = &(mq_rq->cmdq_req); out: return cmdq_req; } /** * mmc_blk_cmdq_reset_all - Reset everything for CMDQ block request. * @host: mmc_host pointer. * @err: error for which reset is performed. * * This function implements reset_all functionality for * cmdq. It resets the controller, power cycle the card, * and invalidate all busy tags(requeue all request back to * elevator). */ static void mmc_blk_cmdq_reset_all(struct mmc_host *host, int err) { struct mmc_request *mrq = host->err_mrq; struct mmc_card *card = host->card; struct mmc_cmdq_context_info *ctx_info = &host->cmdq_ctx; struct request_queue *q; int itag = 0; struct mmc_cmdq_req *cmdq_req = NULL; struct mmc_request *dcmd_mrq; bool is_err_mrq_dcmd = false; if (WARN_ON(!mrq)) return; q = mrq->req->q; WARN_ON(!test_bit(CMDQ_STATE_ERR, &ctx_info->curr_state)); #ifdef CONFIG_MMC_CLKGATE pr_debug("%s: %s: active_reqs = %lu, clk_requests = %d\n", mmc_hostname(host), __func__, ctx_info->active_reqs, host->clk_requests); #endif mmc_blk_cmdq_reset(host, false); if (mrq->cmdq_req->cmdq_req_flags & DCMD) is_err_mrq_dcmd = true; for_each_set_bit(itag, &ctx_info->active_reqs, host->num_cq_slots) { cmdq_req = get_cmdq_req_by_tag(q, itag); if (WARN_ON(!cmdq_req)) continue; if (!(cmdq_req->cmdq_req_flags & DCMD)) { WARN_ON(!test_and_clear_bit(itag, &ctx_info->data_active_reqs)); mmc_cmdq_post_req(host, itag, err); } else { dcmd_mrq = &cmdq_req->mrq; WARN_ON(!test_and_clear_bit(CMDQ_STATE_DCMD_ACTIVE, &ctx_info->curr_state)); pr_debug("%s: cmd(%u), req_op(%u)\n", __func__, dcmd_mrq->cmd->opcode, req_op(dcmd_mrq->req)); if (!is_err_mrq_dcmd && !dcmd_mrq->cmd->error && (req_op(dcmd_mrq->req) == REQ_OP_SECURE_ERASE || req_op(dcmd_mrq->req) == REQ_OP_DISCARD)) { dcmd_mrq->cmd->error = -EAGAIN; complete(&dcmd_mrq->completion); } } WARN_ON(!test_and_clear_bit(itag, &ctx_info->active_reqs)); mmc_host_clk_release(host); mmc_put_card(card); } spin_lock_irq(q->queue_lock); blk_queue_invalidate_tags(q); spin_unlock_irq(q->queue_lock); } static void mmc_blk_cmdq_shutdown(struct mmc_queue *mq) { int err; struct mmc_card *card = mq->card; struct mmc_host *host = card->host; mmc_get_card(card); mmc_host_clk_hold(host); err = mmc_cmdq_halt(host, true); if (err) { pr_err("%s: halt: failed: %d\n", __func__, err); goto out; } /* disable CQ mode in card */ if (mmc_card_cmdq(card)) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN, 0, card->ext_csd.generic_cmd6_time); if (err) { pr_err("%s: failed to switch card to legacy mode: %d\n", __func__, err); goto out; } mmc_card_clr_cmdq(card); } host->cmdq_ops->disable(host, false); host->card->cmdq_init = false; out: mmc_host_clk_release(host); mmc_put_card(card); } static enum blk_eh_timer_return mmc_blk_cmdq_req_timed_out(struct request *req) { struct mmc_queue *mq = req->q->queuedata; struct mmc_host *host = mq->card->host; struct mmc_queue_req *mq_rq = req->special; struct mmc_request *mrq; struct mmc_cmdq_req *cmdq_req; struct mmc_cmdq_context_info *ctx_info = &host->cmdq_ctx; BUG_ON(!host); /* * The mmc_queue_req will be present only if the request * is issued to the LLD. The request could be fetched from * block layer queue but could be waiting to be issued * (for e.g. clock scaling is waiting for an empty cmdq queue) * Reset the timer in such cases to give LLD more time */ if (!mq_rq) { pr_warn("%s: restart timer for tag: %d\n", __func__, req->tag); return BLK_EH_RESET_TIMER; } mrq = &mq_rq->cmdq_req.mrq; cmdq_req = &mq_rq->cmdq_req; BUG_ON(!mrq || !cmdq_req); if (cmdq_req->cmdq_req_flags & DCMD) mrq->cmd->error = -ETIMEDOUT; else mrq->data->error = -ETIMEDOUT; host->err_stats[MMC_ERR_CMDQ_REQ_TIMEOUT]++; if (mrq->cmd && mrq->cmd->error) { if (!(mrq->req->cmd_flags & REQ_PREFLUSH)) { /* * Notify completion for non flush commands like * discard that wait for DCMD finish. */ set_bit(CMDQ_STATE_REQ_TIMED_OUT, &ctx_info->curr_state); complete(&mrq->completion); return BLK_EH_NOT_HANDLED; } } if (test_bit(CMDQ_STATE_REQ_TIMED_OUT, &ctx_info->curr_state) || test_bit(CMDQ_STATE_ERR, &ctx_info->curr_state)) return BLK_EH_NOT_HANDLED; set_bit(CMDQ_STATE_REQ_TIMED_OUT, &ctx_info->curr_state); return BLK_EH_HANDLED; } /* * mmc_blk_cmdq_err: error handling of cmdq error requests. * Function should be called in context of error out request * which has claim_host and rpm acquired. * This may be called with CQ engine halted. Make sure to * unhalt it after error recovery. * * TODO: Currently cmdq error handler does reset_all in case * of any erorr. Need to optimize error handling. */ static void mmc_blk_cmdq_err(struct mmc_queue *mq) { struct mmc_host *host = mq->card->host; struct mmc_request *mrq = host->err_mrq; struct mmc_cmdq_context_info *ctx_info = &host->cmdq_ctx; struct request_queue *q; int err, ret; u32 status = 0; mmc_host_clk_hold(host); host->cmdq_ops->dumpstate(host); mmc_host_clk_release(host); if (WARN_ON(!mrq)) return; down_write(&ctx_info->err_rwsem); pr_err("%s: %s Starting cmdq Error handler\n", mmc_hostname(host), __func__); q = mrq->req->q; err = mmc_cmdq_halt(host, true); if (err) { pr_err("halt: failed: %d\n", err); goto reset; } /* RED error - Fatal: requires reset */ if (mrq->cmdq_req->resp_err) { err = mrq->cmdq_req->resp_err; goto reset; } /* * TIMEOUT errrors can happen because of execution error * in the last command. So send cmd 13 to get device status */ if ((mrq->cmd && (mrq->cmd->error == -ETIMEDOUT)) || (mrq->data && (mrq->data->error == -ETIMEDOUT))) { if (mmc_host_halt(host) || mmc_host_cq_disable(host)) { ret = get_card_status(host->card, &status, 0); if (ret) pr_err("%s: CMD13 failed with err %d\n", mmc_hostname(host), ret); } pr_err("%s: Timeout error detected with device status 0x%08x\n", mmc_hostname(host), status); } /* * In case of software request time-out, we schedule err work only for * the first error out request and handles all other request in flight * here. */ if (test_bit(CMDQ_STATE_REQ_TIMED_OUT, &ctx_info->curr_state)) { err = -ETIMEDOUT; } else if (mrq->data && mrq->data->error) { err = mrq->data->error; } else if (mrq->cmd && mrq->cmd->error) { /* DCMD commands */ err = mrq->cmd->error; } reset: mmc_blk_cmdq_reset_all(host, err); if (mrq->cmdq_req->resp_err) mrq->cmdq_req->resp_err = false; mmc_cmdq_halt(host, false); host->err_mrq = NULL; clear_bit(CMDQ_STATE_REQ_TIMED_OUT, &ctx_info->curr_state); WARN_ON(!test_and_clear_bit(CMDQ_STATE_ERR, &ctx_info->curr_state)); #ifdef CONFIG_MMC_CLKGATE pr_err("%s: %s Exiting CMDQ Error handler clk-rqs(%d), claim-cnt(%d), claimed(%d), claimer(%s)\n", mmc_hostname(host), __func__, host->clk_requests, host->claim_cnt, host->claimed, host->claimer->comm); #else pr_err("%s: %s Exiting CMDQ Error handler, claim-cnt(%d), claimed(%d), claimer(%s)\n", mmc_hostname(host), __func__, host->claim_cnt, host->claimed, host->claimer->comm); #endif sched_show_task(mq->thread); if (host->claimed && host->claimer) sched_show_task(host->claimer); #ifdef CONFIG_MMC_CLKGATE WARN_ON(host->clk_requests < 0); #endif WARN_ON(host->claim_cnt < 0); up_write(&ctx_info->err_rwsem); wake_up(&ctx_info->wait); wake_up_interruptible(&host->cmdq_ctx.queue_empty_wq); } /* invoked by block layer in softirq context */ void mmc_blk_cmdq_complete_rq(struct request *rq) { struct mmc_queue_req *mq_rq = rq->special; struct mmc_request *mrq = &mq_rq->cmdq_req.mrq; struct mmc_host *host = mrq->host; struct mmc_cmdq_context_info *ctx_info = &host->cmdq_ctx; struct mmc_cmdq_req *cmdq_req = &mq_rq->cmdq_req; struct mmc_queue *mq = (struct mmc_queue *)rq->q->queuedata; int err = 0; int err_resp = 0; bool is_dcmd = false; bool err_rwsem = false; if (down_read_trylock(&ctx_info->err_rwsem)) { err_rwsem = true; } else { pr_err("%s: err_rwsem lock failed to acquire => err handler active\n", __func__); WARN_ON_ONCE(!test_bit(CMDQ_STATE_ERR, &ctx_info->curr_state)); goto out; } if (mrq->cmd && mrq->cmd->error) err = mrq->cmd->error; else if (mrq->data && mrq->data->error) err = mrq->data->error; if (cmdq_req->resp_err) err_resp = cmdq_req->resp_err; if ((err || err_resp) && !cmdq_req->skip_err_handling) { pr_err("%s: %s: txfr error(%d)/resp_err(%d)\n", mmc_hostname(mrq->host), __func__, err, err_resp); if (test_bit(CMDQ_STATE_ERR, &ctx_info->curr_state)) { pr_err("%s: CQ in error state, ending current req: %d\n", __func__, err); } else { set_bit(CMDQ_STATE_ERR, &ctx_info->curr_state); BUG_ON(host->err_mrq != NULL); host->err_mrq = mrq; schedule_work(&mq->cmdq_err_work); } goto out; } /* clear pending request */ BUG_ON(!test_and_clear_bit(cmdq_req->tag, &ctx_info->active_reqs)); if (cmdq_req->cmdq_req_flags & DCMD) is_dcmd = true; else BUG_ON(!test_and_clear_bit(cmdq_req->tag, &ctx_info->data_active_reqs)); if (!is_dcmd) mmc_cmdq_post_req(host, cmdq_req->tag, err); if (cmdq_req->cmdq_req_flags & DCMD) { clear_bit(CMDQ_STATE_DCMD_ACTIVE, &ctx_info->curr_state); blk_end_request_all(rq, err); goto out; } /* * In case of error, cmdq_req->data.bytes_xfered is set to 0. * If we call blk_end_request() with nr_bytes as 0 then the request * never gets completed. So in case of error, to complete a request * with error we should use blk_end_request_all(). */ if (err && cmdq_req->skip_err_handling) { cmdq_req->skip_err_handling = false; blk_end_request_all(rq, err); goto out; } blk_end_request(rq, err, cmdq_req->data.bytes_xfered); out: mmc_cmdq_clk_scaling_stop_busy(host, true, is_dcmd); if (err_rwsem && !(err || err_resp)) { mmc_host_clk_release(host); wake_up(&ctx_info->wait); host->last_completed_rq_time = ktime_get(); mmc_put_card(host->card); } if (!ctx_info->active_reqs) wake_up_interruptible(&host->cmdq_ctx.queue_empty_wq); if (blk_queue_stopped(mq->queue) && !ctx_info->active_reqs) complete(&mq->cmdq_shutdown_complete); if (err_rwsem) up_read(&ctx_info->err_rwsem); return; } /* * Complete reqs from block layer softirq context * Invoked in irq context */ void mmc_blk_cmdq_req_done(struct mmc_request *mrq) { struct request *req = mrq->req; blk_complete_request(req); } EXPORT_SYMBOL(mmc_blk_cmdq_req_done); static void mmc_blk_rw_cmd_abort(struct mmc_queue *mq, struct mmc_card *card, struct request *req, struct mmc_queue_req *mqrq) { if (mmc_card_removed(card)) req->rq_flags |= RQF_QUIET; while (blk_end_request(req, BLK_STS_IOERR, blk_rq_cur_bytes(req))); mq->qcnt--; } /** * mmc_blk_rw_try_restart() - tries to restart the current async request * @mq: the queue with the card and host to restart * @req: a new request that want to be started after the current one */ static void mmc_blk_rw_try_restart(struct mmc_queue *mq, struct request *req, struct mmc_queue_req *mqrq) { if (!req) return; /* * If the card was removed, just cancel everything and return. */ if (mmc_card_removed(mq->card)) { req->rq_flags |= RQF_QUIET; blk_end_request_all(req, BLK_STS_IOERR); mq->qcnt--; /* FIXME: just set to 0? */ return; } /* Else proceed and try to restart the current async request */ mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); mmc_start_areq(mq->card->host, &mqrq->areq, NULL); } static void mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *new_req) { struct mmc_blk_data *md = mq->blkdata; struct mmc_card *card = md->queue.card; struct mmc_blk_request *brq; int disable_multi = 0, retry = 0, type, retune_retry_done = 0; enum mmc_blk_status status; struct mmc_queue_req *mqrq_cur = NULL; struct mmc_queue_req *mq_rq; struct request *old_req; struct mmc_async_req *new_areq; struct mmc_async_req *old_areq; bool req_pending = true; #ifdef CONFIG_MMC_SIMULATE_MAX_SPEED unsigned long waitfor = jiffies; #endif if (new_req) { mqrq_cur = req_to_mmc_queue_req(new_req); mq->qcnt++; } if (!mq->qcnt) return; do { if (new_req) { /* * When 4KB native sector is enabled, only 8 blocks * multiple read or write is allowed */ if (mmc_large_sector(card) && !IS_ALIGNED(blk_rq_sectors(new_req), 8)) { pr_err("%s: Transfer size is not 4KB sector size aligned\n", new_req->rq_disk->disk_name); mmc_blk_rw_cmd_abort(mq, card, new_req, mqrq_cur); return; } mmc_blk_rw_rq_prep(mqrq_cur, card, 0, mq); new_areq = &mqrq_cur->areq; } else new_areq = NULL; old_areq = mmc_start_areq(card->host, new_areq, &status); if (!old_areq) { /* * We have just put the first request into the pipeline * and there is nothing more to do until it is * complete. */ return; } /* * An asynchronous request has been completed and we proceed * to handle the result of it. */ mq_rq = container_of(old_areq, struct mmc_queue_req, areq); brq = &mq_rq->brq; old_req = mmc_queue_req_to_req(mq_rq); type = rq_data_dir(old_req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; switch (status) { case MMC_BLK_SUCCESS: case MMC_BLK_PARTIAL: /* * A block was successfully transferred. */ mmc_blk_reset_success(md, type); mmc_blk_simulate_delay(mq, new_req, waitfor); req_pending = blk_end_request(old_req, BLK_STS_OK, brq->data.bytes_xfered); /* * If the blk_end_request function returns non-zero even * though all data has been transferred and no errors * were returned by the host controller, it's a bug. */ if (status == MMC_BLK_SUCCESS && req_pending) { pr_err("%s BUG rq_tot %d d_xfer %d\n", __func__, blk_rq_bytes(old_req), brq->data.bytes_xfered); mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq); return; } break; case MMC_BLK_CMD_ERR: req_pending = mmc_blk_rw_cmd_err(md, card, brq, old_req, req_pending); if (mmc_blk_reset(md, card->host, type)) { if (req_pending) mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq); else mq->qcnt--; mmc_blk_rw_try_restart(mq, new_req, mqrq_cur); return; } if (!req_pending) { mq->qcnt--; mmc_blk_rw_try_restart(mq, new_req, mqrq_cur); return; } break; case MMC_BLK_RETRY: retune_retry_done = brq->retune_retry_done; if (retry++ < MMC_BLK_MAX_RETRIES) break; /* Fall through */ case MMC_BLK_ABORT: if (!mmc_blk_reset(md, card->host, type) && (retry++ < (MMC_BLK_MAX_RETRIES + 1))) break; mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq); mmc_blk_rw_try_restart(mq, new_req, mqrq_cur); return; case MMC_BLK_DATA_ERR: { int err; err = mmc_blk_reset(md, card->host, type); if (!err) { break; } else { mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq); mmc_blk_rw_try_restart(mq, new_req, mqrq_cur); return; } /* Fall through */ } case MMC_BLK_ECC_ERR: if (brq->data.blocks > 1) { /* Redo read one sector at a time */ pr_warn("%s: retrying using single block read\n", old_req->rq_disk->disk_name); disable_multi = 1; break; } /* * After an error, we redo I/O one sector at a * time, so we only reach here after trying to * read a single sector. */ req_pending = blk_end_request(old_req, BLK_STS_IOERR, brq->data.blksz); if (!req_pending) { mq->qcnt--; mmc_blk_rw_try_restart(mq, new_req, mqrq_cur); return; } break; case MMC_BLK_NOMEDIUM: mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq); mmc_blk_rw_try_restart(mq, new_req, mqrq_cur); return; default: pr_err("%s: Unhandled return value (%d)", old_req->rq_disk->disk_name, status); mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq); mmc_blk_rw_try_restart(mq, new_req, mqrq_cur); return; } if (req_pending) { /* * In case of a incomplete request * prepare it again and resend. */ mmc_blk_rw_rq_prep(mq_rq, card, disable_multi, mq); mmc_start_areq(card->host, &mq_rq->areq, NULL); mq_rq->brq.retune_retry_done = retune_retry_done; } } while (req_pending); mq->qcnt--; } static inline int mmc_blk_cmdq_part_switch(struct mmc_card *card, struct mmc_blk_data *md) { struct mmc_blk_data *main_md = mmc_get_drvdata(card); struct mmc_host *host = card->host; struct mmc_cmdq_context_info *ctx = &host->cmdq_ctx; u8 part_config = card->ext_csd.part_config; int ret = 0, err = 0; if ((main_md->part_curr == md->part_type) && (card->part_curr == md->part_type)) return 0; WARN_ON(!((card->host->caps2 & MMC_CAP2_CMD_QUEUE) && card->ext_csd.cmdq_support && (md->flags & MMC_BLK_CMD_QUEUE))); if (!test_bit(CMDQ_STATE_HALT, &ctx->curr_state)) { ret = mmc_cmdq_halt(host, true); if (ret) { pr_err("%s: %s: halt: failed: %d\n", mmc_hostname(host), __func__, ret); goto out; } } /* disable CQ mode in card */ if (mmc_card_cmdq(card)) { ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN, 0, card->ext_csd.generic_cmd6_time); if (ret) { pr_err("%s: %s: cmdq mode disable failed %d\n", mmc_hostname(host), __func__, ret); goto cmdq_unhalt; } mmc_card_clr_cmdq(card); } part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; part_config |= md->part_type; ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, part_config, card->ext_csd.part_time); if (ret) { pr_err("%s: %s: mmc_switch failure, %d -> %d , err = %d\n", mmc_hostname(host), __func__, main_md->part_curr, md->part_type, ret); goto cmdq_switch; } card->ext_csd.part_config = part_config; card->part_curr = md->part_type; main_md->part_curr = md->part_type; cmdq_switch: err = mmc_blk_cmdq_switch(card, md, true); if (err) { pr_err("%s: %s: mmc_blk_cmdq_switch failed: %d\n", mmc_hostname(host), __func__, err); ret = err; goto out; } cmdq_unhalt: err = mmc_cmdq_halt(host, false); if (err) { pr_err("%s: %s: unhalt: failed: %d\n", mmc_hostname(host), __func__, err); ret = err; } out: return ret; } static int mmc_cmdq_wait_for_small_sector_read(struct mmc_card *card, struct request *req) { struct mmc_host *host = card->host; struct mmc_cmdq_context_info *ctx = &host->cmdq_ctx; int ret = 0; if ((card->quirks & MMC_QUIRK_CMDQ_EMPTY_BEFORE_DCMD) && ctx->active_small_sector_read_reqs) { mmc_cmdq_up_rwsem(host); ret = wait_event_interruptible(ctx->queue_empty_wq, !ctx->active_reqs); if (ret) { pr_err("%s: failed while waiting for the CMDQ to be empty %s err (%d)\n", mmc_hostname(host), __func__, ret); BUG_ON(1); } /* clear the counter now */ ctx->active_small_sector_read_reqs = 0; ret = mmc_cmdq_down_rwsem(host, req); if (ret) return ret; /* * If there were small sector (less than 8 sectors) read * operations in progress then we have to wait for the * outstanding requests to finish and should also have * atleast 6 microseconds delay before queuing the DCMD * request. */ udelay(MMC_QUIRK_CMDQ_DELAY_BEFORE_DCMD); } return ret; } static int mmc_blk_cmdq_issue_drv_op(struct mmc_card *card, struct mmc_queue *mq, struct request *req) { int ret; ret = mmc_cmdq_halt_on_empty_queue(card->host); if (ret) { pr_err("%s: failed to halt on empty queue\n", mmc_hostname(card->host)); blk_end_request_all(req, ret); mmc_put_card(card); return ret; } mmc_blk_issue_drv_op(mq, req); ret = mmc_cmdq_halt(card->host, false); if (ret) pr_err("%s: %s: failed to unhalt\n", mmc_hostname(card->host), __func__); mmc_put_card(card); return ret; } static int mmc_blk_cmdq_issue_rq(struct mmc_queue *mq, struct request *req) { int ret, err = 0; struct mmc_blk_data *md = mq->blkdata; struct mmc_card *card = md->queue.card; struct mmc_host *host = card->host; mmc_get_card(card); if (!card->host->cmdq_ctx.active_reqs && mmc_card_doing_bkops(card)) { ret = mmc_cmdq_halt(card->host, true); if (ret) goto out; ret = mmc_stop_bkops(card); if (ret) { pr_err("%s: %s: mmc_stop_bkops failed %d\n", md->disk->disk_name, __func__, ret); goto out; } ret = mmc_cmdq_halt(card->host, false); if (ret) goto out; } ret = mmc_blk_cmdq_part_switch(card, md); if (ret) { pr_err("%s: %s: partition switch failed %d, resetting cmdq\n", md->disk->disk_name, __func__, ret); mmc_blk_cmdq_reset(host, false); err = mmc_blk_cmdq_part_switch(card, md); if (!err) { pr_err("%s: %s: partition switch success err = %d\n", md->disk->disk_name, __func__, err); } else { pr_err("%s: %s: partition switch failed err = %d\n", md->disk->disk_name, __func__, err); ret = err; goto out; } } if (req) { switch (req_op(req)) { case REQ_OP_DISCARD: ret = mmc_cmdq_wait_for_small_sector_read(card, req); if (!ret) ret = mmc_blk_cmdq_issue_discard_rq(mq, req); break; case REQ_OP_SECURE_ERASE: ret = mmc_cmdq_wait_for_small_sector_read(card, req); if (ret) break; if (!(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN)) ret = mmc_blk_cmdq_issue_secdiscard_rq(mq, req); else ret = mmc_blk_cmdq_issue_discard_rq(mq, req); break; case REQ_OP_FLUSH: ret = mmc_cmdq_wait_for_small_sector_read(card, req); if (!ret) ret = mmc_blk_cmdq_issue_flush_rq(mq, req); break; case REQ_OP_DRV_IN: case REQ_OP_DRV_OUT: ret = mmc_blk_cmdq_issue_drv_op(card, mq, req); break; default: ret = mmc_blk_cmdq_issue_rw_rq(mq, req); /* * If issuing of the request fails with eitehr EBUSY or * EAGAIN error, re-queue the request. * This case would occur with ICE calls. * For request which gets completed successfully or * errored out, we release host lock in completion or * error handling softirq context. But here the request * is neither completed nor erred-out, so release the * host lock explicitly. */ if (ret == -EBUSY || ret == -EAGAIN) { mmc_blk_cmdq_requeue_rw_rq(mq, req); mmc_put_card(host->card); } else if (ret == -ENOMEM) { /* * Elaborate error handling is not needed for * system errors. Let the higher layer decide * on the next steps. */ goto out; } break; } } return ret; out: if (req) blk_end_request_all(req, ret); mmc_put_card(card); return ret; } void mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req) { int ret; struct mmc_blk_data *md = mq->blkdata; struct mmc_card *card = md->queue.card; int err; if (req && !mq->qcnt) { /* claim host only for the first request */ mmc_get_card(card); if (mmc_card_doing_bkops(card)) { ret = mmc_stop_bkops(card); if (ret) goto out; } } ret = mmc_blk_part_switch(card, md->part_type); if (ret) { err = mmc_blk_reset(md, card->host, MMC_BLK_PARTSWITCH); if (!err) { pr_err("%s: mmc_blk_reset(MMC_BLK_PARTSWITCH) succeeded.\n", mmc_hostname(card->host)); mmc_blk_reset_success(md, MMC_BLK_PARTSWITCH); } else pr_err("%s: mmc_blk_reset(MMC_BLK_PARTSWITCH) failed.\n", mmc_hostname(card->host)); if (req) { blk_end_request_all(req, BLK_STS_IOERR); } goto out; } if (req) { switch (req_op(req)) { case REQ_OP_DRV_IN: case REQ_OP_DRV_OUT: /* * Complete ongoing async transfer before issuing * ioctl()s */ if (mq->qcnt) mmc_blk_issue_rw_rq(mq, NULL); mmc_blk_issue_drv_op(mq, req); break; case REQ_OP_DISCARD: /* * Complete ongoing async transfer before issuing * discard. */ if (mq->qcnt) mmc_blk_issue_rw_rq(mq, NULL); mmc_blk_issue_discard_rq(mq, req); break; case REQ_OP_SECURE_ERASE: /* * Complete ongoing async transfer before issuing * secure erase. */ if (mq->qcnt) mmc_blk_issue_rw_rq(mq, NULL); if (!(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN)) mmc_blk_issue_secdiscard_rq(mq, req); else mmc_blk_issue_discard_rq(mq, req); break; case REQ_OP_FLUSH: /* * Complete ongoing async transfer before issuing * flush. */ if (mq->qcnt) mmc_blk_issue_rw_rq(mq, NULL); mmc_blk_issue_flush(mq, req); break; default: /* Normal request, just issue it */ mmc_blk_issue_rw_rq(mq, req); card->host->context_info.is_waiting_last_req = false; break; } } else { /* No request, flushing the pipeline with NULL */ mmc_blk_issue_rw_rq(mq, NULL); card->host->context_info.is_waiting_last_req = false; } out: if (!mq->qcnt) mmc_put_card(card); } static inline int mmc_blk_readonly(struct mmc_card *card) { return mmc_card_readonly(card) || !(card->csd.cmdclass & CCC_BLOCK_WRITE); } static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, struct device *parent, sector_t size, bool default_ro, const char *subname, int area_type) { struct mmc_blk_data *md; int devidx, ret; devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL); if (devidx < 0) { /* * We get -ENOSPC because there are no more any available * devidx. The reason may be that, either userspace haven't yet * unmounted the partitions, which postpones mmc_blk_release() * from being called, or the device has more partitions than * what we support. */ if (devidx == -ENOSPC) dev_err(mmc_dev(card->host), "no more device IDs available\n"); return ERR_PTR(devidx); } md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); if (!md) { ret = -ENOMEM; goto out; } md->area_type = area_type; /* * Set the read-only status based on the supported commands * and the write protect switch. */ md->read_only = mmc_blk_readonly(card); md->disk = alloc_disk(perdev_minors); if (md->disk == NULL) { ret = -ENOMEM; goto err_kfree; } spin_lock_init(&md->lock); INIT_LIST_HEAD(&md->part); md->usage = 1; ret = mmc_init_queue(&md->queue, card, &md->lock, subname, area_type); if (ret) goto err_putdisk; md->queue.blkdata = md; md->disk->major = MMC_BLOCK_MAJOR; md->disk->first_minor = devidx * perdev_minors; md->disk->fops = &mmc_bdops; md->disk->private_data = md; md->disk->queue = md->queue.queue; md->parent = parent; set_disk_ro(md->disk, md->read_only || default_ro); md->disk->flags = GENHD_FL_EXT_DEVT; if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) md->disk->flags |= GENHD_FL_NO_PART_SCAN; /* * As discussed on lkml, GENHD_FL_REMOVABLE should: * * - be set for removable media with permanent block devices * - be unset for removable block devices with permanent media * * Since MMC block devices clearly fall under the second * case, we do not set GENHD_FL_REMOVABLE. Userspace * should use the block device creation/destruction hotplug * messages to tell when the card is present. */ snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), "mmcblk%u%s", card->host->index, subname ? subname : ""); if (mmc_card_mmc(card)) blk_queue_logical_block_size(md->queue.queue, card->ext_csd.data_sector_size); else blk_queue_logical_block_size(md->queue.queue, 512); set_capacity(md->disk, size); if (mmc_host_cmd23(card->host)) { if ((mmc_card_mmc(card) && card->csd.mmca_vsn >= CSD_SPEC_VER_3) || (mmc_card_sd(card) && card->scr.cmds & SD_SCR_CMD23_SUPPORT)) md->flags |= MMC_BLK_CMD23; } if (mmc_card_mmc(card) && md->flags & MMC_BLK_CMD23 && ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || card->ext_csd.rel_sectors)) { md->flags |= MMC_BLK_REL_WR; blk_queue_write_cache(md->queue.queue, true, true); } if (card->cmdq_init) { md->flags |= MMC_BLK_CMD_QUEUE; md->queue.cmdq_complete_fn = mmc_blk_cmdq_complete_rq; md->queue.cmdq_issue_fn = mmc_blk_cmdq_issue_rq; md->queue.cmdq_error_fn = mmc_blk_cmdq_err; md->queue.cmdq_req_timed_out = mmc_blk_cmdq_req_timed_out; md->queue.cmdq_shutdown = mmc_blk_cmdq_shutdown; } return md; err_putdisk: put_disk(md->disk); err_kfree: kfree(md); out: ida_simple_remove(&mmc_blk_ida, devidx); return ERR_PTR(ret); } static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) { sector_t size; if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { /* * The EXT_CSD sector count is in number or 512 byte * sectors. */ size = card->ext_csd.sectors; } else { /* * The CSD capacity field is in units of read_blkbits. * set_capacity takes units of 512 bytes. */ size = (typeof(sector_t))card->csd.capacity << (card->csd.read_blkbits - 9); } return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, MMC_BLK_DATA_AREA_MAIN); } static int mmc_blk_alloc_part(struct mmc_card *card, struct mmc_blk_data *md, unsigned int part_type, sector_t size, bool default_ro, const char *subname, int area_type) { char cap_str[10]; struct mmc_blk_data *part_md; part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, subname, area_type); if (IS_ERR(part_md)) return PTR_ERR(part_md); part_md->part_type = part_type; list_add(&part_md->part, &md->part); string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2, cap_str, sizeof(cap_str)); pr_info("%s: %s %s partition %u %s\n", part_md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), part_md->part_type, cap_str); return 0; } /* MMC Physical partitions consist of two boot partitions and * up to four general purpose partitions. * For each partition enabled in EXT_CSD a block device will be allocatedi * to provide access to the partition. */ static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) { int idx, ret = 0; if (!mmc_card_mmc(card)) return 0; for (idx = 0; idx < card->nr_parts; idx++) { if (card->part[idx].size) { ret = mmc_blk_alloc_part(card, md, card->part[idx].part_cfg, card->part[idx].size >> 9, card->part[idx].force_ro, card->part[idx].name, card->part[idx].area_type); if (ret) return ret; } } return ret; } static void mmc_blk_remove_req(struct mmc_blk_data *md) { struct mmc_card *card; if (md) { /* * Flush remaining requests and free queues. It * is freeing the queue that stops new requests * from being accepted. */ card = md->queue.card; spin_lock_irq(md->queue.queue->queue_lock); queue_flag_set(QUEUE_FLAG_BYPASS, md->queue.queue); spin_unlock_irq(md->queue.queue->queue_lock); blk_set_queue_dying(md->queue.queue); mmc_cleanup_queue(&md->queue); if (md->flags & MMC_BLK_CMD_QUEUE) mmc_cmdq_clean(&md->queue, card); if (md->disk->flags & GENHD_FL_UP) { device_remove_file(disk_to_dev(md->disk), &md->force_ro); if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && card->ext_csd.boot_ro_lockable) device_remove_file(disk_to_dev(md->disk), &md->power_ro_lock); #ifdef CONFIG_MMC_SIMULATE_MAX_SPEED device_remove_file(disk_to_dev(md->disk), &dev_attr_max_write_speed); device_remove_file(disk_to_dev(md->disk), &dev_attr_max_read_speed); device_remove_file(disk_to_dev(md->disk), &dev_attr_cache_size); #endif del_gendisk(md->disk); } mmc_blk_put(md); } } static void mmc_blk_remove_parts(struct mmc_card *card, struct mmc_blk_data *md) { struct list_head *pos, *q; struct mmc_blk_data *part_md; list_for_each_safe(pos, q, &md->part) { part_md = list_entry(pos, struct mmc_blk_data, part); list_del(pos); mmc_blk_remove_req(part_md); } } static int mmc_add_disk(struct mmc_blk_data *md) { int ret; struct mmc_card *card = md->queue.card; device_add_disk(md->parent, md->disk); md->force_ro.show = force_ro_show; md->force_ro.store = force_ro_store; sysfs_attr_init(&md->force_ro.attr); md->force_ro.attr.name = "force_ro"; md->force_ro.attr.mode = S_IRUGO | S_IWUSR; ret = device_create_file(disk_to_dev(md->disk), &md->force_ro); if (ret) goto force_ro_fail; #ifdef CONFIG_MMC_SIMULATE_MAX_SPEED atomic_set(&md->queue.max_write_speed, max_write_speed); ret = device_create_file(disk_to_dev(md->disk), &dev_attr_max_write_speed); if (ret) goto max_write_speed_fail; atomic_set(&md->queue.max_read_speed, max_read_speed); ret = device_create_file(disk_to_dev(md->disk), &dev_attr_max_read_speed); if (ret) goto max_read_speed_fail; atomic_set(&md->queue.cache_size, cache_size); atomic_long_set(&md->queue.cache_used, 0); md->queue.cache_jiffies = jiffies; ret = device_create_file(disk_to_dev(md->disk), &dev_attr_cache_size); if (ret) goto cache_size_fail; #endif if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && card->ext_csd.boot_ro_lockable) { umode_t mode; if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS) mode = S_IRUGO; else mode = S_IRUGO | S_IWUSR; md->power_ro_lock.show = power_ro_lock_show; md->power_ro_lock.store = power_ro_lock_store; sysfs_attr_init(&md->power_ro_lock.attr); md->power_ro_lock.attr.mode = mode; md->power_ro_lock.attr.name = "ro_lock_until_next_power_on"; ret = device_create_file(disk_to_dev(md->disk), &md->power_ro_lock); if (ret) goto power_ro_lock_fail; } return ret; power_ro_lock_fail: #ifdef CONFIG_MMC_SIMULATE_MAX_SPEED device_remove_file(disk_to_dev(md->disk), &dev_attr_cache_size); cache_size_fail: device_remove_file(disk_to_dev(md->disk), &dev_attr_max_read_speed); max_read_speed_fail: device_remove_file(disk_to_dev(md->disk), &dev_attr_max_write_speed); max_write_speed_fail: #endif device_remove_file(disk_to_dev(md->disk), &md->force_ro); force_ro_fail: del_gendisk(md->disk); return ret; } #ifdef CONFIG_DEBUG_FS static int mmc_dbg_card_status_get(void *data, u64 *val) { struct mmc_card *card = data; struct mmc_blk_data *md = dev_get_drvdata(&card->dev); struct mmc_queue *mq = &md->queue; struct request *req; int ret; /* Ask the block layer about the card status */ req = blk_get_request(mq->queue, REQ_OP_DRV_IN, __GFP_RECLAIM); if (IS_ERR(req)) return PTR_ERR(req); req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; blk_execute_rq(mq->queue, NULL, req, 0); ret = req_to_mmc_queue_req(req)->drv_op_result; if (ret >= 0) { *val = ret; ret = 0; } blk_put_request(req); return ret; } DEFINE_SIMPLE_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, NULL, "%08llx\n"); /* That is two digits * 512 + 1 for newline */ #define EXT_CSD_STR_LEN 1025 static int mmc_ext_csd_open(struct inode *inode, struct file *filp) { struct mmc_card *card = inode->i_private; struct mmc_blk_data *md = dev_get_drvdata(&card->dev); struct mmc_queue *mq = &md->queue; struct request *req; char *buf; ssize_t n = 0; u8 *ext_csd; int err, i; buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); if (!buf) return -ENOMEM; /* Ask the block layer for the EXT CSD */ req = blk_get_request(mq->queue, REQ_OP_DRV_IN, __GFP_RECLAIM); if (IS_ERR(req)) { err = PTR_ERR(req); goto out_free; } req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; blk_execute_rq(mq->queue, NULL, req, 0); err = req_to_mmc_queue_req(req)->drv_op_result; blk_put_request(req); if (err) { pr_err("FAILED %d\n", err); goto out_free; } for (i = 0; i < 512; i++) n += sprintf(buf + n, "%02x", ext_csd[i]); n += sprintf(buf + n, "\n"); if (n != EXT_CSD_STR_LEN) { err = -EINVAL; kfree(ext_csd); goto out_free; } filp->private_data = buf; kfree(ext_csd); return 0; out_free: kfree(buf); return err; } static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, size_t cnt, loff_t *ppos) { char *buf = filp->private_data; return simple_read_from_buffer(ubuf, cnt, ppos, buf, EXT_CSD_STR_LEN); } static int mmc_ext_csd_release(struct inode *inode, struct file *file) { kfree(file->private_data); return 0; } static const struct file_operations mmc_dbg_ext_csd_fops = { .open = mmc_ext_csd_open, .read = mmc_ext_csd_read, .release = mmc_ext_csd_release, .llseek = default_llseek, }; static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) { struct dentry *root; if (!card->debugfs_root) return 0; root = card->debugfs_root; if (mmc_card_mmc(card) || mmc_card_sd(card)) { md->status_dentry = debugfs_create_file("status", S_IRUSR, root, card, &mmc_dbg_card_status_fops); if (!md->status_dentry) return -EIO; } if (mmc_card_mmc(card)) { md->ext_csd_dentry = debugfs_create_file("ext_csd", S_IRUSR, root, card, &mmc_dbg_ext_csd_fops); if (!md->ext_csd_dentry) return -EIO; } return 0; } static void mmc_blk_remove_debugfs(struct mmc_card *card, struct mmc_blk_data *md) { if (!card->debugfs_root) return; if (!IS_ERR_OR_NULL(md->status_dentry)) { debugfs_remove(md->status_dentry); md->status_dentry = NULL; } if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) { debugfs_remove(md->ext_csd_dentry); md->ext_csd_dentry = NULL; } } #else static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) { return 0; } static void mmc_blk_remove_debugfs(struct mmc_card *card, struct mmc_blk_data *md) { } #endif /* CONFIG_DEBUG_FS */ static int mmc_blk_probe(struct mmc_card *card) { struct mmc_blk_data *md, *part_md; char cap_str[10]; /* * Check that the card supports the command class(es) we need. */ if (!(card->csd.cmdclass & CCC_BLOCK_READ)) return -ENODEV; mmc_fixup_device(card, mmc_blk_fixups); md = mmc_blk_alloc(card); if (IS_ERR(md)) return PTR_ERR(md); string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2, cap_str, sizeof(cap_str)); pr_info("%s: %s %s %s %s\n", md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), cap_str, md->read_only ? "(ro)" : ""); if (mmc_blk_alloc_parts(card, md)) goto out; dev_set_drvdata(&card->dev, md); mmc_set_bus_resume_policy(card->host, 1); if (mmc_add_disk(md)) goto out; list_for_each_entry(part_md, &md->part, part) { if (mmc_add_disk(part_md)) goto out; } /* Add two debugfs entries */ mmc_blk_add_debugfs(card, md); pm_runtime_set_autosuspend_delay(&card->dev, MMC_AUTOSUSPEND_DELAY_MS); pm_runtime_use_autosuspend(&card->dev); /* * Don't enable runtime PM for SD-combo cards here. Leave that * decision to be taken during the SDIO init sequence instead. */ if (card->type != MMC_TYPE_SD_COMBO) { pm_runtime_set_active(&card->dev); pm_runtime_enable(&card->dev); } return 0; out: mmc_blk_remove_parts(card, md); mmc_blk_remove_req(md); return 0; } static void mmc_blk_remove(struct mmc_card *card) { struct mmc_blk_data *md = dev_get_drvdata(&card->dev); mmc_blk_remove_debugfs(card, md); mmc_blk_remove_parts(card, md); pm_runtime_get_sync(&card->dev); mmc_claim_host(card->host); mmc_blk_part_switch(card, md->part_type); mmc_release_host(card->host); if (card->type != MMC_TYPE_SD_COMBO) pm_runtime_disable(&card->dev); pm_runtime_put_noidle(&card->dev); mmc_blk_remove_req(md); dev_set_drvdata(&card->dev, NULL); mmc_set_bus_resume_policy(card->host, 0); } static int _mmc_blk_suspend(struct mmc_card *card, bool wait) { struct mmc_blk_data *part_md; struct mmc_blk_data *md = dev_get_drvdata(&card->dev); int rc = 0; if (md) { rc = mmc_queue_suspend(&md->queue, wait); if (rc) goto out; list_for_each_entry(part_md, &md->part, part) { rc = mmc_queue_suspend(&part_md->queue, wait); if (rc) goto out_resume; } } goto out; out_resume: mmc_queue_resume(&md->queue); list_for_each_entry(part_md, &md->part, part) { mmc_queue_resume(&part_md->queue); } out: return rc; } static void mmc_blk_shutdown(struct mmc_card *card) { _mmc_blk_suspend(card, 1); } #ifdef CONFIG_PM_SLEEP static int mmc_blk_suspend(struct device *dev) { struct mmc_card *card = mmc_dev_to_card(dev); return _mmc_blk_suspend(card, 0); } static int mmc_blk_resume(struct device *dev) { struct mmc_blk_data *part_md; struct mmc_blk_data *md = dev_get_drvdata(dev); if (md) { /* * Resume involves the card going into idle state, * so current partition is always the main one. */ md->part_curr = md->part_type; mmc_queue_resume(&md->queue); list_for_each_entry(part_md, &md->part, part) { mmc_queue_resume(&part_md->queue); } } return 0; } #endif static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); static struct mmc_driver mmc_driver = { .drv = { .name = "mmcblk", .pm = &mmc_blk_pm_ops, }, .probe = mmc_blk_probe, .remove = mmc_blk_remove, .shutdown = mmc_blk_shutdown, }; static int __init mmc_blk_init(void) { int res; if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) pr_info("mmcblk: using %d minors per device\n", perdev_minors); max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); if (res) goto out; res = mmc_register_driver(&mmc_driver); if (res) goto out2; return 0; out2: unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); out: return res; } static void __exit mmc_blk_exit(void) { mmc_unregister_driver(&mmc_driver); unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); } module_init(mmc_blk_init); module_exit(mmc_blk_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");