summaryrefslogtreecommitdiff
path: root/compiler/optimizing/reference_type_propagation_test.cc
blob: d90567ae7ef7fe5691804eef0330090adc34e457 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
/*
 * Copyright (C) 2016 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "reference_type_propagation.h"

#include <random>

#include "base/arena_allocator.h"
#include "base/transform_array_ref.h"
#include "base/transform_iterator.h"
#include "builder.h"
#include "nodes.h"
#include "object_lock.h"
#include "optimizing_unit_test.h"

namespace art {

// TODO It would be good to use the following but there is a miniscule amount of
// chance for flakiness so we'll just use a set seed instead.
constexpr bool kUseTrueRandomness = false;

/**
 * Fixture class for unit testing the ReferenceTypePropagation phase. Used to verify the
 * functionality of methods and situations that are hard to set up with checker tests.
 */
template<typename SuperTest>
class ReferenceTypePropagationTestBase : public SuperTest, public OptimizingUnitTestHelper {
 public:
  ReferenceTypePropagationTestBase() : graph_(nullptr), propagation_(nullptr) { }

  ~ReferenceTypePropagationTestBase() { }

  void SetupPropagation(VariableSizedHandleScope* handles) {
    graph_ = CreateGraph(handles);
    propagation_ = new (GetAllocator()) ReferenceTypePropagation(graph_,
                                                                 Handle<mirror::ClassLoader>(),
                                                                 Handle<mirror::DexCache>(),
                                                                 true,
                                                                 "test_prop");
  }

  // Relay method to merge type in reference type propagation.
  ReferenceTypeInfo MergeTypes(const ReferenceTypeInfo& a,
                               const ReferenceTypeInfo& b) REQUIRES_SHARED(Locks::mutator_lock_) {
    return propagation_->MergeTypes(a, b, graph_->GetHandleCache());
  }

  // Helper method to construct an invalid type.
  ReferenceTypeInfo InvalidType() {
    return ReferenceTypeInfo::CreateInvalid();
  }

  // Helper method to construct the Object type.
  ReferenceTypeInfo ObjectType(bool is_exact = true) REQUIRES_SHARED(Locks::mutator_lock_) {
    return ReferenceTypeInfo::Create(graph_->GetHandleCache()->GetObjectClassHandle(), is_exact);
  }

  // Helper method to construct the String type.
  ReferenceTypeInfo StringType(bool is_exact = true) REQUIRES_SHARED(Locks::mutator_lock_) {
    return ReferenceTypeInfo::Create(graph_->GetHandleCache()->GetStringClassHandle(), is_exact);
  }

  // General building fields.
  HGraph* graph_;

  ReferenceTypePropagation* propagation_;
};

class ReferenceTypePropagationTest : public ReferenceTypePropagationTestBase<CommonCompilerTest> {};

enum class ShuffleOrder {
  kTopological,
  kReverseTopological,
  kAlmostTopological,
  kTrueRandom,
  kRandomSetSeed,

  kRandom = kUseTrueRandomness ? kTrueRandom : kRandomSetSeed,
};

std::ostream& operator<<(std::ostream& os, ShuffleOrder so) {
  switch (so) {
    case ShuffleOrder::kAlmostTopological:
      return os << "AlmostTopological";
    case ShuffleOrder::kReverseTopological:
      return os << "ReverseTopological";
    case ShuffleOrder::kTopological:
      return os << "Topological";
    case ShuffleOrder::kTrueRandom:
      return os << "TrueRandom";
    case ShuffleOrder::kRandomSetSeed:
      return os << "RandomSetSeed";
  }
}

template <typename Param>
class ParamReferenceTypePropagationTest
    : public ReferenceTypePropagationTestBase<CommonCompilerTestWithParam<Param>> {
 public:
  void MutateList(std::vector<HInstruction*>& lst, ShuffleOrder type);
};

class NonLoopReferenceTypePropagationTestGroup
    : public ParamReferenceTypePropagationTest<ShuffleOrder> {
 public:
  template <typename Func>
  void RunVisitListTest(Func mutator);
};

enum class InitialNullState {
  kAllNull,
  kAllNonNull,
  kHalfNull,
  kTrueRandom,
  kRandomSetSeed,

  kRandom = kUseTrueRandomness ? kTrueRandom : kRandomSetSeed,
};

std::ostream& operator<<(std::ostream& os, InitialNullState ni) {
  switch (ni) {
    case InitialNullState::kAllNull:
      return os << "AllNull";
    case InitialNullState::kAllNonNull:
      return os << "AllNonNull";
    case InitialNullState::kHalfNull:
      return os << "HalfNull";
    case InitialNullState::kTrueRandom:
      return os << "TrueRandom";
    case InitialNullState::kRandomSetSeed:
      return os << "RandomSetSeed";
  }
}

struct LoopOptions {
 public:
  using GtestParam = std::tuple<ShuffleOrder, ssize_t, size_t, InitialNullState>;
  explicit LoopOptions(GtestParam in) {
    std::tie(shuffle_, null_insertion_, null_phi_arg_, initial_null_state_) = in;
  }

  ShuffleOrder shuffle_;
  // Where in the list of phis we put the null. -1 if don't insert
  ssize_t null_insertion_;
  // Where in the phi arg-list we put the null.
  size_t null_phi_arg_;
  // What to set the initial null-state of all the phis to.
  InitialNullState initial_null_state_;
};

class LoopReferenceTypePropagationTestGroup
    : public ParamReferenceTypePropagationTest<LoopOptions::GtestParam> {
 public:
  template <typename Func>
  void RunVisitListTest(Func mutator);
};

//
// The actual ReferenceTypePropgation unit tests.
//

TEST_F(ReferenceTypePropagationTest, ProperSetup) {
  ScopedObjectAccess soa(Thread::Current());
  VariableSizedHandleScope handles(soa.Self());
  SetupPropagation(&handles);

  EXPECT_TRUE(propagation_ != nullptr);
  EXPECT_TRUE(graph_->GetInexactObjectRti().IsEqual(ObjectType(false)));
}

TEST_F(ReferenceTypePropagationTest, MergeInvalidTypes) {
  ScopedObjectAccess soa(Thread::Current());
  VariableSizedHandleScope handles(soa.Self());
  SetupPropagation(&handles);

  // Two invalid types.
  ReferenceTypeInfo t1(MergeTypes(InvalidType(), InvalidType()));
  EXPECT_FALSE(t1.IsValid());
  EXPECT_FALSE(t1.IsExact());
  EXPECT_TRUE(t1.IsEqual(InvalidType()));

  // Valid type on right.
  ReferenceTypeInfo t2(MergeTypes(InvalidType(), ObjectType()));
  EXPECT_TRUE(t2.IsValid());
  EXPECT_TRUE(t2.IsExact());
  EXPECT_TRUE(t2.IsEqual(ObjectType()));
  ReferenceTypeInfo t3(MergeTypes(InvalidType(), StringType()));
  EXPECT_TRUE(t3.IsValid());
  EXPECT_TRUE(t3.IsExact());
  EXPECT_TRUE(t3.IsEqual(StringType()));

  // Valid type on left.
  ReferenceTypeInfo t4(MergeTypes(ObjectType(), InvalidType()));
  EXPECT_TRUE(t4.IsValid());
  EXPECT_TRUE(t4.IsExact());
  EXPECT_TRUE(t4.IsEqual(ObjectType()));
  ReferenceTypeInfo t5(MergeTypes(StringType(), InvalidType()));
  EXPECT_TRUE(t5.IsValid());
  EXPECT_TRUE(t5.IsExact());
  EXPECT_TRUE(t5.IsEqual(StringType()));
}

TEST_F(ReferenceTypePropagationTest, MergeValidTypes) {
  ScopedObjectAccess soa(Thread::Current());
  VariableSizedHandleScope handles(soa.Self());
  SetupPropagation(&handles);

  // Same types.
  ReferenceTypeInfo t1(MergeTypes(ObjectType(), ObjectType()));
  EXPECT_TRUE(t1.IsValid());
  EXPECT_TRUE(t1.IsExact());
  EXPECT_TRUE(t1.IsEqual(ObjectType()));
  ReferenceTypeInfo t2(MergeTypes(StringType(), StringType()));
  EXPECT_TRUE(t2.IsValid());
  EXPECT_TRUE(t2.IsExact());
  EXPECT_TRUE(t2.IsEqual(StringType()));

  // Left is super class of right.
  ReferenceTypeInfo t3(MergeTypes(ObjectType(), StringType()));
  EXPECT_TRUE(t3.IsValid());
  EXPECT_FALSE(t3.IsExact());
  EXPECT_TRUE(t3.IsEqual(ObjectType(false)));

  // Right is super class of left.
  ReferenceTypeInfo t4(MergeTypes(StringType(), ObjectType()));
  EXPECT_TRUE(t4.IsValid());
  EXPECT_FALSE(t4.IsExact());
  EXPECT_TRUE(t4.IsEqual(ObjectType(false)));

  // Same types, but one or both are inexact.
  ReferenceTypeInfo t5(MergeTypes(ObjectType(false), ObjectType()));
  EXPECT_TRUE(t5.IsValid());
  EXPECT_FALSE(t5.IsExact());
  EXPECT_TRUE(t5.IsEqual(ObjectType(false)));
  ReferenceTypeInfo t6(MergeTypes(ObjectType(), ObjectType(false)));
  EXPECT_TRUE(t6.IsValid());
  EXPECT_FALSE(t6.IsExact());
  EXPECT_TRUE(t6.IsEqual(ObjectType(false)));
  ReferenceTypeInfo t7(MergeTypes(ObjectType(false), ObjectType(false)));
  EXPECT_TRUE(t7.IsValid());
  EXPECT_FALSE(t7.IsExact());
  EXPECT_TRUE(t7.IsEqual(ObjectType(false)));
}

// This generates a large graph with a ton of phis including loop-phis. It then
// calls the 'mutator' function with the list of all the phis and a CanBeNull
// instruction and then tries to propagate the types. mutator should reorder the
// list in some way and modify some phis in whatever way it wants. We verify
// everything worked by making sure every phi has valid type information.
template <typename Func>
void LoopReferenceTypePropagationTestGroup::RunVisitListTest(Func mutator) {
  ScopedObjectAccess soa(Thread::Current());
  VariableSizedHandleScope handles(soa.Self());
  SetupPropagation(&handles);
  // Make a well-connected graph with a lot of edges.
  constexpr size_t kNumBlocks = 100;
  constexpr size_t kTestMaxSuccessors = 3;
  std::vector<std::string> mid_blocks;
  for (auto i : Range(kNumBlocks)) {
    std::ostringstream oss;
    oss << "blk" << i;
    mid_blocks.push_back(oss.str());
  }
  // Create the edge list.
  std::vector<AdjacencyListGraph::Edge> edges;
  for (auto cur : Range(kNumBlocks)) {
    for (auto nxt : Range(cur + 1, std::min(cur + 1 + kTestMaxSuccessors, kNumBlocks))) {
      edges.emplace_back(mid_blocks[cur], mid_blocks[nxt]);
    }
  }
  // Add a loop.
  edges.emplace_back("start", mid_blocks.front());
  edges.emplace_back(mid_blocks.back(), mid_blocks.front());
  edges.emplace_back(mid_blocks.front(), "exit");

  AdjacencyListGraph alg(graph_, GetAllocator(), "start", "exit", edges);
  std::unordered_map<HBasicBlock*, HInstruction*> single_value;
  HInstruction* maybe_null_val = new (GetAllocator())
      HParameterValue(graph_->GetDexFile(), dex::TypeIndex(1), 1, DataType::Type::kReference);
  ASSERT_TRUE(maybe_null_val->CanBeNull());
  // Setup the entry-block with the type to be propagated.
  HInstruction* cls =
      new (GetAllocator()) HLoadClass(graph_->GetCurrentMethod(),
                                      dex::TypeIndex(10),
                                      graph_->GetDexFile(),
                                      graph_->GetHandleCache()->GetObjectClassHandle(),
                                      false,
                                      0,
                                      false);
  HInstruction* new_inst =
      new (GetAllocator()) HNewInstance(cls,
                                        0,
                                        dex::TypeIndex(10),
                                        graph_->GetDexFile(),
                                        false,
                                        QuickEntrypointEnum::kQuickAllocObjectInitialized);
  single_value[alg.Get(mid_blocks.front())] = new_inst;
  HBasicBlock* start = alg.Get("start");
  start->AddInstruction(maybe_null_val);
  start->AddInstruction(cls);
  start->AddInstruction(new_inst);
  new_inst->SetReferenceTypeInfo(ObjectType(true));
  maybe_null_val->SetReferenceTypeInfo(ObjectType(true));
  single_value[start] = new_inst;

  // Setup all the other blocks with a single PHI
  auto range = MakeIterationRange(mid_blocks);
  auto succ_blocks = MakeTransformRange(range, [&](const auto& sv) { return alg.Get(sv); });
  for (HBasicBlock* blk : succ_blocks) {
    HPhi* phi_inst = new (GetAllocator()) HPhi(
        GetAllocator(), kNoRegNumber, blk->GetPredecessors().size(), DataType::Type::kReference);
    single_value[blk] = phi_inst;
  }
  for (HBasicBlock* blk : succ_blocks) {
    HInstruction* my_val = single_value[blk];
    for (const auto& [pred, index] : ZipCount(MakeIterationRange(blk->GetPredecessors()))) {
      CHECK(single_value[pred] != nullptr) << pred->GetBlockId() << " " << alg.GetName(pred);
      my_val->SetRawInputAt(index, single_value[pred]);
    }
  }
  for (HBasicBlock* blk : succ_blocks) {
    CHECK(single_value[blk]->IsPhi()) << blk->GetBlockId();
    blk->AddPhi(single_value[blk]->AsPhi());
  }
  auto vals = MakeTransformRange(succ_blocks, [&](HBasicBlock* blk) {
    DCHECK(single_value[blk]->IsPhi());
    return single_value[blk];
  });
  std::vector<HInstruction*> ins(vals.begin(), vals.end());
  CHECK(std::none_of(ins.begin(), ins.end(), [](auto x) { return x == nullptr; }));
  mutator(ins, maybe_null_val);
  propagation_->Visit(ArrayRef<HInstruction* const>(ins));
  bool is_nullable = !maybe_null_val->GetUses().empty();
  for (auto [blk, i] : single_value) {
    if (blk == start) {
      continue;
    }
    EXPECT_TRUE(i->GetReferenceTypeInfo().IsValid())
        << i->GetId() << " blk: " << alg.GetName(i->GetBlock());
    if (is_nullable) {
      EXPECT_TRUE(i->CanBeNull());
    } else {
      EXPECT_FALSE(i->CanBeNull());
    }
  }
}

// This generates a large graph with a ton of phis. It then calls the 'mutator'
// function with the list of all the phis and then tries to propagate the types.
// mutator should reorder the list in some way. We verify everything worked by
// making sure every phi has valid type information.
template <typename Func>
void NonLoopReferenceTypePropagationTestGroup::RunVisitListTest(Func mutator) {
  ScopedObjectAccess soa(Thread::Current());
  VariableSizedHandleScope handles(soa.Self());
  SetupPropagation(&handles);
  // Make a well-connected graph with a lot of edges.
  constexpr size_t kNumBlocks = 5000;
  constexpr size_t kTestMaxSuccessors = 2;
  std::vector<std::string> mid_blocks;
  for (auto i : Range(kNumBlocks)) {
    std::ostringstream oss;
    oss << "blk" << i;
    mid_blocks.push_back(oss.str());
  }
  // Create the edge list.
  std::vector<AdjacencyListGraph::Edge> edges;
  for (auto cur : Range(kNumBlocks)) {
    for (auto nxt : Range(cur + 1, std::min(cur + 1 + kTestMaxSuccessors, kNumBlocks))) {
      edges.emplace_back(mid_blocks[cur], mid_blocks[nxt]);
    }
  }
  AdjacencyListGraph alg(graph_, GetAllocator(), mid_blocks.front(), mid_blocks.back(), edges);
  std::unordered_map<HBasicBlock*, HInstruction*> single_value;
  // Setup the entry-block with the type to be propagated.
  HInstruction* cls =
      new (GetAllocator()) HLoadClass(graph_->GetCurrentMethod(),
                                      dex::TypeIndex(10),
                                      graph_->GetDexFile(),
                                      graph_->GetHandleCache()->GetObjectClassHandle(),
                                      false,
                                      0,
                                      false);
  HInstruction* new_inst =
      new (GetAllocator()) HNewInstance(cls,
                                        0,
                                        dex::TypeIndex(10),
                                        graph_->GetDexFile(),
                                        false,
                                        QuickEntrypointEnum::kQuickAllocObjectInitialized);
  single_value[alg.Get(mid_blocks.front())] = new_inst;
  HBasicBlock* start = alg.Get(mid_blocks.front());
  start->AddInstruction(cls);
  start->AddInstruction(new_inst);
  new_inst->SetReferenceTypeInfo(ObjectType(true));

  // Setup all the other blocks with a single PHI
  auto succ_blk_names = MakeIterationRange(mid_blocks.begin() + 1, mid_blocks.end());
  auto succ_blocks =
      MakeTransformRange(succ_blk_names, [&](const auto& sv) { return alg.Get(sv); });
  for (HBasicBlock* blk : succ_blocks) {
    HPhi* phi_inst = new (GetAllocator()) HPhi(
        GetAllocator(), kNoRegNumber, blk->GetPredecessors().size(), DataType::Type::kReference);
    single_value[blk] = phi_inst;
  }
  for (HBasicBlock* blk : succ_blocks) {
    HInstruction* my_val = single_value[blk];
    for (const auto& [pred, index] : ZipCount(MakeIterationRange(blk->GetPredecessors()))) {
      my_val->SetRawInputAt(index, single_value[pred]);
    }
    blk->AddPhi(my_val->AsPhi());
  }
  auto vals = MakeTransformRange(succ_blocks, [&](HBasicBlock* blk) { return single_value[blk]; });
  std::vector<HInstruction*> ins(vals.begin(), vals.end());
  graph_->ClearReachabilityInformation();
  graph_->ComputeReachabilityInformation();
  mutator(ins);
  propagation_->Visit(ArrayRef<HInstruction* const>(ins));
  for (auto [blk, i] : single_value) {
    if (blk == start) {
      continue;
    }
    EXPECT_TRUE(i->GetReferenceTypeInfo().IsValid())
        << i->GetId() << " blk: " << alg.GetName(i->GetBlock());
  }
}

template <typename Param>
void ParamReferenceTypePropagationTest<Param>::MutateList(std::vector<HInstruction*>& lst,
                                                          ShuffleOrder type) {
  DCHECK(std::none_of(lst.begin(), lst.end(), [](auto* i) { return i == nullptr; }));
  std::default_random_engine g(type != ShuffleOrder::kTrueRandom ? 42 : std::rand());
  switch (type) {
    case ShuffleOrder::kTopological: {
      // Input is topologically sorted due to the way we create the phis.
      break;
    }
    case ShuffleOrder::kReverseTopological: {
      std::reverse(lst.begin(), lst.end());
      break;
    }
    case ShuffleOrder::kAlmostTopological: {
      std::swap(lst.front(), lst.back());
      break;
    }
    case ShuffleOrder::kRandomSetSeed:
    case ShuffleOrder::kTrueRandom: {
      std::shuffle(lst.begin(), lst.end(), g);
      break;
    }
  }
}

TEST_P(LoopReferenceTypePropagationTestGroup, RunVisitTest) {
  LoopOptions lo(GetParam());
  std::default_random_engine g(
      lo.initial_null_state_ != InitialNullState::kTrueRandom ? 42 : std::rand());
  std::uniform_int_distribution<bool> uid(false, true);
  RunVisitListTest([&](std::vector<HInstruction*>& lst, HInstruction* null_input) {
    auto pred_null = false;
    auto next_null = [&]() {
      switch (lo.initial_null_state_) {
        case InitialNullState::kAllNonNull:
          return false;
        case InitialNullState::kAllNull:
          return true;
        case InitialNullState::kHalfNull:
          pred_null = !pred_null;
          return pred_null;
        case InitialNullState::kRandomSetSeed:
        case InitialNullState::kTrueRandom:
          return uid(g);
      }
    };
    HPhi* nulled_phi = lo.null_insertion_ >= 0 ? lst[lo.null_insertion_]->AsPhi() : nullptr;
    if (nulled_phi != nullptr) {
      nulled_phi->ReplaceInput(null_input, lo.null_phi_arg_);
    }
    MutateList(lst, lo.shuffle_);
    std::for_each(lst.begin(), lst.end(), [&](HInstruction* ins) {
      ins->AsPhi()->SetCanBeNull(next_null());
    });
  });
}

INSTANTIATE_TEST_SUITE_P(ReferenceTypePropagationTest,
                         LoopReferenceTypePropagationTestGroup,
                         testing::Combine(testing::Values(ShuffleOrder::kAlmostTopological,
                                                          ShuffleOrder::kReverseTopological,
                                                          ShuffleOrder::kTopological,
                                                          ShuffleOrder::kRandom),
                                          testing::Values(-1, 10, 40),
                                          testing::Values(0, 1),
                                          testing::Values(InitialNullState::kAllNonNull,
                                                          InitialNullState::kAllNull,
                                                          InitialNullState::kHalfNull,
                                                          InitialNullState::kRandom)));

TEST_P(NonLoopReferenceTypePropagationTestGroup, RunVisitTest) {
  RunVisitListTest([&](std::vector<HInstruction*>& lst) { MutateList(lst, GetParam()); });
}

INSTANTIATE_TEST_SUITE_P(ReferenceTypePropagationTest,
                         NonLoopReferenceTypePropagationTestGroup,
                         testing::Values(ShuffleOrder::kAlmostTopological,
                                         ShuffleOrder::kReverseTopological,
                                         ShuffleOrder::kTopological,
                                         ShuffleOrder::kRandom));

}  // namespace art