aboutsummaryrefslogtreecommitdiff
path: root/vm/compiler/codegen/arm/CodegenDriver.cpp
diff options
context:
space:
mode:
authorCarl Shapiro <cshapiro@google.com>2011-04-20 13:23:36 -0700
committerAndroid (Google) Code Review <android-gerrit@google.com>2011-04-20 13:23:36 -0700
commit58ddbada8c4d4a74a7d3ea0c7379c7e1fec6c255 (patch)
treeaf7a8dc12cd7ca558673fd65a1e7fcb2c9276733 /vm/compiler/codegen/arm/CodegenDriver.cpp
parent735b947c953f0e3a86090bb72c90ec423b7b201e (diff)
parent5d5b94c8d14b166af580d5dd5906db4f9527d6ca (diff)
Merge "Move the compiler into C++." into dalvik-dev
Diffstat (limited to 'vm/compiler/codegen/arm/CodegenDriver.cpp')
-rw-r--r--vm/compiler/codegen/arm/CodegenDriver.cpp4811
1 files changed, 4811 insertions, 0 deletions
diff --git a/vm/compiler/codegen/arm/CodegenDriver.cpp b/vm/compiler/codegen/arm/CodegenDriver.cpp
new file mode 100644
index 000000000..c38b16a46
--- /dev/null
+++ b/vm/compiler/codegen/arm/CodegenDriver.cpp
@@ -0,0 +1,4811 @@
+/*
+ * Copyright (C) 2009 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * This file contains codegen and support common to all supported
+ * ARM variants. It is included by:
+ *
+ * Codegen-$(TARGET_ARCH_VARIANT).c
+ *
+ * which combines this common code with specific support found in the
+ * applicable directory below this one.
+ */
+
+/*
+ * Mark garbage collection card. Skip if the value we're storing is null.
+ */
+static void markCard(CompilationUnit *cUnit, int valReg, int tgtAddrReg)
+{
+ int regCardBase = dvmCompilerAllocTemp(cUnit);
+ int regCardNo = dvmCompilerAllocTemp(cUnit);
+ ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondEq, valReg, 0);
+ loadWordDisp(cUnit, r6SELF, offsetof(Thread, cardTable),
+ regCardBase);
+ opRegRegImm(cUnit, kOpLsr, regCardNo, tgtAddrReg, GC_CARD_SHIFT);
+ storeBaseIndexed(cUnit, regCardBase, regCardNo, regCardBase, 0,
+ kUnsignedByte);
+ ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
+ target->defMask = ENCODE_ALL;
+ branchOver->generic.target = (LIR *)target;
+ dvmCompilerFreeTemp(cUnit, regCardBase);
+ dvmCompilerFreeTemp(cUnit, regCardNo);
+}
+
+static bool genConversionCall(CompilationUnit *cUnit, MIR *mir, void *funct,
+ int srcSize, int tgtSize)
+{
+ /*
+ * Don't optimize the register usage since it calls out to template
+ * functions
+ */
+ RegLocation rlSrc;
+ RegLocation rlDest;
+ dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */
+ if (srcSize == 1) {
+ rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
+ loadValueDirectFixed(cUnit, rlSrc, r0);
+ } else {
+ rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
+ loadValueDirectWideFixed(cUnit, rlSrc, r0, r1);
+ }
+ LOAD_FUNC_ADDR(cUnit, r2, (int)funct);
+ opReg(cUnit, kOpBlx, r2);
+ dvmCompilerClobberCallRegs(cUnit);
+ if (tgtSize == 1) {
+ RegLocation rlResult;
+ rlDest = dvmCompilerGetDest(cUnit, mir, 0);
+ rlResult = dvmCompilerGetReturn(cUnit);
+ storeValue(cUnit, rlDest, rlResult);
+ } else {
+ RegLocation rlResult;
+ rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
+ rlResult = dvmCompilerGetReturnWide(cUnit);
+ storeValueWide(cUnit, rlDest, rlResult);
+ }
+ return false;
+}
+
+static bool genArithOpFloatPortable(CompilationUnit *cUnit, MIR *mir,
+ RegLocation rlDest, RegLocation rlSrc1,
+ RegLocation rlSrc2)
+{
+ RegLocation rlResult;
+ void* funct;
+
+ switch (mir->dalvikInsn.opcode) {
+ case OP_ADD_FLOAT_2ADDR:
+ case OP_ADD_FLOAT:
+ funct = (void*) __aeabi_fadd;
+ break;
+ case OP_SUB_FLOAT_2ADDR:
+ case OP_SUB_FLOAT:
+ funct = (void*) __aeabi_fsub;
+ break;
+ case OP_DIV_FLOAT_2ADDR:
+ case OP_DIV_FLOAT:
+ funct = (void*) __aeabi_fdiv;
+ break;
+ case OP_MUL_FLOAT_2ADDR:
+ case OP_MUL_FLOAT:
+ funct = (void*) __aeabi_fmul;
+ break;
+ case OP_REM_FLOAT_2ADDR:
+ case OP_REM_FLOAT:
+ funct = (void*) fmodf;
+ break;
+ case OP_NEG_FLOAT: {
+ genNegFloat(cUnit, rlDest, rlSrc1);
+ return false;
+ }
+ default:
+ return true;
+ }
+ dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */
+ loadValueDirectFixed(cUnit, rlSrc1, r0);
+ loadValueDirectFixed(cUnit, rlSrc2, r1);
+ LOAD_FUNC_ADDR(cUnit, r2, (int)funct);
+ opReg(cUnit, kOpBlx, r2);
+ dvmCompilerClobberCallRegs(cUnit);
+ rlResult = dvmCompilerGetReturn(cUnit);
+ storeValue(cUnit, rlDest, rlResult);
+ return false;
+}
+
+static bool genArithOpDoublePortable(CompilationUnit *cUnit, MIR *mir,
+ RegLocation rlDest, RegLocation rlSrc1,
+ RegLocation rlSrc2)
+{
+ RegLocation rlResult;
+ void* funct;
+
+ switch (mir->dalvikInsn.opcode) {
+ case OP_ADD_DOUBLE_2ADDR:
+ case OP_ADD_DOUBLE:
+ funct = (void*) __aeabi_dadd;
+ break;
+ case OP_SUB_DOUBLE_2ADDR:
+ case OP_SUB_DOUBLE:
+ funct = (void*) __aeabi_dsub;
+ break;
+ case OP_DIV_DOUBLE_2ADDR:
+ case OP_DIV_DOUBLE:
+ funct = (void*) __aeabi_ddiv;
+ break;
+ case OP_MUL_DOUBLE_2ADDR:
+ case OP_MUL_DOUBLE:
+ funct = (void*) __aeabi_dmul;
+ break;
+ case OP_REM_DOUBLE_2ADDR:
+ case OP_REM_DOUBLE:
+ funct = (void*) fmod;
+ break;
+ case OP_NEG_DOUBLE: {
+ genNegDouble(cUnit, rlDest, rlSrc1);
+ return false;
+ }
+ default:
+ return true;
+ }
+ dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */
+ LOAD_FUNC_ADDR(cUnit, r14lr, (int)funct);
+ loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
+ loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
+ opReg(cUnit, kOpBlx, r14lr);
+ dvmCompilerClobberCallRegs(cUnit);
+ rlResult = dvmCompilerGetReturnWide(cUnit);
+ storeValueWide(cUnit, rlDest, rlResult);
+#if defined(WITH_SELF_VERIFICATION)
+ cUnit->usesLinkRegister = true;
+#endif
+ return false;
+}
+
+static bool genConversionPortable(CompilationUnit *cUnit, MIR *mir)
+{
+ Opcode opcode = mir->dalvikInsn.opcode;
+
+ switch (opcode) {
+ case OP_INT_TO_FLOAT:
+ return genConversionCall(cUnit, mir, (void*)__aeabi_i2f, 1, 1);
+ case OP_FLOAT_TO_INT:
+ return genConversionCall(cUnit, mir, (void*)__aeabi_f2iz, 1, 1);
+ case OP_DOUBLE_TO_FLOAT:
+ return genConversionCall(cUnit, mir, (void*)__aeabi_d2f, 2, 1);
+ case OP_FLOAT_TO_DOUBLE:
+ return genConversionCall(cUnit, mir, (void*)__aeabi_f2d, 1, 2);
+ case OP_INT_TO_DOUBLE:
+ return genConversionCall(cUnit, mir, (void*)__aeabi_i2d, 1, 2);
+ case OP_DOUBLE_TO_INT:
+ return genConversionCall(cUnit, mir, (void*)__aeabi_d2iz, 2, 1);
+ case OP_FLOAT_TO_LONG:
+ return genConversionCall(cUnit, mir, (void*)dvmJitf2l, 1, 2);
+ case OP_LONG_TO_FLOAT:
+ return genConversionCall(cUnit, mir, (void*)__aeabi_l2f, 2, 1);
+ case OP_DOUBLE_TO_LONG:
+ return genConversionCall(cUnit, mir, (void*)dvmJitd2l, 2, 2);
+ case OP_LONG_TO_DOUBLE:
+ return genConversionCall(cUnit, mir, (void*)__aeabi_l2d, 2, 2);
+ default:
+ return true;
+ }
+ return false;
+}
+
+#if defined(WITH_SELF_VERIFICATION)
+static void selfVerificationBranchInsert(LIR *currentLIR, ArmOpcode opcode,
+ int dest, int src1)
+{
+ ArmLIR *insn = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
+ insn->opcode = opcode;
+ insn->operands[0] = dest;
+ insn->operands[1] = src1;
+ setupResourceMasks(insn);
+ dvmCompilerInsertLIRBefore(currentLIR, (LIR *) insn);
+}
+
+/*
+ * Example where r14 (LR) is preserved around a heap access under
+ * self-verification mode in Thumb2:
+ *
+ * D/dalvikvm( 1538): 0x59414c5e (0026): ldr r14, [r15pc, #220] <-hoisted
+ * D/dalvikvm( 1538): 0x59414c62 (002a): mla r4, r0, r8, r4
+ * D/dalvikvm( 1538): 0x59414c66 (002e): adds r3, r4, r3
+ * D/dalvikvm( 1538): 0x59414c6a (0032): push <r5, r14> ---+
+ * D/dalvikvm( 1538): 0x59414c6c (0034): blx_1 0x5940f494 |
+ * D/dalvikvm( 1538): 0x59414c6e (0036): blx_2 see above <-MEM_OP_DECODE
+ * D/dalvikvm( 1538): 0x59414c70 (0038): ldr r10, [r9, #0] |
+ * D/dalvikvm( 1538): 0x59414c74 (003c): pop <r5, r14> ---+
+ * D/dalvikvm( 1538): 0x59414c78 (0040): mov r11, r10
+ * D/dalvikvm( 1538): 0x59414c7a (0042): asr r12, r11, #31
+ * D/dalvikvm( 1538): 0x59414c7e (0046): movs r0, r2
+ * D/dalvikvm( 1538): 0x59414c80 (0048): movs r1, r3
+ * D/dalvikvm( 1538): 0x59414c82 (004a): str r2, [r5, #16]
+ * D/dalvikvm( 1538): 0x59414c84 (004c): mov r2, r11
+ * D/dalvikvm( 1538): 0x59414c86 (004e): str r3, [r5, #20]
+ * D/dalvikvm( 1538): 0x59414c88 (0050): mov r3, r12
+ * D/dalvikvm( 1538): 0x59414c8a (0052): str r11, [r5, #24]
+ * D/dalvikvm( 1538): 0x59414c8e (0056): str r12, [r5, #28]
+ * D/dalvikvm( 1538): 0x59414c92 (005a): blx r14 <-use of LR
+ *
+ */
+static void selfVerificationBranchInsertPass(CompilationUnit *cUnit)
+{
+ ArmLIR *thisLIR;
+ TemplateOpcode opcode = TEMPLATE_MEM_OP_DECODE;
+
+ for (thisLIR = (ArmLIR *) cUnit->firstLIRInsn;
+ thisLIR != (ArmLIR *) cUnit->lastLIRInsn;
+ thisLIR = NEXT_LIR(thisLIR)) {
+ if (!thisLIR->flags.isNop && thisLIR->flags.insertWrapper) {
+ /*
+ * Push r5(FP) and r14(LR) onto stack. We need to make sure that
+ * SP is 8-byte aligned, and we use r5 as a temp to restore LR
+ * for Thumb-only target since LR cannot be directly accessed in
+ * Thumb mode. Another reason to choose r5 here is it is the Dalvik
+ * frame pointer and cannot be the target of the emulated heap
+ * load.
+ */
+ if (cUnit->usesLinkRegister) {
+ genSelfVerificationPreBranch(cUnit, thisLIR);
+ }
+
+ /* Branch to mem op decode template */
+ selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx1,
+ (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
+ (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
+ selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx2,
+ (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
+ (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
+
+ /* Restore LR */
+ if (cUnit->usesLinkRegister) {
+ genSelfVerificationPostBranch(cUnit, thisLIR);
+ }
+ }
+ }
+}
+#endif
+
+/* Generate conditional branch instructions */
+static ArmLIR *genConditionalBranch(CompilationUnit *cUnit,
+ ArmConditionCode cond,
+ ArmLIR *target)
+{
+ ArmLIR *branch = opCondBranch(cUnit, cond);
+ branch->generic.target = (LIR *) target;
+ return branch;
+}
+
+/* Generate a unconditional branch to go to the interpreter */
+static inline ArmLIR *genTrap(CompilationUnit *cUnit, int dOffset,
+ ArmLIR *pcrLabel)
+{
+ ArmLIR *branch = opNone(cUnit, kOpUncondBr);
+ return genCheckCommon(cUnit, dOffset, branch, pcrLabel);
+}
+
+/* Load a wide field from an object instance */
+static void genIGetWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
+{
+ RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
+ RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
+ RegLocation rlResult;
+ rlObj = loadValue(cUnit, rlObj, kCoreReg);
+ int regPtr = dvmCompilerAllocTemp(cUnit);
+
+ assert(rlDest.wide);
+
+ genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
+ NULL);/* null object? */
+ opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
+ rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
+
+ HEAP_ACCESS_SHADOW(true);
+ loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg);
+ HEAP_ACCESS_SHADOW(false);
+
+ dvmCompilerFreeTemp(cUnit, regPtr);
+ storeValueWide(cUnit, rlDest, rlResult);
+}
+
+/* Store a wide field to an object instance */
+static void genIPutWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
+{
+ RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
+ RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 2);
+ rlObj = loadValue(cUnit, rlObj, kCoreReg);
+ int regPtr;
+ rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
+ genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
+ NULL);/* null object? */
+ regPtr = dvmCompilerAllocTemp(cUnit);
+ opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
+
+ HEAP_ACCESS_SHADOW(true);
+ storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
+ HEAP_ACCESS_SHADOW(false);
+
+ dvmCompilerFreeTemp(cUnit, regPtr);
+}
+
+/*
+ * Load a field from an object instance
+ *
+ */
+static void genIGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
+ int fieldOffset, bool isVolatile)
+{
+ RegLocation rlResult;
+ RegisterClass regClass = dvmCompilerRegClassBySize(size);
+ RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
+ RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
+ rlObj = loadValue(cUnit, rlObj, kCoreReg);
+ rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
+ genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
+ NULL);/* null object? */
+
+ HEAP_ACCESS_SHADOW(true);
+ loadBaseDisp(cUnit, mir, rlObj.lowReg, fieldOffset, rlResult.lowReg,
+ size, rlObj.sRegLow);
+ HEAP_ACCESS_SHADOW(false);
+ if (isVolatile) {
+ dvmCompilerGenMemBarrier(cUnit, kSY);
+ }
+
+ storeValue(cUnit, rlDest, rlResult);
+}
+
+/*
+ * Store a field to an object instance
+ *
+ */
+static void genIPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
+ int fieldOffset, bool isObject, bool isVolatile)
+{
+ RegisterClass regClass = dvmCompilerRegClassBySize(size);
+ RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
+ RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 1);
+ rlObj = loadValue(cUnit, rlObj, kCoreReg);
+ rlSrc = loadValue(cUnit, rlSrc, regClass);
+ genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
+ NULL);/* null object? */
+
+ if (isVolatile) {
+ dvmCompilerGenMemBarrier(cUnit, kSY);
+ }
+ HEAP_ACCESS_SHADOW(true);
+ storeBaseDisp(cUnit, rlObj.lowReg, fieldOffset, rlSrc.lowReg, size);
+ HEAP_ACCESS_SHADOW(false);
+ if (isObject) {
+ /* NOTE: marking card based on object head */
+ markCard(cUnit, rlSrc.lowReg, rlObj.lowReg);
+ }
+}
+
+
+/*
+ * Generate array load
+ */
+static void genArrayGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
+ RegLocation rlArray, RegLocation rlIndex,
+ RegLocation rlDest, int scale)
+{
+ RegisterClass regClass = dvmCompilerRegClassBySize(size);
+ int lenOffset = offsetof(ArrayObject, length);
+ int dataOffset = offsetof(ArrayObject, contents);
+ RegLocation rlResult;
+ rlArray = loadValue(cUnit, rlArray, kCoreReg);
+ rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
+ int regPtr;
+
+ /* null object? */
+ ArmLIR * pcrLabel = NULL;
+
+ if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
+ pcrLabel = genNullCheck(cUnit, rlArray.sRegLow,
+ rlArray.lowReg, mir->offset, NULL);
+ }
+
+ regPtr = dvmCompilerAllocTemp(cUnit);
+
+ if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
+ int regLen = dvmCompilerAllocTemp(cUnit);
+ /* Get len */
+ loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
+ /* regPtr -> array data */
+ opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset);
+ genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
+ pcrLabel);
+ dvmCompilerFreeTemp(cUnit, regLen);
+ } else {
+ /* regPtr -> array data */
+ opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset);
+ }
+ if ((size == kLong) || (size == kDouble)) {
+ if (scale) {
+ int rNewIndex = dvmCompilerAllocTemp(cUnit);
+ opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale);
+ opRegReg(cUnit, kOpAdd, regPtr, rNewIndex);
+ dvmCompilerFreeTemp(cUnit, rNewIndex);
+ } else {
+ opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
+ }
+ rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
+
+ HEAP_ACCESS_SHADOW(true);
+ loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg);
+ HEAP_ACCESS_SHADOW(false);
+
+ dvmCompilerFreeTemp(cUnit, regPtr);
+ storeValueWide(cUnit, rlDest, rlResult);
+ } else {
+ rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
+
+ HEAP_ACCESS_SHADOW(true);
+ loadBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlResult.lowReg,
+ scale, size);
+ HEAP_ACCESS_SHADOW(false);
+
+ dvmCompilerFreeTemp(cUnit, regPtr);
+ storeValue(cUnit, rlDest, rlResult);
+ }
+}
+
+/*
+ * Generate array store
+ *
+ */
+static void genArrayPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
+ RegLocation rlArray, RegLocation rlIndex,
+ RegLocation rlSrc, int scale)
+{
+ RegisterClass regClass = dvmCompilerRegClassBySize(size);
+ int lenOffset = offsetof(ArrayObject, length);
+ int dataOffset = offsetof(ArrayObject, contents);
+
+ int regPtr;
+ rlArray = loadValue(cUnit, rlArray, kCoreReg);
+ rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
+
+ if (dvmCompilerIsTemp(cUnit, rlArray.lowReg)) {
+ dvmCompilerClobber(cUnit, rlArray.lowReg);
+ regPtr = rlArray.lowReg;
+ } else {
+ regPtr = dvmCompilerAllocTemp(cUnit);
+ genRegCopy(cUnit, regPtr, rlArray.lowReg);
+ }
+
+ /* null object? */
+ ArmLIR * pcrLabel = NULL;
+
+ if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
+ pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, rlArray.lowReg,
+ mir->offset, NULL);
+ }
+
+ if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
+ int regLen = dvmCompilerAllocTemp(cUnit);
+ //NOTE: max live temps(4) here.
+ /* Get len */
+ loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
+ /* regPtr -> array data */
+ opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
+ genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
+ pcrLabel);
+ dvmCompilerFreeTemp(cUnit, regLen);
+ } else {
+ /* regPtr -> array data */
+ opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
+ }
+ /* at this point, regPtr points to array, 2 live temps */
+ if ((size == kLong) || (size == kDouble)) {
+ //TODO: need specific wide routine that can handle fp regs
+ if (scale) {
+ int rNewIndex = dvmCompilerAllocTemp(cUnit);
+ opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale);
+ opRegReg(cUnit, kOpAdd, regPtr, rNewIndex);
+ dvmCompilerFreeTemp(cUnit, rNewIndex);
+ } else {
+ opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
+ }
+ rlSrc = loadValueWide(cUnit, rlSrc, regClass);
+
+ HEAP_ACCESS_SHADOW(true);
+ storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
+ HEAP_ACCESS_SHADOW(false);
+
+ dvmCompilerFreeTemp(cUnit, regPtr);
+ } else {
+ rlSrc = loadValue(cUnit, rlSrc, regClass);
+
+ HEAP_ACCESS_SHADOW(true);
+ storeBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlSrc.lowReg,
+ scale, size);
+ HEAP_ACCESS_SHADOW(false);
+ }
+}
+
+/*
+ * Generate array object store
+ * Must use explicit register allocation here because of
+ * call-out to dvmCanPutArrayElement
+ */
+static void genArrayObjectPut(CompilationUnit *cUnit, MIR *mir,
+ RegLocation rlArray, RegLocation rlIndex,
+ RegLocation rlSrc, int scale)
+{
+ int lenOffset = offsetof(ArrayObject, length);
+ int dataOffset = offsetof(ArrayObject, contents);
+
+ dvmCompilerFlushAllRegs(cUnit);
+
+ int regLen = r0;
+ int regPtr = r4PC; /* Preserved across call */
+ int regArray = r1;
+ int regIndex = r7; /* Preserved across call */
+
+ loadValueDirectFixed(cUnit, rlArray, regArray);
+ loadValueDirectFixed(cUnit, rlIndex, regIndex);
+
+ /* null object? */
+ ArmLIR * pcrLabel = NULL;
+
+ if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
+ pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, regArray,
+ mir->offset, NULL);
+ }
+
+ if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
+ /* Get len */
+ loadWordDisp(cUnit, regArray, lenOffset, regLen);
+ /* regPtr -> array data */
+ opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset);
+ genBoundsCheck(cUnit, regIndex, regLen, mir->offset,
+ pcrLabel);
+ } else {
+ /* regPtr -> array data */
+ opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset);
+ }
+
+ /* Get object to store */
+ loadValueDirectFixed(cUnit, rlSrc, r0);
+ LOAD_FUNC_ADDR(cUnit, r2, (int)dvmCanPutArrayElement);
+
+ /* Are we storing null? If so, avoid check */
+ ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondEq, r0, 0);
+
+ /* Make sure the types are compatible */
+ loadWordDisp(cUnit, regArray, offsetof(Object, clazz), r1);
+ loadWordDisp(cUnit, r0, offsetof(Object, clazz), r0);
+ opReg(cUnit, kOpBlx, r2);
+ dvmCompilerClobberCallRegs(cUnit);
+
+ /*
+ * Using fixed registers here, and counting on r4 and r7 being
+ * preserved across the above call. Tell the register allocation
+ * utilities about the regs we are using directly
+ */
+ dvmCompilerLockTemp(cUnit, regPtr); // r4PC
+ dvmCompilerLockTemp(cUnit, regIndex); // r7
+ dvmCompilerLockTemp(cUnit, r0);
+ dvmCompilerLockTemp(cUnit, r1);
+
+ /* Bad? - roll back and re-execute if so */
+ genRegImmCheck(cUnit, kArmCondEq, r0, 0, mir->offset, pcrLabel);
+
+ /* Resume here - must reload element & array, regPtr & index preserved */
+ loadValueDirectFixed(cUnit, rlSrc, r0);
+ loadValueDirectFixed(cUnit, rlArray, r1);
+
+ ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
+ target->defMask = ENCODE_ALL;
+ branchOver->generic.target = (LIR *) target;
+
+ HEAP_ACCESS_SHADOW(true);
+ storeBaseIndexed(cUnit, regPtr, regIndex, r0,
+ scale, kWord);
+ HEAP_ACCESS_SHADOW(false);
+
+ dvmCompilerFreeTemp(cUnit, regPtr);
+ dvmCompilerFreeTemp(cUnit, regIndex);
+
+ /* NOTE: marking card here based on object head */
+ markCard(cUnit, r0, r1);
+}
+
+static bool genShiftOpLong(CompilationUnit *cUnit, MIR *mir,
+ RegLocation rlDest, RegLocation rlSrc1,
+ RegLocation rlShift)
+{
+ /*
+ * Don't mess with the regsiters here as there is a particular calling
+ * convention to the out-of-line handler.
+ */
+ RegLocation rlResult;
+
+ loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
+ loadValueDirect(cUnit, rlShift, r2);
+ switch( mir->dalvikInsn.opcode) {
+ case OP_SHL_LONG:
+ case OP_SHL_LONG_2ADDR:
+ genDispatchToHandler(cUnit, TEMPLATE_SHL_LONG);
+ break;
+ case OP_SHR_LONG:
+ case OP_SHR_LONG_2ADDR:
+ genDispatchToHandler(cUnit, TEMPLATE_SHR_LONG);
+ break;
+ case OP_USHR_LONG:
+ case OP_USHR_LONG_2ADDR:
+ genDispatchToHandler(cUnit, TEMPLATE_USHR_LONG);
+ break;
+ default:
+ return true;
+ }
+ rlResult = dvmCompilerGetReturnWide(cUnit);
+ storeValueWide(cUnit, rlDest, rlResult);
+ return false;
+}
+
+static bool genArithOpLong(CompilationUnit *cUnit, MIR *mir,
+ RegLocation rlDest, RegLocation rlSrc1,
+ RegLocation rlSrc2)
+{
+ RegLocation rlResult;
+ OpKind firstOp = kOpBkpt;
+ OpKind secondOp = kOpBkpt;
+ bool callOut = false;
+ void *callTgt;
+ int retReg = r0;
+
+ switch (mir->dalvikInsn.opcode) {
+ case OP_NOT_LONG:
+ rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
+ rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
+ opRegReg(cUnit, kOpMvn, rlResult.lowReg, rlSrc2.lowReg);
+ opRegReg(cUnit, kOpMvn, rlResult.highReg, rlSrc2.highReg);
+ storeValueWide(cUnit, rlDest, rlResult);
+ return false;
+ break;
+ case OP_ADD_LONG:
+ case OP_ADD_LONG_2ADDR:
+ firstOp = kOpAdd;
+ secondOp = kOpAdc;
+ break;
+ case OP_SUB_LONG:
+ case OP_SUB_LONG_2ADDR:
+ firstOp = kOpSub;
+ secondOp = kOpSbc;
+ break;
+ case OP_MUL_LONG:
+ case OP_MUL_LONG_2ADDR:
+ genMulLong(cUnit, rlDest, rlSrc1, rlSrc2);
+ return false;
+ case OP_DIV_LONG:
+ case OP_DIV_LONG_2ADDR:
+ callOut = true;
+ retReg = r0;
+ callTgt = (void*)__aeabi_ldivmod;
+ break;
+ /* NOTE - result is in r2/r3 instead of r0/r1 */
+ case OP_REM_LONG:
+ case OP_REM_LONG_2ADDR:
+ callOut = true;
+ callTgt = (void*)__aeabi_ldivmod;
+ retReg = r2;
+ break;
+ case OP_AND_LONG_2ADDR:
+ case OP_AND_LONG:
+ firstOp = kOpAnd;
+ secondOp = kOpAnd;
+ break;
+ case OP_OR_LONG:
+ case OP_OR_LONG_2ADDR:
+ firstOp = kOpOr;
+ secondOp = kOpOr;
+ break;
+ case OP_XOR_LONG:
+ case OP_XOR_LONG_2ADDR:
+ firstOp = kOpXor;
+ secondOp = kOpXor;
+ break;
+ case OP_NEG_LONG: {
+ //TUNING: can improve this using Thumb2 code
+ int tReg = dvmCompilerAllocTemp(cUnit);
+ rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
+ rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
+ loadConstantNoClobber(cUnit, tReg, 0);
+ opRegRegReg(cUnit, kOpSub, rlResult.lowReg,
+ tReg, rlSrc2.lowReg);
+ opRegReg(cUnit, kOpSbc, tReg, rlSrc2.highReg);
+ genRegCopy(cUnit, rlResult.highReg, tReg);
+ storeValueWide(cUnit, rlDest, rlResult);
+ return false;
+ }
+ default:
+ LOGE("Invalid long arith op");
+ dvmCompilerAbort(cUnit);
+ }
+ if (!callOut) {
+ genLong3Addr(cUnit, mir, firstOp, secondOp, rlDest, rlSrc1, rlSrc2);
+ } else {
+ // Adjust return regs in to handle case of rem returning r2/r3
+ dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */
+ loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
+ LOAD_FUNC_ADDR(cUnit, r14lr, (int) callTgt);
+ loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
+ opReg(cUnit, kOpBlx, r14lr);
+ dvmCompilerClobberCallRegs(cUnit);
+ if (retReg == r0)
+ rlResult = dvmCompilerGetReturnWide(cUnit);
+ else
+ rlResult = dvmCompilerGetReturnWideAlt(cUnit);
+ storeValueWide(cUnit, rlDest, rlResult);
+#if defined(WITH_SELF_VERIFICATION)
+ cUnit->usesLinkRegister = true;
+#endif
+ }
+ return false;
+}
+
+static bool genArithOpInt(CompilationUnit *cUnit, MIR *mir,
+ RegLocation rlDest, RegLocation rlSrc1,
+ RegLocation rlSrc2)
+{
+ OpKind op = kOpBkpt;
+ bool callOut = false;
+ bool checkZero = false;
+ bool unary = false;
+ int retReg = r0;
+ int (*callTgt)(int, int);
+ RegLocation rlResult;
+ bool shiftOp = false;
+
+ switch (mir->dalvikInsn.opcode) {
+ case OP_NEG_INT:
+ op = kOpNeg;
+ unary = true;
+ break;
+ case OP_NOT_INT:
+ op = kOpMvn;
+ unary = true;
+ break;
+ case OP_ADD_INT:
+ case OP_ADD_INT_2ADDR:
+ op = kOpAdd;
+ break;
+ case OP_SUB_INT:
+ case OP_SUB_INT_2ADDR:
+ op = kOpSub;
+ break;
+ case OP_MUL_INT:
+ case OP_MUL_INT_2ADDR:
+ op = kOpMul;
+ break;
+ case OP_DIV_INT:
+ case OP_DIV_INT_2ADDR:
+ callOut = true;
+ checkZero = true;
+ callTgt = __aeabi_idiv;
+ retReg = r0;
+ break;
+ /* NOTE: returns in r1 */
+ case OP_REM_INT:
+ case OP_REM_INT_2ADDR:
+ callOut = true;
+ checkZero = true;
+ callTgt = __aeabi_idivmod;
+ retReg = r1;
+ break;
+ case OP_AND_INT:
+ case OP_AND_INT_2ADDR:
+ op = kOpAnd;
+ break;
+ case OP_OR_INT:
+ case OP_OR_INT_2ADDR:
+ op = kOpOr;
+ break;
+ case OP_XOR_INT:
+ case OP_XOR_INT_2ADDR:
+ op = kOpXor;
+ break;
+ case OP_SHL_INT:
+ case OP_SHL_INT_2ADDR:
+ shiftOp = true;
+ op = kOpLsl;
+ break;
+ case OP_SHR_INT:
+ case OP_SHR_INT_2ADDR:
+ shiftOp = true;
+ op = kOpAsr;
+ break;
+ case OP_USHR_INT:
+ case OP_USHR_INT_2ADDR:
+ shiftOp = true;
+ op = kOpLsr;
+ break;
+ default:
+ LOGE("Invalid word arith op: 0x%x(%d)",
+ mir->dalvikInsn.opcode, mir->dalvikInsn.opcode);
+ dvmCompilerAbort(cUnit);
+ }
+ if (!callOut) {
+ rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
+ if (unary) {
+ rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
+ opRegReg(cUnit, op, rlResult.lowReg,
+ rlSrc1.lowReg);
+ } else {
+ rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
+ if (shiftOp) {
+ int tReg = dvmCompilerAllocTemp(cUnit);
+ opRegRegImm(cUnit, kOpAnd, tReg, rlSrc2.lowReg, 31);
+ rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
+ opRegRegReg(cUnit, op, rlResult.lowReg,
+ rlSrc1.lowReg, tReg);
+ dvmCompilerFreeTemp(cUnit, tReg);
+ } else {
+ rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
+ opRegRegReg(cUnit, op, rlResult.lowReg,
+ rlSrc1.lowReg, rlSrc2.lowReg);
+ }
+ }
+ storeValue(cUnit, rlDest, rlResult);
+ } else {
+ RegLocation rlResult;
+ dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */
+ loadValueDirectFixed(cUnit, rlSrc2, r1);
+ LOAD_FUNC_ADDR(cUnit, r2, (int) callTgt);
+ loadValueDirectFixed(cUnit, rlSrc1, r0);
+ if (checkZero) {
+ genNullCheck(cUnit, rlSrc2.sRegLow, r1, mir->offset, NULL);
+ }
+ opReg(cUnit, kOpBlx, r2);
+ dvmCompilerClobberCallRegs(cUnit);
+ if (retReg == r0)
+ rlResult = dvmCompilerGetReturn(cUnit);
+ else
+ rlResult = dvmCompilerGetReturnAlt(cUnit);
+ storeValue(cUnit, rlDest, rlResult);
+ }
+ return false;
+}
+
+static bool genArithOp(CompilationUnit *cUnit, MIR *mir)
+{
+ Opcode opcode = mir->dalvikInsn.opcode;
+ RegLocation rlDest;
+ RegLocation rlSrc1;
+ RegLocation rlSrc2;
+ /* Deduce sizes of operands */
+ if (mir->ssaRep->numUses == 2) {
+ rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
+ rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
+ } else if (mir->ssaRep->numUses == 3) {
+ rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
+ rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2);
+ } else {
+ rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
+ rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3);
+ assert(mir->ssaRep->numUses == 4);
+ }
+ if (mir->ssaRep->numDefs == 1) {
+ rlDest = dvmCompilerGetDest(cUnit, mir, 0);
+ } else {
+ assert(mir->ssaRep->numDefs == 2);
+ rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
+ }
+
+ if ((opcode >= OP_ADD_LONG_2ADDR) && (opcode <= OP_XOR_LONG_2ADDR)) {
+ return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
+ }
+ if ((opcode >= OP_ADD_LONG) && (opcode <= OP_XOR_LONG)) {
+ return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
+ }
+ if ((opcode >= OP_SHL_LONG_2ADDR) && (opcode <= OP_USHR_LONG_2ADDR)) {
+ return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
+ }
+ if ((opcode >= OP_SHL_LONG) && (opcode <= OP_USHR_LONG)) {
+ return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
+ }
+ if ((opcode >= OP_ADD_INT_2ADDR) && (opcode <= OP_USHR_INT_2ADDR)) {
+ return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
+ }
+ if ((opcode >= OP_ADD_INT) && (opcode <= OP_USHR_INT)) {
+ return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
+ }
+ if ((opcode >= OP_ADD_FLOAT_2ADDR) && (opcode <= OP_REM_FLOAT_2ADDR)) {
+ return genArithOpFloat(cUnit,mir, rlDest, rlSrc1, rlSrc2);
+ }
+ if ((opcode >= OP_ADD_FLOAT) && (opcode <= OP_REM_FLOAT)) {
+ return genArithOpFloat(cUnit, mir, rlDest, rlSrc1, rlSrc2);
+ }
+ if ((opcode >= OP_ADD_DOUBLE_2ADDR) && (opcode <= OP_REM_DOUBLE_2ADDR)) {
+ return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
+ }
+ if ((opcode >= OP_ADD_DOUBLE) && (opcode <= OP_REM_DOUBLE)) {
+ return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
+ }
+ return true;
+}
+
+/* Generate unconditional branch instructions */
+static ArmLIR *genUnconditionalBranch(CompilationUnit *cUnit, ArmLIR *target)
+{
+ ArmLIR *branch = opNone(cUnit, kOpUncondBr);
+ branch->generic.target = (LIR *) target;
+ return branch;
+}
+
+/* Perform the actual operation for OP_RETURN_* */
+static void genReturnCommon(CompilationUnit *cUnit, MIR *mir)
+{
+ genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
+ TEMPLATE_RETURN_PROF : TEMPLATE_RETURN);
+#if defined(WITH_JIT_TUNING)
+ gDvmJit.returnOp++;
+#endif
+ int dPC = (int) (cUnit->method->insns + mir->offset);
+ /* Insert branch, but defer setting of target */
+ ArmLIR *branch = genUnconditionalBranch(cUnit, NULL);
+ /* Set up the place holder to reconstruct this Dalvik PC */
+ ArmLIR *pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
+ pcrLabel->opcode = kArmPseudoPCReconstructionCell;
+ pcrLabel->operands[0] = dPC;
+ pcrLabel->operands[1] = mir->offset;
+ /* Insert the place holder to the growable list */
+ dvmInsertGrowableList(&cUnit->pcReconstructionList, (intptr_t) pcrLabel);
+ /* Branch to the PC reconstruction code */
+ branch->generic.target = (LIR *) pcrLabel;
+}
+
+static void genProcessArgsNoRange(CompilationUnit *cUnit, MIR *mir,
+ DecodedInstruction *dInsn,
+ ArmLIR **pcrLabel)
+{
+ unsigned int i;
+ unsigned int regMask = 0;
+ RegLocation rlArg;
+ int numDone = 0;
+
+ /*
+ * Load arguments to r0..r4. Note that these registers may contain
+ * live values, so we clobber them immediately after loading to prevent
+ * them from being used as sources for subsequent loads.
+ */
+ dvmCompilerLockAllTemps(cUnit);
+ for (i = 0; i < dInsn->vA; i++) {
+ regMask |= 1 << i;
+ rlArg = dvmCompilerGetSrc(cUnit, mir, numDone++);
+ loadValueDirectFixed(cUnit, rlArg, i);
+ }
+ if (regMask) {
+ /* Up to 5 args are pushed on top of FP - sizeofStackSaveArea */
+ opRegRegImm(cUnit, kOpSub, r7, r5FP,
+ sizeof(StackSaveArea) + (dInsn->vA << 2));
+ /* generate null check */
+ if (pcrLabel) {
+ *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r0,
+ mir->offset, NULL);
+ }
+ storeMultiple(cUnit, r7, regMask);
+ }
+}
+
+static void genProcessArgsRange(CompilationUnit *cUnit, MIR *mir,
+ DecodedInstruction *dInsn,
+ ArmLIR **pcrLabel)
+{
+ int srcOffset = dInsn->vC << 2;
+ int numArgs = dInsn->vA;
+ int regMask;
+
+ /*
+ * Note: here, all promoted registers will have been flushed
+ * back to the Dalvik base locations, so register usage restrictins
+ * are lifted. All parms loaded from original Dalvik register
+ * region - even though some might conceivably have valid copies
+ * cached in a preserved register.
+ */
+ dvmCompilerLockAllTemps(cUnit);
+
+ /*
+ * r4PC : &r5FP[vC]
+ * r7: &newFP[0]
+ */
+ opRegRegImm(cUnit, kOpAdd, r4PC, r5FP, srcOffset);
+ /* load [r0 .. min(numArgs,4)] */
+ regMask = (1 << ((numArgs < 4) ? numArgs : 4)) - 1;
+ /*
+ * Protect the loadMultiple instruction from being reordered with other
+ * Dalvik stack accesses.
+ *
+ * This code is also shared by the invoke jumbo instructions, and this
+ * does not need to be done if the invoke jumbo has no arguments.
+ */
+ if (numArgs != 0) loadMultiple(cUnit, r4PC, regMask);
+
+ opRegRegImm(cUnit, kOpSub, r7, r5FP,
+ sizeof(StackSaveArea) + (numArgs << 2));
+ /* generate null check */
+ if (pcrLabel) {
+ *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r0,
+ mir->offset, NULL);
+ }
+
+ /*
+ * Handle remaining 4n arguments:
+ * store previously loaded 4 values and load the next 4 values
+ */
+ if (numArgs >= 8) {
+ ArmLIR *loopLabel = NULL;
+ /*
+ * r0 contains "this" and it will be used later, so push it to the stack
+ * first. Pushing r5FP is just for stack alignment purposes.
+ */
+ opImm(cUnit, kOpPush, (1 << r0 | 1 << r5FP));
+ /* No need to generate the loop structure if numArgs <= 11 */
+ if (numArgs > 11) {
+ loadConstant(cUnit, 5, ((numArgs - 4) >> 2) << 2);
+ loopLabel = newLIR0(cUnit, kArmPseudoTargetLabel);
+ loopLabel->defMask = ENCODE_ALL;
+ }
+ storeMultiple(cUnit, r7, regMask);
+ /*
+ * Protect the loadMultiple instruction from being reordered with other
+ * Dalvik stack accesses.
+ */
+ loadMultiple(cUnit, r4PC, regMask);
+ /* No need to generate the loop structure if numArgs <= 11 */
+ if (numArgs > 11) {
+ opRegImm(cUnit, kOpSub, r5FP, 4);
+ genConditionalBranch(cUnit, kArmCondNe, loopLabel);
+ }
+ }
+
+ /* Save the last batch of loaded values */
+ if (numArgs != 0) storeMultiple(cUnit, r7, regMask);
+
+ /* Generate the loop epilogue - don't use r0 */
+ if ((numArgs > 4) && (numArgs % 4)) {
+ regMask = ((1 << (numArgs & 0x3)) - 1) << 1;
+ /*
+ * Protect the loadMultiple instruction from being reordered with other
+ * Dalvik stack accesses.
+ */
+ loadMultiple(cUnit, r4PC, regMask);
+ }
+ if (numArgs >= 8)
+ opImm(cUnit, kOpPop, (1 << r0 | 1 << r5FP));
+
+ /* Save the modulo 4 arguments */
+ if ((numArgs > 4) && (numArgs % 4)) {
+ storeMultiple(cUnit, r7, regMask);
+ }
+}
+
+/*
+ * Generate code to setup the call stack then jump to the chaining cell if it
+ * is not a native method.
+ */
+static void genInvokeSingletonCommon(CompilationUnit *cUnit, MIR *mir,
+ BasicBlock *bb, ArmLIR *labelList,
+ ArmLIR *pcrLabel,
+ const Method *calleeMethod)
+{
+ /*
+ * Note: all Dalvik register state should be flushed to
+ * memory by the point, so register usage restrictions no
+ * longer apply. All temp & preserved registers may be used.
+ */
+ dvmCompilerLockAllTemps(cUnit);
+ ArmLIR *retChainingCell = &labelList[bb->fallThrough->id];
+
+ /* r1 = &retChainingCell */
+ ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
+
+ /* r4PC = dalvikCallsite */
+ loadConstant(cUnit, r4PC,
+ (int) (cUnit->method->insns + mir->offset));
+ addrRetChain->generic.target = (LIR *) retChainingCell;
+
+ /* r7 = calleeMethod->registersSize */
+ loadConstant(cUnit, r7, calleeMethod->registersSize);
+ /*
+ * r0 = calleeMethod (loaded upon calling genInvokeSingletonCommon)
+ * r1 = &ChainingCell
+ * r2 = calleeMethod->outsSize (to be loaded later for Java callees)
+ * r4PC = callsiteDPC
+ * r7 = calleeMethod->registersSize
+ */
+ if (dvmIsNativeMethod(calleeMethod)) {
+ genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
+ TEMPLATE_INVOKE_METHOD_NATIVE_PROF :
+ TEMPLATE_INVOKE_METHOD_NATIVE);
+#if defined(WITH_JIT_TUNING)
+ gDvmJit.invokeNative++;
+#endif
+ } else {
+ /* For Java callees, set up r2 to be calleeMethod->outsSize */
+ loadConstant(cUnit, r2, calleeMethod->outsSize);
+ genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
+ TEMPLATE_INVOKE_METHOD_CHAIN_PROF :
+ TEMPLATE_INVOKE_METHOD_CHAIN);
+#if defined(WITH_JIT_TUNING)
+ gDvmJit.invokeMonomorphic++;
+#endif
+ /* Branch to the chaining cell */
+ genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
+ }
+ /* Handle exceptions using the interpreter */
+ genTrap(cUnit, mir->offset, pcrLabel);
+}
+
+/*
+ * Generate code to check the validity of a predicted chain and take actions
+ * based on the result.
+ *
+ * 0x426a99aa : ldr r4, [pc, #72] --> r4 <- dalvikPC of this invoke
+ * 0x426a99ac : add r1, pc, #32 --> r1 <- &retChainingCell
+ * 0x426a99ae : add r2, pc, #40 --> r2 <- &predictedChainingCell
+ * 0x426a99b0 : blx_1 0x426a918c --+ TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN
+ * 0x426a99b2 : blx_2 see above --+
+ * 0x426a99b4 : b 0x426a99d8 --> off to the predicted chain
+ * 0x426a99b6 : b 0x426a99c8 --> punt to the interpreter
+ * 0x426a99b8 : ldr r0, [r7, #44] --> r0 <- this->class->vtable[methodIdx]
+ * 0x426a99ba : cmp r1, #0 --> compare r1 (rechain count) against 0
+ * 0x426a99bc : bgt 0x426a99c2 --> >=0? don't rechain
+ * 0x426a99be : ldr r7, [pc, #off]--+ dvmJitToPatchPredictedChain
+ * 0x426a99c0 : blx r7 --+
+ * 0x426a99c2 : add r1, pc, #12 --> r1 <- &retChainingCell
+ * 0x426a99c4 : blx_1 0x426a9098 --+ TEMPLATE_INVOKE_METHOD_NO_OPT
+ * 0x426a99c6 : blx_2 see above --+
+ */
+static void genInvokeVirtualCommon(CompilationUnit *cUnit, MIR *mir,
+ int methodIndex,
+ ArmLIR *retChainingCell,
+ ArmLIR *predChainingCell,
+ ArmLIR *pcrLabel)
+{
+ /*
+ * Note: all Dalvik register state should be flushed to
+ * memory by the point, so register usage restrictions no
+ * longer apply. Lock temps to prevent them from being
+ * allocated by utility routines.
+ */
+ dvmCompilerLockAllTemps(cUnit);
+
+ /*
+ * For verbose printing, store the method pointer in operands[1] first as
+ * operands[0] will be clobbered in dvmCompilerMIR2LIR.
+ */
+ predChainingCell->operands[1] = (int) mir->meta.callsiteInfo->method;
+
+ /* "this" is already left in r0 by genProcessArgs* */
+
+ /* r4PC = dalvikCallsite */
+ loadConstant(cUnit, r4PC,
+ (int) (cUnit->method->insns + mir->offset));
+
+ /* r1 = &retChainingCell */
+ ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
+ addrRetChain->generic.target = (LIR *) retChainingCell;
+
+ /* r2 = &predictedChainingCell */
+ ArmLIR *predictedChainingCell = opRegRegImm(cUnit, kOpAdd, r2, r15pc, 0);
+ predictedChainingCell->generic.target = (LIR *) predChainingCell;
+
+ genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
+ TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN_PROF :
+ TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
+
+ /* return through lr - jump to the chaining cell */
+ genUnconditionalBranch(cUnit, predChainingCell);
+
+ /*
+ * null-check on "this" may have been eliminated, but we still need a PC-
+ * reconstruction label for stack overflow bailout.
+ */
+ if (pcrLabel == NULL) {
+ int dPC = (int) (cUnit->method->insns + mir->offset);
+ pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
+ pcrLabel->opcode = kArmPseudoPCReconstructionCell;
+ pcrLabel->operands[0] = dPC;
+ pcrLabel->operands[1] = mir->offset;
+ /* Insert the place holder to the growable list */
+ dvmInsertGrowableList(&cUnit->pcReconstructionList,
+ (intptr_t) pcrLabel);
+ }
+
+ /* return through lr+2 - punt to the interpreter */
+ genUnconditionalBranch(cUnit, pcrLabel);
+
+ /*
+ * return through lr+4 - fully resolve the callee method.
+ * r1 <- count
+ * r2 <- &predictedChainCell
+ * r3 <- this->class
+ * r4 <- dPC
+ * r7 <- this->class->vtable
+ */
+
+ /* r0 <- calleeMethod */
+ loadWordDisp(cUnit, r7, methodIndex * 4, r0);
+
+ /* Check if rechain limit is reached */
+ ArmLIR *bypassRechaining = genCmpImmBranch(cUnit, kArmCondGt, r1, 0);
+
+ LOAD_FUNC_ADDR(cUnit, r7, (int) dvmJitToPatchPredictedChain);
+
+ genRegCopy(cUnit, r1, r6SELF);
+
+ /*
+ * r0 = calleeMethod
+ * r2 = &predictedChainingCell
+ * r3 = class
+ *
+ * &returnChainingCell has been loaded into r1 but is not needed
+ * when patching the chaining cell and will be clobbered upon
+ * returning so it will be reconstructed again.
+ */
+ opReg(cUnit, kOpBlx, r7);
+
+ /* r1 = &retChainingCell */
+ addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
+ addrRetChain->generic.target = (LIR *) retChainingCell;
+
+ bypassRechaining->generic.target = (LIR *) addrRetChain;
+ /*
+ * r0 = calleeMethod,
+ * r1 = &ChainingCell,
+ * r4PC = callsiteDPC,
+ */
+ genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
+ TEMPLATE_INVOKE_METHOD_NO_OPT_PROF :
+ TEMPLATE_INVOKE_METHOD_NO_OPT);
+#if defined(WITH_JIT_TUNING)
+ gDvmJit.invokePolymorphic++;
+#endif
+ /* Handle exceptions using the interpreter */
+ genTrap(cUnit, mir->offset, pcrLabel);
+}
+
+/* "this" pointer is already in r0 */
+static void genInvokeVirtualWholeMethod(CompilationUnit *cUnit,
+ MIR *mir,
+ void *calleeAddr,
+ ArmLIR *retChainingCell)
+{
+ CallsiteInfo *callsiteInfo = mir->meta.callsiteInfo;
+ dvmCompilerLockAllTemps(cUnit);
+
+ loadClassPointer(cUnit, r1, (int) callsiteInfo);
+
+ loadWordDisp(cUnit, r0, offsetof(Object, clazz), r2);
+ /* Branch to the slow path if classes are not equal */
+ opRegReg(cUnit, kOpCmp, r1, r2);
+ /*
+ * Set the misPredBranchOver target so that it will be generated when the
+ * code for the non-optimized invoke is generated.
+ */
+ ArmLIR *classCheck = opCondBranch(cUnit, kArmCondNe);
+
+ /* r0 = the Dalvik PC of the callsite */
+ loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
+
+ newLIR2(cUnit, kThumbBl1, (int) calleeAddr, (int) calleeAddr);
+ newLIR2(cUnit, kThumbBl2, (int) calleeAddr, (int) calleeAddr);
+ genUnconditionalBranch(cUnit, retChainingCell);
+
+ /* Target of slow path */
+ ArmLIR *slowPathLabel = newLIR0(cUnit, kArmPseudoTargetLabel);
+
+ slowPathLabel->defMask = ENCODE_ALL;
+ classCheck->generic.target = (LIR *) slowPathLabel;
+
+ // FIXME
+ cUnit->printMe = true;
+}
+
+static void genInvokeSingletonWholeMethod(CompilationUnit *cUnit,
+ MIR *mir,
+ void *calleeAddr,
+ ArmLIR *retChainingCell)
+{
+ /* r0 = the Dalvik PC of the callsite */
+ loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
+
+ newLIR2(cUnit, kThumbBl1, (int) calleeAddr, (int) calleeAddr);
+ newLIR2(cUnit, kThumbBl2, (int) calleeAddr, (int) calleeAddr);
+ genUnconditionalBranch(cUnit, retChainingCell);
+
+ // FIXME
+ cUnit->printMe = true;
+}
+
+/* Geneate a branch to go back to the interpreter */
+static void genPuntToInterp(CompilationUnit *cUnit, unsigned int offset)
+{
+ /* r0 = dalvik pc */
+ dvmCompilerFlushAllRegs(cUnit);
+ loadConstant(cUnit, r0, (int) (cUnit->method->insns + offset));
+ loadWordDisp(cUnit, r6SELF, offsetof(Thread,
+ jitToInterpEntries.dvmJitToInterpPunt), r1);
+ opReg(cUnit, kOpBlx, r1);
+}
+
+/*
+ * Attempt to single step one instruction using the interpreter and return
+ * to the compiled code for the next Dalvik instruction
+ */
+static void genInterpSingleStep(CompilationUnit *cUnit, MIR *mir)
+{
+ int flags = dexGetFlagsFromOpcode(mir->dalvikInsn.opcode);
+ int flagsToCheck = kInstrCanBranch | kInstrCanSwitch | kInstrCanReturn |
+ kInstrCanThrow;
+
+ // Single stepping is considered loop mode breaker
+ if (cUnit->jitMode == kJitLoop) {
+ cUnit->quitLoopMode = true;
+ return;
+ }
+
+ //If already optimized out, just ignore
+ if (mir->dalvikInsn.opcode == OP_NOP)
+ return;
+
+ //Ugly, but necessary. Flush all Dalvik regs so Interp can find them
+ dvmCompilerFlushAllRegs(cUnit);
+
+ if ((mir->next == NULL) || (flags & flagsToCheck)) {
+ genPuntToInterp(cUnit, mir->offset);
+ return;
+ }
+ int entryAddr = offsetof(Thread,
+ jitToInterpEntries.dvmJitToInterpSingleStep);
+ loadWordDisp(cUnit, r6SELF, entryAddr, r2);
+ /* r0 = dalvik pc */
+ loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
+ /* r1 = dalvik pc of following instruction */
+ loadConstant(cUnit, r1, (int) (cUnit->method->insns + mir->next->offset));
+ opReg(cUnit, kOpBlx, r2);
+}
+
+#if defined(_ARMV5TE) || defined(_ARMV5TE_VFP)
+/*
+ * To prevent a thread in a monitor wait from blocking the Jit from
+ * resetting the code cache, heavyweight monitor lock will not
+ * be allowed to return to an existing translation. Instead, we will
+ * handle them by branching to a handler, which will in turn call the
+ * runtime lock routine and then branch directly back to the
+ * interpreter main loop. Given the high cost of the heavyweight
+ * lock operation, this additional cost should be slight (especially when
+ * considering that we expect the vast majority of lock operations to
+ * use the fast-path thin lock bypass).
+ */
+static void genMonitorPortable(CompilationUnit *cUnit, MIR *mir)
+{
+ bool isEnter = (mir->dalvikInsn.opcode == OP_MONITOR_ENTER);
+ genExportPC(cUnit, mir);
+ dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */
+ RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
+ loadValueDirectFixed(cUnit, rlSrc, r1);
+ genRegCopy(cUnit, r0, r6SELF);
+ genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL);
+ if (isEnter) {
+ /* Get dPC of next insn */
+ loadConstant(cUnit, r4PC, (int)(cUnit->method->insns + mir->offset +
+ dexGetWidthFromOpcode(OP_MONITOR_ENTER)));
+ genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER);
+ } else {
+ LOAD_FUNC_ADDR(cUnit, r2, (int)dvmUnlockObject);
+ /* Do the call */
+ opReg(cUnit, kOpBlx, r2);
+ /* Did we throw? */
+ ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
+ loadConstant(cUnit, r0,
+ (int) (cUnit->method->insns + mir->offset +
+ dexGetWidthFromOpcode(OP_MONITOR_EXIT)));
+ genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
+ ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
+ target->defMask = ENCODE_ALL;
+ branchOver->generic.target = (LIR *) target;
+ dvmCompilerClobberCallRegs(cUnit);
+ }
+}
+#endif
+
+/*
+ * Fetch *self->info.breakFlags. If the breakFlags are non-zero,
+ * punt to the interpreter.
+ */
+static void genSuspendPoll(CompilationUnit *cUnit, MIR *mir)
+{
+ int rTemp = dvmCompilerAllocTemp(cUnit);
+ ArmLIR *ld;
+ ld = loadBaseDisp(cUnit, NULL, r6SELF,
+ offsetof(Thread, interpBreak.ctl.breakFlags),
+ rTemp, kUnsignedByte, INVALID_SREG);
+ setMemRefType(ld, true /* isLoad */, kMustNotAlias);
+ genRegImmCheck(cUnit, kArmCondNe, rTemp, 0, mir->offset, NULL);
+}
+
+/*
+ * The following are the first-level codegen routines that analyze the format
+ * of each bytecode then either dispatch special purpose codegen routines
+ * or produce corresponding Thumb instructions directly.
+ */
+
+static bool handleFmt10t_Fmt20t_Fmt30t(CompilationUnit *cUnit, MIR *mir,
+ BasicBlock *bb, ArmLIR *labelList)
+{
+ /* backward branch? */
+ bool backwardBranch = (bb->taken->startOffset <= mir->offset);
+
+ if (backwardBranch &&
+ (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
+ genSuspendPoll(cUnit, mir);
+ }
+
+ int numPredecessors = dvmCountSetBits(bb->taken->predecessors);
+ /*
+ * Things could be hoisted out of the taken block into the predecessor, so
+ * make sure it is dominated by the predecessor.
+ */
+ if (numPredecessors == 1 && bb->taken->visited == false &&
+ bb->taken->blockType == kDalvikByteCode) {
+ cUnit->nextCodegenBlock = bb->taken;
+ } else {
+ /* For OP_GOTO, OP_GOTO_16, and OP_GOTO_32 */
+ genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
+ }
+ return false;
+}
+
+static bool handleFmt10x(CompilationUnit *cUnit, MIR *mir)
+{
+ Opcode dalvikOpcode = mir->dalvikInsn.opcode;
+ if ((dalvikOpcode >= OP_UNUSED_3E) && (dalvikOpcode <= OP_UNUSED_43)) {
+ LOGE("Codegen: got unused opcode 0x%x\n",dalvikOpcode);
+ return true;
+ }
+ switch (dalvikOpcode) {
+ case OP_RETURN_VOID_BARRIER:
+ dvmCompilerGenMemBarrier(cUnit, kST);
+ // Intentional fallthrough
+ case OP_RETURN_VOID:
+ genReturnCommon(cUnit,mir);
+ break;
+ case OP_UNUSED_73:
+ case OP_UNUSED_79:
+ case OP_UNUSED_7A:
+ case OP_DISPATCH_FF:
+ LOGE("Codegen: got unused opcode 0x%x\n",dalvikOpcode);
+ return true;
+ case OP_NOP:
+ break;
+ default:
+ return true;
+ }
+ return false;
+}
+
+static bool handleFmt11n_Fmt31i(CompilationUnit *cUnit, MIR *mir)
+{
+ RegLocation rlDest;
+ RegLocation rlResult;
+ if (mir->ssaRep->numDefs == 2) {
+ rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
+ } else {
+ rlDest = dvmCompilerGetDest(cUnit, mir, 0);
+ }
+
+ switch (mir->dalvikInsn.opcode) {
+ case OP_CONST:
+ case OP_CONST_4: {
+ rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
+ loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
+ storeValue(cUnit, rlDest, rlResult);
+ break;
+ }
+ case OP_CONST_WIDE_32: {
+ //TUNING: single routine to load constant pair for support doubles
+ //TUNING: load 0/-1 separately to avoid load dependency
+ rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
+ loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
+ opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
+ rlResult.lowReg, 31);
+ storeValueWide(cUnit, rlDest, rlResult);
+ break;
+ }
+ default:
+ return true;
+ }
+ return false;
+}
+
+static bool handleFmt21h(CompilationUnit *cUnit, MIR *mir)
+{
+ RegLocation rlDest;
+ RegLocation rlResult;
+ if (mir->ssaRep->numDefs == 2) {
+ rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
+ } else {
+ rlDest = dvmCompilerGetDest(cUnit, mir, 0);
+ }
+ rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
+
+ switch (mir->dalvikInsn.opcode) {
+ case OP_CONST_HIGH16: {
+ loadConstantNoClobber(cUnit, rlResult.lowReg,
+ mir->dalvikInsn.vB << 16);
+ storeValue(cUnit, rlDest, rlResult);
+ break;
+ }
+ case OP_CONST_WIDE_HIGH16: {
+ loadConstantValueWide(cUnit, rlResult.lowReg, rlResult.highReg,
+ 0, mir->dalvikInsn.vB << 16);
+ storeValueWide(cUnit, rlDest, rlResult);
+ break;
+ }
+ default:
+ return true;
+ }
+ return false;
+}
+
+static bool handleFmt20bc_Fmt40sc(CompilationUnit *cUnit, MIR *mir)
+{
+ /* For OP_THROW_VERIFICATION_ERROR & OP_THROW_VERIFICATION_ERROR_JUMBO */
+ genInterpSingleStep(cUnit, mir);
+ return false;
+}
+
+static bool handleFmt21c_Fmt31c_Fmt41c(CompilationUnit *cUnit, MIR *mir)
+{
+ RegLocation rlResult;
+ RegLocation rlDest;
+ RegLocation rlSrc;
+
+ switch (mir->dalvikInsn.opcode) {
+ case OP_CONST_STRING_JUMBO:
+ case OP_CONST_STRING: {
+ void *strPtr = (void*)
+ (cUnit->method->clazz->pDvmDex->pResStrings[mir->dalvikInsn.vB]);
+
+ if (strPtr == NULL) {
+ BAIL_LOOP_COMPILATION();
+ LOGE("Unexpected null string");
+ dvmAbort();
+ }
+
+ rlDest = dvmCompilerGetDest(cUnit, mir, 0);
+ rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
+ loadConstantNoClobber(cUnit, rlResult.lowReg, (int) strPtr );
+ storeValue(cUnit, rlDest, rlResult);
+ break;
+ }
+ case OP_CONST_CLASS:
+ case OP_CONST_CLASS_JUMBO: {
+ void *classPtr = (void*)
+ (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
+
+ if (classPtr == NULL) {
+ BAIL_LOOP_COMPILATION();
+ LOGE("Unexpected null class");
+ dvmAbort();
+ }
+
+ rlDest = dvmCompilerGetDest(cUnit, mir, 0);
+ rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
+ loadConstantNoClobber(cUnit, rlResult.lowReg, (int) classPtr );
+ storeValue(cUnit, rlDest, rlResult);
+ break;
+ }
+ case OP_SGET:
+ case OP_SGET_VOLATILE:
+ case OP_SGET_VOLATILE_JUMBO:
+ case OP_SGET_JUMBO:
+ case OP_SGET_OBJECT:
+ case OP_SGET_OBJECT_VOLATILE:
+ case OP_SGET_OBJECT_VOLATILE_JUMBO:
+ case OP_SGET_OBJECT_JUMBO:
+ case OP_SGET_BOOLEAN:
+ case OP_SGET_BOOLEAN_JUMBO:
+ case OP_SGET_CHAR:
+ case OP_SGET_CHAR_JUMBO:
+ case OP_SGET_BYTE:
+ case OP_SGET_BYTE_JUMBO:
+ case OP_SGET_SHORT:
+ case OP_SGET_SHORT_JUMBO: {
+ int valOffset = offsetof(StaticField, value);
+ int tReg = dvmCompilerAllocTemp(cUnit);
+ bool isVolatile;
+ const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
+ mir->meta.calleeMethod : cUnit->method;
+ void *fieldPtr = (void*)
+ (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
+
+ if (fieldPtr == NULL) {
+ BAIL_LOOP_COMPILATION();
+ LOGE("Unexpected null static field");
+ dvmAbort();
+ }
+
+ /*
+ * On SMP systems, Dalvik opcodes found to be referencing
+ * volatile fields are rewritten to their _VOLATILE variant.
+ * However, this does not happen on non-SMP systems. The JIT
+ * still needs to know about volatility to avoid unsafe
+ * optimizations so we determine volatility based on either
+ * the opcode or the field access flags.
+ */
+#if ANDROID_SMP != 0
+ Opcode opcode = mir->dalvikInsn.opcode;
+ isVolatile = (opcode == OP_SGET_VOLATILE) ||
+ (opcode == OP_SGET_VOLATILE_JUMBO) ||
+ (opcode == OP_SGET_OBJECT_VOLATILE) ||
+ (opcode == OP_SGET_OBJECT_VOLATILE_JUMBO);
+ assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
+#else
+ isVolatile = dvmIsVolatileField((Field *) fieldPtr);
+#endif
+
+ rlDest = dvmCompilerGetDest(cUnit, mir, 0);
+ rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
+ loadConstant(cUnit, tReg, (int) fieldPtr + valOffset);
+
+ if (isVolatile) {
+ dvmCompilerGenMemBarrier(cUnit, kSY);
+ }
+ HEAP_ACCESS_SHADOW(true);
+ loadWordDisp(cUnit, tReg, 0, rlResult.lowReg);
+ HEAP_ACCESS_SHADOW(false);
+
+ storeValue(cUnit, rlDest, rlResult);
+ break;
+ }
+ case OP_SGET_WIDE:
+ case OP_SGET_WIDE_JUMBO: {
+ int valOffset = offsetof(StaticField, value);
+ const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
+ mir->meta.calleeMethod : cUnit->method;
+ void *fieldPtr = (void*)
+ (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
+
+ if (fieldPtr == NULL) {
+ BAIL_LOOP_COMPILATION();
+ LOGE("Unexpected null static field");
+ dvmAbort();
+ }
+
+ int tReg = dvmCompilerAllocTemp(cUnit);
+ rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
+ rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
+ loadConstant(cUnit, tReg, (int) fieldPtr + valOffset);
+
+ HEAP_ACCESS_SHADOW(true);
+ loadPair(cUnit, tReg, rlResult.lowReg, rlResult.highReg);
+ HEAP_ACCESS_SHADOW(false);
+
+ storeValueWide(cUnit, rlDest, rlResult);
+ break;
+ }
+ case OP_SPUT:
+ case OP_SPUT_VOLATILE:
+ case OP_SPUT_VOLATILE_JUMBO:
+ case OP_SPUT_JUMBO:
+ case OP_SPUT_OBJECT:
+ case OP_SPUT_OBJECT_VOLATILE:
+ case OP_SPUT_OBJECT_VOLATILE_JUMBO:
+ case OP_SPUT_OBJECT_JUMBO:
+ case OP_SPUT_BOOLEAN:
+ case OP_SPUT_BOOLEAN_JUMBO:
+ case OP_SPUT_CHAR:
+ case OP_SPUT_CHAR_JUMBO:
+ case OP_SPUT_BYTE:
+ case OP_SPUT_BYTE_JUMBO:
+ case OP_SPUT_SHORT:
+ case OP_SPUT_SHORT_JUMBO: {
+ int valOffset = offsetof(StaticField, value);
+ int tReg = dvmCompilerAllocTemp(cUnit);
+ int objHead;
+ bool isVolatile;
+ bool isSputObject;
+ const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
+ mir->meta.calleeMethod : cUnit->method;
+ void *fieldPtr = (void*)
+ (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
+ Opcode opcode = mir->dalvikInsn.opcode;
+
+ if (fieldPtr == NULL) {
+ BAIL_LOOP_COMPILATION();
+ LOGE("Unexpected null static field");
+ dvmAbort();
+ }
+
+#if ANDROID_SMP != 0
+ isVolatile = (opcode == OP_SPUT_VOLATILE) ||
+ (opcode == OP_SPUT_VOLATILE_JUMBO) ||
+ (opcode == OP_SPUT_OBJECT_VOLATILE) ||
+ (opcode == OP_SPUT_OBJECT_VOLATILE_JUMBO);
+ assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
+#else
+ isVolatile = dvmIsVolatileField((Field *) fieldPtr);
+#endif
+
+ isSputObject = (opcode == OP_SPUT_OBJECT) ||
+ (opcode == OP_SPUT_OBJECT_JUMBO) ||
+ (opcode == OP_SPUT_OBJECT_VOLATILE) ||
+ (opcode == OP_SPUT_OBJECT_VOLATILE_JUMBO);
+
+ rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
+ rlSrc = loadValue(cUnit, rlSrc, kAnyReg);
+ loadConstant(cUnit, tReg, (int) fieldPtr);
+ if (isSputObject) {
+ objHead = dvmCompilerAllocTemp(cUnit);
+ loadWordDisp(cUnit, tReg, offsetof(Field, clazz), objHead);
+ }
+ HEAP_ACCESS_SHADOW(true);
+ storeWordDisp(cUnit, tReg, valOffset ,rlSrc.lowReg);
+ dvmCompilerFreeTemp(cUnit, tReg);
+ HEAP_ACCESS_SHADOW(false);
+ if (isVolatile) {
+ dvmCompilerGenMemBarrier(cUnit, kSY);
+ }
+ if (isSputObject) {
+ /* NOTE: marking card based sfield->clazz */
+ markCard(cUnit, rlSrc.lowReg, objHead);
+ dvmCompilerFreeTemp(cUnit, objHead);
+ }
+
+ break;
+ }
+ case OP_SPUT_WIDE:
+ case OP_SPUT_WIDE_JUMBO: {
+ int tReg = dvmCompilerAllocTemp(cUnit);
+ int valOffset = offsetof(StaticField, value);
+ const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
+ mir->meta.calleeMethod : cUnit->method;
+ void *fieldPtr = (void*)
+ (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
+
+ if (fieldPtr == NULL) {
+ BAIL_LOOP_COMPILATION();
+ LOGE("Unexpected null static field");
+ dvmAbort();
+ }
+
+ rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
+ rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
+ loadConstant(cUnit, tReg, (int) fieldPtr + valOffset);
+
+ HEAP_ACCESS_SHADOW(true);
+ storePair(cUnit, tReg, rlSrc.lowReg, rlSrc.highReg);
+ HEAP_ACCESS_SHADOW(false);
+ break;
+ }
+ case OP_NEW_INSTANCE:
+ case OP_NEW_INSTANCE_JUMBO: {
+ /*
+ * Obey the calling convention and don't mess with the register
+ * usage.
+ */
+ ClassObject *classPtr = (ClassObject *)
+ (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
+
+ if (classPtr == NULL) {
+ BAIL_LOOP_COMPILATION();
+ LOGE("Unexpected null class");
+ dvmAbort();
+ }
+
+ /*
+ * If it is going to throw, it should not make to the trace to begin
+ * with. However, Alloc might throw, so we need to genExportPC()
+ */
+ assert((classPtr->accessFlags & (ACC_INTERFACE|ACC_ABSTRACT)) == 0);
+ dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */
+ genExportPC(cUnit, mir);
+ LOAD_FUNC_ADDR(cUnit, r2, (int)dvmAllocObject);
+ loadConstant(cUnit, r0, (int) classPtr);
+ loadConstant(cUnit, r1, ALLOC_DONT_TRACK);
+ opReg(cUnit, kOpBlx, r2);
+ dvmCompilerClobberCallRegs(cUnit);
+ /* generate a branch over if allocation is successful */
+ ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
+ /*
+ * OOM exception needs to be thrown here and cannot re-execute
+ */
+ loadConstant(cUnit, r0,
+ (int) (cUnit->method->insns + mir->offset));
+ genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
+ /* noreturn */
+
+ ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
+ target->defMask = ENCODE_ALL;
+ branchOver->generic.target = (LIR *) target;
+ rlDest = dvmCompilerGetDest(cUnit, mir, 0);
+ rlResult = dvmCompilerGetReturn(cUnit);
+ storeValue(cUnit, rlDest, rlResult);
+ break;
+ }
+ case OP_CHECK_CAST:
+ case OP_CHECK_CAST_JUMBO: {
+ /*
+ * Obey the calling convention and don't mess with the register
+ * usage.
+ */
+ ClassObject *classPtr =
+ (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
+ /*
+ * Note: It is possible that classPtr is NULL at this point,
+ * even though this instruction has been successfully interpreted.
+ * If the previous interpretation had a null source, the
+ * interpreter would not have bothered to resolve the clazz.
+ * Bail out to the interpreter in this case, and log it
+ * so that we can tell if it happens frequently.
+ */
+ if (classPtr == NULL) {
+ BAIL_LOOP_COMPILATION();
+ LOGVV("null clazz in OP_CHECK_CAST, single-stepping");
+ genInterpSingleStep(cUnit, mir);
+ return false;
+ }
+ dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */
+ loadConstant(cUnit, r1, (int) classPtr );
+ rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
+ rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
+ /* Null? */
+ ArmLIR *branch1 = genCmpImmBranch(cUnit, kArmCondEq,
+ rlSrc.lowReg, 0);
+ /*
+ * rlSrc.lowReg now contains object->clazz. Note that
+ * it could have been allocated r0, but we're okay so long
+ * as we don't do anything desctructive until r0 is loaded
+ * with clazz.
+ */
+ /* r0 now contains object->clazz */
+ loadWordDisp(cUnit, rlSrc.lowReg, offsetof(Object, clazz), r0);
+ LOAD_FUNC_ADDR(cUnit, r2, (int)dvmInstanceofNonTrivial);
+ opRegReg(cUnit, kOpCmp, r0, r1);
+ ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq);
+ opReg(cUnit, kOpBlx, r2);
+ dvmCompilerClobberCallRegs(cUnit);
+ /*
+ * If null, check cast failed - punt to the interpreter. Because
+ * interpreter will be the one throwing, we don't need to
+ * genExportPC() here.
+ */
+ genZeroCheck(cUnit, r0, mir->offset, NULL);
+ /* check cast passed - branch target here */
+ ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
+ target->defMask = ENCODE_ALL;
+ branch1->generic.target = (LIR *)target;
+ branch2->generic.target = (LIR *)target;
+ break;
+ }
+ case OP_SGET_WIDE_VOLATILE:
+ case OP_SGET_WIDE_VOLATILE_JUMBO:
+ case OP_SPUT_WIDE_VOLATILE:
+ case OP_SPUT_WIDE_VOLATILE_JUMBO:
+ genInterpSingleStep(cUnit, mir);
+ break;
+ default:
+ return true;
+ }
+ return false;
+}
+
+/*
+ * A typical example of inlined getter/setter from a monomorphic callsite:
+ *
+ * D/dalvikvm( 289): -------- dalvik offset: 0x0000 @ invoke-static (I)
+ * D/dalvikvm( 289): -------- dalvik offset: 0x0000 @ sget-object (C) v0, ...
+ * D/dalvikvm( 289): 0x4427fc22 (0002): ldr r0, [pc, #56]
+ * D/dalvikvm( 289): 0x4427fc24 (0004): ldr r1, [r0, #0]
+ * D/dalvikvm( 289): 0x4427fc26 (0006): str r1, [r5, #0]
+ * D/dalvikvm( 289): 0x4427fc28 (0008): .align4
+ * D/dalvikvm( 289): L0x0003:
+ * D/dalvikvm( 289): -------- dalvik offset: 0x0003 @ move-result-object (I) v0
+ *
+ * Note the invoke-static and move-result-object with the (I) notation are
+ * turned into no-op.
+ */
+static bool handleFmt11x(CompilationUnit *cUnit, MIR *mir)
+{
+ Opcode dalvikOpcode = mir->dalvikInsn.opcode;
+ RegLocation rlResult;
+ switch (dalvikOpcode) {
+ case OP_MOVE_EXCEPTION: {
+ int exOffset = offsetof(Thread, exception);
+ int resetReg = dvmCompilerAllocTemp(cUnit);
+ RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
+ rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
+ loadWordDisp(cUnit, r6SELF, exOffset, rlResult.lowReg);
+ loadConstant(cUnit, resetReg, 0);
+ storeWordDisp(cUnit, r6SELF, exOffset, resetReg);
+ storeValue(cUnit, rlDest, rlResult);
+ break;
+ }
+ case OP_MOVE_RESULT:
+ case OP_MOVE_RESULT_OBJECT: {
+ /* An inlined move result is effectively no-op */
+ if (mir->OptimizationFlags & MIR_INLINED)
+ break;
+ RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
+ RegLocation rlSrc = LOC_DALVIK_RETURN_VAL;
+ rlSrc.fp = rlDest.fp;
+ storeValue(cUnit, rlDest, rlSrc);
+ break;
+ }
+ case OP_MOVE_RESULT_WIDE: {
+ /* An inlined move result is effectively no-op */
+ if (mir->OptimizationFlags & MIR_INLINED)
+ break;
+ RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
+ RegLocation rlSrc = LOC_DALVIK_RETURN_VAL_WIDE;
+ rlSrc.fp = rlDest.fp;
+ storeValueWide(cUnit, rlDest, rlSrc);
+ break;
+ }
+ case OP_RETURN_WIDE: {
+ RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
+ RegLocation rlDest = LOC_DALVIK_RETURN_VAL_WIDE;
+ rlDest.fp = rlSrc.fp;
+ storeValueWide(cUnit, rlDest, rlSrc);
+ genReturnCommon(cUnit,mir);
+ break;
+ }
+ case OP_RETURN:
+ case OP_RETURN_OBJECT: {
+ RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
+ RegLocation rlDest = LOC_DALVIK_RETURN_VAL;
+ rlDest.fp = rlSrc.fp;
+ storeValue(cUnit, rlDest, rlSrc);
+ genReturnCommon(cUnit, mir);
+ break;
+ }
+ case OP_MONITOR_EXIT:
+ case OP_MONITOR_ENTER:
+ genMonitor(cUnit, mir);
+ break;
+ case OP_THROW:
+ genInterpSingleStep(cUnit, mir);
+ break;
+ default:
+ return true;
+ }
+ return false;
+}
+
+static bool handleFmt12x(CompilationUnit *cUnit, MIR *mir)
+{
+ Opcode opcode = mir->dalvikInsn.opcode;
+ RegLocation rlDest;
+ RegLocation rlSrc;
+ RegLocation rlResult;
+
+ if ( (opcode >= OP_ADD_INT_2ADDR) && (opcode <= OP_REM_DOUBLE_2ADDR)) {
+ return genArithOp( cUnit, mir );
+ }
+
+ if (mir->ssaRep->numUses == 2)
+ rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
+ else
+ rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
+ if (mir->ssaRep->numDefs == 2)
+ rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
+ else
+ rlDest = dvmCompilerGetDest(cUnit, mir, 0);
+
+ switch (opcode) {
+ case OP_DOUBLE_TO_INT:
+ case OP_INT_TO_FLOAT:
+ case OP_FLOAT_TO_INT:
+ case OP_DOUBLE_TO_FLOAT:
+ case OP_FLOAT_TO_DOUBLE:
+ case OP_INT_TO_DOUBLE:
+ case OP_FLOAT_TO_LONG:
+ case OP_LONG_TO_FLOAT:
+ case OP_DOUBLE_TO_LONG:
+ case OP_LONG_TO_DOUBLE:
+ return genConversion(cUnit, mir);
+ case OP_NEG_INT:
+ case OP_NOT_INT:
+ return genArithOpInt(cUnit, mir, rlDest, rlSrc, rlSrc);
+ case OP_NEG_LONG:
+ case OP_NOT_LONG:
+ return genArithOpLong(cUnit, mir, rlDest, rlSrc, rlSrc);
+ case OP_NEG_FLOAT:
+ return genArithOpFloat(cUnit, mir, rlDest, rlSrc, rlSrc);
+ case OP_NEG_DOUBLE:
+ return genArithOpDouble(cUnit, mir, rlDest, rlSrc, rlSrc);
+ case OP_MOVE_WIDE:
+ storeValueWide(cUnit, rlDest, rlSrc);
+ break;
+ case OP_INT_TO_LONG:
+ rlSrc = dvmCompilerUpdateLoc(cUnit, rlSrc);
+ rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
+ //TUNING: shouldn't loadValueDirect already check for phys reg?
+ if (rlSrc.location == kLocPhysReg) {
+ genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
+ } else {
+ loadValueDirect(cUnit, rlSrc, rlResult.lowReg);
+ }
+ opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
+ rlResult.lowReg, 31);
+ storeValueWide(cUnit, rlDest, rlResult);
+ break;
+ case OP_LONG_TO_INT:
+ rlSrc = dvmCompilerUpdateLocWide(cUnit, rlSrc);
+ rlSrc = dvmCompilerWideToNarrow(cUnit, rlSrc);
+ // Intentional fallthrough
+ case OP_MOVE:
+ case OP_MOVE_OBJECT:
+ storeValue(cUnit, rlDest, rlSrc);
+ break;
+ case OP_INT_TO_BYTE:
+ rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
+ rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
+ opRegReg(cUnit, kOp2Byte, rlResult.lowReg, rlSrc.lowReg);
+ storeValue(cUnit, rlDest, rlResult);
+ break;
+ case OP_INT_TO_SHORT:
+ rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
+ rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
+ opRegReg(cUnit, kOp2Short, rlResult.lowReg, rlSrc.lowReg);
+ storeValue(cUnit, rlDest, rlResult);
+ break;
+ case OP_INT_TO_CHAR:
+ rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
+ rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
+ opRegReg(cUnit, kOp2Char, rlResult.lowReg, rlSrc.lowReg);
+ storeValue(cUnit, rlDest, rlResult);
+ break;
+ case OP_ARRAY_LENGTH: {
+ int lenOffset = offsetof(ArrayObject, length);
+ rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
+ genNullCheck(cUnit, rlSrc.sRegLow, rlSrc.lowReg,
+ mir->offset, NULL);
+ rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
+ loadWordDisp(cUnit, rlSrc.lowReg, lenOffset,
+ rlResult.lowReg);
+ storeValue(cUnit, rlDest, rlResult);
+ break;
+ }
+ default:
+ return true;
+ }
+ return false;
+}
+
+static bool handleFmt21s(CompilationUnit *cUnit, MIR *mir)
+{
+ Opcode dalvikOpcode = mir->dalvikInsn.opcode;
+ RegLocation rlDest;
+ RegLocation rlResult;
+ int BBBB = mir->dalvikInsn.vB;
+ if (dalvikOpcode == OP_CONST_WIDE_16) {
+ rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
+ rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
+ loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB);
+ //TUNING: do high separately to avoid load dependency
+ opRegRegImm(cUnit, kOpAsr, rlResult.highReg, rlResult.lowReg, 31);
+ storeValueWide(cUnit, rlDest, rlResult);
+ } else if (dalvikOpcode == OP_CONST_16) {
+ rlDest = dvmCompilerGetDest(cUnit, mir, 0);
+ rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
+ loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB);
+ storeValue(cUnit, rlDest, rlResult);
+ } else
+ return true;
+ return false;
+}
+
+/* Compare agaist zero */
+static bool handleFmt21t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
+ ArmLIR *labelList)
+{
+ Opcode dalvikOpcode = mir->dalvikInsn.opcode;
+ ArmConditionCode cond;
+ /* backward branch? */
+ bool backwardBranch = (bb->taken->startOffset <= mir->offset);
+
+ if (backwardBranch &&
+ (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
+ genSuspendPoll(cUnit, mir);
+ }
+
+ RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
+ rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
+
+ opRegImm(cUnit, kOpCmp, rlSrc.lowReg, 0);
+
+//TUNING: break this out to allow use of Thumb2 CB[N]Z
+ switch (dalvikOpcode) {
+ case OP_IF_EQZ:
+ cond = kArmCondEq;
+ break;
+ case OP_IF_NEZ:
+ cond = kArmCondNe;
+ break;
+ case OP_IF_LTZ:
+ cond = kArmCondLt;
+ break;
+ case OP_IF_GEZ:
+ cond = kArmCondGe;
+ break;
+ case OP_IF_GTZ:
+ cond = kArmCondGt;
+ break;
+ case OP_IF_LEZ:
+ cond = kArmCondLe;
+ break;
+ default:
+ cond = (ArmConditionCode)0;
+ LOGE("Unexpected opcode (%d) for Fmt21t\n", dalvikOpcode);
+ dvmCompilerAbort(cUnit);
+ }
+ genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
+ /* This mostly likely will be optimized away in a later phase */
+ genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
+ return false;
+}
+
+static bool isPowerOfTwo(int x)
+{
+ return (x & (x - 1)) == 0;
+}
+
+// Returns true if no more than two bits are set in 'x'.
+static bool isPopCountLE2(unsigned int x)
+{
+ x &= x - 1;
+ return (x & (x - 1)) == 0;
+}
+
+// Returns the index of the lowest set bit in 'x'.
+static int lowestSetBit(unsigned int x) {
+ int bit_posn = 0;
+ while ((x & 0xf) == 0) {
+ bit_posn += 4;
+ x >>= 4;
+ }
+ while ((x & 1) == 0) {
+ bit_posn++;
+ x >>= 1;
+ }
+ return bit_posn;
+}
+
+// Returns true if it added instructions to 'cUnit' to divide 'rlSrc' by 'lit'
+// and store the result in 'rlDest'.
+static bool handleEasyDivide(CompilationUnit *cUnit, Opcode dalvikOpcode,
+ RegLocation rlSrc, RegLocation rlDest, int lit)
+{
+ if (lit < 2 || !isPowerOfTwo(lit)) {
+ return false;
+ }
+ int k = lowestSetBit(lit);
+ if (k >= 30) {
+ // Avoid special cases.
+ return false;
+ }
+ bool div = (dalvikOpcode == OP_DIV_INT_LIT8 || dalvikOpcode == OP_DIV_INT_LIT16);
+ rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
+ RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
+ if (div) {
+ int tReg = dvmCompilerAllocTemp(cUnit);
+ if (lit == 2) {
+ // Division by 2 is by far the most common division by constant.
+ opRegRegImm(cUnit, kOpLsr, tReg, rlSrc.lowReg, 32 - k);
+ opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg);
+ opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k);
+ } else {
+ opRegRegImm(cUnit, kOpAsr, tReg, rlSrc.lowReg, 31);
+ opRegRegImm(cUnit, kOpLsr, tReg, tReg, 32 - k);
+ opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg);
+ opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k);
+ }
+ } else {
+ int cReg = dvmCompilerAllocTemp(cUnit);
+ loadConstant(cUnit, cReg, lit - 1);
+ int tReg1 = dvmCompilerAllocTemp(cUnit);
+ int tReg2 = dvmCompilerAllocTemp(cUnit);
+ if (lit == 2) {
+ opRegRegImm(cUnit, kOpLsr, tReg1, rlSrc.lowReg, 32 - k);
+ opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg);
+ opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg);
+ opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1);
+ } else {
+ opRegRegImm(cUnit, kOpAsr, tReg1, rlSrc.lowReg, 31);
+ opRegRegImm(cUnit, kOpLsr, tReg1, tReg1, 32 - k);
+ opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg);
+ opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg);
+ opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1);
+ }
+ }
+ storeValue(cUnit, rlDest, rlResult);
+ return true;
+}
+
+// Returns true if it added instructions to 'cUnit' to multiply 'rlSrc' by 'lit'
+// and store the result in 'rlDest'.
+static bool handleEasyMultiply(CompilationUnit *cUnit,
+ RegLocation rlSrc, RegLocation rlDest, int lit)
+{
+ // Can we simplify this multiplication?
+ bool powerOfTwo = false;
+ bool popCountLE2 = false;
+ bool powerOfTwoMinusOne = false;
+ if (lit < 2) {
+ // Avoid special cases.
+ return false;
+ } else if (isPowerOfTwo(lit)) {
+ powerOfTwo = true;
+ } else if (isPopCountLE2(lit)) {
+ popCountLE2 = true;
+ } else if (isPowerOfTwo(lit + 1)) {
+ powerOfTwoMinusOne = true;
+ } else {
+ return false;
+ }
+ rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
+ RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
+ if (powerOfTwo) {
+ // Shift.
+ opRegRegImm(cUnit, kOpLsl, rlResult.lowReg, rlSrc.lowReg,
+ lowestSetBit(lit));
+ } else if (popCountLE2) {
+ // Shift and add and shift.
+ int firstBit = lowestSetBit(lit);
+ int secondBit = lowestSetBit(lit ^ (1 << firstBit));
+ genMultiplyByTwoBitMultiplier(cUnit, rlSrc, rlResult, lit,
+ firstBit, secondBit);
+ } else {
+ // Reverse subtract: (src << (shift + 1)) - src.
+ assert(powerOfTwoMinusOne);
+ // TODO: rsb dst, src, src lsl#lowestSetBit(lit + 1)
+ int tReg = dvmCompilerAllocTemp(cUnit);
+ opRegRegImm(cUnit, kOpLsl, tReg, rlSrc.lowReg, lowestSetBit(lit + 1));
+ opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg, rlSrc.lowReg);
+ }
+ storeValue(cUnit, rlDest, rlResult);
+ return true;
+}
+
+static bool handleFmt22b_Fmt22s(CompilationUnit *cUnit, MIR *mir)
+{
+ Opcode dalvikOpcode = mir->dalvikInsn.opcode;
+ RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
+ RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
+ RegLocation rlResult;
+ int lit = mir->dalvikInsn.vC;
+ OpKind op = (OpKind)0; /* Make gcc happy */
+ int shiftOp = false;
+ bool isDiv = false;
+
+ switch (dalvikOpcode) {
+ case OP_RSUB_INT_LIT8:
+ case OP_RSUB_INT: {
+ int tReg;
+ //TUNING: add support for use of Arm rsub op
+ rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
+ tReg = dvmCompilerAllocTemp(cUnit);
+ loadConstant(cUnit, tReg, lit);
+ rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
+ opRegRegReg(cUnit, kOpSub, rlResult.lowReg,
+ tReg, rlSrc.lowReg);
+ storeValue(cUnit, rlDest, rlResult);
+ return false;
+ break;
+ }
+
+ case OP_ADD_INT_LIT8:
+ case OP_ADD_INT_LIT16:
+ op = kOpAdd;
+ break;
+ case OP_MUL_INT_LIT8:
+ case OP_MUL_INT_LIT16: {
+ if (handleEasyMultiply(cUnit, rlSrc, rlDest, lit)) {
+ return false;
+ }
+ op = kOpMul;
+ break;
+ }
+ case OP_AND_INT_LIT8:
+ case OP_AND_INT_LIT16:
+ op = kOpAnd;
+ break;
+ case OP_OR_INT_LIT8:
+ case OP_OR_INT_LIT16:
+ op = kOpOr;
+ break;
+ case OP_XOR_INT_LIT8:
+ case OP_XOR_INT_LIT16:
+ op = kOpXor;
+ break;
+ case OP_SHL_INT_LIT8:
+ lit &= 31;
+ shiftOp = true;
+ op = kOpLsl;
+ break;
+ case OP_SHR_INT_LIT8:
+ lit &= 31;
+ shiftOp = true;
+ op = kOpAsr;
+ break;
+ case OP_USHR_INT_LIT8:
+ lit &= 31;
+ shiftOp = true;
+ op = kOpLsr;
+ break;
+
+ case OP_DIV_INT_LIT8:
+ case OP_DIV_INT_LIT16:
+ case OP_REM_INT_LIT8:
+ case OP_REM_INT_LIT16:
+ if (lit == 0) {
+ /* Let the interpreter deal with div by 0 */
+ genInterpSingleStep(cUnit, mir);
+ return false;
+ }
+ if (handleEasyDivide(cUnit, dalvikOpcode, rlSrc, rlDest, lit)) {
+ return false;
+ }
+ dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */
+ loadValueDirectFixed(cUnit, rlSrc, r0);
+ dvmCompilerClobber(cUnit, r0);
+ if ((dalvikOpcode == OP_DIV_INT_LIT8) ||
+ (dalvikOpcode == OP_DIV_INT_LIT16)) {
+ LOAD_FUNC_ADDR(cUnit, r2, (int)__aeabi_idiv);
+ isDiv = true;
+ } else {
+ LOAD_FUNC_ADDR(cUnit, r2, (int)__aeabi_idivmod);
+ isDiv = false;
+ }
+ loadConstant(cUnit, r1, lit);
+ opReg(cUnit, kOpBlx, r2);
+ dvmCompilerClobberCallRegs(cUnit);
+ if (isDiv)
+ rlResult = dvmCompilerGetReturn(cUnit);
+ else
+ rlResult = dvmCompilerGetReturnAlt(cUnit);
+ storeValue(cUnit, rlDest, rlResult);
+ return false;
+ break;
+ default:
+ return true;
+ }
+ rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
+ rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
+ // Avoid shifts by literal 0 - no support in Thumb. Change to copy
+ if (shiftOp && (lit == 0)) {
+ genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
+ } else {
+ opRegRegImm(cUnit, op, rlResult.lowReg, rlSrc.lowReg, lit);
+ }
+ storeValue(cUnit, rlDest, rlResult);
+ return false;
+}
+
+static bool handleFmt22c_Fmt52c(CompilationUnit *cUnit, MIR *mir)
+{
+ Opcode dalvikOpcode = mir->dalvikInsn.opcode;
+ int fieldOffset = -1;
+ bool isVolatile = false;
+ switch (dalvikOpcode) {
+ /*
+ * Wide volatiles currently handled via single step.
+ * Add them here if generating in-line code.
+ * case OP_IGET_WIDE_VOLATILE:
+ * case OP_IGET_WIDE_VOLATILE_JUMBO:
+ * case OP_IPUT_WIDE_VOLATILE:
+ * case OP_IPUT_WIDE_VOLATILE_JUMBO:
+ */
+ case OP_IGET_VOLATILE:
+ case OP_IGET_VOLATILE_JUMBO:
+ case OP_IGET_OBJECT_VOLATILE:
+ case OP_IGET_OBJECT_VOLATILE_JUMBO:
+ case OP_IPUT_VOLATILE:
+ case OP_IPUT_VOLATILE_JUMBO:
+ case OP_IPUT_OBJECT_VOLATILE:
+ case OP_IPUT_OBJECT_VOLATILE_JUMBO:
+#if ANDROID_SMP != 0
+ isVolatile = true;
+ // NOTE: intentional fallthrough
+#endif
+ case OP_IGET:
+ case OP_IGET_JUMBO:
+ case OP_IGET_WIDE:
+ case OP_IGET_WIDE_JUMBO:
+ case OP_IGET_OBJECT:
+ case OP_IGET_OBJECT_JUMBO:
+ case OP_IGET_BOOLEAN:
+ case OP_IGET_BOOLEAN_JUMBO:
+ case OP_IGET_BYTE:
+ case OP_IGET_BYTE_JUMBO:
+ case OP_IGET_CHAR:
+ case OP_IGET_CHAR_JUMBO:
+ case OP_IGET_SHORT:
+ case OP_IGET_SHORT_JUMBO:
+ case OP_IPUT:
+ case OP_IPUT_JUMBO:
+ case OP_IPUT_WIDE:
+ case OP_IPUT_WIDE_JUMBO:
+ case OP_IPUT_OBJECT:
+ case OP_IPUT_OBJECT_JUMBO:
+ case OP_IPUT_BOOLEAN:
+ case OP_IPUT_BOOLEAN_JUMBO:
+ case OP_IPUT_BYTE:
+ case OP_IPUT_BYTE_JUMBO:
+ case OP_IPUT_CHAR:
+ case OP_IPUT_CHAR_JUMBO:
+ case OP_IPUT_SHORT:
+ case OP_IPUT_SHORT_JUMBO: {
+ const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
+ mir->meta.calleeMethod : cUnit->method;
+ Field *fieldPtr =
+ method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vC];
+
+ if (fieldPtr == NULL) {
+ BAIL_LOOP_COMPILATION();
+ LOGE("Unexpected null instance field");
+ dvmAbort();
+ }
+
+#if ANDROID_SMP != 0
+ assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
+#else
+ isVolatile = dvmIsVolatileField((Field *) fieldPtr);
+#endif
+ fieldOffset = ((InstField *)fieldPtr)->byteOffset;
+ break;
+ }
+ default:
+ break;
+ }
+
+ switch (dalvikOpcode) {
+ case OP_NEW_ARRAY:
+ case OP_NEW_ARRAY_JUMBO: {
+ // Generates a call - use explicit registers
+ RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
+ RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
+ RegLocation rlResult;
+ void *classPtr = (void*)
+ (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
+
+ if (classPtr == NULL) {
+ BAIL_LOOP_COMPILATION();
+ LOGE("Unexpected null class");
+ dvmAbort();
+ }
+
+ dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */
+ genExportPC(cUnit, mir);
+ loadValueDirectFixed(cUnit, rlSrc, r1); /* Len */
+ loadConstant(cUnit, r0, (int) classPtr );
+ LOAD_FUNC_ADDR(cUnit, r3, (int)dvmAllocArrayByClass);
+ /*
+ * "len < 0": bail to the interpreter to re-execute the
+ * instruction
+ */
+ genRegImmCheck(cUnit, kArmCondMi, r1, 0, mir->offset, NULL);
+ loadConstant(cUnit, r2, ALLOC_DONT_TRACK);
+ opReg(cUnit, kOpBlx, r3);
+ dvmCompilerClobberCallRegs(cUnit);
+ /* generate a branch over if allocation is successful */
+ ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
+ /*
+ * OOM exception needs to be thrown here and cannot re-execute
+ */
+ loadConstant(cUnit, r0,
+ (int) (cUnit->method->insns + mir->offset));
+ genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
+ /* noreturn */
+
+ ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
+ target->defMask = ENCODE_ALL;
+ branchOver->generic.target = (LIR *) target;
+ rlResult = dvmCompilerGetReturn(cUnit);
+ storeValue(cUnit, rlDest, rlResult);
+ break;
+ }
+ case OP_INSTANCE_OF:
+ case OP_INSTANCE_OF_JUMBO: {
+ // May generate a call - use explicit registers
+ RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
+ RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
+ RegLocation rlResult;
+ ClassObject *classPtr =
+ (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
+ /*
+ * Note: It is possible that classPtr is NULL at this point,
+ * even though this instruction has been successfully interpreted.
+ * If the previous interpretation had a null source, the
+ * interpreter would not have bothered to resolve the clazz.
+ * Bail out to the interpreter in this case, and log it
+ * so that we can tell if it happens frequently.
+ */
+ if (classPtr == NULL) {
+ BAIL_LOOP_COMPILATION();
+ LOGD("null clazz in OP_INSTANCE_OF, single-stepping");
+ genInterpSingleStep(cUnit, mir);
+ break;
+ }
+ dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */
+ loadValueDirectFixed(cUnit, rlSrc, r0); /* Ref */
+ loadConstant(cUnit, r2, (int) classPtr );
+ /* When taken r0 has NULL which can be used for store directly */
+ ArmLIR *branch1 = genCmpImmBranch(cUnit, kArmCondEq, r0, 0);
+ /* r1 now contains object->clazz */
+ loadWordDisp(cUnit, r0, offsetof(Object, clazz), r1);
+ /* r1 now contains object->clazz */
+ LOAD_FUNC_ADDR(cUnit, r3, (int)dvmInstanceofNonTrivial);
+ loadConstant(cUnit, r0, 1); /* Assume true */
+ opRegReg(cUnit, kOpCmp, r1, r2);
+ ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq);
+ genRegCopy(cUnit, r0, r1);
+ genRegCopy(cUnit, r1, r2);
+ opReg(cUnit, kOpBlx, r3);
+ dvmCompilerClobberCallRegs(cUnit);
+ /* branch target here */
+ ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
+ target->defMask = ENCODE_ALL;
+ rlResult = dvmCompilerGetReturn(cUnit);
+ storeValue(cUnit, rlDest, rlResult);
+ branch1->generic.target = (LIR *)target;
+ branch2->generic.target = (LIR *)target;
+ break;
+ }
+ case OP_IGET_WIDE:
+ case OP_IGET_WIDE_JUMBO:
+ genIGetWide(cUnit, mir, fieldOffset);
+ break;
+ case OP_IGET_VOLATILE:
+ case OP_IGET_VOLATILE_JUMBO:
+ case OP_IGET_OBJECT_VOLATILE:
+ case OP_IGET_OBJECT_VOLATILE_JUMBO:
+ case OP_IGET:
+ case OP_IGET_JUMBO:
+ case OP_IGET_OBJECT:
+ case OP_IGET_OBJECT_JUMBO:
+ case OP_IGET_BOOLEAN:
+ case OP_IGET_BOOLEAN_JUMBO:
+ case OP_IGET_BYTE:
+ case OP_IGET_BYTE_JUMBO:
+ case OP_IGET_CHAR:
+ case OP_IGET_CHAR_JUMBO:
+ case OP_IGET_SHORT:
+ case OP_IGET_SHORT_JUMBO:
+ genIGet(cUnit, mir, kWord, fieldOffset, isVolatile);
+ break;
+ case OP_IPUT_WIDE:
+ case OP_IPUT_WIDE_JUMBO:
+ genIPutWide(cUnit, mir, fieldOffset);
+ break;
+ case OP_IPUT_VOLATILE:
+ case OP_IPUT_VOLATILE_JUMBO:
+ case OP_IPUT:
+ case OP_IPUT_JUMBO:
+ case OP_IPUT_BOOLEAN:
+ case OP_IPUT_BOOLEAN_JUMBO:
+ case OP_IPUT_BYTE:
+ case OP_IPUT_BYTE_JUMBO:
+ case OP_IPUT_CHAR:
+ case OP_IPUT_CHAR_JUMBO:
+ case OP_IPUT_SHORT:
+ case OP_IPUT_SHORT_JUMBO:
+ genIPut(cUnit, mir, kWord, fieldOffset, false, isVolatile);
+ break;
+ case OP_IPUT_OBJECT_VOLATILE:
+ case OP_IPUT_OBJECT_VOLATILE_JUMBO:
+ case OP_IPUT_OBJECT:
+ case OP_IPUT_OBJECT_JUMBO:
+ genIPut(cUnit, mir, kWord, fieldOffset, true, isVolatile);
+ break;
+ case OP_IGET_WIDE_VOLATILE:
+ case OP_IGET_WIDE_VOLATILE_JUMBO:
+ case OP_IPUT_WIDE_VOLATILE:
+ case OP_IPUT_WIDE_VOLATILE_JUMBO:
+ genInterpSingleStep(cUnit, mir);
+ break;
+ default:
+ return true;
+ }
+ return false;
+}
+
+static bool handleFmt22cs(CompilationUnit *cUnit, MIR *mir)
+{
+ Opcode dalvikOpcode = mir->dalvikInsn.opcode;
+ int fieldOffset = mir->dalvikInsn.vC;
+ switch (dalvikOpcode) {
+ case OP_IGET_QUICK:
+ case OP_IGET_OBJECT_QUICK:
+ genIGet(cUnit, mir, kWord, fieldOffset, false);
+ break;
+ case OP_IPUT_QUICK:
+ genIPut(cUnit, mir, kWord, fieldOffset, false, false);
+ break;
+ case OP_IPUT_OBJECT_QUICK:
+ genIPut(cUnit, mir, kWord, fieldOffset, true, false);
+ break;
+ case OP_IGET_WIDE_QUICK:
+ genIGetWide(cUnit, mir, fieldOffset);
+ break;
+ case OP_IPUT_WIDE_QUICK:
+ genIPutWide(cUnit, mir, fieldOffset);
+ break;
+ default:
+ return true;
+ }
+ return false;
+
+}
+
+/* Compare agaist zero */
+static bool handleFmt22t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
+ ArmLIR *labelList)
+{
+ Opcode dalvikOpcode = mir->dalvikInsn.opcode;
+ ArmConditionCode cond;
+ /* backward branch? */
+ bool backwardBranch = (bb->taken->startOffset <= mir->offset);
+
+ if (backwardBranch &&
+ (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
+ genSuspendPoll(cUnit, mir);
+ }
+
+ RegLocation rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
+ RegLocation rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
+
+ rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
+ rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
+
+ opRegReg(cUnit, kOpCmp, rlSrc1.lowReg, rlSrc2.lowReg);
+
+ switch (dalvikOpcode) {
+ case OP_IF_EQ:
+ cond = kArmCondEq;
+ break;
+ case OP_IF_NE:
+ cond = kArmCondNe;
+ break;
+ case OP_IF_LT:
+ cond = kArmCondLt;
+ break;
+ case OP_IF_GE:
+ cond = kArmCondGe;
+ break;
+ case OP_IF_GT:
+ cond = kArmCondGt;
+ break;
+ case OP_IF_LE:
+ cond = kArmCondLe;
+ break;
+ default:
+ cond = (ArmConditionCode)0;
+ LOGE("Unexpected opcode (%d) for Fmt22t\n", dalvikOpcode);
+ dvmCompilerAbort(cUnit);
+ }
+ genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
+ /* This mostly likely will be optimized away in a later phase */
+ genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
+ return false;
+}
+
+static bool handleFmt22x_Fmt32x(CompilationUnit *cUnit, MIR *mir)
+{
+ Opcode opcode = mir->dalvikInsn.opcode;
+
+ switch (opcode) {
+ case OP_MOVE_16:
+ case OP_MOVE_OBJECT_16:
+ case OP_MOVE_FROM16:
+ case OP_MOVE_OBJECT_FROM16: {
+ storeValue(cUnit, dvmCompilerGetDest(cUnit, mir, 0),
+ dvmCompilerGetSrc(cUnit, mir, 0));
+ break;
+ }
+ case OP_MOVE_WIDE_16:
+ case OP_MOVE_WIDE_FROM16: {
+ storeValueWide(cUnit, dvmCompilerGetDestWide(cUnit, mir, 0, 1),
+ dvmCompilerGetSrcWide(cUnit, mir, 0, 1));
+ break;
+ }
+ default:
+ return true;
+ }
+ return false;
+}
+
+static bool handleFmt23x(CompilationUnit *cUnit, MIR *mir)
+{
+ Opcode opcode = mir->dalvikInsn.opcode;
+ RegLocation rlSrc1;
+ RegLocation rlSrc2;
+ RegLocation rlDest;
+
+ if ( (opcode >= OP_ADD_INT) && (opcode <= OP_REM_DOUBLE)) {
+ return genArithOp( cUnit, mir );
+ }
+
+ /* APUTs have 3 sources and no targets */
+ if (mir->ssaRep->numDefs == 0) {
+ if (mir->ssaRep->numUses == 3) {
+ rlDest = dvmCompilerGetSrc(cUnit, mir, 0);
+ rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 1);
+ rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2);
+ } else {
+ assert(mir->ssaRep->numUses == 4);
+ rlDest = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
+ rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 2);
+ rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 3);
+ }
+ } else {
+ /* Two sources and 1 dest. Deduce the operand sizes */
+ if (mir->ssaRep->numUses == 4) {
+ rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
+ rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3);
+ } else {
+ assert(mir->ssaRep->numUses == 2);
+ rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
+ rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
+ }
+ if (mir->ssaRep->numDefs == 2) {
+ rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
+ } else {
+ assert(mir->ssaRep->numDefs == 1);
+ rlDest = dvmCompilerGetDest(cUnit, mir, 0);
+ }
+ }
+
+
+ switch (opcode) {
+ case OP_CMPL_FLOAT:
+ case OP_CMPG_FLOAT:
+ case OP_CMPL_DOUBLE:
+ case OP_CMPG_DOUBLE:
+ return genCmpFP(cUnit, mir, rlDest, rlSrc1, rlSrc2);
+ case OP_CMP_LONG:
+ genCmpLong(cUnit, mir, rlDest, rlSrc1, rlSrc2);
+ break;
+ case OP_AGET_WIDE:
+ genArrayGet(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
+ break;
+ case OP_AGET:
+ case OP_AGET_OBJECT:
+ genArrayGet(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
+ break;
+ case OP_AGET_BOOLEAN:
+ genArrayGet(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
+ break;
+ case OP_AGET_BYTE:
+ genArrayGet(cUnit, mir, kSignedByte, rlSrc1, rlSrc2, rlDest, 0);
+ break;
+ case OP_AGET_CHAR:
+ genArrayGet(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
+ break;
+ case OP_AGET_SHORT:
+ genArrayGet(cUnit, mir, kSignedHalf, rlSrc1, rlSrc2, rlDest, 1);
+ break;
+ case OP_APUT_WIDE:
+ genArrayPut(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
+ break;
+ case OP_APUT:
+ genArrayPut(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
+ break;
+ case OP_APUT_OBJECT:
+ genArrayObjectPut(cUnit, mir, rlSrc1, rlSrc2, rlDest, 2);
+ break;
+ case OP_APUT_SHORT:
+ case OP_APUT_CHAR:
+ genArrayPut(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
+ break;
+ case OP_APUT_BYTE:
+ case OP_APUT_BOOLEAN:
+ genArrayPut(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
+ break;
+ default:
+ return true;
+ }
+ return false;
+}
+
+/*
+ * Find the matching case.
+ *
+ * return values:
+ * r0 (low 32-bit): pc of the chaining cell corresponding to the resolved case,
+ * including default which is placed at MIN(size, MAX_CHAINED_SWITCH_CASES).
+ * r1 (high 32-bit): the branch offset of the matching case (only for indexes
+ * above MAX_CHAINED_SWITCH_CASES).
+ *
+ * Instructions around the call are:
+ *
+ * mov r2, pc
+ * blx &findPackedSwitchIndex
+ * mov pc, r0
+ * .align4
+ * chaining cell for case 0 [12 bytes]
+ * chaining cell for case 1 [12 bytes]
+ * :
+ * chaining cell for case MIN(size, MAX_CHAINED_SWITCH_CASES)-1 [12 bytes]
+ * chaining cell for case default [8 bytes]
+ * noChain exit
+ */
+static s8 findPackedSwitchIndex(const u2* switchData, int testVal, int pc)
+{
+ int size;
+ int firstKey;
+ const int *entries;
+ int index;
+ int jumpIndex;
+ int caseDPCOffset = 0;
+ /* In Thumb mode pc is 4 ahead of the "mov r2, pc" instruction */
+ int chainingPC = (pc + 4) & ~3;
+
+ /*
+ * Packed switch data format:
+ * ushort ident = 0x0100 magic value
+ * ushort size number of entries in the table
+ * int first_key first (and lowest) switch case value
+ * int targets[size] branch targets, relative to switch opcode
+ *
+ * Total size is (4+size*2) 16-bit code units.
+ */
+ size = switchData[1];
+ assert(size > 0);
+
+ firstKey = switchData[2];
+ firstKey |= switchData[3] << 16;
+
+
+ /* The entries are guaranteed to be aligned on a 32-bit boundary;
+ * we can treat them as a native int array.
+ */
+ entries = (const int*) &switchData[4];
+ assert(((u4)entries & 0x3) == 0);
+
+ index = testVal - firstKey;
+
+ /* Jump to the default cell */
+ if (index < 0 || index >= size) {
+ jumpIndex = MIN(size, MAX_CHAINED_SWITCH_CASES);
+ /* Jump to the non-chaining exit point */
+ } else if (index >= MAX_CHAINED_SWITCH_CASES) {
+ jumpIndex = MAX_CHAINED_SWITCH_CASES + 1;
+ caseDPCOffset = entries[index];
+ /* Jump to the inline chaining cell */
+ } else {
+ jumpIndex = index;
+ }
+
+ chainingPC += jumpIndex * CHAIN_CELL_NORMAL_SIZE;
+ return (((s8) caseDPCOffset) << 32) | (u8) chainingPC;
+}
+
+/* See comments for findPackedSwitchIndex */
+static s8 findSparseSwitchIndex(const u2* switchData, int testVal, int pc)
+{
+ int size;
+ const int *keys;
+ const int *entries;
+ int chainingPC = (pc + 4) & ~3;
+ int i;
+
+ /*
+ * Sparse switch data format:
+ * ushort ident = 0x0200 magic value
+ * ushort size number of entries in the table; > 0
+ * int keys[size] keys, sorted low-to-high; 32-bit aligned
+ * int targets[size] branch targets, relative to switch opcode
+ *
+ * Total size is (2+size*4) 16-bit code units.
+ */
+
+ size = switchData[1];
+ assert(size > 0);
+
+ /* The keys are guaranteed to be aligned on a 32-bit boundary;
+ * we can treat them as a native int array.
+ */
+ keys = (const int*) &switchData[2];
+ assert(((u4)keys & 0x3) == 0);
+
+ /* The entries are guaranteed to be aligned on a 32-bit boundary;
+ * we can treat them as a native int array.
+ */
+ entries = keys + size;
+ assert(((u4)entries & 0x3) == 0);
+
+ /*
+ * Run through the list of keys, which are guaranteed to
+ * be sorted low-to-high.
+ *
+ * Most tables have 3-4 entries. Few have more than 10. A binary
+ * search here is probably not useful.
+ */
+ for (i = 0; i < size; i++) {
+ int k = keys[i];
+ if (k == testVal) {
+ /* MAX_CHAINED_SWITCH_CASES + 1 is the start of the overflow case */
+ int jumpIndex = (i < MAX_CHAINED_SWITCH_CASES) ?
+ i : MAX_CHAINED_SWITCH_CASES + 1;
+ chainingPC += jumpIndex * CHAIN_CELL_NORMAL_SIZE;
+ return (((s8) entries[i]) << 32) | (u8) chainingPC;
+ } else if (k > testVal) {
+ break;
+ }
+ }
+ return chainingPC + MIN(size, MAX_CHAINED_SWITCH_CASES) *
+ CHAIN_CELL_NORMAL_SIZE;
+}
+
+static bool handleFmt31t(CompilationUnit *cUnit, MIR *mir)
+{
+ Opcode dalvikOpcode = mir->dalvikInsn.opcode;
+ switch (dalvikOpcode) {
+ case OP_FILL_ARRAY_DATA: {
+ RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
+ // Making a call - use explicit registers
+ dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */
+ genExportPC(cUnit, mir);
+ loadValueDirectFixed(cUnit, rlSrc, r0);
+ LOAD_FUNC_ADDR(cUnit, r2, (int)dvmInterpHandleFillArrayData);
+ loadConstant(cUnit, r1,
+ (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
+ opReg(cUnit, kOpBlx, r2);
+ dvmCompilerClobberCallRegs(cUnit);
+ /* generate a branch over if successful */
+ ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
+ loadConstant(cUnit, r0,
+ (int) (cUnit->method->insns + mir->offset));
+ genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
+ ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
+ target->defMask = ENCODE_ALL;
+ branchOver->generic.target = (LIR *) target;
+ break;
+ }
+ /*
+ * Compute the goto target of up to
+ * MIN(switchSize, MAX_CHAINED_SWITCH_CASES) + 1 chaining cells.
+ * See the comment before findPackedSwitchIndex for the code layout.
+ */
+ case OP_PACKED_SWITCH:
+ case OP_SPARSE_SWITCH: {
+ RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
+ dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */
+ loadValueDirectFixed(cUnit, rlSrc, r1);
+ dvmCompilerLockAllTemps(cUnit);
+ if (dalvikOpcode == OP_PACKED_SWITCH) {
+ LOAD_FUNC_ADDR(cUnit, r4PC, (int)findPackedSwitchIndex);
+ } else {
+ LOAD_FUNC_ADDR(cUnit, r4PC, (int)findSparseSwitchIndex);
+ }
+ /* r0 <- Addr of the switch data */
+ loadConstant(cUnit, r0,
+ (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
+ /* r2 <- pc of the instruction following the blx */
+ opRegReg(cUnit, kOpMov, r2, r15pc);
+ opReg(cUnit, kOpBlx, r4PC);
+ dvmCompilerClobberCallRegs(cUnit);
+ /* pc <- computed goto target */
+ opRegReg(cUnit, kOpMov, r15pc, r0);
+ break;
+ }
+ default:
+ return true;
+ }
+ return false;
+}
+
+/*
+ * See the example of predicted inlining listed before the
+ * genValidationForPredictedInline function. The function here takes care the
+ * branch over at 0x4858de78 and the misprediction target at 0x4858de7a.
+ */
+static void genLandingPadForMispredictedCallee(CompilationUnit *cUnit, MIR *mir,
+ BasicBlock *bb,
+ ArmLIR *labelList)
+{
+ BasicBlock *fallThrough = bb->fallThrough;
+
+ /* Bypass the move-result block if there is one */
+ if (fallThrough->firstMIRInsn) {
+ assert(fallThrough->firstMIRInsn->OptimizationFlags & MIR_INLINED_PRED);
+ fallThrough = fallThrough->fallThrough;
+ }
+ /* Generate a branch over if the predicted inlining is correct */
+ genUnconditionalBranch(cUnit, &labelList[fallThrough->id]);
+
+ /* Reset the register state */
+ dvmCompilerResetRegPool(cUnit);
+ dvmCompilerClobberAllRegs(cUnit);
+ dvmCompilerResetNullCheck(cUnit);
+
+ /* Target for the slow invoke path */
+ ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
+ target->defMask = ENCODE_ALL;
+ /* Hook up the target to the verification branch */
+ mir->meta.callsiteInfo->misPredBranchOver->target = (LIR *) target;
+}
+
+static bool handleFmt35c_3rc_5rc(CompilationUnit *cUnit, MIR *mir,
+ BasicBlock *bb, ArmLIR *labelList)
+{
+ ArmLIR *retChainingCell = NULL;
+ ArmLIR *pcrLabel = NULL;
+
+ /* An invoke with the MIR_INLINED is effectively a no-op */
+ if (mir->OptimizationFlags & MIR_INLINED)
+ return false;
+
+ if (bb->fallThrough != NULL)
+ retChainingCell = &labelList[bb->fallThrough->id];
+
+ DecodedInstruction *dInsn = &mir->dalvikInsn;
+ switch (mir->dalvikInsn.opcode) {
+ /*
+ * calleeMethod = this->clazz->vtable[
+ * method->clazz->pDvmDex->pResMethods[BBBB]->methodIndex
+ * ]
+ */
+ case OP_INVOKE_VIRTUAL:
+ case OP_INVOKE_VIRTUAL_RANGE:
+ case OP_INVOKE_VIRTUAL_JUMBO: {
+ ArmLIR *predChainingCell = &labelList[bb->taken->id];
+ int methodIndex =
+ cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]->
+ methodIndex;
+
+ /*
+ * If the invoke has non-null misPredBranchOver, we need to generate
+ * the non-inlined version of the invoke here to handle the
+ * mispredicted case.
+ */
+ if (mir->meta.callsiteInfo->misPredBranchOver) {
+ genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
+ }
+
+ if (mir->dalvikInsn.opcode == OP_INVOKE_VIRTUAL)
+ genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
+ else
+ genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
+
+ genInvokeVirtualCommon(cUnit, mir, methodIndex,
+ retChainingCell,
+ predChainingCell,
+ pcrLabel);
+ break;
+ }
+ /*
+ * calleeMethod = method->clazz->super->vtable[method->clazz->pDvmDex
+ * ->pResMethods[BBBB]->methodIndex]
+ */
+ case OP_INVOKE_SUPER:
+ case OP_INVOKE_SUPER_RANGE:
+ case OP_INVOKE_SUPER_JUMBO: {
+ /* Grab the method ptr directly from what the interpreter sees */
+ const Method *calleeMethod = mir->meta.callsiteInfo->method;
+ assert(calleeMethod == cUnit->method->clazz->super->vtable[
+ cUnit->method->clazz->pDvmDex->
+ pResMethods[dInsn->vB]->methodIndex]);
+
+ if (mir->dalvikInsn.opcode == OP_INVOKE_SUPER)
+ genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
+ else
+ genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
+
+ if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
+ const Method *calleeMethod = mir->meta.callsiteInfo->method;
+ void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
+ assert(calleeAddr);
+ genInvokeSingletonWholeMethod(cUnit, mir, calleeAddr,
+ retChainingCell);
+ } else {
+ /* r0 = calleeMethod */
+ loadConstant(cUnit, r0, (int) calleeMethod);
+
+ genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
+ calleeMethod);
+ }
+ break;
+ }
+ /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
+ case OP_INVOKE_DIRECT:
+ case OP_INVOKE_DIRECT_RANGE:
+ case OP_INVOKE_DIRECT_JUMBO: {
+ /* Grab the method ptr directly from what the interpreter sees */
+ const Method *calleeMethod = mir->meta.callsiteInfo->method;
+ assert(calleeMethod ==
+ cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]);
+
+ if (mir->dalvikInsn.opcode == OP_INVOKE_DIRECT)
+ genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
+ else
+ genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
+
+ /* r0 = calleeMethod */
+ loadConstant(cUnit, r0, (int) calleeMethod);
+
+ genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
+ calleeMethod);
+ break;
+ }
+ /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
+ case OP_INVOKE_STATIC:
+ case OP_INVOKE_STATIC_RANGE:
+ case OP_INVOKE_STATIC_JUMBO: {
+ /* Grab the method ptr directly from what the interpreter sees */
+ const Method *calleeMethod = mir->meta.callsiteInfo->method;
+ assert(calleeMethod ==
+ cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]);
+
+ if (mir->dalvikInsn.opcode == OP_INVOKE_STATIC)
+ genProcessArgsNoRange(cUnit, mir, dInsn,
+ NULL /* no null check */);
+ else
+ genProcessArgsRange(cUnit, mir, dInsn,
+ NULL /* no null check */);
+
+ if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
+ const Method *calleeMethod = mir->meta.callsiteInfo->method;
+ void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
+ assert(calleeAddr);
+ genInvokeSingletonWholeMethod(cUnit, mir, calleeAddr,
+ retChainingCell);
+ } else {
+ /* r0 = calleeMethod */
+ loadConstant(cUnit, r0, (int) calleeMethod);
+
+ genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
+ calleeMethod);
+ }
+ break;
+ }
+ /*
+ * calleeMethod = dvmFindInterfaceMethodInCache(this->clazz,
+ * BBBB, method, method->clazz->pDvmDex)
+ *
+ * The following is an example of generated code for
+ * "invoke-interface v0"
+ *
+ * -------- dalvik offset: 0x0008 @ invoke-interface v0
+ * 0x47357e36 : ldr r0, [r5, #0] --+
+ * 0x47357e38 : sub r7,r5,#24 |
+ * 0x47357e3c : cmp r0, #0 | genProcessArgsNoRange
+ * 0x47357e3e : beq 0x47357e82 |
+ * 0x47357e40 : stmia r7, <r0> --+
+ * 0x47357e42 : ldr r4, [pc, #120] --> r4 <- dalvikPC of this invoke
+ * 0x47357e44 : add r1, pc, #64 --> r1 <- &retChainingCell
+ * 0x47357e46 : add r2, pc, #72 --> r2 <- &predictedChainingCell
+ * 0x47357e48 : blx_1 0x47348190 --+ TEMPLATE_INVOKE_METHOD_
+ * 0x47357e4a : blx_2 see above --+ PREDICTED_CHAIN
+ * 0x47357e4c : b 0x47357e90 --> off to the predicted chain
+ * 0x47357e4e : b 0x47357e82 --> punt to the interpreter
+ * 0x47357e50 : mov r8, r1 --+
+ * 0x47357e52 : mov r9, r2 |
+ * 0x47357e54 : ldr r2, [pc, #96] |
+ * 0x47357e56 : mov r10, r3 |
+ * 0x47357e58 : movs r0, r3 | dvmFindInterfaceMethodInCache
+ * 0x47357e5a : ldr r3, [pc, #88] |
+ * 0x47357e5c : ldr r7, [pc, #80] |
+ * 0x47357e5e : mov r1, #1452 |
+ * 0x47357e62 : blx r7 --+
+ * 0x47357e64 : cmp r0, #0 --> calleeMethod == NULL?
+ * 0x47357e66 : bne 0x47357e6e --> branch over the throw if !r0
+ * 0x47357e68 : ldr r0, [pc, #80] --> load Dalvik PC of the invoke
+ * 0x47357e6a : blx_1 0x47348494 --+ TEMPLATE_THROW_EXCEPTION_
+ * 0x47357e6c : blx_2 see above --+ COMMON
+ * 0x47357e6e : mov r1, r8 --> r1 <- &retChainingCell
+ * 0x47357e70 : cmp r1, #0 --> compare against 0
+ * 0x47357e72 : bgt 0x47357e7c --> >=0? don't rechain
+ * 0x47357e74 : ldr r7, [pc, #off] --+
+ * 0x47357e76 : mov r2, r9 | dvmJitToPatchPredictedChain
+ * 0x47357e78 : mov r3, r10 |
+ * 0x47357e7a : blx r7 --+
+ * 0x47357e7c : add r1, pc, #8 --> r1 <- &retChainingCell
+ * 0x47357e7e : blx_1 0x4734809c --+ TEMPLATE_INVOKE_METHOD_NO_OPT
+ * 0x47357e80 : blx_2 see above --+
+ * -------- reconstruct dalvik PC : 0x425719dc @ +0x0008
+ * 0x47357e82 : ldr r0, [pc, #56]
+ * Exception_Handling:
+ * 0x47357e84 : ldr r1, [r6, #92]
+ * 0x47357e86 : blx r1
+ * 0x47357e88 : .align4
+ * -------- chaining cell (hot): 0x000b
+ * 0x47357e88 : ldr r0, [r6, #104]
+ * 0x47357e8a : blx r0
+ * 0x47357e8c : data 0x19e2(6626)
+ * 0x47357e8e : data 0x4257(16983)
+ * 0x47357e90 : .align4
+ * -------- chaining cell (predicted)
+ * 0x47357e90 : data 0xe7fe(59390) --> will be patched into bx
+ * 0x47357e92 : data 0x0000(0)
+ * 0x47357e94 : data 0x0000(0) --> class
+ * 0x47357e96 : data 0x0000(0)
+ * 0x47357e98 : data 0x0000(0) --> method
+ * 0x47357e9a : data 0x0000(0)
+ * 0x47357e9c : data 0x0000(0) --> rechain count
+ * 0x47357e9e : data 0x0000(0)
+ * -------- end of chaining cells (0x006c)
+ * 0x47357eb0 : .word (0xad03e369)
+ * 0x47357eb4 : .word (0x28a90)
+ * 0x47357eb8 : .word (0x41a63394)
+ * 0x47357ebc : .word (0x425719dc)
+ */
+ case OP_INVOKE_INTERFACE:
+ case OP_INVOKE_INTERFACE_RANGE:
+ case OP_INVOKE_INTERFACE_JUMBO: {
+ ArmLIR *predChainingCell = &labelList[bb->taken->id];
+
+ /*
+ * If the invoke has non-null misPredBranchOver, we need to generate
+ * the non-inlined version of the invoke here to handle the
+ * mispredicted case.
+ */
+ if (mir->meta.callsiteInfo->misPredBranchOver) {
+ genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
+ }
+
+ if (mir->dalvikInsn.opcode == OP_INVOKE_INTERFACE)
+ genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
+ else
+ genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
+
+ /* "this" is already left in r0 by genProcessArgs* */
+
+ /* r4PC = dalvikCallsite */
+ loadConstant(cUnit, r4PC,
+ (int) (cUnit->method->insns + mir->offset));
+
+ /* r1 = &retChainingCell */
+ ArmLIR *addrRetChain =
+ opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
+ addrRetChain->generic.target = (LIR *) retChainingCell;
+
+ /* r2 = &predictedChainingCell */
+ ArmLIR *predictedChainingCell =
+ opRegRegImm(cUnit, kOpAdd, r2, r15pc, 0);
+ predictedChainingCell->generic.target = (LIR *) predChainingCell;
+
+ genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
+ TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN_PROF :
+ TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
+
+ /* return through lr - jump to the chaining cell */
+ genUnconditionalBranch(cUnit, predChainingCell);
+
+ /*
+ * null-check on "this" may have been eliminated, but we still need
+ * a PC-reconstruction label for stack overflow bailout.
+ */
+ if (pcrLabel == NULL) {
+ int dPC = (int) (cUnit->method->insns + mir->offset);
+ pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
+ pcrLabel->opcode = kArmPseudoPCReconstructionCell;
+ pcrLabel->operands[0] = dPC;
+ pcrLabel->operands[1] = mir->offset;
+ /* Insert the place holder to the growable list */
+ dvmInsertGrowableList(&cUnit->pcReconstructionList,
+ (intptr_t) pcrLabel);
+ }
+
+ /* return through lr+2 - punt to the interpreter */
+ genUnconditionalBranch(cUnit, pcrLabel);
+
+ /*
+ * return through lr+4 - fully resolve the callee method.
+ * r1 <- count
+ * r2 <- &predictedChainCell
+ * r3 <- this->class
+ * r4 <- dPC
+ * r7 <- this->class->vtable
+ */
+
+ /* Save count, &predictedChainCell, and class to high regs first */
+ genRegCopy(cUnit, r8, r1);
+ genRegCopy(cUnit, r9, r2);
+ genRegCopy(cUnit, r10, r3);
+
+ /* r0 now contains this->clazz */
+ genRegCopy(cUnit, r0, r3);
+
+ /* r1 = BBBB */
+ loadConstant(cUnit, r1, dInsn->vB);
+
+ /* r2 = method (caller) */
+ loadConstant(cUnit, r2, (int) cUnit->method);
+
+ /* r3 = pDvmDex */
+ loadConstant(cUnit, r3, (int) cUnit->method->clazz->pDvmDex);
+
+ LOAD_FUNC_ADDR(cUnit, r7,
+ (intptr_t) dvmFindInterfaceMethodInCache);
+ opReg(cUnit, kOpBlx, r7);
+ /* r0 = calleeMethod (returned from dvmFindInterfaceMethodInCache */
+
+ dvmCompilerClobberCallRegs(cUnit);
+ /* generate a branch over if the interface method is resolved */
+ ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
+ /*
+ * calleeMethod == NULL -> throw
+ */
+ loadConstant(cUnit, r0,
+ (int) (cUnit->method->insns + mir->offset));
+ genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
+ /* noreturn */
+
+ ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
+ target->defMask = ENCODE_ALL;
+ branchOver->generic.target = (LIR *) target;
+
+ genRegCopy(cUnit, r1, r8);
+
+ /* Check if rechain limit is reached */
+ ArmLIR *bypassRechaining = genCmpImmBranch(cUnit, kArmCondGt,
+ r1, 0);
+
+ LOAD_FUNC_ADDR(cUnit, r7, (int) dvmJitToPatchPredictedChain);
+
+ genRegCopy(cUnit, r1, r6SELF);
+ genRegCopy(cUnit, r2, r9);
+ genRegCopy(cUnit, r3, r10);
+
+ /*
+ * r0 = calleeMethod
+ * r2 = &predictedChainingCell
+ * r3 = class
+ *
+ * &returnChainingCell has been loaded into r1 but is not needed
+ * when patching the chaining cell and will be clobbered upon
+ * returning so it will be reconstructed again.
+ */
+ opReg(cUnit, kOpBlx, r7);
+
+ /* r1 = &retChainingCell */
+ addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
+ addrRetChain->generic.target = (LIR *) retChainingCell;
+
+ bypassRechaining->generic.target = (LIR *) addrRetChain;
+
+ /*
+ * r0 = this, r1 = calleeMethod,
+ * r1 = &ChainingCell,
+ * r4PC = callsiteDPC,
+ */
+ genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
+ TEMPLATE_INVOKE_METHOD_NO_OPT_PROF :
+ TEMPLATE_INVOKE_METHOD_NO_OPT);
+#if defined(WITH_JIT_TUNING)
+ gDvmJit.invokePolymorphic++;
+#endif
+ /* Handle exceptions using the interpreter */
+ genTrap(cUnit, mir->offset, pcrLabel);
+ break;
+ }
+ case OP_INVOKE_OBJECT_INIT_JUMBO:
+ case OP_INVOKE_OBJECT_INIT_RANGE:
+ case OP_FILLED_NEW_ARRAY:
+ case OP_FILLED_NEW_ARRAY_RANGE:
+ case OP_FILLED_NEW_ARRAY_JUMBO: {
+ /* Just let the interpreter deal with these */
+ genInterpSingleStep(cUnit, mir);
+ break;
+ }
+ default:
+ return true;
+ }
+ return false;
+}
+
+static bool handleFmt35ms_3rms(CompilationUnit *cUnit, MIR *mir,
+ BasicBlock *bb, ArmLIR *labelList)
+{
+ ArmLIR *pcrLabel = NULL;
+
+ /* An invoke with the MIR_INLINED is effectively a no-op */
+ if (mir->OptimizationFlags & MIR_INLINED)
+ return false;
+
+ DecodedInstruction *dInsn = &mir->dalvikInsn;
+ switch (mir->dalvikInsn.opcode) {
+ /* calleeMethod = this->clazz->vtable[BBBB] */
+ case OP_INVOKE_VIRTUAL_QUICK_RANGE:
+ case OP_INVOKE_VIRTUAL_QUICK: {
+ int methodIndex = dInsn->vB;
+ ArmLIR *retChainingCell = &labelList[bb->fallThrough->id];
+ ArmLIR *predChainingCell = &labelList[bb->taken->id];
+
+ /*
+ * If the invoke has non-null misPredBranchOver, we need to generate
+ * the non-inlined version of the invoke here to handle the
+ * mispredicted case.
+ */
+ if (mir->meta.callsiteInfo->misPredBranchOver) {
+ genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
+ }
+
+ if (mir->dalvikInsn.opcode == OP_INVOKE_VIRTUAL_QUICK)
+ genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
+ else
+ genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
+
+
+ if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
+ const Method *calleeMethod = mir->meta.callsiteInfo->method;
+ void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
+ assert(calleeAddr);
+ genInvokeVirtualWholeMethod(cUnit, mir, calleeAddr,
+ retChainingCell);
+ }
+
+ genInvokeVirtualCommon(cUnit, mir, methodIndex,
+ retChainingCell,
+ predChainingCell,
+ pcrLabel);
+ break;
+ }
+ /* calleeMethod = method->clazz->super->vtable[BBBB] */
+ case OP_INVOKE_SUPER_QUICK:
+ case OP_INVOKE_SUPER_QUICK_RANGE: {
+ /* Grab the method ptr directly from what the interpreter sees */
+ const Method *calleeMethod = mir->meta.callsiteInfo->method;
+ assert(calleeMethod ==
+ cUnit->method->clazz->super->vtable[dInsn->vB]);
+
+ if (mir->dalvikInsn.opcode == OP_INVOKE_SUPER_QUICK)
+ genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
+ else
+ genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
+
+ /* r0 = calleeMethod */
+ loadConstant(cUnit, r0, (int) calleeMethod);
+
+ genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
+ calleeMethod);
+ break;
+ }
+ default:
+ return true;
+ }
+ return false;
+}
+
+/*
+ * This operation is complex enough that we'll do it partly inline
+ * and partly with a handler. NOTE: the handler uses hardcoded
+ * values for string object offsets and must be revisitied if the
+ * layout changes.
+ */
+static bool genInlinedCompareTo(CompilationUnit *cUnit, MIR *mir)
+{
+#if defined(USE_GLOBAL_STRING_DEFS)
+ return handleExecuteInlineC(cUnit, mir);
+#else
+ ArmLIR *rollback;
+ RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0);
+ RegLocation rlComp = dvmCompilerGetSrc(cUnit, mir, 1);
+
+ loadValueDirectFixed(cUnit, rlThis, r0);
+ loadValueDirectFixed(cUnit, rlComp, r1);
+ /* Test objects for NULL */
+ rollback = genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL);
+ genNullCheck(cUnit, rlComp.sRegLow, r1, mir->offset, rollback);
+ /*
+ * TUNING: we could check for object pointer equality before invoking
+ * handler. Unclear whether the gain would be worth the added code size
+ * expansion.
+ */
+ genDispatchToHandler(cUnit, TEMPLATE_STRING_COMPARETO);
+ storeValue(cUnit, inlinedTarget(cUnit, mir, false),
+ dvmCompilerGetReturn(cUnit));
+ return false;
+#endif
+}
+
+static bool genInlinedFastIndexOf(CompilationUnit *cUnit, MIR *mir)
+{
+#if defined(USE_GLOBAL_STRING_DEFS)
+ return handleExecuteInlineC(cUnit, mir);
+#else
+ RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0);
+ RegLocation rlChar = dvmCompilerGetSrc(cUnit, mir, 1);
+
+ loadValueDirectFixed(cUnit, rlThis, r0);
+ loadValueDirectFixed(cUnit, rlChar, r1);
+ RegLocation rlStart = dvmCompilerGetSrc(cUnit, mir, 2);
+ loadValueDirectFixed(cUnit, rlStart, r2);
+ /* Test objects for NULL */
+ genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL);
+ genDispatchToHandler(cUnit, TEMPLATE_STRING_INDEXOF);
+ storeValue(cUnit, inlinedTarget(cUnit, mir, false),
+ dvmCompilerGetReturn(cUnit));
+ return false;
+#endif
+}
+
+// Generates an inlined String.isEmpty or String.length.
+static bool genInlinedStringIsEmptyOrLength(CompilationUnit *cUnit, MIR *mir,
+ bool isEmpty)
+{
+ // dst = src.length();
+ RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
+ RegLocation rlDest = inlinedTarget(cUnit, mir, false);
+ rlObj = loadValue(cUnit, rlObj, kCoreReg);
+ RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
+ genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, NULL);
+ loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count,
+ rlResult.lowReg);
+ if (isEmpty) {
+ // dst = (dst == 0);
+ int tReg = dvmCompilerAllocTemp(cUnit);
+ opRegReg(cUnit, kOpNeg, tReg, rlResult.lowReg);
+ opRegRegReg(cUnit, kOpAdc, rlResult.lowReg, rlResult.lowReg, tReg);
+ }
+ storeValue(cUnit, rlDest, rlResult);
+ return false;
+}
+
+static bool genInlinedStringLength(CompilationUnit *cUnit, MIR *mir)
+{
+ return genInlinedStringIsEmptyOrLength(cUnit, mir, false);
+}
+
+static bool genInlinedStringIsEmpty(CompilationUnit *cUnit, MIR *mir)
+{
+ return genInlinedStringIsEmptyOrLength(cUnit, mir, true);
+}
+
+static bool genInlinedStringCharAt(CompilationUnit *cUnit, MIR *mir)
+{
+ int contents = offsetof(ArrayObject, contents);
+ RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
+ RegLocation rlIdx = dvmCompilerGetSrc(cUnit, mir, 1);
+ RegLocation rlDest = inlinedTarget(cUnit, mir, false);
+ RegLocation rlResult;
+ rlObj = loadValue(cUnit, rlObj, kCoreReg);
+ rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
+ int regMax = dvmCompilerAllocTemp(cUnit);
+ int regOff = dvmCompilerAllocTemp(cUnit);
+ int regPtr = dvmCompilerAllocTemp(cUnit);
+ ArmLIR *pcrLabel = genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg,
+ mir->offset, NULL);
+ loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count, regMax);
+ loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_offset, regOff);
+ loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_value, regPtr);
+ genBoundsCheck(cUnit, rlIdx.lowReg, regMax, mir->offset, pcrLabel);
+ dvmCompilerFreeTemp(cUnit, regMax);
+ opRegImm(cUnit, kOpAdd, regPtr, contents);
+ opRegReg(cUnit, kOpAdd, regOff, rlIdx.lowReg);
+ rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
+ loadBaseIndexed(cUnit, regPtr, regOff, rlResult.lowReg, 1, kUnsignedHalf);
+ storeValue(cUnit, rlDest, rlResult);
+ return false;
+}
+
+static bool genInlinedAbsInt(CompilationUnit *cUnit, MIR *mir)
+{
+ RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
+ rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
+ RegLocation rlDest = inlinedTarget(cUnit, mir, false);
+ RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
+ int signReg = dvmCompilerAllocTemp(cUnit);
+ /*
+ * abs(x) = y<=x>>31, (x+y)^y.
+ * Thumb2's IT block also yields 3 instructions, but imposes
+ * scheduling constraints.
+ */
+ opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.lowReg, 31);
+ opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
+ opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
+ storeValue(cUnit, rlDest, rlResult);
+ return false;
+}
+
+static bool genInlinedAbsLong(CompilationUnit *cUnit, MIR *mir)
+{
+ RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
+ RegLocation rlDest = inlinedTargetWide(cUnit, mir, false);
+ rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg);
+ RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
+ int signReg = dvmCompilerAllocTemp(cUnit);
+ /*
+ * abs(x) = y<=x>>31, (x+y)^y.
+ * Thumb2 IT block allows slightly shorter sequence,
+ * but introduces a scheduling barrier. Stick with this
+ * mechanism for now.
+ */
+ opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.highReg, 31);
+ opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
+ opRegRegReg(cUnit, kOpAdc, rlResult.highReg, rlSrc.highReg, signReg);
+ opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
+ opRegReg(cUnit, kOpXor, rlResult.highReg, signReg);
+ storeValueWide(cUnit, rlDest, rlResult);
+ return false;
+}
+
+static bool genInlinedIntFloatConversion(CompilationUnit *cUnit, MIR *mir)
+{
+ // Just move from source to destination...
+ RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
+ RegLocation rlDest = inlinedTarget(cUnit, mir, false);
+ storeValue(cUnit, rlDest, rlSrc);
+ return false;
+}
+
+static bool genInlinedLongDoubleConversion(CompilationUnit *cUnit, MIR *mir)
+{
+ // Just move from source to destination...
+ RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
+ RegLocation rlDest = inlinedTargetWide(cUnit, mir, false);
+ storeValueWide(cUnit, rlDest, rlSrc);
+ return false;
+}
+
+/*
+ * JITs a call to a C function.
+ * TODO: use this for faster native method invocation for simple native
+ * methods (http://b/3069458).
+ */
+static bool handleExecuteInlineC(CompilationUnit *cUnit, MIR *mir)
+{
+ DecodedInstruction *dInsn = &mir->dalvikInsn;
+ int operation = dInsn->vB;
+ unsigned int i;
+ const InlineOperation* inLineTable = dvmGetInlineOpsTable();
+ uintptr_t fn = (int) inLineTable[operation].func;
+ if (fn == 0) {
+ dvmCompilerAbort(cUnit);
+ }
+ dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */
+ dvmCompilerClobberCallRegs(cUnit);
+ dvmCompilerClobber(cUnit, r4PC);
+ dvmCompilerClobber(cUnit, r7);
+ int offset = offsetof(Thread, retval);
+ opRegRegImm(cUnit, kOpAdd, r4PC, r6SELF, offset);
+ opImm(cUnit, kOpPush, (1<<r4PC) | (1<<r7));
+ LOAD_FUNC_ADDR(cUnit, r4PC, fn);
+ genExportPC(cUnit, mir);
+ for (i=0; i < dInsn->vA; i++) {
+ loadValueDirect(cUnit, dvmCompilerGetSrc(cUnit, mir, i), i);
+ }
+ opReg(cUnit, kOpBlx, r4PC);
+ opRegImm(cUnit, kOpAdd, r13sp, 8);
+ /* NULL? */
+ ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
+ loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
+ genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
+ ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
+ target->defMask = ENCODE_ALL;
+ branchOver->generic.target = (LIR *) target;
+ return false;
+}
+
+/*
+ * NOTE: Handles both range and non-range versions (arguments
+ * have already been normalized by this point).
+ */
+static bool handleExecuteInline(CompilationUnit *cUnit, MIR *mir)
+{
+ DecodedInstruction *dInsn = &mir->dalvikInsn;
+ assert(dInsn->opcode == OP_EXECUTE_INLINE_RANGE ||
+ dInsn->opcode == OP_EXECUTE_INLINE);
+ switch (dInsn->vB) {
+ case INLINE_EMPTYINLINEMETHOD:
+ return false; /* Nop */
+
+ /* These ones we potentially JIT inline. */
+ case INLINE_STRING_LENGTH:
+ return genInlinedStringLength(cUnit, mir);
+ case INLINE_STRING_IS_EMPTY:
+ return genInlinedStringIsEmpty(cUnit, mir);
+ case INLINE_MATH_ABS_INT:
+ return genInlinedAbsInt(cUnit, mir);
+ case INLINE_MATH_ABS_LONG:
+ return genInlinedAbsLong(cUnit, mir);
+ case INLINE_MATH_MIN_INT:
+ return genInlinedMinMaxInt(cUnit, mir, true);
+ case INLINE_MATH_MAX_INT:
+ return genInlinedMinMaxInt(cUnit, mir, false);
+ case INLINE_STRING_CHARAT:
+ return genInlinedStringCharAt(cUnit, mir);
+ case INLINE_MATH_SQRT:
+ return genInlineSqrt(cUnit, mir);
+ case INLINE_MATH_ABS_FLOAT:
+ return genInlinedAbsFloat(cUnit, mir);
+ case INLINE_MATH_ABS_DOUBLE:
+ return genInlinedAbsDouble(cUnit, mir);
+ case INLINE_STRING_COMPARETO:
+ return genInlinedCompareTo(cUnit, mir);
+ case INLINE_STRING_FASTINDEXOF_II:
+ return genInlinedFastIndexOf(cUnit, mir);
+ case INLINE_FLOAT_TO_RAW_INT_BITS:
+ case INLINE_INT_BITS_TO_FLOAT:
+ return genInlinedIntFloatConversion(cUnit, mir);
+ case INLINE_DOUBLE_TO_RAW_LONG_BITS:
+ case INLINE_LONG_BITS_TO_DOUBLE:
+ return genInlinedLongDoubleConversion(cUnit, mir);
+
+ /*
+ * These ones we just JIT a call to a C function for.
+ * TODO: special-case these in the other "invoke" call paths.
+ */
+ case INLINE_STRING_EQUALS:
+ case INLINE_MATH_COS:
+ case INLINE_MATH_SIN:
+ case INLINE_FLOAT_TO_INT_BITS:
+ case INLINE_DOUBLE_TO_LONG_BITS:
+ return handleExecuteInlineC(cUnit, mir);
+ }
+ dvmCompilerAbort(cUnit);
+ return false; // Not reachable; keeps compiler happy.
+}
+
+static bool handleFmt51l(CompilationUnit *cUnit, MIR *mir)
+{
+ //TUNING: We're using core regs here - not optimal when target is a double
+ RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
+ RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
+ loadConstantNoClobber(cUnit, rlResult.lowReg,
+ mir->dalvikInsn.vB_wide & 0xFFFFFFFFUL);
+ loadConstantNoClobber(cUnit, rlResult.highReg,
+ (mir->dalvikInsn.vB_wide>>32) & 0xFFFFFFFFUL);
+ storeValueWide(cUnit, rlDest, rlResult);
+ return false;
+}
+
+/*
+ * The following are special processing routines that handle transfer of
+ * controls between compiled code and the interpreter. Certain VM states like
+ * Dalvik PC and special-purpose registers are reconstructed here.
+ */
+
+/*
+ * Insert a
+ * b .+4
+ * nop
+ * pair at the beginning of a chaining cell. This serves as the
+ * switch branch that selects between reverting to the interpreter or
+ * not. Once the cell is chained to a translation, the cell will
+ * contain a 32-bit branch. Subsequent chain/unchain operations will
+ * then only alter that first 16-bits - the "b .+4" for unchaining,
+ * and the restoration of the first half of the 32-bit branch for
+ * rechaining.
+ */
+static void insertChainingSwitch(CompilationUnit *cUnit)
+{
+ ArmLIR *branch = newLIR0(cUnit, kThumbBUncond);
+ newLIR2(cUnit, kThumbOrr, r0, r0);
+ ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
+ target->defMask = ENCODE_ALL;
+ branch->generic.target = (LIR *) target;
+}
+
+/* Chaining cell for code that may need warmup. */
+static void handleNormalChainingCell(CompilationUnit *cUnit,
+ unsigned int offset)
+{
+ /*
+ * Use raw instruction constructors to guarantee that the generated
+ * instructions fit the predefined cell size.
+ */
+ insertChainingSwitch(cUnit);
+ newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
+ offsetof(Thread,
+ jitToInterpEntries.dvmJitToInterpNormal) >> 2);
+ newLIR1(cUnit, kThumbBlxR, r0);
+ addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
+}
+
+/*
+ * Chaining cell for instructions that immediately following already translated
+ * code.
+ */
+static void handleHotChainingCell(CompilationUnit *cUnit,
+ unsigned int offset)
+{
+ /*
+ * Use raw instruction constructors to guarantee that the generated
+ * instructions fit the predefined cell size.
+ */
+ insertChainingSwitch(cUnit);
+ newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
+ offsetof(Thread,
+ jitToInterpEntries.dvmJitToInterpTraceSelect) >> 2);
+ newLIR1(cUnit, kThumbBlxR, r0);
+ addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
+}
+
+/* Chaining cell for branches that branch back into the same basic block */
+static void handleBackwardBranchChainingCell(CompilationUnit *cUnit,
+ unsigned int offset)
+{
+ /*
+ * Use raw instruction constructors to guarantee that the generated
+ * instructions fit the predefined cell size.
+ */
+ insertChainingSwitch(cUnit);
+#if defined(WITH_SELF_VERIFICATION)
+ newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
+ offsetof(Thread,
+ jitToInterpEntries.dvmJitToInterpBackwardBranch) >> 2);
+#else
+ newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
+ offsetof(Thread, jitToInterpEntries.dvmJitToInterpNormal) >> 2);
+#endif
+ newLIR1(cUnit, kThumbBlxR, r0);
+ addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
+}
+
+/* Chaining cell for monomorphic method invocations. */
+static void handleInvokeSingletonChainingCell(CompilationUnit *cUnit,
+ const Method *callee)
+{
+ /*
+ * Use raw instruction constructors to guarantee that the generated
+ * instructions fit the predefined cell size.
+ */
+ insertChainingSwitch(cUnit);
+ newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
+ offsetof(Thread,
+ jitToInterpEntries.dvmJitToInterpTraceSelect) >> 2);
+ newLIR1(cUnit, kThumbBlxR, r0);
+ addWordData(cUnit, NULL, (int) (callee->insns));
+}
+
+/* Chaining cell for monomorphic method invocations. */
+static void handleInvokePredictedChainingCell(CompilationUnit *cUnit)
+{
+
+ /* Should not be executed in the initial state */
+ addWordData(cUnit, NULL, PREDICTED_CHAIN_BX_PAIR_INIT);
+ /* To be filled: class */
+ addWordData(cUnit, NULL, PREDICTED_CHAIN_CLAZZ_INIT);
+ /* To be filled: method */
+ addWordData(cUnit, NULL, PREDICTED_CHAIN_METHOD_INIT);
+ /*
+ * Rechain count. The initial value of 0 here will trigger chaining upon
+ * the first invocation of this callsite.
+ */
+ addWordData(cUnit, NULL, PREDICTED_CHAIN_COUNTER_INIT);
+}
+
+/* Load the Dalvik PC into r0 and jump to the specified target */
+static void handlePCReconstruction(CompilationUnit *cUnit,
+ ArmLIR *targetLabel)
+{
+ ArmLIR **pcrLabel =
+ (ArmLIR **) cUnit->pcReconstructionList.elemList;
+ int numElems = cUnit->pcReconstructionList.numUsed;
+ int i;
+ for (i = 0; i < numElems; i++) {
+ dvmCompilerAppendLIR(cUnit, (LIR *) pcrLabel[i]);
+ /* r0 = dalvik PC */
+ loadConstant(cUnit, r0, pcrLabel[i]->operands[0]);
+ genUnconditionalBranch(cUnit, targetLabel);
+ }
+}
+
+static const char *extendedMIROpNames[kMirOpLast - kMirOpFirst] = {
+ "kMirOpPhi",
+ "kMirOpNullNRangeUpCheck",
+ "kMirOpNullNRangeDownCheck",
+ "kMirOpLowerBound",
+ "kMirOpPunt",
+ "kMirOpCheckInlinePrediction",
+};
+
+/*
+ * vA = arrayReg;
+ * vB = idxReg;
+ * vC = endConditionReg;
+ * arg[0] = maxC
+ * arg[1] = minC
+ * arg[2] = loopBranchConditionCode
+ */
+static void genHoistedChecksForCountUpLoop(CompilationUnit *cUnit, MIR *mir)
+{
+ /*
+ * NOTE: these synthesized blocks don't have ssa names assigned
+ * for Dalvik registers. However, because they dominate the following
+ * blocks we can simply use the Dalvik name w/ subscript 0 as the
+ * ssa name.
+ */
+ DecodedInstruction *dInsn = &mir->dalvikInsn;
+ const int lenOffset = offsetof(ArrayObject, length);
+ const int maxC = dInsn->arg[0];
+ int regLength;
+ RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
+ RegLocation rlIdxEnd = cUnit->regLocation[mir->dalvikInsn.vC];
+
+ /* regArray <- arrayRef */
+ rlArray = loadValue(cUnit, rlArray, kCoreReg);
+ rlIdxEnd = loadValue(cUnit, rlIdxEnd, kCoreReg);
+ genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0,
+ (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
+
+ /* regLength <- len(arrayRef) */
+ regLength = dvmCompilerAllocTemp(cUnit);
+ loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
+
+ int delta = maxC;
+ /*
+ * If the loop end condition is ">=" instead of ">", then the largest value
+ * of the index is "endCondition - 1".
+ */
+ if (dInsn->arg[2] == OP_IF_GE) {
+ delta--;
+ }
+
+ if (delta) {
+ int tReg = dvmCompilerAllocTemp(cUnit);
+ opRegRegImm(cUnit, kOpAdd, tReg, rlIdxEnd.lowReg, delta);
+ rlIdxEnd.lowReg = tReg;
+ dvmCompilerFreeTemp(cUnit, tReg);
+ }
+ /* Punt if "regIdxEnd < len(Array)" is false */
+ genRegRegCheck(cUnit, kArmCondGe, rlIdxEnd.lowReg, regLength, 0,
+ (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
+}
+
+/*
+ * vA = arrayReg;
+ * vB = idxReg;
+ * vC = endConditionReg;
+ * arg[0] = maxC
+ * arg[1] = minC
+ * arg[2] = loopBranchConditionCode
+ */
+static void genHoistedChecksForCountDownLoop(CompilationUnit *cUnit, MIR *mir)
+{
+ DecodedInstruction *dInsn = &mir->dalvikInsn;
+ const int lenOffset = offsetof(ArrayObject, length);
+ const int regLength = dvmCompilerAllocTemp(cUnit);
+ const int maxC = dInsn->arg[0];
+ RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
+ RegLocation rlIdxInit = cUnit->regLocation[mir->dalvikInsn.vB];
+
+ /* regArray <- arrayRef */
+ rlArray = loadValue(cUnit, rlArray, kCoreReg);
+ rlIdxInit = loadValue(cUnit, rlIdxInit, kCoreReg);
+ genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0,
+ (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
+
+ /* regLength <- len(arrayRef) */
+ loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
+
+ if (maxC) {
+ int tReg = dvmCompilerAllocTemp(cUnit);
+ opRegRegImm(cUnit, kOpAdd, tReg, rlIdxInit.lowReg, maxC);
+ rlIdxInit.lowReg = tReg;
+ dvmCompilerFreeTemp(cUnit, tReg);
+ }
+
+ /* Punt if "regIdxInit < len(Array)" is false */
+ genRegRegCheck(cUnit, kArmCondGe, rlIdxInit.lowReg, regLength, 0,
+ (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
+}
+
+/*
+ * vA = idxReg;
+ * vB = minC;
+ */
+static void genHoistedLowerBoundCheck(CompilationUnit *cUnit, MIR *mir)
+{
+ DecodedInstruction *dInsn = &mir->dalvikInsn;
+ const int minC = dInsn->vB;
+ RegLocation rlIdx = cUnit->regLocation[mir->dalvikInsn.vA];
+
+ /* regIdx <- initial index value */
+ rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
+
+ /* Punt if "regIdxInit + minC >= 0" is false */
+ genRegImmCheck(cUnit, kArmCondLt, rlIdx.lowReg, -minC, 0,
+ (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
+}
+
+/*
+ * vC = this
+ *
+ * A predicted inlining target looks like the following, where instructions
+ * between 0x4858de66 and 0x4858de72 are checking if the predicted class
+ * matches "this", and the verificaion code is generated by this routine.
+ *
+ * (C) means the instruction is inlined from the callee, and (PI) means the
+ * instruction is the predicted inlined invoke, whose corresponding
+ * instructions are still generated to handle the mispredicted case.
+ *
+ * D/dalvikvm( 86): -------- kMirOpCheckInlinePrediction
+ * D/dalvikvm( 86): 0x4858de66 (0002): ldr r0, [r5, #68]
+ * D/dalvikvm( 86): 0x4858de68 (0004): ldr r1, [pc, #140]
+ * D/dalvikvm( 86): 0x4858de6a (0006): cmp r0, #0
+ * D/dalvikvm( 86): 0x4858de6c (0008): beq 0x4858deb2
+ * D/dalvikvm( 86): 0x4858de6e (000a): ldr r2, [r0, #0]
+ * D/dalvikvm( 86): 0x4858de70 (000c): cmp r1, r2
+ * D/dalvikvm( 86): 0x4858de72 (000e): bne 0x4858de7a
+ * D/dalvikvm( 86): -------- dalvik offset: 0x004c @ +iget-object-quick (C)
+ * v4, v17, (#8)
+ * D/dalvikvm( 86): 0x4858de74 (0010): ldr r3, [r0, #8]
+ * D/dalvikvm( 86): 0x4858de76 (0012): str r3, [r5, #16]
+ * D/dalvikvm( 86): -------- dalvik offset: 0x004c @
+ * +invoke-virtual-quick/range (PI) v17..v17
+ * D/dalvikvm( 86): 0x4858de78 (0014): b 0x4858debc
+ * D/dalvikvm( 86): 0x4858de7a (0016): add r4,r5,#68
+ * D/dalvikvm( 86): -------- BARRIER
+ * D/dalvikvm( 86): 0x4858de7e (001a): ldmia r4, <r0>
+ * D/dalvikvm( 86): -------- BARRIER
+ * D/dalvikvm( 86): 0x4858de80 (001c): sub r7,r5,#24
+ * D/dalvikvm( 86): 0x4858de84 (0020): cmp r0, #0
+ * D/dalvikvm( 86): 0x4858de86 (0022): beq 0x4858deb6
+ * D/dalvikvm( 86): -------- BARRIER
+ * D/dalvikvm( 86): 0x4858de88 (0024): stmia r7, <r0>
+ * D/dalvikvm( 86): -------- BARRIER
+ * D/dalvikvm( 86): 0x4858de8a (0026): ldr r4, [pc, #104]
+ * D/dalvikvm( 86): 0x4858de8c (0028): add r1, pc, #28
+ * D/dalvikvm( 86): 0x4858de8e (002a): add r2, pc, #56
+ * D/dalvikvm( 86): 0x4858de90 (002c): blx_1 0x48589198
+ * D/dalvikvm( 86): 0x4858de92 (002e): blx_2 see above
+ * D/dalvikvm( 86): 0x4858de94 (0030): b 0x4858dec8
+ * D/dalvikvm( 86): 0x4858de96 (0032): b 0x4858deb6
+ * D/dalvikvm( 86): 0x4858de98 (0034): ldr r0, [r7, #72]
+ * D/dalvikvm( 86): 0x4858de9a (0036): cmp r1, #0
+ * D/dalvikvm( 86): 0x4858de9c (0038): bgt 0x4858dea4
+ * D/dalvikvm( 86): 0x4858de9e (003a): ldr r7, [r6, #116]
+ * D/dalvikvm( 86): 0x4858dea0 (003c): movs r1, r6
+ * D/dalvikvm( 86): 0x4858dea2 (003e): blx r7
+ * D/dalvikvm( 86): 0x4858dea4 (0040): add r1, pc, #4
+ * D/dalvikvm( 86): 0x4858dea6 (0042): blx_1 0x485890a0
+ * D/dalvikvm( 86): 0x4858dea8 (0044): blx_2 see above
+ * D/dalvikvm( 86): 0x4858deaa (0046): b 0x4858deb6
+ * D/dalvikvm( 86): 0x4858deac (0048): .align4
+ * D/dalvikvm( 86): L0x004f:
+ * D/dalvikvm( 86): -------- dalvik offset: 0x004f @ move-result-object (PI)
+ * v4, (#0), (#0)
+ * D/dalvikvm( 86): 0x4858deac (0048): ldr r4, [r6, #8]
+ * D/dalvikvm( 86): 0x4858deae (004a): str r4, [r5, #16]
+ * D/dalvikvm( 86): 0x4858deb0 (004c): b 0x4858debc
+ * D/dalvikvm( 86): -------- reconstruct dalvik PC : 0x42beefcc @ +0x004c
+ * D/dalvikvm( 86): 0x4858deb2 (004e): ldr r0, [pc, #64]
+ * D/dalvikvm( 86): 0x4858deb4 (0050): b 0x4858deb8
+ * D/dalvikvm( 86): -------- reconstruct dalvik PC : 0x42beefcc @ +0x004c
+ * D/dalvikvm( 86): 0x4858deb6 (0052): ldr r0, [pc, #60]
+ * D/dalvikvm( 86): Exception_Handling:
+ * D/dalvikvm( 86): 0x4858deb8 (0054): ldr r1, [r6, #100]
+ * D/dalvikvm( 86): 0x4858deba (0056): blx r1
+ * D/dalvikvm( 86): 0x4858debc (0058): .align4
+ * D/dalvikvm( 86): -------- chaining cell (hot): 0x0050
+ * D/dalvikvm( 86): 0x4858debc (0058): b 0x4858dec0
+ * D/dalvikvm( 86): 0x4858debe (005a): orrs r0, r0
+ * D/dalvikvm( 86): 0x4858dec0 (005c): ldr r0, [r6, #112]
+ * D/dalvikvm( 86): 0x4858dec2 (005e): blx r0
+ * D/dalvikvm( 86): 0x4858dec4 (0060): data 0xefd4(61396)
+ * D/dalvikvm( 86): 0x4858dec6 (0062): data 0x42be(17086)
+ * D/dalvikvm( 86): 0x4858dec8 (0064): .align4
+ * D/dalvikvm( 86): -------- chaining cell (predicted)
+ * D/dalvikvm( 86): 0x4858dec8 (0064): data 0xe7fe(59390)
+ * D/dalvikvm( 86): 0x4858deca (0066): data 0x0000(0)
+ * D/dalvikvm( 86): 0x4858decc (0068): data 0x0000(0)
+ * D/dalvikvm( 86): 0x4858dece (006a): data 0x0000(0)
+ * :
+ */
+static void genValidationForPredictedInline(CompilationUnit *cUnit, MIR *mir)
+{
+ CallsiteInfo *callsiteInfo = mir->meta.callsiteInfo;
+ RegLocation rlThis = cUnit->regLocation[mir->dalvikInsn.vC];
+
+ rlThis = loadValue(cUnit, rlThis, kCoreReg);
+ int regPredictedClass = dvmCompilerAllocTemp(cUnit);
+ loadClassPointer(cUnit, regPredictedClass, (int) callsiteInfo);
+ genNullCheck(cUnit, rlThis.sRegLow, rlThis.lowReg, mir->offset,
+ NULL);/* null object? */
+ int regActualClass = dvmCompilerAllocTemp(cUnit);
+ loadWordDisp(cUnit, rlThis.lowReg, offsetof(Object, clazz), regActualClass);
+ opRegReg(cUnit, kOpCmp, regPredictedClass, regActualClass);
+ /*
+ * Set the misPredBranchOver target so that it will be generated when the
+ * code for the non-optimized invoke is generated.
+ */
+ callsiteInfo->misPredBranchOver = (LIR *) opCondBranch(cUnit, kArmCondNe);
+}
+
+/* Extended MIR instructions like PHI */
+static void handleExtendedMIR(CompilationUnit *cUnit, MIR *mir)
+{
+ int opOffset = mir->dalvikInsn.opcode - kMirOpFirst;
+ char *msg = (char *)dvmCompilerNew(strlen(extendedMIROpNames[opOffset]) + 1,
+ false);
+ strcpy(msg, extendedMIROpNames[opOffset]);
+ newLIR1(cUnit, kArmPseudoExtended, (int) msg);
+
+ switch ((ExtendedMIROpcode)mir->dalvikInsn.opcode) {
+ case kMirOpPhi: {
+ char *ssaString = dvmCompilerGetSSAString(cUnit, mir->ssaRep);
+ newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
+ break;
+ }
+ case kMirOpNullNRangeUpCheck: {
+ genHoistedChecksForCountUpLoop(cUnit, mir);
+ break;
+ }
+ case kMirOpNullNRangeDownCheck: {
+ genHoistedChecksForCountDownLoop(cUnit, mir);
+ break;
+ }
+ case kMirOpLowerBound: {
+ genHoistedLowerBoundCheck(cUnit, mir);
+ break;
+ }
+ case kMirOpPunt: {
+ genUnconditionalBranch(cUnit,
+ (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
+ break;
+ }
+ case kMirOpCheckInlinePrediction: {
+ genValidationForPredictedInline(cUnit, mir);
+ break;
+ }
+ default:
+ break;
+ }
+}
+
+/*
+ * Create a PC-reconstruction cell for the starting offset of this trace.
+ * Since the PCR cell is placed near the end of the compiled code which is
+ * usually out of range for a conditional branch, we put two branches (one
+ * branch over to the loop body and one layover branch to the actual PCR) at the
+ * end of the entry block.
+ */
+static void setupLoopEntryBlock(CompilationUnit *cUnit, BasicBlock *entry,
+ ArmLIR *bodyLabel)
+{
+ /* Set up the place holder to reconstruct this Dalvik PC */
+ ArmLIR *pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
+ pcrLabel->opcode = kArmPseudoPCReconstructionCell;
+ pcrLabel->operands[0] =
+ (int) (cUnit->method->insns + entry->startOffset);
+ pcrLabel->operands[1] = entry->startOffset;
+ /* Insert the place holder to the growable list */
+ dvmInsertGrowableList(&cUnit->pcReconstructionList, (intptr_t) pcrLabel);
+
+ /*
+ * Next, create two branches - one branch over to the loop body and the
+ * other branch to the PCR cell to punt.
+ */
+ ArmLIR *branchToBody = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
+ branchToBody->opcode = kThumbBUncond;
+ branchToBody->generic.target = (LIR *) bodyLabel;
+ setupResourceMasks(branchToBody);
+ cUnit->loopAnalysis->branchToBody = (LIR *) branchToBody;
+
+ ArmLIR *branchToPCR = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
+ branchToPCR->opcode = kThumbBUncond;
+ branchToPCR->generic.target = (LIR *) pcrLabel;
+ setupResourceMasks(branchToPCR);
+ cUnit->loopAnalysis->branchToPCR = (LIR *) branchToPCR;
+}
+
+#if defined(WITH_SELF_VERIFICATION)
+static bool selfVerificationPuntOps(MIR *mir)
+{
+ DecodedInstruction *decInsn = &mir->dalvikInsn;
+
+ /*
+ * All opcodes that can throw exceptions and use the
+ * TEMPLATE_THROW_EXCEPTION_COMMON template should be excluded in the trace
+ * under self-verification mode.
+ */
+ switch (decInsn->opcode) {
+ case OP_MONITOR_ENTER:
+ case OP_MONITOR_EXIT:
+ case OP_NEW_INSTANCE:
+ case OP_NEW_INSTANCE_JUMBO:
+ case OP_NEW_ARRAY:
+ case OP_NEW_ARRAY_JUMBO:
+ case OP_CHECK_CAST:
+ case OP_CHECK_CAST_JUMBO:
+ case OP_MOVE_EXCEPTION:
+ case OP_FILL_ARRAY_DATA:
+ case OP_EXECUTE_INLINE:
+ case OP_EXECUTE_INLINE_RANGE:
+ return true;
+ default:
+ return false;
+ }
+}
+#endif
+
+void dvmCompilerMIR2LIR(CompilationUnit *cUnit)
+{
+ /* Used to hold the labels of each block */
+ ArmLIR *labelList =
+ (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR) * cUnit->numBlocks, true);
+ ArmLIR *headLIR = NULL;
+ GrowableList chainingListByType[kChainingCellGap];
+ int i;
+
+ /*
+ * Initialize various types chaining lists.
+ */
+ for (i = 0; i < kChainingCellGap; i++) {
+ dvmInitGrowableList(&chainingListByType[i], 2);
+ }
+
+ /* Clear the visited flag for each block */
+ dvmCompilerDataFlowAnalysisDispatcher(cUnit, dvmCompilerClearVisitedFlag,
+ kAllNodes, false /* isIterative */);
+
+ GrowableListIterator iterator;
+ dvmGrowableListIteratorInit(&cUnit->blockList, &iterator);
+
+ /* Traces start with a profiling entry point. Generate it here */
+ cUnit->profileCodeSize = genTraceProfileEntry(cUnit);
+
+ /* Handle the content in each basic block */
+ for (i = 0; ; i++) {
+ MIR *mir;
+ BasicBlock *bb = (BasicBlock *) dvmGrowableListIteratorNext(&iterator);
+ if (bb == NULL) break;
+ if (bb->visited == true) continue;
+
+ labelList[i].operands[0] = bb->startOffset;
+
+ if (bb->blockType >= kChainingCellGap) {
+ if (bb->isFallThroughFromInvoke == true) {
+ /* Align this block first since it is a return chaining cell */
+ newLIR0(cUnit, kArmPseudoPseudoAlign4);
+ }
+ /*
+ * Append the label pseudo LIR first. Chaining cells will be handled
+ * separately afterwards.
+ */
+ dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[i]);
+ }
+
+ if (bb->blockType == kEntryBlock) {
+ labelList[i].opcode = kArmPseudoEntryBlock;
+ if (bb->firstMIRInsn == NULL) {
+ continue;
+ } else {
+ setupLoopEntryBlock(cUnit, bb,
+ &labelList[bb->fallThrough->id]);
+ }
+ } else if (bb->blockType == kExitBlock) {
+ labelList[i].opcode = kArmPseudoExitBlock;
+ goto gen_fallthrough;
+ } else if (bb->blockType == kDalvikByteCode) {
+ if (bb->hidden == true) continue;
+ labelList[i].opcode = kArmPseudoNormalBlockLabel;
+ /* Reset the register state */
+ dvmCompilerResetRegPool(cUnit);
+ dvmCompilerClobberAllRegs(cUnit);
+ dvmCompilerResetNullCheck(cUnit);
+ } else {
+ switch (bb->blockType) {
+ case kChainingCellNormal:
+ labelList[i].opcode = kArmPseudoChainingCellNormal;
+ /* handle the codegen later */
+ dvmInsertGrowableList(
+ &chainingListByType[kChainingCellNormal], i);
+ break;
+ case kChainingCellInvokeSingleton:
+ labelList[i].opcode =
+ kArmPseudoChainingCellInvokeSingleton;
+ labelList[i].operands[0] =
+ (int) bb->containingMethod;
+ /* handle the codegen later */
+ dvmInsertGrowableList(
+ &chainingListByType[kChainingCellInvokeSingleton], i);
+ break;
+ case kChainingCellInvokePredicted:
+ labelList[i].opcode =
+ kArmPseudoChainingCellInvokePredicted;
+ /*
+ * Move the cached method pointer from operand 1 to 0.
+ * Operand 0 was clobbered earlier in this routine to store
+ * the block starting offset, which is not applicable to
+ * predicted chaining cell.
+ */
+ labelList[i].operands[0] = labelList[i].operands[1];
+ /* handle the codegen later */
+ dvmInsertGrowableList(
+ &chainingListByType[kChainingCellInvokePredicted], i);
+ break;
+ case kChainingCellHot:
+ labelList[i].opcode =
+ kArmPseudoChainingCellHot;
+ /* handle the codegen later */
+ dvmInsertGrowableList(
+ &chainingListByType[kChainingCellHot], i);
+ break;
+ case kPCReconstruction:
+ /* Make sure exception handling block is next */
+ labelList[i].opcode =
+ kArmPseudoPCReconstructionBlockLabel;
+ handlePCReconstruction(cUnit,
+ &labelList[cUnit->puntBlock->id]);
+ break;
+ case kExceptionHandling:
+ labelList[i].opcode = kArmPseudoEHBlockLabel;
+ if (cUnit->pcReconstructionList.numUsed) {
+ loadWordDisp(cUnit, r6SELF, offsetof(Thread,
+ jitToInterpEntries.dvmJitToInterpPunt),
+ r1);
+ opReg(cUnit, kOpBlx, r1);
+ }
+ break;
+ case kChainingCellBackwardBranch:
+ labelList[i].opcode =
+ kArmPseudoChainingCellBackwardBranch;
+ /* handle the codegen later */
+ dvmInsertGrowableList(
+ &chainingListByType[kChainingCellBackwardBranch],
+ i);
+ break;
+ default:
+ break;
+ }
+ continue;
+ }
+
+ /*
+ * Try to build a longer optimization unit. Currently if the previous
+ * block ends with a goto, we continue adding instructions and don't
+ * reset the register allocation pool.
+ */
+ for (BasicBlock *nextBB = bb; nextBB != NULL; nextBB = cUnit->nextCodegenBlock) {
+ bb = nextBB;
+ bb->visited = true;
+ cUnit->nextCodegenBlock = NULL;
+
+ for (mir = bb->firstMIRInsn; mir; mir = mir->next) {
+
+ dvmCompilerResetRegPool(cUnit);
+ if (gDvmJit.disableOpt & (1 << kTrackLiveTemps)) {
+ dvmCompilerClobberAllRegs(cUnit);
+ }
+
+ if (gDvmJit.disableOpt & (1 << kSuppressLoads)) {
+ dvmCompilerResetDefTracking(cUnit);
+ }
+
+ if ((int)mir->dalvikInsn.opcode >= (int)kMirOpFirst) {
+ handleExtendedMIR(cUnit, mir);
+ continue;
+ }
+
+ Opcode dalvikOpcode = mir->dalvikInsn.opcode;
+ InstructionFormat dalvikFormat =
+ dexGetFormatFromOpcode(dalvikOpcode);
+ const char *note;
+ if (mir->OptimizationFlags & MIR_INLINED) {
+ note = " (I)";
+ } else if (mir->OptimizationFlags & MIR_INLINED_PRED) {
+ note = " (PI)";
+ } else if (mir->OptimizationFlags & MIR_CALLEE) {
+ note = " (C)";
+ } else {
+ note = NULL;
+ }
+
+ ArmLIR *boundaryLIR;
+
+ /*
+ * Don't generate the boundary LIR unless we are debugging this
+ * trace or we need a scheduling barrier.
+ */
+ if (headLIR == NULL || cUnit->printMe == true) {
+ boundaryLIR =
+ newLIR2(cUnit, kArmPseudoDalvikByteCodeBoundary,
+ mir->offset,
+ (int) dvmCompilerGetDalvikDisassembly(
+ &mir->dalvikInsn, note));
+ /* Remember the first LIR for this block */
+ if (headLIR == NULL) {
+ headLIR = boundaryLIR;
+ /* Set the first boundaryLIR as a scheduling barrier */
+ headLIR->defMask = ENCODE_ALL;
+ }
+ }
+
+ /*
+ * Don't generate the SSA annotation unless verbose mode is on
+ */
+ if (cUnit->printMe && mir->ssaRep) {
+ char *ssaString = dvmCompilerGetSSAString(cUnit,
+ mir->ssaRep);
+ newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
+ }
+
+ bool notHandled;
+ /*
+ * Debugging: screen the opcode first to see if it is in the
+ * do[-not]-compile list
+ */
+ bool singleStepMe = SINGLE_STEP_OP(dalvikOpcode);
+#if defined(WITH_SELF_VERIFICATION)
+ if (singleStepMe == false) {
+ singleStepMe = selfVerificationPuntOps(mir);
+ }
+#endif
+ if (singleStepMe || cUnit->allSingleStep) {
+ notHandled = false;
+ genInterpSingleStep(cUnit, mir);
+ } else {
+ opcodeCoverage[dalvikOpcode]++;
+ switch (dalvikFormat) {
+ case kFmt10t:
+ case kFmt20t:
+ case kFmt30t:
+ notHandled = handleFmt10t_Fmt20t_Fmt30t(cUnit,
+ mir, bb, labelList);
+ break;
+ case kFmt10x:
+ notHandled = handleFmt10x(cUnit, mir);
+ break;
+ case kFmt11n:
+ case kFmt31i:
+ notHandled = handleFmt11n_Fmt31i(cUnit, mir);
+ break;
+ case kFmt11x:
+ notHandled = handleFmt11x(cUnit, mir);
+ break;
+ case kFmt12x:
+ notHandled = handleFmt12x(cUnit, mir);
+ break;
+ case kFmt20bc:
+ case kFmt40sc:
+ notHandled = handleFmt20bc_Fmt40sc(cUnit, mir);
+ break;
+ case kFmt21c:
+ case kFmt31c:
+ case kFmt41c:
+ notHandled = handleFmt21c_Fmt31c_Fmt41c(cUnit, mir);
+ break;
+ case kFmt21h:
+ notHandled = handleFmt21h(cUnit, mir);
+ break;
+ case kFmt21s:
+ notHandled = handleFmt21s(cUnit, mir);
+ break;
+ case kFmt21t:
+ notHandled = handleFmt21t(cUnit, mir, bb,
+ labelList);
+ break;
+ case kFmt22b:
+ case kFmt22s:
+ notHandled = handleFmt22b_Fmt22s(cUnit, mir);
+ break;
+ case kFmt22c:
+ case kFmt52c:
+ notHandled = handleFmt22c_Fmt52c(cUnit, mir);
+ break;
+ case kFmt22cs:
+ notHandled = handleFmt22cs(cUnit, mir);
+ break;
+ case kFmt22t:
+ notHandled = handleFmt22t(cUnit, mir, bb,
+ labelList);
+ break;
+ case kFmt22x:
+ case kFmt32x:
+ notHandled = handleFmt22x_Fmt32x(cUnit, mir);
+ break;
+ case kFmt23x:
+ notHandled = handleFmt23x(cUnit, mir);
+ break;
+ case kFmt31t:
+ notHandled = handleFmt31t(cUnit, mir);
+ break;
+ case kFmt3rc:
+ case kFmt35c:
+ case kFmt5rc:
+ notHandled = handleFmt35c_3rc_5rc(cUnit, mir, bb,
+ labelList);
+ break;
+ case kFmt3rms:
+ case kFmt35ms:
+ notHandled = handleFmt35ms_3rms(cUnit, mir, bb,
+ labelList);
+ break;
+ case kFmt35mi:
+ case kFmt3rmi:
+ notHandled = handleExecuteInline(cUnit, mir);
+ break;
+ case kFmt51l:
+ notHandled = handleFmt51l(cUnit, mir);
+ break;
+ default:
+ notHandled = true;
+ break;
+ }
+ }
+ if (notHandled) {
+ LOGE("%#06x: Opcode 0x%x (%s) / Fmt %d not handled\n",
+ mir->offset,
+ dalvikOpcode, dexGetOpcodeName(dalvikOpcode),
+ dalvikFormat);
+ dvmCompilerAbort(cUnit);
+ break;
+ }
+ }
+ }
+
+ if (bb->blockType == kEntryBlock) {
+ dvmCompilerAppendLIR(cUnit,
+ (LIR *) cUnit->loopAnalysis->branchToBody);
+ dvmCompilerAppendLIR(cUnit,
+ (LIR *) cUnit->loopAnalysis->branchToPCR);
+ }
+
+ if (headLIR) {
+ /*
+ * Eliminate redundant loads/stores and delay stores into later
+ * slots
+ */
+ dvmCompilerApplyLocalOptimizations(cUnit, (LIR *) headLIR,
+ cUnit->lastLIRInsn);
+ }
+
+gen_fallthrough:
+ /*
+ * Check if the block is terminated due to trace length constraint -
+ * insert an unconditional branch to the chaining cell.
+ */
+ if (bb->needFallThroughBranch) {
+ genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
+ }
+ }
+
+ /* Handle the chaining cells in predefined order */
+ for (i = 0; i < kChainingCellGap; i++) {
+ size_t j;
+ int *blockIdList = (int *) chainingListByType[i].elemList;
+
+ cUnit->numChainingCells[i] = chainingListByType[i].numUsed;
+
+ /* No chaining cells of this type */
+ if (cUnit->numChainingCells[i] == 0)
+ continue;
+
+ /* Record the first LIR for a new type of chaining cell */
+ cUnit->firstChainingLIR[i] = (LIR *) &labelList[blockIdList[0]];
+
+ for (j = 0; j < chainingListByType[i].numUsed; j++) {
+ int blockId = blockIdList[j];
+ BasicBlock *chainingBlock =
+ (BasicBlock *) dvmGrowableListGetElement(&cUnit->blockList,
+ blockId);
+
+ /* Align this chaining cell first */
+ newLIR0(cUnit, kArmPseudoPseudoAlign4);
+
+ /* Insert the pseudo chaining instruction */
+ dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[blockId]);
+
+
+ switch (chainingBlock->blockType) {
+ case kChainingCellNormal:
+ handleNormalChainingCell(cUnit, chainingBlock->startOffset);
+ break;
+ case kChainingCellInvokeSingleton:
+ handleInvokeSingletonChainingCell(cUnit,
+ chainingBlock->containingMethod);
+ break;
+ case kChainingCellInvokePredicted:
+ handleInvokePredictedChainingCell(cUnit);
+ break;
+ case kChainingCellHot:
+ handleHotChainingCell(cUnit, chainingBlock->startOffset);
+ break;
+ case kChainingCellBackwardBranch:
+ handleBackwardBranchChainingCell(cUnit,
+ chainingBlock->startOffset);
+ break;
+ default:
+ LOGE("Bad blocktype %d", chainingBlock->blockType);
+ dvmCompilerAbort(cUnit);
+ }
+ }
+ }
+
+ /* Mark the bottom of chaining cells */
+ cUnit->chainingCellBottom = (LIR *) newLIR0(cUnit, kArmChainingCellBottom);
+
+ /*
+ * Generate the branch to the dvmJitToInterpNoChain entry point at the end
+ * of all chaining cells for the overflow cases.
+ */
+ if (cUnit->switchOverflowPad) {
+ loadConstant(cUnit, r0, (int) cUnit->switchOverflowPad);
+ loadWordDisp(cUnit, r6SELF, offsetof(Thread,
+ jitToInterpEntries.dvmJitToInterpNoChain), r2);
+ opRegReg(cUnit, kOpAdd, r1, r1);
+ opRegRegReg(cUnit, kOpAdd, r4PC, r0, r1);
+#if defined(WITH_JIT_TUNING)
+ loadConstant(cUnit, r0, kSwitchOverflow);
+#endif
+ opReg(cUnit, kOpBlx, r2);
+ }
+
+ dvmCompilerApplyGlobalOptimizations(cUnit);
+
+#if defined(WITH_SELF_VERIFICATION)
+ selfVerificationBranchInsertPass(cUnit);
+#endif
+}
+
+/*
+ * Accept the work and start compiling. Returns true if compilation
+ * is attempted.
+ */
+bool dvmCompilerDoWork(CompilerWorkOrder *work)
+{
+ JitTraceDescription *desc;
+ bool isCompile;
+ bool success = true;
+
+ if (gDvmJit.codeCacheFull) {
+ return false;
+ }
+
+ switch (work->kind) {
+ case kWorkOrderTrace:
+ isCompile = true;
+ /* Start compilation with maximally allowed trace length */
+ desc = (JitTraceDescription *)work->info;
+ success = dvmCompileTrace(desc, JIT_MAX_TRACE_LEN, &work->result,
+ work->bailPtr, 0 /* no hints */);
+ break;
+ case kWorkOrderTraceDebug: {
+ bool oldPrintMe = gDvmJit.printMe;
+ gDvmJit.printMe = true;
+ isCompile = true;
+ /* Start compilation with maximally allowed trace length */
+ desc = (JitTraceDescription *)work->info;
+ success = dvmCompileTrace(desc, JIT_MAX_TRACE_LEN, &work->result,
+ work->bailPtr, 0 /* no hints */);
+ gDvmJit.printMe = oldPrintMe;
+ break;
+ }
+ case kWorkOrderProfileMode:
+ dvmJitChangeProfileMode((TraceProfilingModes)(int)work->info);
+ isCompile = false;
+ break;
+ default:
+ isCompile = false;
+ LOGE("Jit: unknown work order type");
+ assert(0); // Bail if debug build, discard otherwise
+ }
+ if (!success)
+ work->result.codeAddress = NULL;
+ return isCompile;
+}
+
+/* Architectural-specific debugging helpers go here */
+void dvmCompilerArchDump(void)
+{
+ /* Print compiled opcode in this VM instance */
+ int i, start, streak;
+ char buf[1024];
+
+ streak = i = 0;
+ buf[0] = 0;
+ while (opcodeCoverage[i] == 0 && i < kNumPackedOpcodes) {
+ i++;
+ }
+ if (i == kNumPackedOpcodes) {
+ return;
+ }
+ for (start = i++, streak = 1; i < kNumPackedOpcodes; i++) {
+ if (opcodeCoverage[i]) {
+ streak++;
+ } else {
+ if (streak == 1) {
+ sprintf(buf+strlen(buf), "%x,", start);
+ } else {
+ sprintf(buf+strlen(buf), "%x-%x,", start, start + streak - 1);
+ }
+ streak = 0;
+ while (opcodeCoverage[i] == 0 && i < kNumPackedOpcodes) {
+ i++;
+ }
+ if (i < kNumPackedOpcodes) {
+ streak = 1;
+ start = i;
+ }
+ }
+ }
+ if (streak) {
+ if (streak == 1) {
+ sprintf(buf+strlen(buf), "%x", start);
+ } else {
+ sprintf(buf+strlen(buf), "%x-%x", start, start + streak - 1);
+ }
+ }
+ if (strlen(buf)) {
+ LOGD("dalvik.vm.jit.op = %s", buf);
+ }
+}
+
+/* Common initialization routine for an architecture family */
+bool dvmCompilerArchInit()
+{
+ int i;
+
+ for (i = 0; i < kArmLast; i++) {
+ if (EncodingMap[i].opcode != i) {
+ LOGE("Encoding order for %s is wrong: expecting %d, seeing %d",
+ EncodingMap[i].name, i, EncodingMap[i].opcode);
+ dvmAbort(); // OK to dvmAbort - build error
+ }
+ }
+
+ return dvmCompilerArchVariantInit();
+}
+
+void *dvmCompilerGetInterpretTemplate()
+{
+ return (void*) ((int)gDvmJit.codeCache +
+ templateEntryOffsets[TEMPLATE_INTERPRET]);
+}
+
+JitInstructionSetType dvmCompilerGetInterpretTemplateSet()
+{
+ return DALVIK_JIT_ARM;
+}
+
+/* Needed by the Assembler */
+void dvmCompilerSetupResourceMasks(ArmLIR *lir)
+{
+ setupResourceMasks(lir);
+}
+
+/* Needed by the ld/st optmizatons */
+ArmLIR* dvmCompilerRegCopyNoInsert(CompilationUnit *cUnit, int rDest, int rSrc)
+{
+ return genRegCopyNoInsert(cUnit, rDest, rSrc);
+}
+
+/* Needed by the register allocator */
+ArmLIR* dvmCompilerRegCopy(CompilationUnit *cUnit, int rDest, int rSrc)
+{
+ return genRegCopy(cUnit, rDest, rSrc);
+}
+
+/* Needed by the register allocator */
+void dvmCompilerRegCopyWide(CompilationUnit *cUnit, int destLo, int destHi,
+ int srcLo, int srcHi)
+{
+ genRegCopyWide(cUnit, destLo, destHi, srcLo, srcHi);
+}
+
+void dvmCompilerFlushRegImpl(CompilationUnit *cUnit, int rBase,
+ int displacement, int rSrc, OpSize size)
+{
+ storeBaseDisp(cUnit, rBase, displacement, rSrc, size);
+}
+
+void dvmCompilerFlushRegWideImpl(CompilationUnit *cUnit, int rBase,
+ int displacement, int rSrcLo, int rSrcHi)
+{
+ storeBaseDispWide(cUnit, rBase, displacement, rSrcLo, rSrcHi);
+}