summaryrefslogtreecommitdiff
path: root/core/java/android/gesture/LetterRecognizer.java
diff options
context:
space:
mode:
authorRomain Guy <romainguy@android.com>2009-05-21 16:23:21 -0700
committerRomain Guy <romainguy@android.com>2009-05-21 18:12:56 -0700
commitdb567c390bd56c05614eaa83c02dbb99f97ad9cc (patch)
tree86399406ca7a53c3d902b3863bf7a944cb7c5c3f /core/java/android/gesture/LetterRecognizer.java
parent384bfa270cdcb5dc3bc9ec396b783e25eb2d9b4d (diff)
Move the Gestures API to the framework in android.gesture.
Diffstat (limited to 'core/java/android/gesture/LetterRecognizer.java')
-rw-r--r--core/java/android/gesture/LetterRecognizer.java273
1 files changed, 273 insertions, 0 deletions
diff --git a/core/java/android/gesture/LetterRecognizer.java b/core/java/android/gesture/LetterRecognizer.java
new file mode 100644
index 000000000000..44767469bfb1
--- /dev/null
+++ b/core/java/android/gesture/LetterRecognizer.java
@@ -0,0 +1,273 @@
+/*
+ * Copyright (C) 2009 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package android.gesture;
+
+import android.content.Context;
+import android.content.res.Resources;
+import android.util.Log;
+
+import java.io.BufferedInputStream;
+import java.io.DataInputStream;
+import java.io.IOException;
+import java.util.ArrayList;
+import java.util.Collections;
+import java.util.Comparator;
+import java.util.HashMap;
+
+import static android.gesture.GestureConstants.LOG_TAG;
+
+public class LetterRecognizer {
+ public final static int RECOGNIZER_LATIN_LOWERCASE = 0;
+ static final String GESTURE_FILE_NAME = "letters.gestures";
+
+ private final static int ADJUST_RANGE = 3;
+
+ private SigmoidUnit[] mHiddenLayer;
+ private SigmoidUnit[] mOutputLayer;
+
+ private final String[] mClasses;
+
+ private final int mPatchSize;
+
+ private GestureLibrary mGestureLibrary;
+
+ private static class SigmoidUnit {
+ final float[] mWeights;
+
+ private boolean mComputed;
+ private float mResult;
+
+ SigmoidUnit(float[] weights) {
+ mWeights = weights;
+ }
+
+ private float compute(float[] inputs) {
+ if (!mComputed) {
+ float sum = 0;
+
+ final int count = inputs.length;
+ final float[] weights = mWeights;
+
+ for (int i = 0; i < count; i++) {
+ sum += inputs[i] * weights[i];
+ }
+ sum += weights[weights.length - 1];
+
+ mResult = 1.0f / (float) (1 + Math.exp(-sum));
+ mComputed = true;
+ }
+ return mResult;
+ }
+ }
+
+ public static LetterRecognizer getLetterRecognizer(Context context, int type) {
+ switch (type) {
+ case RECOGNIZER_LATIN_LOWERCASE: {
+ return createFromResource(context, com.android.internal.R.raw.latin_lowercase);
+ }
+ }
+ return null;
+ }
+
+ private LetterRecognizer(int numOfInput, int numOfHidden, String[] classes) {
+ mPatchSize = (int) Math.sqrt(numOfInput);
+ mHiddenLayer = new SigmoidUnit[numOfHidden];
+ mClasses = classes;
+ mOutputLayer = new SigmoidUnit[classes.length];
+ }
+
+ public ArrayList<Prediction> recognize(Gesture gesture) {
+ float[] query = GestureUtilities.spatialSampling(gesture, mPatchSize);
+ ArrayList<Prediction> predictions = classify(query);
+ adjustPrediction(gesture, predictions);
+ return predictions;
+ }
+
+ private ArrayList<Prediction> classify(float[] vector) {
+ final float[] intermediateOutput = compute(mHiddenLayer, vector);
+ final float[] output = compute(mOutputLayer, intermediateOutput);
+ final ArrayList<Prediction> predictions = new ArrayList<Prediction>();
+
+ double sum = 0;
+
+ final String[] classes = mClasses;
+ final int count = classes.length;
+
+ for (int i = 0; i < count; i++) {
+ double score = output[i];
+ sum += score;
+ predictions.add(new Prediction(classes[i], score));
+ }
+
+ for (int i = 0; i < count; i++) {
+ predictions.get(i).score /= sum;
+ }
+
+ Collections.sort(predictions, new Comparator<Prediction>() {
+ public int compare(Prediction object1, Prediction object2) {
+ double score1 = object1.score;
+ double score2 = object2.score;
+ if (score1 > score2) {
+ return -1;
+ } else if (score1 < score2) {
+ return 1;
+ } else {
+ return 0;
+ }
+ }
+ });
+ return predictions;
+ }
+
+ private float[] compute(SigmoidUnit[] layer, float[] input) {
+ final float[] output = new float[layer.length];
+ final int count = layer.length;
+
+ for (int i = 0; i < count; i++) {
+ output[i] = layer[i].compute(input);
+ }
+
+ return output;
+ }
+
+ private static LetterRecognizer createFromResource(Context context, int resourceID) {
+ final Resources resources = context.getResources();
+
+ DataInputStream in = null;
+ LetterRecognizer classifier = null;
+
+ try {
+ in = new DataInputStream(new BufferedInputStream(resources.openRawResource(resourceID),
+ GestureConstants.IO_BUFFER_SIZE));
+
+ final int version = in.readShort();
+
+ switch (version) {
+ case 1:
+ classifier = readV1(in);
+ break;
+ }
+
+ } catch (IOException e) {
+ Log.d(LOG_TAG, "Failed to load handwriting data:", e);
+ } finally {
+ GestureUtilities.closeStream(in);
+ }
+
+ return classifier;
+ }
+
+ private static LetterRecognizer readV1(DataInputStream in) throws IOException {
+
+ final int iCount = in.readInt();
+ final int hCount = in.readInt();
+ final int oCount = in.readInt();
+
+ final String[] classes = new String[oCount];
+ for (int i = 0; i < classes.length; i++) {
+ classes[i] = in.readUTF();
+ }
+
+ final LetterRecognizer classifier = new LetterRecognizer(iCount, hCount, classes);
+ final SigmoidUnit[] hiddenLayer = new SigmoidUnit[hCount];
+ final SigmoidUnit[] outputLayer = new SigmoidUnit[oCount];
+
+ for (int i = 0; i < hCount; i++) {
+ final float[] weights = new float[iCount + 1];
+ for (int j = 0; j <= iCount; j++) {
+ weights[j] = in.readFloat();
+ }
+ hiddenLayer[i] = new SigmoidUnit(weights);
+ }
+
+ for (int i = 0; i < oCount; i++) {
+ final float[] weights = new float[hCount + 1];
+ for (int j = 0; j <= hCount; j++) {
+ weights[j] = in.readFloat();
+ }
+ outputLayer[i] = new SigmoidUnit(weights);
+ }
+
+ classifier.mHiddenLayer = hiddenLayer;
+ classifier.mOutputLayer = outputLayer;
+
+ return classifier;
+ }
+
+ /**
+ * TODO: Publish this API once we figure out where we should save the personzlied
+ * gestures, and how to do so across all apps
+ *
+ * @hide
+ */
+ public boolean save() {
+ if (mGestureLibrary != null) {
+ return mGestureLibrary.save();
+ }
+ return false;
+ }
+
+ /**
+ * TODO: Publish this API once we figure out where we should save the personzlied
+ * gestures, and how to do so across all apps
+ *
+ * @hide
+ */
+ public void setPersonalizationEnabled(boolean enabled) {
+ if (enabled) {
+ mGestureLibrary = new GestureLibrary(GESTURE_FILE_NAME);
+ mGestureLibrary.setSequenceType(GestureLibrary.SEQUENCE_INVARIANT);
+ mGestureLibrary.load();
+ } else {
+ mGestureLibrary = null;
+ }
+ }
+
+ /**
+ * TODO: Publish this API once we figure out where we should save the personzlied
+ * gestures, and how to do so across all apps
+ *
+ * @hide
+ */
+ public void addExample(String letter, Gesture example) {
+ if (mGestureLibrary != null) {
+ mGestureLibrary.addGesture(letter, example);
+ }
+ }
+
+ private void adjustPrediction(Gesture query, ArrayList<Prediction> predictions) {
+ if (mGestureLibrary != null) {
+ final ArrayList<Prediction> results = mGestureLibrary.recognize(query);
+ final HashMap<String, Prediction> topNList = new HashMap<String, Prediction>();
+
+ for (int j = 0; j < ADJUST_RANGE; j++) {
+ Prediction prediction = predictions.remove(0);
+ topNList.put(prediction.name, prediction);
+ }
+
+ final int count = results.size();
+ for (int j = count - 1; j >= 0 && !topNList.isEmpty(); j--) {
+ final Prediction item = results.get(j);
+ final Prediction original = topNList.get(item.name);
+ if (original != null) {
+ predictions.add(0, original);
+ topNList.remove(item.name);
+ }
+ }
+ }
+ }
+}