| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
It has been claimed that the PG implementation of 'su' has security
vulnerabilities even when disabled. Unfortunately, the people that
find these vulnerabilities often like to keep them private so they
can profit from exploits while leaving users exposed to malicious
hackers.
In order to reduce the attack surface for vulnerabilites, it is
therefore necessary to make 'su' completely inaccessible when it
is not in use (except by the root and system users).
Change-Id: I79716c72f74d0b7af34ec3a8054896c6559a181d
|
| |
|
|
|
|
|
|
|
| |
This likely breaks tracing tools like trace-cmd. It logs in the same
format but now addresses are all 0x0.
Bug: 34277115
Change-Id: Ifb0d4d2a184bf0d95726de05b1acee0287a375d9
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The trace_printk() code will allocate extra buffers if the compile detects
that a trace_printk() is used. To do this, the format of the trace_printk()
is saved to the __trace_printk_fmt section, and if that section is bigger
than zero, the buffers are allocated (along with a message that this has
happened).
If trace_printk() uses a format that is not a constant, and thus something
not guaranteed to be around when the print happens, the compiler optimizes
the fmt out, as it is not used, and the __trace_printk_fmt section is not
filled. This means the kernel will not allocate the special buffers needed
for the trace_printk() and the trace_printk() will not write anything to the
tracing buffer.
Adding a "__used" to the variable in the __trace_printk_fmt section will
keep it around, even though it is set to NULL. This will keep the string
from being printed in the debugfs/tracing/printk_formats section as it is
not needed.
Reported-by: Vlastimil Babka <vbabka@suse.cz>
Fixes: 07d777fe8c398 "tracing: Add percpu buffers for trace_printk()"
Cc: stable@vger.kernel.org # v3.5+
Bug: 34277115
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Change-Id: I10ce56caa41c7644d9d290d9ed272a6d156c938c
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Strcpy has no limit on string being copied which causes
stack corruption leading to kernel panic. Use strlcpy to
resolve the issue by providing length of string to be copied.
CRs-fixed: 1048480
Bug: 35399704
Change-Id: Ib290b25f7e0ff96927b8530e5c078869441d409f
Signed-off-by: Amey Telawane <ameyt@codeaurora.org>
(cherry picked from commit 8ab8416bb18ba231c81ed09ba1429851ef50985a)
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit c3c87e770458aa004bd7ed3f29945ff436fd6511 upstream.
The fix from 9fc81d87420d ("perf: Fix events installation during
moving group") was incomplete in that it failed to recognise that
creating a group with events for different CPUs is semantically
broken -- they cannot be co-scheduled.
Furthermore, it leads to real breakage where, when we create an event
for CPU Y and then migrate it to form a group on CPU X, the code gets
confused where the counter is programmed -- triggered in practice
as well by me via the perf fuzzer.
Fix this by tightening the rules for creating groups. Only allow
grouping of counters that can be co-scheduled in the same context.
This means for the same task and/or the same cpu.
Fixes: 9fc81d87420d ("perf: Fix events installation during moving group")
Bug: 34515362
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20150123125834.090683288@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Willy Tarreau <w@1wt.eu>
Change-Id: I72247f51388177f172845ccd4621debcd3158940
(cherry picked from commit 0594add5a8a1035f72f4d88fac2601b167358cce)
|
| |
|
|
|
|
|
| |
up to d309e56aad40579006c20e35dd6ce3a0276b1ff6 f2fs: atomically set inode->i_flags
4.11-rc1
Change-Id: Id686be26e9840b355921f11ef1f26bec67984d8c
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Credit where credit is due: this idea comes from Christoph Lameter with
a lot of valuable input from Serge Hallyn. This patch is heavily based
on Christoph's patch.
===== The status quo =====
On Linux, there are a number of capabilities defined by the kernel. To
perform various privileged tasks, processes can wield capabilities that
they hold.
Each task has four capability masks: effective (pE), permitted (pP),
inheritable (pI), and a bounding set (X). When the kernel checks for a
capability, it checks pE. The other capability masks serve to modify
what capabilities can be in pE.
Any task can remove capabilities from pE, pP, or pI at any time. If a
task has a capability in pP, it can add that capability to pE and/or pI.
If a task has CAP_SETPCAP, then it can add any capability to pI, and it
can remove capabilities from X.
Tasks are not the only things that can have capabilities; files can also
have capabilities. A file can have no capabilty information at all [1].
If a file has capability information, then it has a permitted mask (fP)
and an inheritable mask (fI) as well as a single effective bit (fE) [2].
File capabilities modify the capabilities of tasks that execve(2) them.
A task that successfully calls execve has its capabilities modified for
the file ultimately being excecuted (i.e. the binary itself if that
binary is ELF or for the interpreter if the binary is a script.) [3] In
the capability evolution rules, for each mask Z, pZ represents the old
value and pZ' represents the new value. The rules are:
pP' = (X & fP) | (pI & fI)
pI' = pI
pE' = (fE ? pP' : 0)
X is unchanged
For setuid binaries, fP, fI, and fE are modified by a moderately
complicated set of rules that emulate POSIX behavior. Similarly, if
euid == 0 or ruid == 0, then fP, fI, and fE are modified differently
(primary, fP and fI usually end up being the full set). For nonroot
users executing binaries with neither setuid nor file caps, fI and fP
are empty and fE is false.
As an extra complication, if you execute a process as nonroot and fE is
set, then the "secure exec" rules are in effect: AT_SECURE gets set,
LD_PRELOAD doesn't work, etc.
This is rather messy. We've learned that making any changes is
dangerous, though: if a new kernel version allows an unprivileged
program to change its security state in a way that persists cross
execution of a setuid program or a program with file caps, this
persistent state is surprisingly likely to allow setuid or file-capped
programs to be exploited for privilege escalation.
===== The problem =====
Capability inheritance is basically useless.
If you aren't root and you execute an ordinary binary, fI is zero, so
your capabilities have no effect whatsoever on pP'. This means that you
can't usefully execute a helper process or a shell command with elevated
capabilities if you aren't root.
On current kernels, you can sort of work around this by setting fI to
the full set for most or all non-setuid executable files. This causes
pP' = pI for nonroot, and inheritance works. No one does this because
it's a PITA and it isn't even supported on most filesystems.
If you try this, you'll discover that every nonroot program ends up with
secure exec rules, breaking many things.
This is a problem that has bitten many people who have tried to use
capabilities for anything useful.
===== The proposed change =====
This patch adds a fifth capability mask called the ambient mask (pA).
pA does what most people expect pI to do.
pA obeys the invariant that no bit can ever be set in pA if it is not
set in both pP and pI. Dropping a bit from pP or pI drops that bit from
pA. This ensures that existing programs that try to drop capabilities
still do so, with a complication. Because capability inheritance is so
broken, setting KEEPCAPS, using setresuid to switch to nonroot uids, and
then calling execve effectively drops capabilities. Therefore,
setresuid from root to nonroot conditionally clears pA unless
SECBIT_NO_SETUID_FIXUP is set. Processes that don't like this can
re-add bits to pA afterwards.
The capability evolution rules are changed:
pA' = (file caps or setuid or setgid ? 0 : pA)
pP' = (X & fP) | (pI & fI) | pA'
pI' = pI
pE' = (fE ? pP' : pA')
X is unchanged
If you are nonroot but you have a capability, you can add it to pA. If
you do so, your children get that capability in pA, pP, and pE. For
example, you can set pA = CAP_NET_BIND_SERVICE, and your children can
automatically bind low-numbered ports. Hallelujah!
Unprivileged users can create user namespaces, map themselves to a
nonzero uid, and create both privileged (relative to their namespace)
and unprivileged process trees. This is currently more or less
impossible. Hallelujah!
You cannot use pA to try to subvert a setuid, setgid, or file-capped
program: if you execute any such program, pA gets cleared and the
resulting evolution rules are unchanged by this patch.
Users with nonzero pA are unlikely to unintentionally leak that
capability. If they run programs that try to drop privileges, dropping
privileges will still work.
It's worth noting that the degree of paranoia in this patch could
possibly be reduced without causing serious problems. Specifically, if
we allowed pA to persist across executing non-pA-aware setuid binaries
and across setresuid, then, naively, the only capabilities that could
leak as a result would be the capabilities in pA, and any attacker
*already* has those capabilities. This would make me nervous, though --
setuid binaries that tried to privilege-separate might fail to do so,
and putting CAP_DAC_READ_SEARCH or CAP_DAC_OVERRIDE into pA could have
unexpected side effects. (Whether these unexpected side effects would
be exploitable is an open question.) I've therefore taken the more
paranoid route. We can revisit this later.
An alternative would be to require PR_SET_NO_NEW_PRIVS before setting
ambient capabilities. I think that this would be annoying and would
make granting otherwise unprivileged users minor ambient capabilities
(CAP_NET_BIND_SERVICE or CAP_NET_RAW for example) much less useful than
it is with this patch.
===== Footnotes =====
[1] Files that are missing the "security.capability" xattr or that have
unrecognized values for that xattr end up with has_cap set to false.
The code that does that appears to be complicated for no good reason.
[2] The libcap capability mask parsers and formatters are dangerously
misleading and the documentation is flat-out wrong. fE is *not* a mask;
it's a single bit. This has probably confused every single person who
has tried to use file capabilities.
[3] Linux very confusingly processes both the script and the interpreter
if applicable, for reasons that elude me. The results from thinking
about a script's file capabilities and/or setuid bits are mostly
discarded.
Preliminary userspace code is here, but it needs updating:
https://git.kernel.org/cgit/linux/kernel/git/luto/util-linux-playground.git/commit/?h=cap_ambient&id=7f5afbd175d2
Here is a test program that can be used to verify the functionality
(from Christoph):
/*
* Test program for the ambient capabilities. This program spawns a shell
* that allows running processes with a defined set of capabilities.
*
* (C) 2015 Christoph Lameter <cl@linux.com>
* Released under: GPL v3 or later.
*
*
* Compile using:
*
* gcc -o ambient_test ambient_test.o -lcap-ng
*
* This program must have the following capabilities to run properly:
* Permissions for CAP_NET_RAW, CAP_NET_ADMIN, CAP_SYS_NICE
*
* A command to equip the binary with the right caps is:
*
* setcap cap_net_raw,cap_net_admin,cap_sys_nice+p ambient_test
*
*
* To get a shell with additional caps that can be inherited by other processes:
*
* ./ambient_test /bin/bash
*
*
* Verifying that it works:
*
* From the bash spawed by ambient_test run
*
* cat /proc/$$/status
*
* and have a look at the capabilities.
*/
/*
* Definitions from the kernel header files. These are going to be removed
* when the /usr/include files have these defined.
*/
static void set_ambient_cap(int cap)
{
int rc;
capng_get_caps_process();
rc = capng_update(CAPNG_ADD, CAPNG_INHERITABLE, cap);
if (rc) {
printf("Cannot add inheritable cap\n");
exit(2);
}
capng_apply(CAPNG_SELECT_CAPS);
/* Note the two 0s at the end. Kernel checks for these */
if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, cap, 0, 0)) {
perror("Cannot set cap");
exit(1);
}
}
int main(int argc, char **argv)
{
int rc;
set_ambient_cap(CAP_NET_RAW);
set_ambient_cap(CAP_NET_ADMIN);
set_ambient_cap(CAP_SYS_NICE);
printf("Ambient_test forking shell\n");
if (execv(argv[1], argv + 1))
perror("Cannot exec");
return 0;
}
Signed-off-by: Christoph Lameter <cl@linux.com> # Original author
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Aaron Jones <aaronmdjones@gmail.com>
Cc: Ted Ts'o <tytso@mit.edu>
Cc: Andrew G. Morgan <morgan@kernel.org>
Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: Austin S Hemmelgarn <ahferroin7@gmail.com>
Cc: Markku Savela <msa@moth.iki.fi>
Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: James Morris <james.l.morris@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry picked from commit 58319057b7847667f0c9585b9de0e8932b0fdb08)
Bug: 31038224
Change-Id: I88bc5caa782dc6be23dc7e839ff8e11b9a903f8c
Signed-off-by: Jorge Lucangeli Obes <jorgelo@google.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
When perf_group_detach is called on a group leader,
it should empty its sibling list. Otherwise, when
a sibling is later deallocated, list_del_event()
removes the sibling's group_entry from its current
list, which can be the now-deallocated group leader's
sibling list (use-after-free bug).
Bug: 32402548
Change-Id: I99f6bc97c8518df1cb0035814368012ba72ab1f1
Signed-off-by: John Dias <joaodias@google.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(Cherry picked from commit 59643d1535eb220668692a5359de22545af579f6)
If the size passed to ring_buffer_resize() is greater than MAX_LONG - BUF_PAGE_SIZE
then the DIV_ROUND_UP() will return zero.
Here's the details:
# echo 18014398509481980 > /sys/kernel/debug/tracing/buffer_size_kb
tracing_entries_write() processes this and converts kb to bytes.
18014398509481980 << 10 = 18446744073709547520
and this is passed to ring_buffer_resize() as unsigned long size.
size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
Where DIV_ROUND_UP(a, b) is (a + b - 1)/b
BUF_PAGE_SIZE is 4080 and here
18446744073709547520 + 4080 - 1 = 18446744073709551599
where 18446744073709551599 is still smaller than 2^64
2^64 - 18446744073709551599 = 17
But now 18446744073709551599 / 4080 = 4521260802379792
and size = size * 4080 = 18446744073709551360
This is checked to make sure its still greater than 2 * 4080,
which it is.
Then we convert to the number of buffer pages needed.
nr_page = DIV_ROUND_UP(size, BUF_PAGE_SIZE)
but this time size is 18446744073709551360 and
2^64 - (18446744073709551360 + 4080 - 1) = -3823
Thus it overflows and the resulting number is less than 4080, which makes
3823 / 4080 = 0
an nr_pages is set to this. As we already checked against the minimum that
nr_pages may be, this causes the logic to fail as well, and we crash the
kernel.
There's no reason to have the two DIV_ROUND_UP() (that's just result of
historical code changes), clean up the code and fix this bug.
Cc: stable@vger.kernel.org # 3.5+
Fixes: 83f40318dab00 ("ring-buffer: Make removal of ring buffer pages atomic")
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Willy Tarreau <w@1wt.eu>
Change-Id: I1147672317a3ad0fc995b1f32baaa050a7976ac4
Bug: 32659848
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Unfortunately we record PIDs in audit records using a variety of
methods despite the correct way being the use of task_tgid_nr().
This patch converts all of these callers, except for the case of
AUDIT_SET in audit_receive_msg() (see the comment in the code).
Reported-by: Jeff Vander Stoep <jeffv@google.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Bug: 28952093
(cherry picked from commit fa2bea2f5cca5b8d4a3e5520d2e8c0ede67ac108)
Signed-off-by: Jeff Vander Stoep <jeffv@google.com>
Change-Id: I36508a25c957f5108299e68a3b0f627c94eb27eb
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(cherry picked from commit 43761473c254b45883a64441dd0bc85a42f3645c)
There is a double fetch problem in audit_log_single_execve_arg()
where we first check the execve(2) argumnets for any "bad" characters
which would require hex encoding and then re-fetch the arguments for
logging in the audit record[1]. Of course this leaves a window of
opportunity for an unsavory application to munge with the data.
This patch reworks things by only fetching the argument data once[2]
into a buffer where it is scanned and logged into the audit
records(s). In addition to fixing the double fetch, this patch
improves on the original code in a few other ways: better handling
of large arguments which require encoding, stricter record length
checking, and some performance improvements (completely unverified,
but we got rid of some strlen() calls, that's got to be a good
thing).
As part of the development of this patch, I've also created a basic
regression test for the audit-testsuite, the test can be tracked on
GitHub at the following link:
* https://github.com/linux-audit/audit-testsuite/issues/25
[1] If you pay careful attention, there is actually a triple fetch
problem due to a strnlen_user() call at the top of the function.
[2] This is a tiny white lie, we do make a call to strnlen_user()
prior to fetching the argument data. I don't like it, but due to the
way the audit record is structured we really have no choice unless we
copy the entire argument at once (which would require a rather
wasteful allocation). The good news is that with this patch the
kernel no longer relies on this strnlen_user() value for anything
beyond recording it in the log, we also update it with a trustworthy
value whenever possible.
Reported-by: Pengfei Wang <wpengfeinudt@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Change-Id: I10e979e94605e3cf8d461e3e521f8f9837228aa5
Bug: 30956807
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There's a race on CPU unplug where we free the swevent hash array
while it can still have events on. This will result in a
use-after-free which is BAD.
Simply do not free the hash array on unplug. This leaves the thing
around and no use-after-free takes place.
When the last swevent dies, we do a for_each_possible_cpu() iteration
anyway to clean these up, at which time we'll free it, so no leakage
will occur.
Change-Id: I751faf3215bbdaa6b6358f3a752bdd24126cfa0b
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When kernel.perf_event_open is set to 3 (or greater), disallow all
access to performance events by users without CAP_SYS_ADMIN.
Add a Kconfig symbol CONFIG_SECURITY_PERF_EVENTS_RESTRICT that
makes this value the default.
This is based on a similar feature in grsecurity
(CONFIG_GRKERNSEC_PERF_HARDEN). This version doesn't include making
the variable read-only. It also allows enabling further restriction
at run-time regardless of whether the default is changed.
https://lkml.org/lkml/2016/1/11/587
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Bug: 29054680
Change-Id: Iff5bff4fc1042e85866df9faa01bce8d04335ab8
|
| |
|
|
|
|
| |
Bug: 25364034
Signed-off-by: Patrick Tjin <pattjin@google.com>
|
| |
|
|
| |
Bug: 25364034
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The value resulting from the SECCOMP_RET_DATA mask could exceed MAX_ERRNO
when setting errno during a SECCOMP_RET_ERRNO filter action. This makes
sure we have a reliable value being set, so that an invalid errno will not
be ignored by userspace.
Signed-off-by: Kees Cook <keescook@chromium.org>
Reported-by: Dmitry V. Levin <ldv@altlinux.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Will Drewry <wad@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(cherry picked from commit 580c57f1076872ebc2427f898b927944ce170f2d)
Signed-off-by: Kees Cook <keescook@google.com>
Change-Id: I069b2e858c626283819b9f0fc308c35c3c847b55
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(cherry picked from commit https://lkml.org/lkml/2015/12/21/337)
ASLR only uses as few as 8 bits to generate the random offset for the
mmap base address on 32 bit architectures. This value was chosen to
prevent a poorly chosen value from dividing the address space in such
a way as to prevent large allocations. This may not be an issue on all
platforms. Allow the specification of a minimum number of bits so that
platforms desiring greater ASLR protection may determine where to place
the trade-off.
Bug: 24047224
Signed-off-by: Daniel Cashman <dcashman@android.com>
Signed-off-by: Daniel Cashman <dcashman@google.com>
Change-Id: I66ac01c6f4f2c8dcfc84d1f1e99490b8385b3ed4
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(cherry pick from commit 73af963f9f3036dffed55c3a2898598186db1045)
__ptrace_may_access() checks get_dumpable/ptrace_has_cap/etc if task !=
current, this can can lead to surprising results.
For example, a sub-thread can't readlink("/proc/self/exe") if the
executable is not readable. setup_new_exec()->would_dump() notices that
inode_permission(MAY_READ) fails and then it does
set_dumpable(suid_dumpable). After that get_dumpable() fails.
(It is not clear why proc_pid_readlink() checks get_dumpable(), perhaps we
could add PTRACE_MODE_NODUMPABLE)
Change __ptrace_may_access() to use same_thread_group() instead of "task
== current". Any security check is pointless when the tasks share the
same ->mm.
Signed-off-by: Mark Grondona <mgrondona@llnl.gov>
Signed-off-by: Ben Woodard <woodard@redhat.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Bug: 26016905
Change-Id: I09e341013d62453def572814793e872cf6de1d70
|
| |
|
|
|
|
|
|
|
|
|
| |
Add ftrace event trace_sched_cpu_hotplug to track cpu
hot-add and hot-remove events.
This is useful in a variety of power, performance and
debug analysis scenarios.
Change-Id: I5d202c7a229ffacc3aafb7cf9afee0b0ee7b0931
Signed-off-by: Arun Bharadwaj <abharadw@codeaurora.org>
|
| |
|
|
|
|
|
|
|
| |
Decare war on uninterruptible sleep. Add a tracepoint which
walks the kernel stack and dumps the first non-scheduler function
called before the scheduler is invoked.
Change-Id: I19e965d5206329360a92cbfe2afcc8c30f65c229
Signed-off-by: Riley Andrews <riandrews@google.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(cherry pick from commit a9ac1262ce80c287562e604f3bb24f232fcb686e)
With Android M, Android environments use a separate execution
domain for 32bit processes.
See:
https://android-review.googlesource.com/#/c/122131/
This results in systems that use kernel modules to see selinux
audit noise like:
type=1400 audit(28.989:15): avc: denied { module_request } for
pid=1622 comm="app_process32" kmod="personality-8"
scontext=u:r:zygote:s0 tcontext=u:r:kernel:s0 tclass=system
While using kernel modules is unadvised, some systems do require
them.
Thus to avoid developers adding sepolicy exceptions to allow for
request_module calls, this patch disables the logic which tries
to call request_module for the 32bit personality (ie:
personality-8), which doesn't actually exist.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Change-Id: I32774083340e0f928d0e3bb4295517218e23c66c
|
| |
|
|
|
| |
Bug: 22368519
Signed-off-by: Ruchi Kandoi <kandoiruchi@google.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Call acct_update_power() to track power usage of task only if
CONFIG_CPU_FREQ_STAT is enabled, otherwise we run into
following build failure:
---------------
kernel/built-in.o: In function `account_user_time':
kernel/sched/cputime.c:155: undefined reference to `acct_update_power'
kernel/built-in.o: In function `__account_system_time':
kernel/sched/cputime.c:208: undefined reference to `acct_update_power'
make: *** [vmlinux] Error 1
---------------
Signed-off-by: Amit Pundir <amit.pundir@linaro.org>
|
| |
|
|
|
|
|
|
|
|
|
| |
cpu_power has been added to keep track of amount of power each task is
consuming. cpu_power is updated whenever stime and utime are updated for
a task. power is computed by taking into account the frequency at which
the current core was running and the current for cpu actively
running at hat frequency.
Change-Id: Ic535941e7b339aab5cae9081a34049daeb44b248
Signed-off-by: Ruchi Kandoi <kandoiruchi@google.com>
|
| |
|
|
|
|
|
|
|
| |
Excerpted from commit 743162013: "sched: Remove proliferation of
wait_on_bit() action functions"
Change-Id: I56153d55a9af9f2911ed6ffb15d36ad89d45cd55
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Theodore Ts'o <tytso@google.com>
|
| |
|
|
|
|
|
|
|
|
| |
If a wakeup source is found to be pending in the last stage of suspend
after syscore suspend then the device doesn't suspend but the error is
not propogated which causes an error in the accounting for the number
of suspend aborts and successful suspends.
Change-Id: Ib63b4ead755127eaf03e3b303aab3c782ad02ed1
Signed-off-by: Ruchi Kandoi <kandoiruchi@google.com>
|
| |
|
|
|
|
|
|
|
| |
This node epxorts two values separated by space.
From left to right:
1. time spent in suspend/resume process
2. time spent sleep in suspend state
Change-Id: I2cb9a9408a5fd12166aaec11b935a0fd6a408c63
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
On no-so-small systems, it is possible for a single process to cause an
OOM condition by filling large pipes with data that are never read. A
typical process filling 4000 pipes with 1 MB of data will use 4 GB of
memory. On small systems it may be tricky to set the pipe max size to
prevent this from happening.
This patch makes it possible to enforce a per-user soft limit above
which new pipes will be limited to a single page, effectively limiting
them to 4 kB each, as well as a hard limit above which no new pipes may
be created for this user. This has the effect of protecting the system
against memory abuse without hurting other users, and still allowing
pipes to work correctly though with less data at once.
The limit are controlled by two new sysctls : pipe-user-pages-soft, and
pipe-user-pages-hard. Both may be disabled by setting them to zero. The
default soft limit allows the default number of FDs per process (1024)
to create pipes of the default size (64kB), thus reaching a limit of 64MB
before starting to create only smaller pipes. With 256 processes limited
to 1024 FDs each, this results in 1024*64kB + (256*1024 - 1024) * 4kB =
1084 MB of memory allocated for a user. The hard limit is disabled by
default to avoid breaking existing applications that make intensive use
of pipes (eg: for splicing).
Change-Id: Icefc1d6983df5fac3e66354668e1af911ba5f717
Reported-by: socketpair@gmail.com
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Mitigates: CVE-2013-4312 (Linux 2.0+)
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Willy Tarreau <w@1wt.eu>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
| |
|
|
|
|
| |
This reverts commit c74360210f4712393d9512de323991831af2d569.
Change-Id: I95796f0cfc30e16a124730a6163c5300d2ca6645
|
| |
|
|
|
|
| |
This reverts commit 39eb6bb47cf1da451c4607b2c37017316acbd0d6.
Change-Id: I695004931b65bc1f039fae1203e60c2b5ac3e035
|
| |
|
|
|
|
|
|
|
|
| |
Asus added this code to dump the stack traces. If you get stuck
and the core keeps getting scheduled then you flood the logs
with stack traces which isn't helpful.
One stack trace is sufficient.
Change-Id: I68073c8c8a5e92775972f9b07d487f45bb5635d9
|
| |
|
|
| |
Change-Id: I7e7a3ed2dfeff6452de56613721b4eca57750be4
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(cherry pick from commit 93ae4f978ca7f26d17df915ac7afc919c1dd0353)
The following method of CPU hotplug callback registration is not safe
due to the possibility of an ABBA deadlock involving the cpu_add_remove_lock
and the cpu_hotplug.lock.
get_online_cpus();
for_each_online_cpu(cpu)
init_cpu(cpu);
register_cpu_notifier(&foobar_cpu_notifier);
put_online_cpus();
The deadlock is shown below:
CPU 0 CPU 1
----- -----
Acquire cpu_hotplug.lock
[via get_online_cpus()]
CPU online/offline operation
takes cpu_add_remove_lock
[via cpu_maps_update_begin()]
Try to acquire
cpu_add_remove_lock
[via register_cpu_notifier()]
CPU online/offline operation
tries to acquire cpu_hotplug.lock
[via cpu_hotplug_begin()]
*** DEADLOCK! ***
The problem here is that callback registration takes the locks in one order
whereas the CPU hotplug operations take the same locks in the opposite order.
To avoid this issue and to provide a race-free method to register CPU hotplug
callbacks (along with initialization of already online CPUs), introduce new
variants of the callback registration APIs that simply register the callbacks
without holding the cpu_add_remove_lock during the registration. That way,
we can avoid the ABBA scenario. However, we will need to hold the
cpu_add_remove_lock throughout the entire critical section, to protect updates
to the callback/notifier chain.
This can be achieved by writing the callback registration code as follows:
cpu_maps_update_begin(); [ or cpu_notifier_register_begin(); see below ]
for_each_online_cpu(cpu)
init_cpu(cpu);
/* This doesn't take the cpu_add_remove_lock */
__register_cpu_notifier(&foobar_cpu_notifier);
cpu_maps_update_done(); [ or cpu_notifier_register_done(); see below ]
Note that we can't use get_online_cpus() here instead of cpu_maps_update_begin()
because the cpu_hotplug.lock is dropped during the invocation of CPU_POST_DEAD
notifiers, and hence get_online_cpus() cannot provide the necessary
synchronization to protect the callback/notifier chains against concurrent
reads and writes. On the other hand, since the cpu_add_remove_lock protects
the entire hotplug operation (including CPU_POST_DEAD), we can use
cpu_maps_update_begin/done() to guarantee proper synchronization.
Also, since cpu_maps_update_begin/done() is like a super-set of
get/put_online_cpus(), the former naturally protects the critical sections
from concurrent hotplug operations.
Since the names cpu_maps_update_begin/done() don't make much sense in CPU
hotplug callback registration scenarios, we'll introduce new APIs named
cpu_notifier_register_begin/done() and map them to cpu_maps_update_begin/done().
In summary, introduce the lockless variants of un/register_cpu_notifier() and
also export the cpu_notifier_register_begin/done() APIs for use by modules.
This way, we provide a race-free way to register hotplug callbacks as well as
perform initialization for the CPUs that are already online.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Bug: 24810447
Change-Id: I5f85fcb5cfaa5f5f04a29eefc361851e9c345a99
|
| |
|