1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
|
/*COPYRIGHT**
Copyright (C) 2005-2014 Intel Corporation. All Rights Reserved.
This file is part of SEP Development Kit
SEP Development Kit is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
SEP Development Kit is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with SEP Development Kit; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
As a special exception, you may use this file as part of a free software
library without restriction. Specifically, if other files instantiate
templates or use macros or inline functions from this file, or you compile
this file and link it with other files to produce an executable, this
file does not by itself cause the resulting executable to be covered by
the GNU General Public License. This exception does not however
invalidate any other reasons why the executable file might be covered by
the GNU General Public License.
**COPYRIGHT*/
#include <linux/version.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/pci.h>
#include "lwpmudrv_defines.h"
#include "lwpmudrv_types.h"
#if defined(PCI_HELPERS_API)
#include <asm/intel_scu_ipc.h>
#include <asm/intel-mid.h>
#endif
#include "rise_errors.h"
#include "lwpmudrv_ecb.h"
#include "lwpmudrv_struct.h"
#include "lwpmudrv_chipset.h"
#include "inc/lwpmudrv.h"
#include "inc/control.h"
#include "inc/utility.h"
#include "inc/ecb_iterators.h"
#include "inc/gmch.h"
#include "inc/pci.h"
// global variables for determining which register offsets to use
static U32 gmch_register_read = 0; // value=0 indicates invalid read register
static U32 gmch_register_write = 0; // value=0 indicates invalid write register
static U32 number_of_events = 0;
//global variable for reading GMCH counter values
static U64 *gmch_current_data = NULL;
static U64 *gmch_to_read_data = NULL;
// global variable for tracking number of overflows per GMCH counter
static U32 gmch_overflow[MAX_CHIPSET_COUNTERS];
static U64 last_gmch_count[MAX_CHIPSET_COUNTERS];
extern DRV_CONFIG pcfg;
extern CHIPSET_CONFIG pma;
extern CPU_STATE pcb;
extern EVENT_CONFIG global_ec;
/*
* @fn gmch_PCI_Read32(address)
*
* @brief Read the 32bit value specified by the address
*
* @return the read value
*
*/
#if defined(PCI_HELPERS_API)
#define gmch_PCI_Read32 intel_mid_msgbus_read32_raw
#else
static U32
gmch_PCI_Read32 (
unsigned long address
)
{
U32 read_value = 0;
U32 gmch = FORM_PCI_ADDR(0, 0, 0, 0);
if (gmch == 0) {
return 0;
}
PCI_Write_Ulong((ULONG)(gmch + GMCH_MSG_CTRL_REG), (ULONG)address);
read_value = PCI_Read_Ulong((ULONG)(gmch + GMCH_MSG_DATA_REG));
return read_value;
}
#endif
/*
* @fn gmch_PCI_Write32(address, data)
*
* @brief Write the 32bit value into the address specified
*
* @return None
*
*/
#if defined(PCI_HELPERS_API)
#define gmch_PCI_Write32 intel_mid_msgbus_write32_raw
#else
static void
gmch_PCI_Write32 (
unsigned long address,
unsigned long data
)
{
U32 gmch = FORM_PCI_ADDR(0, 0, 0, 0);
if (gmch == 0) {
return;
}
PCI_Write_Ulong(gmch + GMCH_MSG_DATA_REG, data);
PCI_Write_Ulong(gmch + GMCH_MSG_CTRL_REG, address);
return;
}
#endif
/*
* @fn gmch_Check_Enabled()
*
* @brief Read GMCH PMON capabilities
*
* @param None
*
* @return GMCH enable bits
*
*/
static ULONG
gmch_Check_Enabled (
VOID
)
{
U32 gmch;
ULONG enabled_value;
gmch = FORM_PCI_ADDR(0, 0, 0, 0);
if (gmch == 0) {
SEP_PRINT_ERROR("gmch_Check_Enabled: unable to access PCI config space!\n");
return 0;
}
SEP_PRINT_DEBUG("gmch_Check_Enabled: wrote addr=0x%lx register_value=0x%lx\n", (ULONG)(gmch+GMCH_MSG_CTRL_REG), (ULONG)(GMCH_PMON_CAPABILITIES+gmch_register_read));
enabled_value = gmch_PCI_Read32(GMCH_PMON_CAPABILITIES + gmch_register_read);
SEP_PRINT_DEBUG("gmch_Check_Enabled: read addr=0x%lx enabled_value=0x%lx\n", (ULONG)(gmch+GMCH_MSG_DATA_REG), enabled_value);
return enabled_value;
}
/*
* @fn gmch_Init_Chipset()
*
* @brief Initialize GMCH Counters. See note below.
*
* @param None
*
* @note This function must be called BEFORE any other function in this file!
*
* @return VT_SUCCESS if successful, error otherwise
*
*/
static U32
gmch_Init_Chipset (
VOID
)
{
int i;
U32 gmch;
CHIPSET_SEGMENT cs = &CHIPSET_CONFIG_gmch(pma);
CHIPSET_SEGMENT gmch_chipset_seg;
gmch_chipset_seg = &CHIPSET_CONFIG_gmch(pma);
// configure the read/write registers offsets according to usermode setting
if (cs) {
gmch_register_read = CHIPSET_SEGMENT_read_register(cs);
gmch_register_write = CHIPSET_SEGMENT_write_register(cs);;
}
if (gmch_register_read == 0 || gmch_register_write == 0) {
SEP_PRINT_ERROR("Invalid GMCH read/write registers!\n");
return VT_CHIPSET_CONFIG_FAILED;
}
number_of_events = CHIPSET_SEGMENT_total_events(gmch_chipset_seg);
SEP_PRINT("Number of chipset events %d\n", number_of_events);
// Allocate memory for reading GMCH counter values + the group id
gmch_current_data = CONTROL_Allocate_Memory((number_of_events+1)*sizeof(U64));
if (!gmch_current_data) {
return OS_NO_MEM;
}
gmch_to_read_data = CONTROL_Allocate_Memory((number_of_events+1)*sizeof(U64));
if (!gmch_to_read_data) {
return OS_NO_MEM;
}
if (!DRV_CONFIG_enable_chipset(pcfg)) {
return VT_SUCCESS;
}
if (!CHIPSET_CONFIG_gmch_chipset(pma)) {
return VT_SUCCESS;
}
// initialize the GMCH per-counter overflow numbers
for (i = 0; i < MAX_CHIPSET_COUNTERS; i++) {
gmch_overflow[i] = 0;
last_gmch_count[i] = 0;
}
gmch = FORM_PCI_ADDR(0, 0, 0, 0);
if (gmch == 0) {
return VT_SUCCESS;
}
// disable fixed and GP counters
gmch_PCI_Write32(GMCH_PMON_GLOBAL_CTRL+gmch_register_write, 0x00000000);
// clear fixed counter filter
gmch_PCI_Write32(GMCH_PMON_FIXED_CTR_CTRL+gmch_register_write, 0x00000000);
return VT_SUCCESS;
}
/*
* @fn gmch_Start_Counters()
*
* @brief Start the GMCH Counters.
*
* @param None
*
* @return None
*
*/
static VOID
gmch_Start_Counters (
VOID
)
{
U32 gmch;
// reset and start chipset counters
if (pma == NULL) {
SEP_PRINT_ERROR("gmch_Start_Counters: ERROR pma=NULL\n");
}
gmch = FORM_PCI_ADDR(0, 0, 0, 0);
if (gmch != 0) {
// enable fixed and GP counters
gmch_PCI_Write32(GMCH_PMON_GLOBAL_CTRL+gmch_register_write, 0x0001000F);
// enable fixed counter filter
gmch_PCI_Write32(GMCH_PMON_FIXED_CTR_CTRL+gmch_register_write, 0x00000001);
}
return;
}
/*
* @fn gmch_Trigger_Read()
*
* @brief Read the GMCH counters through PCI Config space
*
* @return None
*
*/
static VOID
gmch_Trigger_Read (
VOID
)
{
U64 *data;
U32 gmch;
int i, data_index;
U64 val;
U64 *gmch_data;
U32 counter_data_low;
U32 counter_data_high;
U64 counter_data;
U64 cmd_register_low_read;
U64 cmd_register_high_read;
U32 gp_counter_index = 0;
U64 overflow;
CHIPSET_SEGMENT gmch_chipset_seg;
CHIPSET_EVENT chipset_events;
U64 *temp;
if (GLOBAL_STATE_current_phase(driver_state) == DRV_STATE_UNINITIALIZED ||
GLOBAL_STATE_current_phase(driver_state) == DRV_STATE_IDLE ||
GLOBAL_STATE_current_phase(driver_state) == DRV_STATE_RESERVED ||
GLOBAL_STATE_current_phase(driver_state) == DRV_STATE_PREPARE_STOP ||
GLOBAL_STATE_current_phase(driver_state) == DRV_STATE_STOPPED) {
return;
}
if (pma == NULL) {
return;
}
if (gmch_current_data == NULL) {
return;
}
if (CHIPSET_CONFIG_gmch_chipset(pma) == 0) {
return;
}
data = gmch_current_data;
data_index = 0;
preempt_disable();
SYS_Local_Irq_Disable();
gmch_chipset_seg = &CHIPSET_CONFIG_gmch(pma);
chipset_events = CHIPSET_SEGMENT_events(gmch_chipset_seg);
// Write GroupID
data[data_index] = 1;
// Increment the data index as the event id starts from zero
data_index++;
// GMCH data will be written as gmch_data[0], gmch_data[1], ...
gmch_data = data + data_index;
// read the GMCH counters and add them into the sample record
gmch = FORM_PCI_ADDR(0, 0, 0, 0);
if (gmch == 0) {
return;
}
// iterate through GMCH counters that were configured to collect on the events
for (i = 0; i < CHIPSET_SEGMENT_total_events(gmch_chipset_seg); i++) {
U32 event_id = CHIPSET_EVENT_event_id(&chipset_events[i]);
// read count for fixed GMCH counter event
if (event_id == 0) {
cmd_register_low_read = GMCH_PMON_FIXED_CTR0 + gmch_register_read;
data[data_index++] = (U64)gmch_PCI_Read32(cmd_register_low_read);
overflow = GMCH_PMON_FIXED_CTR_OVF_VAL;
}
else {
// read count for general GMCH counter event
switch (gp_counter_index) {
case 0:
default:
cmd_register_low_read = GMCH_PMON_GP_CTR0_L + gmch_register_read;
cmd_register_high_read = GMCH_PMON_GP_CTR0_H + gmch_register_read;
break;
case 1:
cmd_register_low_read = GMCH_PMON_GP_CTR1_L + gmch_register_read;
cmd_register_high_read = GMCH_PMON_GP_CTR1_H + gmch_register_read;
break;
case 2:
cmd_register_low_read = GMCH_PMON_GP_CTR2_L + gmch_register_read;
cmd_register_high_read = GMCH_PMON_GP_CTR2_H + gmch_register_read;
break;
case 3:
cmd_register_low_read = GMCH_PMON_GP_CTR3_L + gmch_register_read;
cmd_register_high_read = GMCH_PMON_GP_CTR3_H + gmch_register_read;
break;
}
counter_data_low = gmch_PCI_Read32(cmd_register_low_read);
counter_data_high = gmch_PCI_Read32(cmd_register_high_read);
counter_data = (U64)counter_data_high;
data[data_index++] = (counter_data << 32) + counter_data_low;
overflow = GMCH_PMON_GP_CTR_OVF_VAL;
gp_counter_index++;
}
/* Compute the running count of the event. */
gmch_data[i] &= overflow;
val = gmch_data[i];
if (gmch_data[i] < last_gmch_count[i]) {
gmch_overflow[i]++;
}
gmch_data[i] = gmch_data[i] + gmch_overflow[i]*overflow;
last_gmch_count[i] = val;
}
temp = gmch_to_read_data;
gmch_to_read_data = gmch_current_data;
gmch_current_data = temp;
SYS_Local_Irq_Enable();
preempt_enable();
return;
}
/*
* @fn gmch_Read_Counters()
*
* @brief Copy the GMCH data to the sampling data stream.
*
* @param param - pointer to data stream where samples are to be written
*
* @return None
*
*/
static VOID
gmch_Read_Counters (
PVOID param
)
{
U64 *data;
int i;
if (GLOBAL_STATE_current_phase(driver_state) == DRV_STATE_UNINITIALIZED ||
GLOBAL_STATE_current_phase(driver_state) == DRV_STATE_IDLE ||
GLOBAL_STATE_current_phase(driver_state) == DRV_STATE_RESERVED ||
GLOBAL_STATE_current_phase(driver_state) == DRV_STATE_PREPARE_STOP ||
GLOBAL_STATE_current_phase(driver_state) == DRV_STATE_STOPPED) {
return;
}
if (pma == NULL) {
return;
}
if (param == NULL) {
return;
}
if (gmch_to_read_data == NULL) {
return;
}
/*
* Account for the group id that is placed at the start of the chipset array.
* The number of data elements to be transferred is number_of_events + 1.
*/
data = param;
for (i = 0; i < number_of_events+1; i++) {
data[i] = gmch_to_read_data[i];
SEP_PRINT_DEBUG("Interrupt gmch read counters data %d is: 0x%llx \n",i, data[i]);
}
return;
}
/*
* @fn gmch_Stop_Counters()
*
* @brief Stop the GMCH counters
*
* @param None
*
* @return None
*
*/
static VOID
gmch_Stop_Counters (
VOID
)
{
U32 gmch;
// stop and reset the chipset counters
number_of_events = 0;
if (pma == NULL) {
SEP_PRINT_ERROR("gmch_Stop_Counters: pma=NULL\n");
}
gmch = FORM_PCI_ADDR(0, 0, 0, 0);
if (gmch != 0) {
// disable fixed and GP counters
gmch_PCI_Write32(GMCH_PMON_GLOBAL_CTRL+gmch_register_write, 0x00000000);
gmch_PCI_Write32(GMCH_PMON_FIXED_CTR_CTRL+gmch_register_write, 0x00000000);
}
return;
}
/*
* @fn gmch_Fini_Chipset()
*
* @brief Reset GMCH to state where it can be used again. Called at cleanup phase.
*
* @param None
*
* @return None
*
*/
static VOID
gmch_Fini_Chipset (
VOID
)
{
if (!gmch_Check_Enabled()) {
SEP_PRINT_WARNING("GMCH is not enabled!\n");
}
gmch_current_data = CONTROL_Free_Memory(gmch_current_data);
gmch_to_read_data = CONTROL_Free_Memory(gmch_to_read_data);
return;
}
//
// Initialize the GMCH chipset dispatch table
//
CS_DISPATCH_NODE gmch_dispatch =
{
gmch_Init_Chipset,
gmch_Start_Counters,
gmch_Read_Counters,
gmch_Stop_Counters,
gmch_Fini_Chipset,
gmch_Trigger_Read
};
|