1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
|
/*COPYRIGHT**
Copyright (C) 2005-2014 Intel Corporation. All Rights Reserved.
This file is part of SEP Development Kit
SEP Development Kit is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
SEP Development Kit is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with SEP Development Kit; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
As a special exception, you may use this file as part of a free software
library without restriction. Specifically, if other files instantiate
templates or use macros or inline functions from this file, or you compile
this file and link it with other files to produce an executable, this
file does not by itself cause the resulting executable to be covered by
the GNU General Public License. This exception does not however
invalidate any other reasons why the executable file might be covered by
the GNU General Public License.
**COPYRIGHT*/
#include "lwpmudrv_defines.h"
#include <linux/version.h>
#include <linux/wait.h>
#include <linux/fs.h>
#include "lwpmudrv_types.h"
#include "rise_errors.h"
#include "lwpmudrv_ecb.h"
#include "lwpmudrv_struct.h"
#include "lwpmudrv.h"
#include "utility.h"
#include "control.h"
#include "output.h"
#include "unc_common.h"
#include "ecb_iterators.h"
#include "pebs.h"
#include "inc/pci.h"
extern UNCORE_TOPOLOGY_INFO_NODE uncore_topology;
extern U64 *read_counter_info;
U32 *unc_package_to_bus_map;
/************************************************************/
/*
* unc common Dummy Dispatch function
*
************************************************************/
extern void
UNC_COMMON_Dummy_Func (
PVOID param
)
{
return;
}
/************************************************************/
/*
* UNC common PCI based API
*
************************************************************/
/*!
* @fn VOID UNC_COMMON_Do_Bus_to_Socket_Map(VOID)
*
* @brief This code discovers which package's data is read off of which bus.
*
* @param None
*
* @return None
*
* <I>Special Notes:</I>
* This probably will move to the UBOX once that is programmed.
*/
VOID
UNC_COMMON_Do_Bus_to_Socket_Map(
U32 socketid_ubox_did
)
{
U32 bus_no, device_no, function_no;
U32 pci_address;
U32 value;
U32 vendor_id;
U32 device_id;
U32 gid;
U32 mapping;
U32 i;
if (unc_package_to_bus_map != NULL) {
return;
}
unc_package_to_bus_map = CONTROL_Allocate_Memory(num_packages * sizeof(U32));
if (unc_package_to_bus_map == NULL) {
SEP_PRINT_DEBUG("UNC_COMMON_Do_Bus_to_Socket_Map allocated NULL by CONTROL_Allocate_Memory\n");
return;
}
for (bus_no = 0; bus_no < MAX_PCI_BUSNO; bus_no++) {
for (device_no = 0; device_no < MAX_PCI_DEVNO; device_no++) {
for (function_no = 0; function_no < MAX_PCI_FUNCNO; function_no++) {
// find the bus, device, and function number for
// the socket ID UBOX device
pci_address = FORM_PCI_ADDR(bus_no,
device_no,
function_no,
0);
value = PCI_Read_Ulong(pci_address);
vendor_id = value & VENDOR_ID_MASK;
device_id = (value & DEVICE_ID_MASK) >> DEVICE_ID_BITSHIFT;
if (vendor_id != DRV_IS_PCI_VENDOR_ID_INTEL) {
continue;
}
if (device_id == socketid_ubox_did) {
// first get node id for the local socket
pci_address = FORM_PCI_ADDR(bus_no,
device_no,
function_no,
UNCORE_SOCKETID_UBOX_LNID_OFFSET);
gid = PCI_Read_Ulong(pci_address) & 0x00000007;
// Get the node id mapping register:
// Basic idea is to read the Node ID Mapping Register (below)
// and match up one of the nodes with the gid that we read in above
// from the Node ID configuration register (above).
// Every three bits in the Node ID Mapping Register maps to a
// particular node (or package). So, bits 2:0 maps to package 0,
// bits 5:3 maps to package 1, and so on. Thus, we have to parse through
// every single triplet of bits to figure out the match.
pci_address = FORM_PCI_ADDR(bus_no,
device_no,
function_no,
UNCORE_SOCKETID_UBOX_GID_OFFSET);
mapping = PCI_Read_Ulong(pci_address);
for (i = 0; i < 7; i++, mapping = mapping >> 3) {
if ((mapping & 0x00000007) == gid) {
unc_package_to_bus_map[i] = bus_no;
break;
}
}
}
}
}
}
}
/*!
* @fn extern VOID UNC_COMMON_PCI_Write_PMU(VOID*)
*
* @brief Initial write of PMU registers
* Walk through the enties and write the value of the register accordingly.
* When current_group = 0, then this is the first time this routine is called,
*
* @param None
*
* @return None
*
* <I>Special Notes:</I>
*/
extern VOID
UNC_COMMON_PCI_Write_PMU (
PVOID param,
U32 ubox_did,
U32 control_msr,
U32 ctl_val,
DEVICE_CALLBACK callback
)
{
U32 pci_address;
U32 device_id;
U32 dev_idx = *((U32*)param);
U32 value;
U32 vendor_id;
U32 busno;
U32 this_cpu = CONTROL_THIS_CPU();
CPU_STATE pcpu = &pcb[this_cpu];
U32 package_num = core_to_package_map[this_cpu];
if (!CPU_STATE_socket_master(pcpu)) {
return;
}
// first, figure out which package maps to which bus
UNC_COMMON_Do_Bus_to_Socket_Map(ubox_did);
busno = unc_package_to_bus_map[package_num];
FOR_EACH_REG_ENTRY_UNC(pecb,dev_idx,idx) {
if (control_msr && (ECB_entries_reg_id(pecb,idx) == control_msr)) {
//Check if we need to zero this MSR out
SYS_Write_MSR(ECB_entries_reg_id(pecb,idx), 0LL);
SEP_PRINT_DEBUG("UNC_COMMON_PCI_Write_PMU wrote GLOBAL_CONTROL_MSR 0x%x\n", control_msr);
continue;
}
// otherwise, we have a valid entry
// now we just need to find the corresponding bus #
pci_address = FORM_PCI_ADDR(busno,
ECB_entries_dev_no(pecb,idx),
ECB_entries_func_no(pecb,idx),
0);
value = PCI_Read_Ulong(pci_address);
CHECK_IF_GENUINE_INTEL_DEVICE(value, vendor_id, device_id);
if (callback &&
callback->is_Valid_For_Write &&
!(callback->is_Valid_For_Write(device_id, ECB_entries_reg_id(pecb,idx)))) {
continue;
}
if (ctl_val &&
callback &&
callback->is_Unit_Ctl &&
(ECB_entries_reg_type(pecb,idx) == CCCR) &&
callback->is_Unit_Ctl(ECB_entries_reg_id(pecb,idx))) {
value = ctl_val;
// busno can not be stored in ECB because different sockets have different bus no.
pci_address = FORM_PCI_ADDR(busno,
ECB_entries_dev_no(pecb,idx),
ECB_entries_func_no(pecb,idx),
ECB_entries_reg_id(pecb,idx));
// reset the counters
PCI_Write_Ulong(pci_address, value);
SEP_PRINT_DEBUG("UNC_COMMON_PCI_Write_PMU cpu=%d, reg = 0x%x --- value 0x%x\n",
this_cpu, ECB_entries_reg_id(pecb,idx), value);
continue;
}
// now program at the corresponding offset
pci_address = FORM_PCI_ADDR(busno,
ECB_entries_dev_no(pecb,idx),
ECB_entries_func_no(pecb,idx),
ECB_entries_reg_id(pecb,idx));
PCI_Write_Ulong(pci_address, (U32)ECB_entries_reg_value(pecb,idx));
SEP_PRINT_DEBUG("UNC_COMMON_PCI_Write_PMU cpu=%d, reg = 0x%x --- value 0x%x\n",
this_cpu, ECB_entries_reg_id(pecb,idx), (U32)ECB_entries_reg_value(pecb,idx));
// we're zeroing out a data register, which is 48 bits long
// we need to zero out the upper bits as well
if (ECB_entries_reg_type(pecb,idx) == DATA) {
pci_address = FORM_PCI_ADDR(busno,
ECB_entries_dev_no(pecb,idx),
ECB_entries_func_no(pecb,idx),
(ECB_entries_reg_id(pecb,idx) + NEXT_ADDR_OFFSET));
PCI_Write_Ulong(pci_address, (U32)ECB_entries_reg_value(pecb,idx));
SEP_PRINT_DEBUG("UNC_COMMON_PCI_Write_PMU cpu=%d, reg = 0x%x --- value 0x%x\n",
this_cpu, ECB_entries_reg_id(pecb,idx), (U32)ECB_entries_reg_value(pecb,idx));
}
// this is needed for overflow detection of the accumulators.
if (LWPMU_DEVICE_counter_mask(&devices[dev_idx]) == 0) {
LWPMU_DEVICE_counter_mask(&devices[dev_idx]) = (U64)ECB_entries_max_bits(pecb,idx);
}
} END_FOR_EACH_REG_ENTRY_UNC;
return;
}
/*!
* @fn static VOID UNC_COMMON_PCI_Enable_PMU(PVOID)
*
* @brief Set the enable bit for all the EVSEL registers
*
* @param Device Index of this PMU unit
*
* @return None
*
* <I>Special Notes:</I>
*/
extern VOID
UNC_COMMON_PCI_Enable_PMU (
PVOID param,
U32 control_msr,
U32 enable_val,
U32 disable_val,
DEVICE_CALLBACK callback
)
{
U32 dev_idx = *((U32 *)param);
U32 value = 0;
U32 pci_address = 0;
U32 busno;
U32 package_num;
U32 this_cpu = CONTROL_THIS_CPU();
CPU_STATE pcpu = &pcb[this_cpu];
if (!CPU_STATE_socket_master(pcpu)) {
return;
}
package_num = core_to_package_map[this_cpu];
busno = unc_package_to_bus_map[package_num];
FOR_EACH_REG_ENTRY_UNC(pecb, dev_idx, i) {
if (ECB_entries_reg_id(pecb,i) == control_msr) {
SYS_Write_MSR(ECB_entries_reg_id(pecb,i), ECB_entries_reg_value(pecb,i));
SEP_PRINT_DEBUG("UNC_COMMON_PCI_Write_PMU wrote GLOBAL_CONTROL_MSR 0x%x val=0x%x\n",
control_msr, ECB_entries_reg_value(pecb,i));
continue;
}
if (callback &&
callback->is_PMON_Ctl &&
(ECB_entries_reg_type(pecb,i) == CCCR) &&
callback->is_PMON_Ctl(ECB_entries_reg_id(pecb,i))) {
value = enable_val | ECB_entries_reg_value(pecb,i);
pci_address = FORM_PCI_ADDR(busno,
ECB_entries_dev_no(pecb,i),
ECB_entries_func_no(pecb,i),
ECB_entries_reg_id(pecb,i));
PCI_Write_Ulong(pci_address, value);
SEP_PRINT_DEBUG("UNC_COMMON_PCI_Enable_PMU Event_reg = 0x%x --- value 0x%x\n",
ECB_entries_reg_id(pecb,i), value);
continue;
}
if (disable_val &&
callback &&
callback->is_Unit_Ctl &&
callback->is_Unit_Ctl(ECB_entries_reg_id(pecb,i))) {
pci_address = FORM_PCI_ADDR(busno,
ECB_entries_dev_no(pecb,i),
ECB_entries_func_no(pecb,i),
ECB_entries_reg_id(pecb,i));
value = PCI_Read_Ulong(pci_address);
value &= ~(disable_val);
PCI_Write_Ulong(pci_address, value);
SEP_PRINT_DEBUG("UNC_COMMON_PCI_Enable_PMU Event_reg = 0x%x --- value 0x%x\n",
ECB_entries_reg_id(pecb,i), value);
}
} END_FOR_EACH_REG_ENTRY_UNC;
return;
}
/*!
* @fn extern VOID UNC_COMMON_PCI_Disable_PMU(PVOID)
*
* @brief Disable the per unit global control to stop the PMU counters.
*
* @param Device Index of this PMU unit
* @control_msr Control MSR address
* @enable_val If counter freeze bit does not work, counter enable bit should be cleared
* @disable_val Disable collection
*
* @return None
*
* <I>Special Notes:</I>
*/
extern VOID
UNC_COMMON_PCI_Disable_PMU (
PVOID param,
U32 control_msr,
U32 enable_val,
U32 disable_val,
DEVICE_CALLBACK callback
)
{
U32 dev_idx = *((U32 *)param);
U32 value;
U32 pci_address;
U32 busno;
U32 package_num;
U32 this_cpu = CONTROL_THIS_CPU();
CPU_STATE pcpu = &pcb[this_cpu];
if (!CPU_STATE_socket_master(pcpu)) {
return;
}
package_num = core_to_package_map[this_cpu];
busno = unc_package_to_bus_map[package_num];
FOR_EACH_REG_ENTRY_UNC(pecb, dev_idx, i) {
if (control_msr && (ECB_entries_reg_id(pecb,i) == control_msr)) {
SYS_Write_MSR(ECB_entries_reg_id(pecb,i), 0LL);
SEP_PRINT_DEBUG("UNC_COMMON_PCI_Disable_PMU wrote GLOBAL_CONTROL_MSR 0x%x\n", control_msr);
continue;
}
if (callback) {
// The enable bit must be cleared when the PMU freeze is not working
if (enable_val && callback->is_PMON_Ctl &&
(ECB_entries_reg_type(pecb,i) == CCCR) &&
callback->is_PMON_Ctl(ECB_entries_reg_id(pecb,i))) {
value = (~enable_val) & ECB_entries_reg_value(pecb,i);
pci_address = FORM_PCI_ADDR(busno,
ECB_entries_dev_no(pecb,i),
ECB_entries_func_no(pecb,i),
ECB_entries_reg_id(pecb,i));
PCI_Write_Ulong(pci_address, value);
SEP_PRINT_DEBUG("UNC_COMMON_PCI_Disable_PMU cpu=%d, Event_reg = 0x%x --- value 0x%x\n",
this_cpu, ECB_entries_reg_id(pecb,i), value);
}
else if (callback->is_Unit_Ctl &&
(ECB_entries_reg_type(pecb,i) == CCCR) &&
callback->is_Unit_Ctl(ECB_entries_reg_id(pecb,i))) {
value = disable_val | (U32)ECB_entries_reg_value(pecb,i);
pci_address = FORM_PCI_ADDR(busno,
ECB_entries_dev_no(pecb,i),
ECB_entries_func_no(pecb,i),
ECB_entries_reg_id(pecb,i));
PCI_Write_Ulong(pci_address, value);
SEP_PRINT_DEBUG("UNC_COMMON_PCI_Disable_PMU cpu=%d, Event_Data_reg = 0x%x --- value 0x%x\n",
this_cpu, ECB_entries_reg_id(pecb,i), value);
}
}
} END_FOR_EACH_REG_ENTRY_UNC;
return;
}
/*!
* @fn extern VOID UNC_COMMON_PCI_Clean_Up(PVOID)
*
* @brief clear out out programming
*
* @param None
*
* @return None
*/
extern void
UNC_COMMON_PCI_Clean_Up (
VOID *param
)
{
if (unc_package_to_bus_map) {
unc_package_to_bus_map = CONTROL_Free_Memory(unc_package_to_bus_map);
}
return;
}
/*!
* @fn extern void UNC_COMMON_PCI_Read_Counts(param, id)
*
* @param param The read thread node to process
* @param id The event id for the which the sample is generated
*
* @return None No return needed
*
* @brief Read the Uncore count data and store into the buffer param;
* Uncore PMU does not support sampling, i.e. ignore the id parameter.
*/
extern VOID
UNC_COMMON_PCI_Read_Counts (
PVOID param,
U32 id
)
{
U64 *data = (U64*) param;
U32 cur_grp = LWPMU_DEVICE_cur_group(&devices[id]);
ECB pecb = LWPMU_DEVICE_PMU_register_data(&devices[id])[cur_grp];
U32 pci_address;
U32 this_cpu = CONTROL_THIS_CPU();
U32 package_num = core_to_package_map[this_cpu];
U32 bus_no = unc_package_to_bus_map[package_num];
// Write GroupID
data = (U64*)((S8*)data + ECB_group_offset(pecb));
*data = cur_grp + 1;
//Read in the counts into temporary buffer
FOR_EACH_DATA_REG_UNC(pecb, id, i) {
data = (U64 *)((S8*)param + ECB_entries_counter_event_offset(pecb,i));
// read lower 4 bytes
pci_address = FORM_PCI_ADDR(bus_no,
ECB_entries_dev_no(pecb,i),
ECB_entries_func_no(pecb,i),
ECB_entries_reg_id(pecb,i));
*data = LOWER_4_BYTES_MASK & PCI_Read_Ulong(pci_address);
// read upper 4 bytes
pci_address = FORM_PCI_ADDR(bus_no,
ECB_entries_dev_no(pecb,i),
ECB_entries_func_no(pecb,i),
(ECB_entries_reg_id(pecb,i) + NEXT_ADDR_OFFSET));
*data |= (U64)PCI_Read_Ulong(pci_address) << NEXT_ADDR_SHIFT;
} END_FOR_EACH_DATA_REG_UNC;
return;
}
/*!
* @fn extern UNC_COMMON_PCI_Read_PMU_Data(param)
*
* @param param The device index
*
* @return None No return needed
*
* @brief Read the Uncore count data and store into the buffer;
*/
extern VOID
UNC_COMMON_PCI_Read_PMU_Data(
PVOID param
)
{
U32 dev_idx = *((U32*)param);
U32 pci_address;
U64 value_low = 0;
U64 value_high = 0;
U32 this_cpu = CONTROL_THIS_CPU();
U32 package_num = 0;
U32 bus_no = 0;
U64 *buffer = read_counter_info;
DRV_CONFIG pcfg_unc;
U64 start_index;
CPU_STATE pcpu = &pcb[this_cpu];
U64 j = 0;
U32 sub_evt_index = 0;
U32 prev_ei = -1;
U32 cur_ei = 0;
U32 cur_grp = LWPMU_DEVICE_cur_group(&devices[(dev_idx)]);
ECB pecb = LWPMU_DEVICE_PMU_register_data(&devices[(dev_idx)])[cur_grp];
U32 num_events = 0;
if (!CPU_STATE_socket_master(pcpu)) {
return;
}
if (pecb) {
num_events = ECB_num_events(pecb);
}
package_num = core_to_package_map[this_cpu];
bus_no = unc_package_to_bus_map[package_num];
pcfg_unc = (DRV_CONFIG)LWPMU_DEVICE_pcfg(&devices[dev_idx]);
start_index = DRV_CONFIG_emon_unc_offset(pcfg_unc, cur_grp);
//Read in the counts into temporary buffer
FOR_EACH_DATA_REG_UNC(pecb,dev_idx,i) {
cur_ei = ECB_entries_group_index(pecb, i);
//the buffer index for this PMU needs to account for each event
j = start_index + ECB_entries_group_index(pecb, i) +
ECB_entries_emon_event_id_index_local(pecb,i) +
sub_evt_index*num_packages*LWPMU_DEVICE_num_units(&devices[dev_idx])+
package_num * LWPMU_DEVICE_num_units(&devices[dev_idx]);
// read lower 4 bytes
pci_address = FORM_PCI_ADDR(bus_no,
ECB_entries_dev_no(pecb,i),
ECB_entries_func_no(pecb,i),
ECB_entries_reg_id(pecb,i));
value_low = LOWER_4_BYTES_MASK & PCI_Read_Ulong(pci_address);
// read upper 4 bytes
pci_address = FORM_PCI_ADDR(bus_no,
ECB_entries_dev_no(pecb,i),
ECB_entries_func_no(pecb,i),
(ECB_entries_reg_id(pecb,i) + NEXT_ADDR_OFFSET));
value_high = (U64)PCI_Read_Ulong(pci_address);
buffer[j] = (value_high << NEXT_ADDR_SHIFT) | value_low;
SEP_PRINT_DEBUG("j = %d value = %llu pkg = %d e_id = %d\n",j, buffer[j],package_num, ECB_entries_emon_event_id_index_local(pecb,i));
//Increment sub_evt_index so that the next event position is adjusted
if ((prev_ei == -1 )|| (prev_ei != cur_ei)) {
prev_ei = cur_ei;
sub_evt_index++;
}
if (sub_evt_index == num_events) {
sub_evt_index = 0;
}
} END_FOR_EACH_DATA_REG_UNC;
return;
}
/*!
* @fn static VOID UNC_COMMON_PCI_Scan_For_Uncore(VOID*)
*
* @brief Initial write of PMU registers
* Walk through the enties and write the value of the register accordingly.
* When current_group = 0, then this is the first time this routine is called,
*
* @param None
*
* @return None
*
* <I>Special Notes:</I>
*/
extern VOID
UNC_COMMON_PCI_Scan_For_Uncore(
PVOID param,
U32 dev_node,
DEVICE_CALLBACK callback
)
{
U32 pci_address;
U32 device_id;
U32 value;
U32 vendor_id;
U32 busno;
U32 j, k;
for (busno = 0; busno < 256; busno++) {
for (j=0; j< MAX_PCI_DEVNO;j++) {
if (!(UNCORE_TOPOLOGY_INFO_pcidev_valid(&uncore_topology, dev_node, j))) {
continue;
}
for(k=0;k<MAX_PCI_FUNCNO;k++) {
if (!(UNCORE_TOPOLOGY_INFO_pcidev_is_devno_funcno_valid(&uncore_topology,dev_node,j,k))) {
continue;
}
pci_address = FORM_PCI_ADDR(busno,
j,
k,
0);
value = PCI_Read_Ulong(pci_address);
CHECK_IF_GENUINE_INTEL_DEVICE(value, vendor_id, device_id);
SEP_PRINT_DEBUG("iMC device ID = 0x%d\n",device_id);
if ( callback && callback->is_Valid_Device && !callback->is_Valid_Device(device_id)) {
continue;
}
UNCORE_TOPOLOGY_INFO_pcidev_is_found_in_platform(&uncore_topology, dev_node, j, k) = 1;
SEP_PRINT_DEBUG("found device %d at B:D:F = %d:%d:%d\n", dev_node, busno,j,k);
}
}
}
return;
}
/************************************************************/
/*
* UNC common MSR based API
*
************************************************************/
/*!
* @fn extern VOID UNC_COMMON_MSR_Write_PMU(VOID*)
*
* @brief Initial write of PMU registers
* Walk through the enties and write the value of the register accordingly.
* When current_group = 0, then this is the first time this routine is called,
*
* @param None
*
* @return None
*
* <I>Special Notes:</I>
*/
extern VOID
UNC_COMMON_MSR_Write_PMU (
PVOID param,
U32 control_msr,
U64 control_val,
U64 unit_reset_val,
DEVICE_CALLBACK callback
)
{
U32 dev_idx = *((U32*)param);
U64 value = 0;
U32 this_cpu = CONTROL_THIS_CPU();
CPU_STATE pcpu = &pcb[this_cpu];
if (!CPU_STATE_socket_master(pcpu)) {
return;
}
if (control_msr) {
SYS_Write_MSR(control_msr, control_val);
}
FOR_EACH_REG_ENTRY_UNC(pecb, dev_idx, i) {
/*
* Writing the GLOBAL Control register enables the PMU to start counting.
* So write 0 into the register to prevent any counting from starting.
*/
if (ECB_entries_reg_id(pecb,i) == control_msr) {
continue;
}
if (unit_reset_val &&
callback &&
callback->is_Unit_Ctl &&
callback->is_Unit_Ctl(ECB_entries_reg_id(pecb,i))) {
SYS_Write_MSR(ECB_entries_reg_id(pecb,i), unit_reset_val);
SEP_PRINT_DEBUG("common_sbox_Write_PMU Read reg = 0x%x --- value 0x%x\n",
ECB_entries_reg_id(pecb,i), value);
value = 0x0;
SYS_Write_MSR(ECB_entries_reg_id(pecb,i), value);
SEP_PRINT_DEBUG("common_sbox_Write_PMU reg = 0x%x --- value 0x%x\n",
ECB_entries_reg_id(pecb,i), value);
continue;
}
SYS_Write_MSR(ECB_entries_reg_id(pecb,i), ECB_entries_reg_value(pecb,i));
SEP_PRINT_DEBUG("UNC_COMMON_MSR_Write_PMU Event_Data_reg = 0x%x --- value 0x%llx\n",
ECB_entries_reg_id(pecb,i), ECB_entries_reg_value(pecb,i));
// this is needed for overflow detection of the accumulators.
if (LWPMU_DEVICE_counter_mask(&devices[dev_idx]) == 0) {
LWPMU_DEVICE_counter_mask(&devices[dev_idx]) = (U64)ECB_entries_max_bits(pecb,i);
}
} END_FOR_EACH_REG_ENTRY_UNC;
return;
}
/*!
* @fn VOID UNC_COMMON_MSR_Enable_PMU(PVOID)
*
* @brief Set the enable bit for all the evsel registers
*
* @param None
*
* @return None
*
* <I>Special Notes:</I>
*/
VOID
UNC_COMMON_MSR_Enable_PMU (
PVOID param,
U32 control_msr,
U64 control_value,
U64 unit_ctl_value,
U64 pmon_ctl_value,
DEVICE_CALLBACK callback
)
{
U32 dev_idx = *((U32*)param);
U64 value = 0;
U32 this_cpu = CONTROL_THIS_CPU();
CPU_STATE pcpu = &pcb[this_cpu];
if (!CPU_STATE_socket_master(pcpu)) {
return;
}
FOR_EACH_REG_ENTRY_UNC(pecb, dev_idx, i) {
if (control_msr && (ECB_entries_reg_id(pecb,i) == control_msr)) {
value = (control_value | ECB_entries_reg_value(pecb,i));
SYS_Write_MSR(ECB_entries_reg_id(pecb,i), value);
SEP_PRINT_DEBUG("UNC_COMMON_MSR_Write_PMU wrote 0x%x\n", control_msr);
continue;
}
if (callback &&
callback->is_PMON_Ctl &&
callback->is_PMON_Ctl(ECB_entries_reg_id(pecb,i))) {
value = (pmon_ctl_value | ECB_entries_reg_value(pecb,i));
SYS_Write_MSR(ECB_entries_reg_id(pecb,i), value);
SEP_PRINT_DEBUG("UNC_COMMON_MSR_Enable_PMU Event_Data_reg = 0x%x --- value 0x%I64x\n",
ECB_entries_reg_id(pecb,i), value);
continue;
}
if (unit_ctl_value &&
callback &&
callback->is_Unit_Ctl &&
callback->is_Unit_Ctl(ECB_entries_reg_id(pecb,i))) {
value = SYS_Read_MSR(ECB_entries_reg_id(pecb,i));
value &= ~(unit_ctl_value);
SYS_Write_MSR(ECB_entries_reg_id(pecb,i), value);
}
} END_FOR_EACH_REG_ENTRY_UNC;
return;
}
/*!
* @fn extern VOID UNC_COMMON_MSR_Disable_PMU(PVOID)
*
* @brief Disable the per unit global control to stop the PMU counters.
*
* @param Device Index of this PMU unit
*
* @return None
*
* <I>Special Notes:</I>
*/
extern VOID
UNC_COMMON_MSR_Disable_PMU (
PVOID param,
U32 control_msr,
U64 unit_ctl_value,
U64 pmon_ctl_value,
DEVICE_CALLBACK callback
)
{
U32 dev_idx = *((U32*)param);
U64 value = 0;
U32 this_cpu = CONTROL_THIS_CPU();
CPU_STATE pcpu = &pcb[this_cpu];
if (!CPU_STATE_socket_master(pcpu)) {
return;
}
if (control_msr) {
SYS_Write_MSR(control_msr, 0LL);
}
FOR_EACH_REG_ENTRY_UNC(pecb, dev_idx, i) {
if (ECB_entries_reg_id(pecb,i) == control_msr) {
continue;
}
if (callback &&
callback->is_Unit_Ctl &&
callback->is_Unit_Ctl(ECB_entries_reg_id(pecb,i))) {
value = unit_ctl_value | ECB_entries_reg_value(pecb,i);
SYS_Write_MSR(ECB_entries_reg_id(pecb,i), value);
SEP_PRINT_DEBUG("UNC_COMMON_MSR_Disable_PMU Event_Data_reg = 0x%x --- value 0x%I64x\n",
ECB_entries_reg_id(pecb,i), value);
continue;
}
if (pmon_ctl_value &&
callback &&
callback->is_PMON_Ctl &&
callback->is_PMON_Ctl(ECB_entries_reg_id(pecb,i))) {
value = SYS_Read_MSR(ECB_entries_reg_id(pecb,i));
value &= ~(pmon_ctl_value);
SYS_Write_MSR(ECB_entries_reg_id(pecb,i), value);
SEP_PRINT_DEBUG("UNC_COMMON_MSR_Disable_PMU Event_Data_reg = 0x%x --- value 0x%I64x\n",
ECB_entries_reg_id(pecb,i), value);
}
} END_FOR_EACH_REG_ENTRY_UNC;
return;
}
/*!
* @fn UNC_COMMON_MSR_Read_Counts(param, id)
*
* @param param The read thread node to process
* @param id The event id for the which the sample is generated
*
* @return None No return needed
*
* @brief Read the Uncore count data and store into the buffer param;
*/
VOID
UNC_COMMON_MSR_Read_Counts (
PVOID param,
U32 id
)
{
U64 *data = (U64*) param;
U32 cur_grp = LWPMU_DEVICE_cur_group(&devices[id]);
ECB pecb = LWPMU_DEVICE_PMU_register_data(&devices[id])[cur_grp];
// Write GroupID
data = (U64*)((S8*)data + ECB_group_offset(pecb));
*data = cur_grp + 1;
FOR_EACH_DATA_REG_UNC(pecb, id, i) {
data = (U64 *)((S8*)param + ECB_entries_counter_event_offset(pecb,i));
*data = SYS_Read_MSR(ECB_entries_reg_id(pecb,i));
} END_FOR_EACH_DATA_REG_UNC;
return;
}
/*!
* @fn UNC_COMMON_MSR_Read_Counts_With_Mask(param, id, mask)
*
* @param param The read thread node to process
* @param id The event id for the which the sample is generated
* @param mask The mask bits for value
*
* @return None No return needed
*
* @brief Read the Uncore count data and store into the buffer param;
*/
VOID
UNC_COMMON_MSR_Read_Counts_With_Mask (
PVOID param,
U32 id,
U64 mask
)
{
U64 *data = (U64*) param;
U32 cur_grp = LWPMU_DEVICE_cur_group(&devices[id]);
ECB pecb = LWPMU_DEVICE_PMU_register_data(&devices[id])[cur_grp];
if (!mask) {
return UNC_COMMON_MSR_Read_Counts(param, id);
}
// Write GroupID
data = (U64*)((S8*)data + ECB_group_offset(pecb));
*data = cur_grp + 1;
FOR_EACH_DATA_REG_UNC(pecb, id, i) {
data = (U64 *)((S8*)param + ECB_entries_counter_event_offset(pecb,i));
*data = SYS_Read_MSR(ECB_entries_reg_id(pecb,i)) & mask;
} END_FOR_EACH_DATA_REG_UNC;
return;
}
/*!
* @fn UNC_COMMON_MSR_Read_PMU_Data(param)
*
* @param param The read thread node to process
* @param id The id refers to the device index
*
* @return None No return needed
*
* @brief Read the Uncore count data and store into the buffer
* Let us say we have 2 core events in a dual socket JKTN;
* The start_index will be at 32 as it will 2 events in 16 CPU per socket
* The position for first event of QPI will be computed based on its event
*
*/
VOID
UNC_COMMON_MSR_Read_PMU_Data (
PVOID param
)
{
U32 dev_idx = *((U32*)param);
U32 this_cpu = CONTROL_THIS_CPU();
U32 package_num = 0;
U64 *buffer = read_counter_info;
DRV_CONFIG pcfg_unc;
U64 start_index;
CPU_STATE pcpu = &pcb[this_cpu];
U64 j = 0;
U32 sub_evt_index = 0;
U32 prev_ei = -1;
U32 cur_ei = 0;
U32 cur_grp = LWPMU_DEVICE_cur_group(&devices[(dev_idx)]);
ECB pecb = LWPMU_DEVICE_PMU_register_data(&devices[(dev_idx)])[cur_grp];
U32 num_events = 0;
if (!CPU_STATE_socket_master(pcpu)) {
return;
}
if (pecb) {
num_events = ECB_num_events(pecb);
}
package_num = core_to_package_map[this_cpu];
pcfg_unc = (DRV_CONFIG)LWPMU_DEVICE_pcfg(&devices[dev_idx]);
start_index = DRV_CONFIG_emon_unc_offset(pcfg_unc, cur_grp);
SEP_PRINT_DEBUG("offset for uncore group %d is %d num_pkgs = 0x%llx num_events = %d\n", cur_grp, start_index, num_packages, num_events);
//Read in the counts into temporary buffer
FOR_EACH_DATA_REG_UNC(pecb,dev_idx,i) {
cur_ei = ECB_entries_group_index(pecb, i);
//the buffer index for this PMU needs to account for each event
j = start_index + ECB_entries_group_index(pecb, i) +
ECB_entries_emon_event_id_index_local(pecb,i) +
sub_evt_index*num_packages*LWPMU_DEVICE_num_units(&devices[dev_idx])+
package_num * LWPMU_DEVICE_num_units(&devices[dev_idx]);
SEP_PRINT_DEBUG("%d + %d + %d + %d*%d*%d + %d * %d = j \n",
start_index,ECB_entries_group_index(pecb, i),ECB_entries_emon_event_id_index_local(pecb,i),
sub_evt_index,num_packages,LWPMU_DEVICE_num_units(&devices[dev_idx]), package_num,LWPMU_DEVICE_num_units(&devices[dev_idx]));
buffer[j] = SYS_Read_MSR(ECB_entries_reg_id(pecb,i));
SEP_PRINT_DEBUG("j = %d value = 0x%x pkg = %d e_id = %d\n",j, buffer[j], package_num, ECB_entries_emon_event_id_index_local(pecb,i));
//Increment sub_evt_index so that the next event position is adjusted
if ((prev_ei == -1 )|| (prev_ei != cur_ei)) {
prev_ei = cur_ei;
sub_evt_index++;
}
if (sub_evt_index == num_events) {
sub_evt_index = 0;
}
} END_FOR_EACH_DATA_REG_UNC;
return;
}
/*!
* @fn VOID UNC_COMMON_MSR_Clean_Up(PVOID)
*
* @brief clear out out programming
*
* @param None
*
* @return None
*/
VOID
UNC_COMMON_MSR_Clean_Up (
VOID *param
)
{
U32 dev_idx = *((U32*)param);
FOR_EACH_REG_ENTRY_UNC(pecb, dev_idx, i) {
if (ECB_entries_clean_up_get(pecb,i)) {
SYS_Write_MSR(ECB_entries_reg_id(pecb,i), 0LL);
}
} END_FOR_EACH_REG_ENTRY_UNC;
return;
}
|