| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When a task exits, it notifies the parent that it has exited. This is a
sync wakeup and the exiting task may pull the parent towards the wakers
CPU. For simple workloads like using a shell, it was observed that the
shell is pulled across nodes by exiting processes. This is daft as the
parent may be long-lived and properly placed. This patch special cases a
sync wakeup on exit to avoid pulling tasks across nodes. Testing on a range
of workloads and machines showed very little differences in performance
although there was a small 3% boost on some machines running a shellscript
intensive workload (git regression test suite).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Giovanni Gherdovich <ggherdovich@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180213133730.24064-5-mgorman@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There's a discrepancy in naming between the sched_domain and
sched_group cpumask accessor. Since we're doing changes, fix it.
$ git grep sched_group_cpus | wc -l
28
$ git grep sched_domain_span | wc -l
38
Suggests changing sched_group_cpus() into sched_group_span():
for i in `git grep -l sched_group_cpus`
do
sed -ie 's/sched_group_cpus/sched_group_span/g' $i
done
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
More users for for_each_cpu_wrap() have appeared. Promote the construct
to generic cpumask interface.
The implementation is slightly modified to reduce arguments.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Lauro Ramos Venancio <lvenanci@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: lwang@redhat.com
Link: http://lkml.kernel.org/r/20170414122005.o35me2h5nowqkxbv@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
| |
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The select_idle_sibling() (SIS) rewrite in commit:
10e2f1acd010 ("sched/core: Rewrite and improve select_idle_siblings()")
... replaced a domain iteration with a search that broadly speaking
does a wrapped walk of the scheduler domain sharing a last-level-cache.
While this had a number of improvements, one consequence is that two tasks
that share a waker/wakee relationship push each other around a socket. Even
though two tasks may be active, all cores are evenly used. This is great from
a search perspective and spreads a load across individual cores, but it has
adverse consequences for cpufreq. As each CPU has relatively low utilisation,
cpufreq may decide the utilisation is too low to used a higher P-state and
overall computation throughput suffers.
While individual cpufreq and cpuidle drivers may compensate by artifically
boosting P-state (at c0) or avoiding lower C-states (during idle), it does
not help if hardware-based cpufreq (e.g. HWP) is used.
This patch tracks a recently used CPU based on what CPU a task was running
on when it last was a waker a CPU it was recently using when a task is a
wakee. During SIS, the recently used CPU is used as a target if it's still
allowed by the task and is idle.
The benefit may be non-obvious so consider an example of two tasks
communicating back and forth. Task A may be an application doing IO where
task B is a kworker or kthread like journald. Task A may issue IO, wake
B and B wakes up A on completion. With the existing scheme this may look
like the following (potentially different IDs if SMT is in use but similar
principal applies).
A (cpu 0) wake B (wakes on cpu 1)
B (cpu 1) wake A (wakes on cpu 2)
A (cpu 2) wake B (wakes on cpu 3)
etc.
A careful reader may wonder why CPU 0 was not idle when B wakes A the
first time and it's simply due to the fact that A can be rescheduled to
another CPU and the pattern is that prev == target when B tries to wakeup A
and the information about CPU 0 has been lost.
With this patch, the pattern is more likely to be:
A (cpu 0) wake B (wakes on cpu 1)
B (cpu 1) wake A (wakes on cpu 0)
A (cpu 0) wake B (wakes on cpu 1)
etc
i.e. two communicating casts are more likely to use just two cores instead
of all available cores sharing a LLC.
The most dramatic speedup was noticed on dbench using the XFS filesystem on
UMA as clients interact heavily with workqueues in that configuration. Note
that a similar speedup is not observed on ext4 as the wakeup pattern
is different:
4.15.0-rc9 4.15.0-rc9
waprev-v1 biasancestor-v1
Hmean 1 287.54 ( 0.00%) 817.01 ( 184.14%)
Hmean 2 1268.12 ( 0.00%) 1781.24 ( 40.46%)
Hmean 4 1739.68 ( 0.00%) 1594.47 ( -8.35%)
Hmean 8 2464.12 ( 0.00%) 2479.56 ( 0.63%)
Hmean 64 1455.57 ( 0.00%) 1434.68 ( -1.44%)
The results can be less dramatic on NUMA where automatic balancing interferes
with the test. It's also known that network benchmarks running on localhost
also benefit quite a bit from this patch (roughly 10% on netperf RR for UDP
and TCP depending on the machine). Hackbench also seens small improvements
(6-11% depending on machine and thread count). The facebook schbench was also
tested but in most cases showed little or no different to wakeup latencies.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180130104555.4125-5-mgorman@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit:
10e2f1acd01 ("sched/core: Rewrite and improve select_idle_siblings()")
... improved select_idle_sibling(), but also triggered a regression (crash)
during CPU-hotplug:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000078
IP: [<ffffffffb10cd332>] select_idle_sibling+0x1c2/0x4f0
Call Trace:
<IRQ>
select_task_rq_fair+0x749/0x930
? select_task_rq_fair+0xb4/0x930
? __lock_is_held+0x54/0x70
try_to_wake_up+0x19a/0x5b0
default_wake_function+0x12/0x20
autoremove_wake_function+0x12/0x40
__wake_up_common+0x55/0x90
__wake_up+0x39/0x50
wake_up_klogd_work_func+0x40/0x60
irq_work_run_list+0x57/0x80
irq_work_run+0x2c/0x30
smp_irq_work_interrupt+0x2e/0x40
irq_work_interrupt+0x96/0xa0
<EOI>
? _raw_spin_unlock_irqrestore+0x45/0x80
try_to_wake_up+0x4a/0x5b0
wake_up_state+0x10/0x20
__kthread_unpark+0x67/0x70
kthread_unpark+0x22/0x30
cpuhp_online_idle+0x3e/0x70
cpu_startup_entry+0x6a/0x450
start_secondary+0x154/0x180
This can be reproduced by running the ftrace test case of kselftest, the
test case will hot-unplug the CPU and the CPU will attach to the NULL
sched-domain during scheduler teardown.
The step 2 for the rewrite select_idle_siblings():
| Step 2) tracks the average cost of the scan and compares this to the
| average idle time guestimate for the CPU doing the wakeup.
If the CPU which doing the wakeup is the going hot-unplug CPU, then NULL
sched domain will be dereferenced to acquire the average cost of the scan.
This patch fix it by failing the search of an idle CPU in the LLC process
if this sched domain is NULL.
Tested-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1475971443-3187-1-git-send-email-wanpeng.li@hotmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce a new sysctl for this option, 'sched_cstate_aware'.
When this is enabled, select_idle_sibling in CFS is modified to
choose the idle CPU in the sibling group which has the lowest
idle state index - idle state indexes are assumed to increase
as sleep depth and hence wakeup latency increase. In this way,
we attempt to minimise wakeup latency when an idle CPU is
required.
Signed-off-by: Srinath Sridharan <srinathsr@google.com>
Includes:
sched: EAS: fix select_idle_sibling
when sysctl_sched_cstate_aware is enabled, best_idle cpu will not be chosen
in the original flow because it will goto done directly
Bug: 30107557
Change-Id: Ie09c2e3960cafbb976f8d472747faefab3b4d6ac
Signed-off-by: martin_liu <martin_liu@htc.com>
Signed-off-by: Andres Oportus <andresoportus@google.com>
[refactored and fixed conflicts]
Signed-off-by: Chris Redpath <chris.redpath@arm.com>
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
select_idle_siblings() is a known pain point for a number of
workloads; it either does too much or not enough and sometimes just
does plain wrong.
This rewrite attempts to address a number of issues (but sadly not
all).
The current code does an unconditional sched_domain iteration; with
the intent of finding an idle core (on SMT hardware). The problems
which this patch tries to address are:
- its pointless to look for idle cores if the machine is real busy;
at which point you're just wasting cycles.
- it's behaviour is inconsistent between SMT and !SMT hardware in
that !SMT hardware ends up doing a scan for any idle CPU in the LLC
domain, while SMT hardware does a scan for idle cores and if that
fails, falls back to a scan for idle threads on the 'target' core.
The new code replaces the sched_domain scan with 3 explicit scans:
1) search for an idle core in the LLC
2) search for an idle CPU in the LLC
3) search for an idle thread in the 'target' core
where 1 and 3 are conditional on SMT support and 1 and 2 have runtime
heuristics to skip the step.
Step 1) is conditional on sd_llc_shared->has_idle_cores; when a cpu
goes idle and sd_llc_shared->has_idle_cores is false, we scan all SMT
siblings of the CPU going idle. Similarly, we clear
sd_llc_shared->has_idle_cores when we fail to find an idle core.
Step 2) tracks the average cost of the scan and compares this to the
average idle time guestimate for the CPU doing the wakeup. There is a
significant fudge factor involved to deal with the variability of the
averages. Esp. hackbench was sensitive to this.
Step 3) is unconditional; we assume (also per step 1) that scanning
all SMT siblings in a core is 'cheap'.
With this; SMT systems gain step 2, which cures a few benchmarks --
notably one from Facebook.
One 'feature' of the sched_domain iteration, which we preserve in the
new code, is that it would start scanning from the 'target' CPU,
instead of scanning the cpumask in cpu id order. This avoids multiple
CPUs in the LLC scanning for idle to gang up and find the same CPU
quite as much. The down side is that tasks can end up hopping across
the LLC for no apparent reason.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Move the nr_busy_cpus thing from its hacky sd->parent->groups->sgc
location into the much more natural sched_domain_shared location.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since struct sched_domain is strictly per cpu; introduce a structure
that is shared between all 'identical' sched_domains.
Limit to SD_SHARE_PKG_RESOURCES domains for now, as we'll only use it
for shared cache state; if another use comes up later we can easily
relax this.
While the sched_group's are normally shared between CPUs, these are
not natural to use when we need some shared state on a domain level --
since that would require the domain to have a parent, which is not a
given.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In commit:
ac66f5477239 ("sched/numa: Introduce migrate_swap()")
select_task_rq() got a 'cpu' argument to enable overriding of prev_cpu
in special cases (NUMA task swapping).
However, the select_task_rq_fair() helper functions: wake_affine() and
select_idle_sibling(), still use task_cpu(p) directly to work out
prev_cpu, which leads to inconsistencies.
This patch passes prev_cpu (potentially overridden by NUMA code) into
the helper functions to ensure prev_cpu is indeed the same CPU
everywhere in the wakeup path.
cc: Ingo Molnar <mingo@redhat.com>
cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: linux-kernel@vger.kernel.org
Cc: mgalbraith@suse.de
Cc: vincent.guittot@linaro.org
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1466615004-3503-3-git-send-email-morten.rasmussen@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
| |
* Also remove schedstats.
This reverts commit 7169e3a0733b59fc82debcd0f1da5ac7b8ecdfdb.
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
| |
wakeup path"
This reverts commit 3bb3d7e7d9588334b586084f32495f448745f343.
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
| |
This reverts commit 4e18c8a10de0c4d435dce95e526ecbe97c77d5c5.
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
| |
This reverts commit 93a0fb30180b98152f60ad6b7ef9bee492286b47.
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
| |
This reverts commit ec6ebc6fc0326dcbf6ab7d7c78c80e421586acca.
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Cgroup created inside throttled group must inherit current throttle_count.
Broken throttle_count allows to nominate throttled entries as a next buddy,
later this leads to null pointer dereference in pick_next_task_fair().
This patch initialize cfs_rq->throttle_count at first enqueue: laziness
allows to skip locking all rq at group creation. Lazy approach also allows
to skip full sub-tree scan at throttling hierarchy (not in this patch).
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Link: http://lkml.kernel.org/r/146608182119.21870.8439834428248129633.stgit@buzz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We should update cfs_rq->throttled_clock_task, not
pcfs_rq->throttle_clock_task.
The effects of this bug was probably occasionally erratic
group scheduling, particularly in cgroups-intense workloads.
Signed-off-by: Xunlei Pang <xlpang@redhat.com>
[ Added changelog. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 55e16d30bd99 ("sched/fair: Rework throttle_count sync")
Link: http://lkml.kernel.org/r/1468050862-18864-1-git-send-email-xlpang@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since we already take rq->lock when creating a cgroup, use it to also
sync the throttle_count and avoid the extra state and enqueue path
branch.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: linux-kernel@vger.kernel.org
[ Fixed build warning. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since commit:
8663e24d56dc ("sched/fair: Reorder cgroup creation code")
... the variable 'rq' in alloc_fair_sched_group() is set but no longer used.
Remove it to fix the following GCC warning when building with 'W=1':
kernel/sched/fair.c:8842:13: warning: variable ‘rq’ set but not used [-Wunused-but-set-variable]
Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161026113704.8981-1-tklauser@distanz.ch
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A future patch needs rq->lock held _after_ we link the task_group into
the hierarchy. In order to avoid taking every rq->lock twice, reorder
things a little and create online_fair_sched_group() to be called
after we link the task_group.
All this code is still ran from css_alloc() so css_online() isn't in
fact used for this.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Unlike running, the runnable part can't be directly propagated through
the hierarchy when we migrate a task. The main reason is that runnable
time can be shared with other sched_entities that stay on the rq and
this runnable time will also remain on prev cfs_rq and must not be
removed.
Instead, we can estimate what should be the new runnable of the prev
cfs_rq and check that this estimation stay in a possible range. The
prop_runnable_sum is a good estimation when adding runnable_sum but
fails most often when we remove it. Instead, we could use the formula
below instead:
gcfs_rq's runnable_sum = gcfs_rq->avg.load_sum / gcfs_rq->load.weight
which assumes that tasks are equally runnable which is not true but
easy to compute.
Beside these estimates, we have several simple rules that help us to filter
out wrong ones:
- ge->avg.runnable_sum <= than LOAD_AVG_MAX
- ge->avg.runnable_sum >= ge->avg.running_sum (ge->avg.util_sum << LOAD_AVG_MAX)
- ge->avg.runnable_sum can't increase when we detach a task
The effect of these fixes is better cgroups balancing.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Chris Mason <clm@fb.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yuyang Du <yuyang.du@intel.com>
Link: http://lkml.kernel.org/r/1510842112-21028-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
| |
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
| |
sched_freq in the Pixel tree is false so the function
just returns. Let's hardcode it to not bother porting
all the definitions that aren't going to be used
either way.
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We're finding audio glitches caused by audio-producing RT tasks
that are either interrupted to handle softirq's or that are
scheduled onto cpu's that are handling softirq's.
In a previous patch, we attempted to catch many cases of the
latter problem, but it's clear that we are still losing
significant numbers of races in some apps.
This patch attempts to address both problems:
1. It prohibits handling softirq's when interrupting
an RT task, by delaying the softirq to the ksoftirqd
thread.
2. It attempts to reduce the most common windows in which
we lose the race between scheduling an RT task on a remote
core and starting to handle softirq's on that core.
We still lose some races, but we lose significantly fewer.
(And we don't want to introduce any heavyweight forms
of synchronization on these paths.)
[celtare21: We already inlined kernel/sched/rt.c in the
previous commit]
Bug: 64912585
Change-Id: Ida89a903be0f1965552dd0e84e67ef1d3158c7d8
Signed-off-by: John Dias <joaodias@google.com>
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
| |
This reverts commit a66b3eb5aff1536bc32e5e5eb60393610a21dd06.
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
| |
This reverts commit b1b132053455a6bd8a5301b3ee6e14189c0563d0.
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
| |
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
| |
For effective interplay between RT and fair tasks. Enables sched_fifo
for UI and Render tasks. Critical for improving user experience.
bug: 24503801
bug: 30377696
Change-Id: I2a210c567c3f5c7edbdd7674244822f848e6d0cf
Signed-off-by: Srinath Sridharan <srinathsr@google.com>
(cherry picked from commit dfe0f16b6fd3a694173c5c62cf825643eef184a3)
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
| |
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
milliseconds
We added the 'sched_rr_timeslice_ms' SCHED_RR tuning knob in this commit:
ce0dbbbb30ae ("sched/rt: Add a tuning knob to allow changing SCHED_RR timeslice")
... which name suggests to users that it's in milliseconds, while in reality
it's being set in milliseconds but the result is shown in jiffies.
This is obviously confusing when HZ is not 1000, it makes it appear like the
value set failed, such as HZ=100:
root# echo 100 > /proc/sys/kernel/sched_rr_timeslice_ms
root# cat /proc/sys/kernel/sched_rr_timeslice_ms
10
Fix this to be milliseconds all around.
Signed-off-by: Shile Zhang <shile.zhang@nokia.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1485612049-20923-1-git-send-email-shile.zhang@nokia.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
| |
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When add into waiting list will be prio aware,
lower prio value means higher priority task will get lock
before lower priority task.
Only try to preempt waiters with which task priority
which is higher than DEFAULT_PRIO.
To avoid starvation, add count to record how many waiters
preempt to queue in wait list. If preempt count is exceed
MAX_PREEMPT_ALLOWED, use simple FIFO to queue in the wait
list until the wait list is empty.
Change-Id: I4d5fe6a823a16c9762e2e2f416d34bdd701341c4
Signed-off-by: Maria Yu <aiquny@codeaurora.org>
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
| |
Fix the issue that when a task called yield,
it is not going to schedule again if there is
always have task running in that cpu.
Change-Id: I7ec037ac5ea9be159ccb9e9db676d1b8d677746d
Signed-off-by: Maria Yu <aiquny@codeaurora.org>
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
| |
The cpu logic used by CAF is a bit messy and unnecessary.
Replace it with something cleaner.
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are 11 interpretations of the requirements described in the header
comment for smp_mb__after_spinlock(): one for each LKMM maintainer, and
one currently encoded in the Cat file. Stick to the latter (until a more
satisfactory solution is available).
This also reworks some snippets related to the barrier to illustrate the
requirements and to link them to the idioms which are relied upon at its
call sites.
Suggested-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: akiyks@gmail.com
Cc: dhowells@redhat.com
Cc: j.alglave@ucl.ac.uk
Cc: linux-arch@vger.kernel.org
Cc: luc.maranget@inria.fr
Cc: npiggin@gmail.com
Cc: parri.andrea@gmail.com
Cc: stern@rowland.harvard.edu
Link: http://lkml.kernel.org/r/20180716180605.16115-11-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since its inception, our understanding of ACQUIRE, esp. as applied to
spinlocks, has changed somewhat. Also, I wonder if, with a simple
change, we cannot make it provide more.
The problem with the comment is that the STORE done by spin_lock isn't
itself ordered by the ACQUIRE, and therefore a later LOAD can pass over
it and cross with any prior STORE, rendering the default WMB
insufficient (pointed out by Alan).
Now, this is only really a problem on PowerPC and ARM64, both of
which already defined smp_mb__before_spinlock() as a smp_mb().
At the same time, we can get a much stronger construct if we place
that same barrier _inside_ the spin_lock(). In that case we upgrade
the RCpc spinlock to an RCsc. That would make all schedule() calls
fully transitive against one another.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
| |
This reverts commit f69a071274788cec3318b517780ca98bf4b8915f.
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
| |
No reason to take locks just for the sake of it.
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If the architecture supports the batching of jump label updates, use it!
An easy way to see the benefits of this patch is switching the
schedstats on and off. For instance:
-------------------------- %< ----------------------------
#!/bin/sh
while [ true ]; do
sysctl -w kernel.sched_schedstats=1
sleep 2
sysctl -w kernel.sched_schedstats=0
sleep 2
done
-------------------------- >% ----------------------------
while watching the IPI count:
-------------------------- %< ----------------------------
# watch -n1 "cat /proc/interrupts | grep Function"
-------------------------- >% ----------------------------
With the current mode, it is possible to see +- 168 IPIs each 2 seconds,
while with this patch the number of IPIs goes to 3 each 2 seconds.
Regarding the performance impact of this patch set, I made two measurements:
The time to update a key (the task that is causing the change)
The time to run the int3 handler (the side effect on a thread that
hits the code being changed)
The schedstats static key was chosen as the key to being switched on and off.
The reason being is that it is used in more than 56 places, in a hot path. The
change in the schedstats static key will be done with the following command:
while [ true ]; do
sysctl -w kernel.sched_schedstats=1
usleep 500000
sysctl -w kernel.sched_schedstats=0
usleep 500000
done
In this way, they key will be updated twice per second. To force the hit of the
int3 handler, the system will also run a kernel compilation with two jobs per
CPU. The test machine is a two nodes/24 CPUs box with an Intel Xeon processor
@2.27GHz.
Regarding the update part, on average, the regular kernel takes 57 ms to update
the schedstats key, while the kernel with the batch updates takes just 1.4 ms
on average. Although it seems to be too good to be true, it makes sense: the
schedstats key is used in 56 places, so it was expected that it would take
around 56 times to update the keys with the current implementation, as the
IPIs are the most expensive part of the update.
Regarding the int3 handler, the non-batch handler takes 45 ns on average, while
the batch version takes around 180 ns. At first glance, it seems to be a high
value. But it is not, considering that it is doing 56 updates, rather than one!
It is taking four times more, only. This gain is possible because the patch
uses a binary search in the vector: log2(56)=5.8. So, it was expected to have
an overhead within four times.
(voice of tv propaganda) But, that is not all! As the int3 handler keeps on for
a shorter period (because the update part is on for a shorter time), the number
of hits in the int3 handler decreased by 10%.
The question then is: Is it worth paying the price of "135 ns" more in the int3
handler?
Considering that, in this test case, we are saving the handling of 53 IPIs,
that takes more than these 135 ns, it seems to be a meager price to be paid.
Moreover, the test case was forcing the hit of the int3, in practice, it
does not take that often. While the IPI takes place on all CPUs, hitting
the int3 handler or not!
For instance, in an isolated CPU with a process running in user-space
(nohz_full use-case), the chances of hitting the int3 handler is barely zero,
while there is no way to avoid the IPIs. By bounding the IPIs, we are improving
a lot this scenario.
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chris von Recklinghausen <crecklin@redhat.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott Wood <swood@redhat.com>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/acc891dbc2dbc9fd616dd680529a2337b1d1274c.1560325897.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In the batching mode, all the entries of a given key are updated at once.
During the update of a key, a hit in the int3 handler will check if the
hitting code address belongs to one of these keys.
To optimize the search of a given code in the vector of entries being
updated, a binary search is used. The binary search relies on the order
of the entries of a key by its code. Hence the keys need to be sorted
by the code too, so sort the entries of a given key by the code.
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chris von Recklinghausen <crecklin@redhat.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott Wood <swood@redhat.com>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/f57ae83e0592418ba269866bb7ade570fc8632e0.1560325897.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Move the check if a jump_entry is valid to a function. No functional
change.
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chris von Recklinghausen <crecklin@redhat.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott Wood <swood@redhat.com>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/56b69bd3f8e644ed64f2dbde7c088030b8cbe76b.1560325897.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, CONFIG_JUMP_LABEL just means "I _want_ to use jump label".
The jump label is controlled by HAVE_JUMP_LABEL, which is defined
like this:
#if defined(CC_HAVE_ASM_GOTO) && defined(CONFIG_JUMP_LABEL)
# define HAVE_JUMP_LABEL
#endif
We can improve this by testing 'asm goto' support in Kconfig, then
make JUMP_LABEL depend on CC_HAS_ASM_GOTO.
Ugly #ifdef HAVE_JUMP_LABEL will go away, and CONFIG_JUMP_LABEL will
match to the real kernel capability.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The following lockdep report can be triggered by writing to /sys/kernel/debug/sched_features:
======================================================
WARNING: possible circular locking dependency detected
4.18.0-rc6-00152-gcd3f77d74ac3-dirty #18 Not tainted
------------------------------------------------------
sh/3358 is trying to acquire lock:
000000004ad3989d (cpu_hotplug_lock.rw_sem){++++}, at: static_key_enable+0x14/0x30
but task is already holding lock:
00000000c1b31a88 (&sb->s_type->i_mutex_key#3){+.+.}, at: sched_feat_write+0x160/0x428
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #3 (&sb->s_type->i_mutex_key#3){+.+.}:
lock_acquire+0xb8/0x148
down_write+0xac/0x140
start_creating+0x5c/0x168
debugfs_create_dir+0x18/0x220
opp_debug_register+0x8c/0x120
_add_opp_dev+0x104/0x1f8
dev_pm_opp_get_opp_table+0x174/0x340
_of_add_opp_table_v2+0x110/0x760
dev_pm_opp_of_add_table+0x5c/0x240
dev_pm_opp_of_cpumask_add_table+0x5c/0x100
cpufreq_init+0x160/0x430
cpufreq_online+0x1cc/0xe30
cpufreq_add_dev+0x78/0x198
subsys_interface_register+0x168/0x270
cpufreq_register_driver+0x1c8/0x278
dt_cpufreq_probe+0xdc/0x1b8
platform_drv_probe+0xb4/0x168
driver_probe_device+0x318/0x4b0
__device_attach_driver+0xfc/0x1f0
bus_for_each_drv+0xf8/0x180
__device_attach+0x164/0x200
device_initial_probe+0x10/0x18
bus_probe_device+0x110/0x178
device_add+0x6d8/0x908
platform_device_add+0x138/0x3d8
platform_device_register_full+0x1cc/0x1f8
cpufreq_dt_platdev_init+0x174/0x1bc
do_one_initcall+0xb8/0x310
kernel_init_freeable+0x4b8/0x56c
kernel_init+0x10/0x138
ret_from_fork+0x10/0x18
-> #2 (opp_table_lock){+.+.}:
lock_acquire+0xb8/0x148
__mutex_lock+0x104/0xf50
mutex_lock_nested+0x1c/0x28
_of_add_opp_table_v2+0xb4/0x760
dev_pm_opp_of_add_table+0x5c/0x240
dev_pm_opp_of_cpumask_add_table+0x5c/0x100
cpufreq_init+0x160/0x430
cpufreq_online+0x1cc/0xe30
cpufreq_add_dev+0x78/0x198
subsys_interface_register+0x168/0x270
cpufreq_register_driver+0x1c8/0x278
dt_cpufreq_probe+0xdc/0x1b8
platform_drv_probe+0xb4/0x168
driver_probe_device+0x318/0x4b0
__device_attach_driver+0xfc/0x1f0
bus_for_each_drv+0xf8/0x180
__device_attach+0x164/0x200
device_initial_probe+0x10/0x18
bus_probe_device+0x110/0x178
device_add+0x6d8/0x908
platform_device_add+0x138/0x3d8
platform_device_register_full+0x1cc/0x1f8
cpufreq_dt_platdev_init+0x174/0x1bc
do_one_initcall+0xb8/0x310
kernel_init_freeable+0x4b8/0x56c
kernel_init+0x10/0x138
ret_from_fork+0x10/0x18
-> #1 (subsys mutex#6){+.+.}:
lock_acquire+0xb8/0x148
__mutex_lock+0x104/0xf50
mutex_lock_nested+0x1c/0x28
subsys_interface_register+0xd8/0x270
cpufreq_register_driver+0x1c8/0x278
dt_cpufreq_probe+0xdc/0x1b8
platform_drv_probe+0xb4/0x168
driver_probe_device+0x318/0x4b0
__device_attach_driver+0xfc/0x1f0
bus_for_each_drv+0xf8/0x180
__device_attach+0x164/0x200
device_initial_probe+0x10/0x18
bus_probe_device+0x110/0x178
device_add+0x6d8/0x908
platform_device_add+0x138/0x3d8
platform_device_register_full+0x1cc/0x1f8
cpufreq_dt_platdev_init+0x174/0x1bc
do_one_initcall+0xb8/0x310
kernel_init_freeable+0x4b8/0x56c
kernel_init+0x10/0x138
ret_from_fork+0x10/0x18
-> #0 (cpu_hotplug_lock.rw_sem){++++}:
__lock_acquire+0x203c/0x21d0
lock_acquire+0xb8/0x148
cpus_read_lock+0x58/0x1c8
static_key_enable+0x14/0x30
sched_feat_write+0x314/0x428
full_proxy_write+0xa0/0x138
__vfs_write+0xd8/0x388
vfs_write+0xdc/0x318
ksys_write+0xb4/0x138
sys_write+0xc/0x18
__sys_trace_return+0x0/0x4
other info that might help us debug this:
Chain exists of:
cpu_hotplug_lock.rw_sem --> opp_table_lock --> &sb->s_type->i_mutex_key#3
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&sb->s_type->i_mutex_key#3);
lock(opp_table_lock);
lock(&sb->s_type->i_mutex_key#3);
lock(cpu_hotplug_lock.rw_sem);
*** DEADLOCK ***
2 locks held by sh/3358:
#0: 00000000a8c4b363 (sb_writers#10){.+.+}, at: vfs_write+0x238/0x318
#1: 00000000c1b31a88 (&sb->s_type->i_mutex_key#3){+.+.}, at: sched_feat_write+0x160/0x428
stack backtrace:
CPU: 5 PID: 3358 Comm: sh Not tainted 4.18.0-rc6-00152-gcd3f77d74ac3-dirty #18
Hardware name: Renesas H3ULCB Kingfisher board based on r8a7795 ES2.0+ (DT)
Call trace:
dump_backtrace+0x0/0x288
show_stack+0x14/0x20
dump_stack+0x13c/0x1ac
print_circular_bug.isra.10+0x270/0x438
check_prev_add.constprop.16+0x4dc/0xb98
__lock_acquire+0x203c/0x21d0
lock_acquire+0xb8/0x148
cpus_read_lock+0x58/0x1c8
static_key_enable+0x14/0x30
sched_feat_write+0x314/0x428
full_proxy_write+0xa0/0x138
__vfs_write+0xd8/0x388
vfs_write+0xdc/0x318
ksys_write+0xb4/0x138
sys_write+0xc/0x18
__sys_trace_return+0x0/0x4
This is because when loading the cpufreq_dt module we first acquire
cpu_hotplug_lock.rw_sem lock, then in cpufreq_init(), we are taking
the &sb->s_type->i_mutex_key lock.
But when writing to /sys/kernel/debug/sched_features, the
cpu_hotplug_lock.rw_sem lock depends on the &sb->s_type->i_mutex_key lock.
To fix this bug, reverse the lock acquisition order when writing to
sched_features, this way cpu_hotplug_lock.rw_sem no longer depends on
&sb->s_type->i_mutex_key.
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Jiada Wang <jiada_wang@mentor.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Eugeniu Rosca <erosca@de.adit-jv.com>
Cc: George G. Davis <george_davis@mentor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180731121222.26195-1-jiada_wang@mentor.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As /sys/kernel/debug/sched_features is only created when SCHED_DEBUG is enabled, and the file
debug.c is only compiled when SCHED_DEBUG is enabled, it makes sense to move
sched_feature setup into that file and get rid of the #ifdef.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Clark Williams <williams@redhat.com>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160222212825.464193063@goodmis.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Even though the atomic_dec_and_mutex_lock() in
__static_key_slow_dec_cpuslocked() can never see a negative value in
key->enabled the subsequent sanity check is re-reading key->enabled, which may
have been set to -1 in the meantime by static_key_slow_inc_cpuslocked().
CPU A CPU B
__static_key_slow_dec_cpuslocked(): static_key_slow_inc_cpuslocked():
# enabled = 1
atomic_dec_and_mutex_lock()
# enabled = 0
atomic_read() == 0
atomic_set(-1)
# enabled = -1
val = atomic_read()
# Oops - val == -1!
The test case is TCP's clean_acked_data_enable() / clean_acked_data_disable()
as tickled by KTLS (net/ktls).
Suggested-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reported-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Tested-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: ard.biesheuvel@linaro.org
Cc: oss-drivers@netronome.com
Cc: pbonzini@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit 19483677684b ("jump_label: Annotate entries that operate on
__init code earlier") refactored the code that manages runtime
patching of jump labels in modules that are tied to static keys
defined in other modules or in the core kernel.
In the latter case, we may iterate over the static_key_mod linked
list until we hit the entry for the core kernel, whose 'mod' field
will be NULL, and attempt to dereference it to get at its 'state'
member.
So let's add a non-NULL check: this forces the 'init' argument of
__jump_label_update() to false for static keys that are defined in
the core kernel, which is appropriate given that __init annotated
jump_label entries in the core kernel should no longer be active
at this point (i.e., when loading modules).
Fixes: 19483677684b ("jump_label: Annotate entries that operate on ...")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Jessica Yu <jeyu@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20181001081324.11553-1-ard.biesheuvel@linaro.org
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Jump table entries are mostly read-only, with the exception of the
init and module loader code that defuses entries that point into init
code when the code being referred to is freed.
For robustness, it would be better to move these entries into the
ro_after_init section, but clearing the 'code' member of each jump
table entry referring to init code at module load time races with the
module_enable_ro() call that remaps the ro_after_init section read
only, so we'd like to do it earlier.
So given that whether such an entry refers to init code can be decided
much earlier, we can pull this check forward. Since we may still need
the code entry at this point, let's switch to setting a low bit in the
'key' member just like we do to annotate the default state of a jump
table entry.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-s390@vger.kernel.org
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Jessica Yu <jeyu@kernel.org>
Link: https://lkml.kernel.org/r/20180919065144.25010-8-ard.biesheuvel@linaro.org
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
To reduce the size taken up by absolute references in jump label
entries themselves and the associated relocation records in the
.init segment, add support for emitting them as relative references
instead.
Note that this requires some extra care in the sorting routine, given
that the offsets change when entries are moved around in the jump_entry
table.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-s390@vger.kernel.org
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Jessica Yu <jeyu@kernel.org>
Link: https://lkml.kernel.org/r/20180919065144.25010-3-ard.biesheuvel@linaro.org
Signed-off-by: celtare21 <celtare21@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In preparation of allowing architectures to use relative references
in jump_label entries [which can dramatically reduce the memory
footprint], introduce abstractions for references to the 'code' and
'key' members of struct jump_entry.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-s390@vger.kernel.org
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Jessica Yu <jeyu@kernel.org>
Link: https://lkml.kernel.org/r/20180919065144.25010-2-ard.biesheuvel@linaro.org
Signed-off-by: celtare21 <celtare21@gmail.com>
|