1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
|
/* Copyright (c) 2008-2012, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
/*
* SPI driver for Qualcomm MSM platforms
*
*/
#include <linux/version.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/irq.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <linux/interrupt.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/workqueue.h>
#include <linux/io.h>
#include <linux/debugfs.h>
#include <mach/msm_spi.h>
#include <linux/dma-mapping.h>
#include <linux/sched.h>
#include <mach/dma.h>
#include <asm/atomic.h>
#include <linux/mutex.h>
#include <linux/gpio.h>
#include <linux/remote_spinlock.h>
#include <linux/pm_qos.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
#include "spi_qsd.h"
static inline int msm_spi_configure_gsbi(struct msm_spi *dd,
struct platform_device *pdev)
{
struct resource *resource;
unsigned long gsbi_mem_phys_addr;
size_t gsbi_mem_size;
void __iomem *gsbi_base;
resource = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (!resource)
return 0;
gsbi_mem_phys_addr = resource->start;
gsbi_mem_size = resource_size(resource);
if (!devm_request_mem_region(&pdev->dev, gsbi_mem_phys_addr,
gsbi_mem_size, SPI_DRV_NAME))
return -ENXIO;
gsbi_base = devm_ioremap(&pdev->dev, gsbi_mem_phys_addr,
gsbi_mem_size);
if (!gsbi_base)
return -ENXIO;
/* Set GSBI to SPI mode */
writel_relaxed(GSBI_SPI_CONFIG, gsbi_base + GSBI_CTRL_REG);
return 0;
}
static inline void msm_spi_register_init(struct msm_spi *dd)
{
writel_relaxed(0x00000001, dd->base + SPI_SW_RESET);
msm_spi_set_state(dd, SPI_OP_STATE_RESET);
writel_relaxed(0x00000000, dd->base + SPI_OPERATIONAL);
writel_relaxed(0x00000000, dd->base + SPI_CONFIG);
writel_relaxed(0x00000000, dd->base + SPI_IO_MODES);
if (dd->qup_ver)
writel_relaxed(0x00000000, dd->base + QUP_OPERATIONAL_MASK);
}
static inline int msm_spi_request_gpios(struct msm_spi *dd)
{
int i;
int result = 0;
for (i = 0; i < ARRAY_SIZE(spi_rsrcs); ++i) {
if (dd->spi_gpios[i] >= 0) {
result = gpio_request(dd->spi_gpios[i], spi_rsrcs[i]);
if (result) {
dev_err(dd->dev, "%s: gpio_request for pin %d "
"failed with error %d\n", __func__,
dd->spi_gpios[i], result);
goto error;
}
}
}
return 0;
error:
for (; --i >= 0;) {
if (dd->spi_gpios[i] >= 0)
gpio_free(dd->spi_gpios[i]);
}
return result;
}
static inline void msm_spi_free_gpios(struct msm_spi *dd)
{
int i;
for (i = 0; i < ARRAY_SIZE(spi_rsrcs); ++i) {
if (dd->spi_gpios[i] >= 0)
gpio_free(dd->spi_gpios[i]);
}
for (i = 0; i < ARRAY_SIZE(spi_cs_rsrcs); ++i) {
if (dd->cs_gpios[i].valid) {
gpio_free(dd->cs_gpios[i].gpio_num);
dd->cs_gpios[i].valid = 0;
}
}
}
static void msm_spi_clock_set(struct msm_spi *dd, int speed)
{
int rc;
rc = clk_set_rate(dd->clk, speed);
if (!rc)
dd->clock_speed = speed;
}
static int msm_spi_calculate_size(int *fifo_size,
int *block_size,
int block,
int mult)
{
int words;
switch (block) {
case 0:
words = 1; /* 4 bytes */
break;
case 1:
words = 4; /* 16 bytes */
break;
case 2:
words = 8; /* 32 bytes */
break;
default:
return -EINVAL;
}
switch (mult) {
case 0:
*fifo_size = words * 2;
break;
case 1:
*fifo_size = words * 4;
break;
case 2:
*fifo_size = words * 8;
break;
case 3:
*fifo_size = words * 16;
break;
default:
return -EINVAL;
}
*block_size = words * sizeof(u32); /* in bytes */
return 0;
}
static void get_next_transfer(struct msm_spi *dd)
{
struct spi_transfer *t = dd->cur_transfer;
if (t->transfer_list.next != &dd->cur_msg->transfers) {
dd->cur_transfer = list_entry(t->transfer_list.next,
struct spi_transfer,
transfer_list);
dd->write_buf = dd->cur_transfer->tx_buf;
dd->read_buf = dd->cur_transfer->rx_buf;
}
}
static void __init msm_spi_calculate_fifo_size(struct msm_spi *dd)
{
u32 spi_iom;
int block;
int mult;
spi_iom = readl_relaxed(dd->base + SPI_IO_MODES);
block = (spi_iom & SPI_IO_M_INPUT_BLOCK_SIZE) >> INPUT_BLOCK_SZ_SHIFT;
mult = (spi_iom & SPI_IO_M_INPUT_FIFO_SIZE) >> INPUT_FIFO_SZ_SHIFT;
if (msm_spi_calculate_size(&dd->input_fifo_size, &dd->input_block_size,
block, mult)) {
goto fifo_size_err;
}
block = (spi_iom & SPI_IO_M_OUTPUT_BLOCK_SIZE) >> OUTPUT_BLOCK_SZ_SHIFT;
mult = (spi_iom & SPI_IO_M_OUTPUT_FIFO_SIZE) >> OUTPUT_FIFO_SZ_SHIFT;
if (msm_spi_calculate_size(&dd->output_fifo_size,
&dd->output_block_size, block, mult)) {
goto fifo_size_err;
}
/* DM mode is not available for this block size */
if (dd->input_block_size == 4 || dd->output_block_size == 4)
dd->use_dma = 0;
/* DM mode is currently unsupported for different block sizes */
if (dd->input_block_size != dd->output_block_size)
dd->use_dma = 0;
if (dd->use_dma)
dd->burst_size = max(dd->input_block_size, DM_BURST_SIZE);
return;
fifo_size_err:
dd->use_dma = 0;
pr_err("%s: invalid FIFO size, SPI_IO_MODES=0x%x\n", __func__, spi_iom);
return;
}
static void msm_spi_read_word_from_fifo(struct msm_spi *dd)
{
u32 data_in;
int i;
int shift;
data_in = readl_relaxed(dd->base + SPI_INPUT_FIFO);
if (dd->read_buf) {
for (i = 0; (i < dd->bytes_per_word) &&
dd->rx_bytes_remaining; i++) {
/* The data format depends on bytes_per_word:
4 bytes: 0x12345678
3 bytes: 0x00123456
2 bytes: 0x00001234
1 byte : 0x00000012
*/
shift = 8 * (dd->bytes_per_word - i - 1);
*dd->read_buf++ = (data_in & (0xFF << shift)) >> shift;
dd->rx_bytes_remaining--;
}
} else {
if (dd->rx_bytes_remaining >= dd->bytes_per_word)
dd->rx_bytes_remaining -= dd->bytes_per_word;
else
dd->rx_bytes_remaining = 0;
}
dd->read_xfr_cnt++;
if (dd->multi_xfr) {
if (!dd->rx_bytes_remaining)
dd->read_xfr_cnt = 0;
else if ((dd->read_xfr_cnt * dd->bytes_per_word) ==
dd->read_len) {
struct spi_transfer *t = dd->cur_rx_transfer;
if (t->transfer_list.next != &dd->cur_msg->transfers) {
t = list_entry(t->transfer_list.next,
struct spi_transfer,
transfer_list);
dd->read_buf = t->rx_buf;
dd->read_len = t->len;
dd->read_xfr_cnt = 0;
dd->cur_rx_transfer = t;
}
}
}
}
static inline bool msm_spi_is_valid_state(struct msm_spi *dd)
{
u32 spi_op = readl_relaxed(dd->base + SPI_STATE);
return spi_op & SPI_OP_STATE_VALID;
}
static inline void msm_spi_udelay(unsigned long delay_usecs)
{
/*
* For smaller values of delay, context switch time
* would negate the usage of usleep
*/
if (delay_usecs > 20)
usleep_range(delay_usecs, delay_usecs);
else if (delay_usecs)
udelay(delay_usecs);
}
static inline int msm_spi_wait_valid(struct msm_spi *dd)
{
unsigned long delay = 0;
unsigned long timeout = 0;
if (dd->clock_speed == 0)
return -EINVAL;
/*
* Based on the SPI clock speed, sufficient time
* should be given for the SPI state transition
* to occur
*/
delay = (10 * USEC_PER_SEC) / dd->clock_speed;
/*
* For small delay values, the default timeout would
* be one jiffy
*/
if (delay < SPI_DELAY_THRESHOLD)
delay = SPI_DELAY_THRESHOLD;
/* Adding one to round off to the nearest jiffy */
timeout = jiffies + msecs_to_jiffies(delay * SPI_DEFAULT_TIMEOUT) + 1;
while (!msm_spi_is_valid_state(dd)) {
if (time_after(jiffies, timeout)) {
if (!msm_spi_is_valid_state(dd)) {
if (dd->cur_msg)
dd->cur_msg->status = -EIO;
dev_err(dd->dev, "%s: SPI operational state"
"not valid\n", __func__);
return -ETIMEDOUT;
} else
return 0;
}
msm_spi_udelay(delay);
}
return 0;
}
static inline int msm_spi_set_state(struct msm_spi *dd,
enum msm_spi_state state)
{
enum msm_spi_state cur_state;
if (msm_spi_wait_valid(dd))
return -EIO;
cur_state = readl_relaxed(dd->base + SPI_STATE);
/* Per spec:
For PAUSE_STATE to RESET_STATE, two writes of (10) are required */
if (((cur_state & SPI_OP_STATE) == SPI_OP_STATE_PAUSE) &&
(state == SPI_OP_STATE_RESET)) {
writel_relaxed(SPI_OP_STATE_CLEAR_BITS, dd->base + SPI_STATE);
writel_relaxed(SPI_OP_STATE_CLEAR_BITS, dd->base + SPI_STATE);
} else {
writel_relaxed((cur_state & ~SPI_OP_STATE) | state,
dd->base + SPI_STATE);
}
if (msm_spi_wait_valid(dd))
return -EIO;
return 0;
}
static inline void msm_spi_add_configs(struct msm_spi *dd, u32 *config, int n)
{
*config &= ~(SPI_NO_INPUT|SPI_NO_OUTPUT);
if (n != (*config & SPI_CFG_N))
*config = (*config & ~SPI_CFG_N) | n;
if ((dd->mode == SPI_DMOV_MODE) && (!dd->read_len)) {
if (dd->read_buf == NULL)
*config |= SPI_NO_INPUT;
if (dd->write_buf == NULL)
*config |= SPI_NO_OUTPUT;
}
}
static void msm_spi_set_config(struct msm_spi *dd, int bpw)
{
u32 spi_config;
spi_config = readl_relaxed(dd->base + SPI_CONFIG);
if (dd->cur_msg->spi->mode & SPI_CPHA)
spi_config &= ~SPI_CFG_INPUT_FIRST;
else
spi_config |= SPI_CFG_INPUT_FIRST;
if (dd->cur_msg->spi->mode & SPI_LOOP)
spi_config |= SPI_CFG_LOOPBACK;
else
spi_config &= ~SPI_CFG_LOOPBACK;
msm_spi_add_configs(dd, &spi_config, bpw-1);
writel_relaxed(spi_config, dd->base + SPI_CONFIG);
msm_spi_set_qup_config(dd, bpw);
}
static void msm_spi_setup_dm_transfer(struct msm_spi *dd)
{
dmov_box *box;
int bytes_to_send, num_rows, bytes_sent;
u32 num_transfers;
atomic_set(&dd->rx_irq_called, 0);
atomic_set(&dd->tx_irq_called, 0);
if (dd->write_len && !dd->read_len) {
/* WR-WR transfer */
bytes_sent = dd->cur_msg_len - dd->tx_bytes_remaining;
dd->write_buf = dd->temp_buf;
} else {
bytes_sent = dd->cur_transfer->len - dd->tx_bytes_remaining;
/* For WR-RD transfer, bytes_sent can be negative */
if (bytes_sent < 0)
bytes_sent = 0;
}
/* We'll send in chunks of SPI_MAX_LEN if larger than
* 4K bytes for targets that have only 12 bits in
* QUP_MAX_OUTPUT_CNT register. If the target supports
* more than 12bits then we send the data in chunks of
* the infinite_mode value that is defined in the
* corresponding board file.
*/
if (!dd->pdata->infinite_mode)
dd->max_trfr_len = SPI_MAX_LEN;
else
dd->max_trfr_len = (dd->pdata->infinite_mode) *
(dd->bytes_per_word);
bytes_to_send = min_t(u32, dd->tx_bytes_remaining,
dd->max_trfr_len);
num_transfers = DIV_ROUND_UP(bytes_to_send, dd->bytes_per_word);
dd->unaligned_len = bytes_to_send % dd->burst_size;
num_rows = bytes_to_send / dd->burst_size;
dd->mode = SPI_DMOV_MODE;
if (num_rows) {
/* src in 16 MSB, dst in 16 LSB */
box = &dd->tx_dmov_cmd->box;
box->src_row_addr = dd->cur_transfer->tx_dma + bytes_sent;
box->src_dst_len = (dd->burst_size << 16) | dd->burst_size;
box->num_rows = (num_rows << 16) | num_rows;
box->row_offset = (dd->burst_size << 16) | 0;
box = &dd->rx_dmov_cmd->box;
box->dst_row_addr = dd->cur_transfer->rx_dma + bytes_sent;
box->src_dst_len = (dd->burst_size << 16) | dd->burst_size;
box->num_rows = (num_rows << 16) | num_rows;
box->row_offset = (0 << 16) | dd->burst_size;
dd->tx_dmov_cmd->cmd_ptr = CMD_PTR_LP |
DMOV_CMD_ADDR(dd->tx_dmov_cmd_dma +
offsetof(struct spi_dmov_cmd, box));
dd->rx_dmov_cmd->cmd_ptr = CMD_PTR_LP |
DMOV_CMD_ADDR(dd->rx_dmov_cmd_dma +
offsetof(struct spi_dmov_cmd, box));
} else {
dd->tx_dmov_cmd->cmd_ptr = CMD_PTR_LP |
DMOV_CMD_ADDR(dd->tx_dmov_cmd_dma +
offsetof(struct spi_dmov_cmd, single_pad));
dd->rx_dmov_cmd->cmd_ptr = CMD_PTR_LP |
DMOV_CMD_ADDR(dd->rx_dmov_cmd_dma +
offsetof(struct spi_dmov_cmd, single_pad));
}
if (!dd->unaligned_len) {
dd->tx_dmov_cmd->box.cmd |= CMD_LC;
dd->rx_dmov_cmd->box.cmd |= CMD_LC;
} else {
dmov_s *tx_cmd = &(dd->tx_dmov_cmd->single_pad);
dmov_s *rx_cmd = &(dd->rx_dmov_cmd->single_pad);
u32 offset = dd->cur_transfer->len - dd->unaligned_len;
if ((dd->multi_xfr) && (dd->read_len <= 0))
offset = dd->cur_msg_len - dd->unaligned_len;
dd->tx_dmov_cmd->box.cmd &= ~CMD_LC;
dd->rx_dmov_cmd->box.cmd &= ~CMD_LC;
memset(dd->tx_padding, 0, dd->burst_size);
memset(dd->rx_padding, 0, dd->burst_size);
if (dd->write_buf)
memcpy(dd->tx_padding, dd->write_buf + offset,
dd->unaligned_len);
tx_cmd->src = dd->tx_padding_dma;
rx_cmd->dst = dd->rx_padding_dma;
tx_cmd->len = rx_cmd->len = dd->burst_size;
}
/* This also takes care of the padding dummy buf
Since this is set to the correct length, the
dummy bytes won't be actually sent */
if (dd->multi_xfr) {
u32 write_transfers = 0;
u32 read_transfers = 0;
if (dd->write_len > 0) {
write_transfers = DIV_ROUND_UP(dd->write_len,
dd->bytes_per_word);
writel_relaxed(write_transfers,
dd->base + SPI_MX_OUTPUT_COUNT);
}
if (dd->read_len > 0) {
/*
* The read following a write transfer must take
* into account, that the bytes pertaining to
* the write transfer needs to be discarded,
* before the actual read begins.
*/
read_transfers = DIV_ROUND_UP(dd->read_len +
dd->write_len,
dd->bytes_per_word);
writel_relaxed(read_transfers,
dd->base + SPI_MX_INPUT_COUNT);
}
} else {
if (dd->write_buf)
writel_relaxed(num_transfers,
dd->base + SPI_MX_OUTPUT_COUNT);
if (dd->read_buf)
writel_relaxed(num_transfers,
dd->base + SPI_MX_INPUT_COUNT);
}
}
static void msm_spi_enqueue_dm_commands(struct msm_spi *dd)
{
dma_coherent_pre_ops();
if (dd->write_buf)
msm_dmov_enqueue_cmd(dd->tx_dma_chan, &dd->tx_hdr);
if (dd->read_buf)
msm_dmov_enqueue_cmd(dd->rx_dma_chan, &dd->rx_hdr);
}
/* SPI core on targets that does not support infinite mode can send
maximum of 4K transfers or 64K transfers depending up on size of
MAX_OUTPUT_COUNT register, Therefore, we are sending in several
chunks. Upon completion we send the next chunk, or complete the
transfer if everything is finished. On targets that support
infinite mode, we send all the bytes in as single chunk.
*/
static int msm_spi_dm_send_next(struct msm_spi *dd)
{
/* By now we should have sent all the bytes in FIFO mode,
* However to make things right, we'll check anyway.
*/
if (dd->mode != SPI_DMOV_MODE)
return 0;
/* On targets which does not support infinite mode,
We need to send more chunks, if we sent max last time */
if (dd->tx_bytes_remaining > dd->max_trfr_len) {
dd->tx_bytes_remaining -= dd->max_trfr_len;
if (msm_spi_set_state(dd, SPI_OP_STATE_RESET))
return 0;
dd->read_len = dd->write_len = 0;
msm_spi_setup_dm_transfer(dd);
msm_spi_enqueue_dm_commands(dd);
if (msm_spi_set_state(dd, SPI_OP_STATE_RUN))
return 0;
return 1;
} else if (dd->read_len && dd->write_len) {
dd->tx_bytes_remaining -= dd->cur_transfer->len;
if (list_is_last(&dd->cur_transfer->transfer_list,
&dd->cur_msg->transfers))
return 0;
get_next_transfer(dd);
if (msm_spi_set_state(dd, SPI_OP_STATE_PAUSE))
return 0;
dd->tx_bytes_remaining = dd->read_len + dd->write_len;
dd->read_buf = dd->temp_buf;
dd->read_len = dd->write_len = -1;
msm_spi_setup_dm_transfer(dd);
msm_spi_enqueue_dm_commands(dd);
if (msm_spi_set_state(dd, SPI_OP_STATE_RUN))
return 0;
return 1;
}
return 0;
}
static inline void msm_spi_ack_transfer(struct msm_spi *dd)
{
writel_relaxed(SPI_OP_MAX_INPUT_DONE_FLAG |
SPI_OP_MAX_OUTPUT_DONE_FLAG,
dd->base + SPI_OPERATIONAL);
/* Ensure done flag was cleared before proceeding further */
mb();
}
/* Figure which irq occured and call the relevant functions */
static inline irqreturn_t msm_spi_qup_irq(int irq, void *dev_id)
{
u32 op, ret = IRQ_NONE;
struct msm_spi *dd = dev_id;
if (readl_relaxed(dd->base + SPI_ERROR_FLAGS) ||
readl_relaxed(dd->base + QUP_ERROR_FLAGS)) {
struct spi_master *master = dev_get_drvdata(dd->dev);
ret |= msm_spi_error_irq(irq, master);
}
op = readl_relaxed(dd->base + SPI_OPERATIONAL);
if (op & SPI_OP_INPUT_SERVICE_FLAG) {
writel_relaxed(SPI_OP_INPUT_SERVICE_FLAG,
dd->base + SPI_OPERATIONAL);
/*
* Ensure service flag was cleared before further
* processing of interrupt.
*/
mb();
ret |= msm_spi_input_irq(irq, dev_id);
}
if (op & SPI_OP_OUTPUT_SERVICE_FLAG) {
writel_relaxed(SPI_OP_OUTPUT_SERVICE_FLAG,
dd->base + SPI_OPERATIONAL);
/*
* Ensure service flag was cleared before further
* processing of interrupt.
*/
mb();
ret |= msm_spi_output_irq(irq, dev_id);
}
if (dd->done) {
complete(&dd->transfer_complete);
dd->done = 0;
}
return ret;
}
static irqreturn_t msm_spi_input_irq(int irq, void *dev_id)
{
struct msm_spi *dd = dev_id;
dd->stat_rx++;
if (dd->mode == SPI_MODE_NONE)
return IRQ_HANDLED;
if (dd->mode == SPI_DMOV_MODE) {
u32 op = readl_relaxed(dd->base + SPI_OPERATIONAL);
if ((!dd->read_buf || op & SPI_OP_MAX_INPUT_DONE_FLAG) &&
(!dd->write_buf || op & SPI_OP_MAX_OUTPUT_DONE_FLAG)) {
msm_spi_ack_transfer(dd);
if (dd->unaligned_len == 0) {
if (atomic_inc_return(&dd->rx_irq_called) == 1)
return IRQ_HANDLED;
}
msm_spi_complete(dd);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
if (dd->mode == SPI_FIFO_MODE) {
while ((readl_relaxed(dd->base + SPI_OPERATIONAL) &
SPI_OP_IP_FIFO_NOT_EMPTY) &&
(dd->rx_bytes_remaining > 0)) {
msm_spi_read_word_from_fifo(dd);
}
if (dd->rx_bytes_remaining == 0)
msm_spi_complete(dd);
}
return IRQ_HANDLED;
}
static void msm_spi_write_word_to_fifo(struct msm_spi *dd)
{
u32 word;
u8 byte;
int i;
word = 0;
if (dd->write_buf) {
for (i = 0; (i < dd->bytes_per_word) &&
dd->tx_bytes_remaining; i++) {
dd->tx_bytes_remaining--;
byte = *dd->write_buf++;
word |= (byte << (BITS_PER_BYTE * (3 - i)));
}
} else
if (dd->tx_bytes_remaining > dd->bytes_per_word)
dd->tx_bytes_remaining -= dd->bytes_per_word;
else
dd->tx_bytes_remaining = 0;
dd->write_xfr_cnt++;
if (dd->multi_xfr) {
if (!dd->tx_bytes_remaining)
dd->write_xfr_cnt = 0;
else if ((dd->write_xfr_cnt * dd->bytes_per_word) ==
dd->write_len) {
struct spi_transfer *t = dd->cur_tx_transfer;
if (t->transfer_list.next != &dd->cur_msg->transfers) {
t = list_entry(t->transfer_list.next,
struct spi_transfer,
transfer_list);
dd->write_buf = t->tx_buf;
dd->write_len = t->len;
dd->write_xfr_cnt = 0;
dd->cur_tx_transfer = t;
}
}
}
writel_relaxed(word, dd->base + SPI_OUTPUT_FIFO);
}
static inline void msm_spi_write_rmn_to_fifo(struct msm_spi *dd)
{
int count = 0;
while ((dd->tx_bytes_remaining > 0) && (count < dd->input_fifo_size) &&
!(readl_relaxed(dd->base + SPI_OPERATIONAL) &
SPI_OP_OUTPUT_FIFO_FULL)) {
msm_spi_write_word_to_fifo(dd);
count++;
}
}
static irqreturn_t msm_spi_output_irq(int irq, void *dev_id)
{
struct msm_spi *dd = dev_id;
dd->stat_tx++;
if (dd->mode == SPI_MODE_NONE)
return IRQ_HANDLED;
if (dd->mode == SPI_DMOV_MODE) {
/* TX_ONLY transaction is handled here
This is the only place we send complete at tx and not rx */
if (dd->read_buf == NULL &&
readl_relaxed(dd->base + SPI_OPERATIONAL) &
SPI_OP_MAX_OUTPUT_DONE_FLAG) {
msm_spi_ack_transfer(dd);
if (atomic_inc_return(&dd->tx_irq_called) == 1)
return IRQ_HANDLED;
msm_spi_complete(dd);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
/* Output FIFO is empty. Transmit any outstanding write data. */
if (dd->mode == SPI_FIFO_MODE)
msm_spi_write_rmn_to_fifo(dd);
return IRQ_HANDLED;
}
static irqreturn_t msm_spi_error_irq(int irq, void *dev_id)
{
struct spi_master *master = dev_id;
struct msm_spi *dd = spi_master_get_devdata(master);
u32 spi_err;
spi_err = readl_relaxed(dd->base + SPI_ERROR_FLAGS);
if (spi_err & SPI_ERR_OUTPUT_OVER_RUN_ERR)
dev_warn(master->dev.parent, "SPI output overrun error\n");
if (spi_err & SPI_ERR_INPUT_UNDER_RUN_ERR)
dev_warn(master->dev.parent, "SPI input underrun error\n");
if (spi_err & SPI_ERR_OUTPUT_UNDER_RUN_ERR)
dev_warn(master->dev.parent, "SPI output underrun error\n");
msm_spi_get_clk_err(dd, &spi_err);
if (spi_err & SPI_ERR_CLK_OVER_RUN_ERR)
dev_warn(master->dev.parent, "SPI clock overrun error\n");
if (spi_err & SPI_ERR_CLK_UNDER_RUN_ERR)
dev_warn(master->dev.parent, "SPI clock underrun error\n");
msm_spi_clear_error_flags(dd);
msm_spi_ack_clk_err(dd);
/* Ensure clearing of QUP_ERROR_FLAGS was completed */
mb();
return IRQ_HANDLED;
}
static int msm_spi_map_dma_buffers(struct msm_spi *dd)
{
struct device *dev;
struct spi_transfer *first_xfr;
struct spi_transfer *nxt_xfr = NULL;
void *tx_buf, *rx_buf;
unsigned tx_len, rx_len;
int ret = -EINVAL;
dev = &dd->cur_msg->spi->dev;
first_xfr = dd->cur_transfer;
tx_buf = (void *)first_xfr->tx_buf;
rx_buf = first_xfr->rx_buf;
tx_len = rx_len = first_xfr->len;
/*
* For WR-WR and WR-RD transfers, we allocate our own temporary
* buffer and copy the data to/from the client buffers.
*/
if (dd->multi_xfr) {
dd->temp_buf = kzalloc(dd->cur_msg_len,
GFP_KERNEL | __GFP_DMA);
if (!dd->temp_buf)
return -ENOMEM;
nxt_xfr = list_entry(first_xfr->transfer_list.next,
struct spi_transfer, transfer_list);
if (dd->write_len && !dd->read_len) {
if (!first_xfr->tx_buf || !nxt_xfr->tx_buf)
goto error;
memcpy(dd->temp_buf, first_xfr->tx_buf, first_xfr->len);
memcpy(dd->temp_buf + first_xfr->len, nxt_xfr->tx_buf,
nxt_xfr->len);
tx_buf = dd->temp_buf;
tx_len = dd->cur_msg_len;
} else {
if (!first_xfr->tx_buf || !nxt_xfr->rx_buf)
goto error;
rx_buf = dd->temp_buf;
rx_len = dd->cur_msg_len;
}
}
if (tx_buf != NULL) {
first_xfr->tx_dma = dma_map_single(dev, tx_buf,
tx_len, DMA_TO_DEVICE);
if (dma_mapping_error(NULL, first_xfr->tx_dma)) {
dev_err(dev, "dma %cX %d bytes error\n",
'T', tx_len);
ret = -ENOMEM;
goto error;
}
}
if (rx_buf != NULL) {
dma_addr_t dma_handle;
dma_handle = dma_map_single(dev, rx_buf,
rx_len, DMA_FROM_DEVICE);
if (dma_mapping_error(NULL, dma_handle)) {
dev_err(dev, "dma %cX %d bytes error\n",
'R', rx_len);
if (tx_buf != NULL)
dma_unmap_single(NULL, first_xfr->tx_dma,
tx_len, DMA_TO_DEVICE);
ret = -ENOMEM;
goto error;
}
if (dd->multi_xfr)
nxt_xfr->rx_dma = dma_handle;
else
first_xfr->rx_dma = dma_handle;
}
return 0;
error:
kfree(dd->temp_buf);
dd->temp_buf = NULL;
return ret;
}
static void msm_spi_unmap_dma_buffers(struct msm_spi *dd)
{
struct device *dev;
u32 offset;
dev = &dd->cur_msg->spi->dev;
if (dd->cur_msg->is_dma_mapped)
goto unmap_end;
if (dd->multi_xfr) {
if (dd->write_len && !dd->read_len) {
dma_unmap_single(dev,
dd->cur_transfer->tx_dma,
dd->cur_msg_len,
DMA_TO_DEVICE);
} else {
struct spi_transfer *prev_xfr;
prev_xfr = list_entry(
dd->cur_transfer->transfer_list.prev,
struct spi_transfer,
transfer_list);
if (dd->cur_transfer->rx_buf) {
dma_unmap_single(dev,
dd->cur_transfer->rx_dma,
dd->cur_msg_len,
DMA_FROM_DEVICE);
}
if (prev_xfr->tx_buf) {
dma_unmap_single(dev,
prev_xfr->tx_dma,
prev_xfr->len,
DMA_TO_DEVICE);
}
if (dd->unaligned_len && dd->read_buf) {
offset = dd->cur_msg_len - dd->unaligned_len;
dma_coherent_post_ops();
memcpy(dd->read_buf + offset, dd->rx_padding,
dd->unaligned_len);
memcpy(dd->cur_transfer->rx_buf,
dd->read_buf + prev_xfr->len,
dd->cur_transfer->len);
}
}
kfree(dd->temp_buf);
dd->temp_buf = NULL;
return;
} else {
if (dd->cur_transfer->rx_buf)
dma_unmap_single(dev, dd->cur_transfer->rx_dma,
dd->cur_transfer->len,
DMA_FROM_DEVICE);
if (dd->cur_transfer->tx_buf)
dma_unmap_single(dev, dd->cur_transfer->tx_dma,
dd->cur_transfer->len,
DMA_TO_DEVICE);
}
unmap_end:
/* If we padded the transfer, we copy it from the padding buf */
if (dd->unaligned_len && dd->read_buf) {
offset = dd->cur_transfer->len - dd->unaligned_len;
dma_coherent_post_ops();
memcpy(dd->read_buf + offset, dd->rx_padding,
dd->unaligned_len);
}
}
/**
* msm_use_dm - decides whether to use data mover for this
* transfer
* @dd: device
* @tr: transfer
*
* Start using DM if:
* 1. Transfer is longer than 3*block size.
* 2. Buffers should be aligned to cache line.
* 3. For WR-RD or WR-WR transfers, if condition (1) and (2) above are met.
*/
static inline int msm_use_dm(struct msm_spi *dd, struct spi_transfer *tr,
u8 bpw)
{
u32 cache_line = dma_get_cache_alignment();
if (!dd->use_dma)
return 0;
if (dd->cur_msg_len < 3*dd->input_block_size)
return 0;
if (dd->multi_xfr && !dd->read_len && !dd->write_len)
return 0;
if (tr->tx_buf) {
if (!IS_ALIGNED((size_t)tr->tx_buf, cache_line))
return 0;
}
if (tr->rx_buf) {
if (!IS_ALIGNED((size_t)tr->rx_buf, cache_line))
return 0;
}
if (tr->cs_change &&
((bpw != 8) || (bpw != 16) || (bpw != 32)))
return 0;
return 1;
}
static void msm_spi_process_transfer(struct msm_spi *dd)
{
u8 bpw;
u32 spi_ioc;
u32 spi_iom;
u32 spi_ioc_orig;
u32 max_speed;
u32 chip_select;
u32 read_count;
u32 timeout;
u32 int_loopback = 0;
dd->tx_bytes_remaining = dd->cur_msg_len;
dd->rx_bytes_remaining = dd->cur_msg_len;
dd->read_buf = dd->cur_transfer->rx_buf;
dd->write_buf = dd->cur_transfer->tx_buf;
init_completion(&dd->transfer_complete);
if (dd->cur_transfer->bits_per_word)
bpw = dd->cur_transfer->bits_per_word;
else
if (dd->cur_msg->spi->bits_per_word)
bpw = dd->cur_msg->spi->bits_per_word;
else
bpw = 8;
dd->bytes_per_word = (bpw + 7) / 8;
if (dd->cur_transfer->speed_hz)
max_speed = dd->cur_transfer->speed_hz;
else
max_speed = dd->cur_msg->spi->max_speed_hz;
if (!dd->clock_speed || max_speed != dd->clock_speed)
msm_spi_clock_set(dd, max_speed);
read_count = DIV_ROUND_UP(dd->cur_msg_len, dd->bytes_per_word);
if (dd->cur_msg->spi->mode & SPI_LOOP)
int_loopback = 1;
if (int_loopback && dd->multi_xfr &&
(read_count > dd->input_fifo_size)) {
if (dd->read_len && dd->write_len)
pr_err(
"%s:Internal Loopback does not support > fifo size"
"for write-then-read transactions\n",
__func__);
else if (dd->write_len && !dd->read_len)
pr_err(
"%s:Internal Loopback does not support > fifo size"
"for write-then-write transactions\n",
__func__);
return;
}
if (!msm_use_dm(dd, dd->cur_transfer, bpw)) {
dd->mode = SPI_FIFO_MODE;
if (dd->multi_xfr) {
dd->read_len = dd->cur_transfer->len;
dd->write_len = dd->cur_transfer->len;
}
/* read_count cannot exceed fifo_size, and only one READ COUNT
interrupt is generated per transaction, so for transactions
larger than fifo size READ COUNT must be disabled.
For those transactions we usually move to Data Mover mode.
*/
if (read_count <= dd->input_fifo_size) {
writel_relaxed(read_count,
dd->base + SPI_MX_READ_COUNT);
msm_spi_set_write_count(dd, read_count);
} else {
writel_relaxed(0, dd->base + SPI_MX_READ_COUNT);
msm_spi_set_write_count(dd, 0);
}
} else {
dd->mode = SPI_DMOV_MODE;
if (dd->write_len && dd->read_len) {
dd->tx_bytes_remaining = dd->write_len;
dd->rx_bytes_remaining = dd->read_len;
}
}
/* Write mode - fifo or data mover*/
spi_iom = readl_relaxed(dd->base + SPI_IO_MODES);
spi_iom &= ~(SPI_IO_M_INPUT_MODE | SPI_IO_M_OUTPUT_MODE);
spi_iom = (spi_iom | (dd->mode << OUTPUT_MODE_SHIFT));
spi_iom = (spi_iom | (dd->mode << INPUT_MODE_SHIFT));
/* Turn on packing for data mover */
if (dd->mode == SPI_DMOV_MODE)
spi_iom |= SPI_IO_M_PACK_EN | SPI_IO_M_UNPACK_EN;
else
spi_iom &= ~(SPI_IO_M_PACK_EN | SPI_IO_M_UNPACK_EN);
writel_relaxed(spi_iom, dd->base + SPI_IO_MODES);
msm_spi_set_config(dd, bpw);
spi_ioc = readl_relaxed(dd->base + SPI_IO_CONTROL);
spi_ioc_orig = spi_ioc;
if (dd->cur_msg->spi->mode & SPI_CPOL)
spi_ioc |= SPI_IO_C_CLK_IDLE_HIGH;
else
spi_ioc &= ~SPI_IO_C_CLK_IDLE_HIGH;
chip_select = dd->cur_msg->spi->chip_select << 2;
if ((spi_ioc & SPI_IO_C_CS_SELECT) != chip_select)
spi_ioc = (spi_ioc & ~SPI_IO_C_CS_SELECT) | chip_select;
if (!dd->cur_transfer->cs_change)
spi_ioc |= SPI_IO_C_MX_CS_MODE;
if (spi_ioc != spi_ioc_orig)
writel_relaxed(spi_ioc, dd->base + SPI_IO_CONTROL);
if (dd->mode == SPI_DMOV_MODE) {
msm_spi_setup_dm_transfer(dd);
msm_spi_enqueue_dm_commands(dd);
}
/* The output fifo interrupt handler will handle all writes after
the first. Restricting this to one write avoids contention
issues and race conditions between this thread and the int handler
*/
else if (dd->mode == SPI_FIFO_MODE) {
if (msm_spi_prepare_for_write(dd))
goto transfer_end;
msm_spi_start_write(dd, read_count);
}
/* Only enter the RUN state after the first word is written into
the output FIFO. Otherwise, the output FIFO EMPTY interrupt
might fire before the first word is written resulting in a
possible race condition.
*/
if (msm_spi_set_state(dd, SPI_OP_STATE_RUN))
goto transfer_end;
timeout = 100 * msecs_to_jiffies(
DIV_ROUND_UP(dd->cur_msg_len * 8,
DIV_ROUND_UP(max_speed, MSEC_PER_SEC)));
/* Assume success, this might change later upon transaction result */
dd->cur_msg->status = 0;
do {
if (!wait_for_completion_timeout(&dd->transfer_complete,
timeout)) {
dev_err(dd->dev, "%s: SPI transaction "
"timeout\n", __func__);
dd->cur_msg->status = -EIO;
if (dd->mode == SPI_DMOV_MODE) {
msm_dmov_flush(dd->tx_dma_chan, 1);
msm_dmov_flush(dd->rx_dma_chan, 1);
}
break;
}
} while (msm_spi_dm_send_next(dd));
msm_spi_udelay(dd->cur_transfer->delay_usecs);
transfer_end:
if (dd->mode == SPI_DMOV_MODE)
msm_spi_unmap_dma_buffers(dd);
dd->mode = SPI_MODE_NONE;
msm_spi_set_state(dd, SPI_OP_STATE_RESET);
writel_relaxed(spi_ioc & ~SPI_IO_C_MX_CS_MODE,
dd->base + SPI_IO_CONTROL);
}
static void get_transfer_length(struct msm_spi *dd)
{
struct spi_transfer *tr;
int num_xfrs = 0;
int readlen = 0;
int writelen = 0;
dd->cur_msg_len = 0;
dd->multi_xfr = 0;
dd->read_len = dd->write_len = 0;
list_for_each_entry(tr, &dd->cur_msg->transfers, transfer_list) {
if (tr->tx_buf)
writelen += tr->len;
if (tr->rx_buf)
readlen += tr->len;
dd->cur_msg_len += tr->len;
num_xfrs++;
}
if (num_xfrs == 2) {
struct spi_transfer *first_xfr = dd->cur_transfer;
dd->multi_xfr = 1;
tr = list_entry(first_xfr->transfer_list.next,
struct spi_transfer,
transfer_list);
/*
* We update dd->read_len and dd->write_len only
* for WR-WR and WR-RD transfers.
*/
if ((first_xfr->tx_buf) && (!first_xfr->rx_buf)) {
if (((tr->tx_buf) && (!tr->rx_buf)) ||
((!tr->tx_buf) && (tr->rx_buf))) {
dd->read_len = readlen;
dd->write_len = writelen;
}
}
} else if (num_xfrs > 1)
dd->multi_xfr = 1;
}
static inline int combine_transfers(struct msm_spi *dd)
{
struct spi_transfer *t = dd->cur_transfer;
struct spi_transfer *nxt;
int xfrs_grped = 1;
dd->cur_msg_len = dd->cur_transfer->len;
while (t->transfer_list.next != &dd->cur_msg->transfers) {
nxt = list_entry(t->transfer_list.next,
struct spi_transfer,
transfer_list);
if (t->cs_change != nxt->cs_change)
return xfrs_grped;
dd->cur_msg_len += nxt->len;
xfrs_grped++;
t = nxt;
}
return xfrs_grped;
}
static inline void write_force_cs(struct msm_spi *dd, bool set_flag)
{
u32 spi_ioc;
u32 spi_ioc_orig;
spi_ioc = readl_relaxed(dd->base + SPI_IO_CONTROL);
spi_ioc_orig = spi_ioc;
if (set_flag)
spi_ioc |= SPI_IO_C_FORCE_CS;
else
spi_ioc &= ~SPI_IO_C_FORCE_CS;
if (spi_ioc != spi_ioc_orig)
writel_relaxed(spi_ioc, dd->base + SPI_IO_CONTROL);
}
static void msm_spi_process_message(struct msm_spi *dd)
{
int xfrs_grped = 0;
int cs_num;
int rc;
bool xfer_delay = false;
struct spi_transfer *tr;
dd->write_xfr_cnt = dd->read_xfr_cnt = 0;
cs_num = dd->cur_msg->spi->chip_select;
if ((!(dd->cur_msg->spi->mode & SPI_LOOP)) &&
(!(dd->cs_gpios[cs_num].valid)) &&
(dd->cs_gpios[cs_num].gpio_num >= 0)) {
rc = gpio_request(dd->cs_gpios[cs_num].gpio_num,
spi_cs_rsrcs[cs_num]);
if (rc) {
dev_err(dd->dev, "gpio_request for pin %d failed with "
"error %d\n", dd->cs_gpios[cs_num].gpio_num,
rc);
return;
}
dd->cs_gpios[cs_num].valid = 1;
}
list_for_each_entry(tr,
&dd->cur_msg->transfers,
transfer_list) {
if (tr->delay_usecs) {
dev_info(dd->dev, "SPI slave requests delay per txn :%d",
tr->delay_usecs);
xfer_delay = true;
break;
}
}
/* Don't combine xfers if delay is needed after every xfer */
if (dd->qup_ver || xfer_delay) {
if (dd->qup_ver)
write_force_cs(dd, 0);
list_for_each_entry(dd->cur_transfer,
&dd->cur_msg->transfers,
transfer_list) {
struct spi_transfer *t = dd->cur_transfer;
struct spi_transfer *nxt;
if (t->transfer_list.next != &dd->cur_msg->transfers) {
nxt = list_entry(t->transfer_list.next,
struct spi_transfer,
transfer_list);
if (dd->qup_ver &&
t->cs_change == nxt->cs_change)
write_force_cs(dd, 1);
else if (dd->qup_ver)
write_force_cs(dd, 0);
}
dd->cur_msg_len = dd->cur_transfer->len;
msm_spi_process_transfer(dd);
}
} else {
dd->cur_transfer = list_first_entry(&dd->cur_msg->transfers,
struct spi_transfer,
transfer_list);
get_transfer_length(dd);
if (dd->multi_xfr && !dd->read_len && !dd->write_len) {
/*
* Handling of multi-transfers.
* FIFO mode is used by default
*/
list_for_each_entry(dd->cur_transfer,
&dd->cur_msg->transfers,
transfer_list) {
if (!dd->cur_transfer->len)
goto error;
if (xfrs_grped) {
xfrs_grped--;
continue;
} else {
dd->read_len = dd->write_len = 0;
xfrs_grped = combine_transfers(dd);
}
dd->cur_tx_transfer = dd->cur_transfer;
dd->cur_rx_transfer = dd->cur_transfer;
msm_spi_process_transfer(dd);
xfrs_grped--;
}
} else {
/* Handling of a single transfer or
* WR-WR or WR-RD transfers
*/
if ((!dd->cur_msg->is_dma_mapped) &&
(msm_use_dm(dd, dd->cur_transfer,
dd->cur_transfer->bits_per_word))) {
/* Mapping of DMA buffers */
int ret = msm_spi_map_dma_buffers(dd);
if (ret < 0) {
dd->cur_msg->status = ret;
goto error;
}
}
dd->cur_tx_transfer = dd->cur_transfer;
dd->cur_rx_transfer = dd->cur_transfer;
msm_spi_process_transfer(dd);
}
}
return;
error:
if (dd->cs_gpios[cs_num].valid) {
gpio_free(dd->cs_gpios[cs_num].gpio_num);
dd->cs_gpios[cs_num].valid = 0;
}
}
/* workqueue - pull messages from queue & process */
static void msm_spi_workq(struct work_struct *work)
{
struct msm_spi *dd =
container_of(work, struct msm_spi, work_data);
unsigned long flags;
u32 status_error = 0;
int rc = 0;
mutex_lock(&dd->core_lock);
/* Don't allow power collapse until we release mutex */
if (pm_qos_request_active(&qos_req_list))
pm_qos_update_request(&qos_req_list,
dd->pm_lat);
if (dd->use_rlock)
remote_mutex_lock(&dd->r_lock);
/* Configure the spi clk, miso, mosi and cs gpio */
if (dd->pdata->gpio_config) {
rc = dd->pdata->gpio_config();
if (rc) {
dev_err(dd->dev,
"%s: error configuring GPIOs\n",
__func__);
status_error = 1;
}
}
rc = msm_spi_request_gpios(dd);
if (rc)
status_error = 1;
clk_prepare_enable(dd->clk);
clk_prepare_enable(dd->pclk);
msm_spi_enable_irqs(dd);
if (!msm_spi_is_valid_state(dd)) {
dev_err(dd->dev, "%s: SPI operational state not valid\n",
__func__);
status_error = 1;
}
spin_lock_irqsave(&dd->queue_lock, flags);
while (!list_empty(&dd->queue)) {
dd->cur_msg = list_entry(dd->queue.next,
struct spi_message, queue);
list_del_init(&dd->cur_msg->queue);
spin_unlock_irqrestore(&dd->queue_lock, flags);
if (status_error)
dd->cur_msg->status = -EIO;
else
msm_spi_process_message(dd);
if (dd->cur_msg->complete)
dd->cur_msg->complete(dd->cur_msg->context);
spin_lock_irqsave(&dd->queue_lock, flags);
}
dd->transfer_pending = 0;
spin_unlock_irqrestore(&dd->queue_lock, flags);
msm_spi_disable_irqs(dd);
clk_disable_unprepare(dd->clk);
clk_disable_unprepare(dd->pclk);
/* Free the spi clk, miso, mosi, cs gpio */
if (!rc && dd->pdata && dd->pdata->gpio_release)
dd->pdata->gpio_release();
if (!rc)
msm_spi_free_gpios(dd);
if (dd->use_rlock)
remote_mutex_unlock(&dd->r_lock);
if (pm_qos_request_active(&qos_req_list))
pm_qos_update_request(&qos_req_list,
PM_QOS_DEFAULT_VALUE);
mutex_unlock(&dd->core_lock);
/* If needed, this can be done after the current message is complete,
and work can be continued upon resume. No motivation for now. */
if (dd->suspended)
wake_up_interruptible(&dd->continue_suspend);
}
static int msm_spi_transfer(struct spi_device *spi, struct spi_message *msg)
{
struct msm_spi *dd;
unsigned long flags;
struct spi_transfer *tr;
dd = spi_master_get_devdata(spi->master);
if (dd->suspended)
return -EBUSY;
if (list_empty(&msg->transfers) || !msg->complete)
return -EINVAL;
list_for_each_entry(tr, &msg->transfers, transfer_list) {
/* Check message parameters */
if (tr->speed_hz > dd->pdata->max_clock_speed ||
(tr->bits_per_word &&
(tr->bits_per_word < 4 || tr->bits_per_word > 32)) ||
(tr->tx_buf == NULL && tr->rx_buf == NULL)) {
dev_err(&spi->dev, "Invalid transfer: %d Hz, %d bpw"
"tx=%p, rx=%p\n",
tr->speed_hz, tr->bits_per_word,
tr->tx_buf, tr->rx_buf);
return -EINVAL;
}
}
spin_lock_irqsave(&dd->queue_lock, flags);
if (dd->suspended) {
spin_unlock_irqrestore(&dd->queue_lock, flags);
return -EBUSY;
}
dd->transfer_pending = 1;
list_add_tail(&msg->queue, &dd->queue);
spin_unlock_irqrestore(&dd->queue_lock, flags);
queue_work(dd->workqueue, &dd->work_data);
return 0;
}
static int msm_spi_setup(struct spi_device *spi)
{
struct msm_spi *dd;
int rc = 0;
u32 spi_ioc;
u32 spi_config;
u32 mask;
if (spi->bits_per_word < 4 || spi->bits_per_word > 32) {
dev_err(&spi->dev, "%s: invalid bits_per_word %d\n",
__func__, spi->bits_per_word);
rc = -EINVAL;
}
if (spi->chip_select > SPI_NUM_CHIPSELECTS-1) {
dev_err(&spi->dev, "%s, chip select %d exceeds max value %d\n",
__func__, spi->chip_select, SPI_NUM_CHIPSELECTS - 1);
rc = -EINVAL;
}
if (rc)
goto err_setup_exit;
dd = spi_master_get_devdata(spi->master);
mutex_lock(&dd->core_lock);
if (dd->suspended) {
mutex_unlock(&dd->core_lock);
return -EBUSY;
}
if (dd->use_rlock)
remote_mutex_lock(&dd->r_lock);
/* Configure the spi clk, miso, mosi, cs gpio */
if (dd->pdata->gpio_config) {
rc = dd->pdata->gpio_config();
if (rc) {
dev_err(&spi->dev,
"%s: error configuring GPIOs\n",
__func__);
rc = -ENXIO;
goto err_setup_gpio;
}
}
rc = msm_spi_request_gpios(dd);
if (rc) {
rc = -ENXIO;
goto err_setup_gpio;
}
clk_prepare_enable(dd->clk);
clk_prepare_enable(dd->pclk);
spi_ioc = readl_relaxed(dd->base + SPI_IO_CONTROL);
mask = SPI_IO_C_CS_N_POLARITY_0 << spi->chip_select;
if (spi->mode & SPI_CS_HIGH)
spi_ioc |= mask;
else
spi_ioc &= ~mask;
if (spi->mode & SPI_CPOL)
spi_ioc |= SPI_IO_C_CLK_IDLE_HIGH;
else
spi_ioc &= ~SPI_IO_C_CLK_IDLE_HIGH;
writel_relaxed(spi_ioc, dd->base + SPI_IO_CONTROL);
spi_config = readl_relaxed(dd->base + SPI_CONFIG);
if (spi->mode & SPI_LOOP)
spi_config |= SPI_CFG_LOOPBACK;
else
spi_config &= ~SPI_CFG_LOOPBACK;
if (spi->mode & SPI_CPHA)
spi_config &= ~SPI_CFG_INPUT_FIRST;
else
spi_config |= SPI_CFG_INPUT_FIRST;
writel_relaxed(spi_config, dd->base + SPI_CONFIG);
/* Ensure previous write completed before disabling the clocks */
mb();
clk_disable_unprepare(dd->clk);
clk_disable_unprepare(dd->pclk);
/* Free the spi clk, miso, mosi, cs gpio */
if (dd->pdata && dd->pdata->gpio_release)
dd->pdata->gpio_release();
msm_spi_free_gpios(dd);
err_setup_gpio:
if (dd->use_rlock)
remote_mutex_unlock(&dd->r_lock);
mutex_unlock(&dd->core_lock);
err_setup_exit:
return rc;
}
#ifdef CONFIG_DEBUG_FS
static int debugfs_iomem_x32_set(void *data, u64 val)
{
writel_relaxed(val, data);
/* Ensure the previous write completed. */
mb();
return 0;
}
static int debugfs_iomem_x32_get(void *data, u64 *val)
{
*val = readl_relaxed(data);
/* Ensure the previous read completed. */
mb();
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_iomem_x32, debugfs_iomem_x32_get,
debugfs_iomem_x32_set, "0x%08llx\n");
static void spi_debugfs_init(struct msm_spi *dd)
{
dd->dent_spi = debugfs_create_dir(dev_name(dd->dev), NULL);
if (dd->dent_spi) {
int i;
for (i = 0; i < ARRAY_SIZE(debugfs_spi_regs); i++) {
dd->debugfs_spi_regs[i] =
debugfs_create_file(
debugfs_spi_regs[i].name,
debugfs_spi_regs[i].mode,
dd->dent_spi,
dd->base + debugfs_spi_regs[i].offset,
&fops_iomem_x32);
}
}
}
static void spi_debugfs_exit(struct msm_spi *dd)
{
if (dd->dent_spi) {
int i;
debugfs_remove_recursive(dd->dent_spi);
dd->dent_spi = NULL;
for (i = 0; i < ARRAY_SIZE(debugfs_spi_regs); i++)
dd->debugfs_spi_regs[i] = NULL;
}
}
#else
static void spi_debugfs_init(struct msm_spi *dd) {}
static void spi_debugfs_exit(struct msm_spi *dd) {}
#endif
/* ===Device attributes begin=== */
static ssize_t show_stats(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct spi_master *master = dev_get_drvdata(dev);
struct msm_spi *dd = spi_master_get_devdata(master);
return snprintf(buf, PAGE_SIZE,
"Device %s\n"
"rx fifo_size = %d spi words\n"
"tx fifo_size = %d spi words\n"
"use_dma ? %s\n"
"rx block size = %d bytes\n"
"tx block size = %d bytes\n"
"burst size = %d bytes\n"
"DMA configuration:\n"
"tx_ch=%d, rx_ch=%d, tx_crci= %d, rx_crci=%d\n"
"--statistics--\n"
"Rx isrs = %d\n"
"Tx isrs = %d\n"
"DMA error = %d\n"
"--debug--\n"
"NA yet\n",
dev_name(dev),
dd->input_fifo_size,
dd->output_fifo_size,
dd->use_dma ? "yes" : "no",
dd->input_block_size,
dd->output_block_size,
dd->burst_size,
dd->tx_dma_chan,
dd->rx_dma_chan,
dd->tx_dma_crci,
dd->rx_dma_crci,
dd->stat_rx + dd->stat_dmov_rx,
dd->stat_tx + dd->stat_dmov_tx,
dd->stat_dmov_tx_err + dd->stat_dmov_rx_err
);
}
/* Reset statistics on write */
static ssize_t set_stats(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct msm_spi *dd = dev_get_drvdata(dev);
dd->stat_rx = 0;
dd->stat_tx = 0;
dd->stat_dmov_rx = 0;
dd->stat_dmov_tx = 0;
dd->stat_dmov_rx_err = 0;
dd->stat_dmov_tx_err = 0;
return count;
}
static DEVICE_ATTR(stats, S_IRUGO | S_IWUSR, show_stats, set_stats);
static struct attribute *dev_attrs[] = {
&dev_attr_stats.attr,
NULL,
};
static struct attribute_group dev_attr_grp = {
.attrs = dev_attrs,
};
/* ===Device attributes end=== */
/**
* spi_dmov_tx_complete_func - DataMover tx completion callback
*
* Executed in IRQ context (Data Mover's IRQ) DataMover's
* spinlock @msm_dmov_lock held.
*/
static void spi_dmov_tx_complete_func(struct msm_dmov_cmd *cmd,
unsigned int result,
struct msm_dmov_errdata *err)
{
struct msm_spi *dd;
if (!(result & DMOV_RSLT_VALID)) {
pr_err("Invalid DMOV result: rc=0x%08x, cmd = %p", result, cmd);
return;
}
/* restore original context */
dd = container_of(cmd, struct msm_spi, tx_hdr);
if (result & DMOV_RSLT_DONE) {
dd->stat_dmov_tx++;
if ((atomic_inc_return(&dd->tx_irq_called) == 1))
return;
complete(&dd->transfer_complete);
} else {
/* Error or flush */
if (result & DMOV_RSLT_ERROR) {
dev_err(dd->dev, "DMA error (0x%08x)\n", result);
dd->stat_dmov_tx_err++;
}
if (result & DMOV_RSLT_FLUSH) {
/*
* Flushing normally happens in process of
* removing, when we are waiting for outstanding
* DMA commands to be flushed.
*/
dev_info(dd->dev,
"DMA channel flushed (0x%08x)\n", result);
}
if (err)
dev_err(dd->dev,
"Flush data(%08x %08x %08x %08x %08x %08x)\n",
err->flush[0], err->flush[1], err->flush[2],
err->flush[3], err->flush[4], err->flush[5]);
dd->cur_msg->status = -EIO;
complete(&dd->transfer_complete);
}
}
/**
* spi_dmov_rx_complete_func - DataMover rx completion callback
*
* Executed in IRQ context (Data Mover's IRQ)
* DataMover's spinlock @msm_dmov_lock held.
*/
static void spi_dmov_rx_complete_func(struct msm_dmov_cmd *cmd,
unsigned int result,
struct msm_dmov_errdata *err)
{
struct msm_spi *dd;
if (!(result & DMOV_RSLT_VALID)) {
pr_err("Invalid DMOV result(rc = 0x%08x, cmd = %p)",
result, cmd);
return;
}
/* restore original context */
dd = container_of(cmd, struct msm_spi, rx_hdr);
if (result & DMOV_RSLT_DONE) {
dd->stat_dmov_rx++;
if (atomic_inc_return(&dd->rx_irq_called) == 1)
return;
complete(&dd->transfer_complete);
} else {
/** Error or flush */
if (result & DMOV_RSLT_ERROR) {
dev_err(dd->dev, "DMA error(0x%08x)\n", result);
dd->stat_dmov_rx_err++;
}
if (result & DMOV_RSLT_FLUSH) {
dev_info(dd->dev,
"DMA channel flushed(0x%08x)\n", result);
}
if (err)
dev_err(dd->dev,
"Flush data(%08x %08x %08x %08x %08x %08x)\n",
err->flush[0], err->flush[1], err->flush[2],
err->flush[3], err->flush[4], err->flush[5]);
dd->cur_msg->status = -EIO;
complete(&dd->transfer_complete);
}
}
static inline u32 get_chunk_size(struct msm_spi *dd)
{
u32 cache_line = dma_get_cache_alignment();
return (roundup(sizeof(struct spi_dmov_cmd), DM_BYTE_ALIGN) +
roundup(dd->burst_size, cache_line))*2;
}
static void msm_spi_teardown_dma(struct msm_spi *dd)
{
int limit = 0;
if (!dd->use_dma)
return;
while (dd->mode == SPI_DMOV_MODE && limit++ < 50) {
msm_dmov_flush(dd->tx_dma_chan, 1);
msm_dmov_flush(dd->rx_dma_chan, 1);
msleep(10);
}
dma_free_coherent(NULL, get_chunk_size(dd), dd->tx_dmov_cmd,
dd->tx_dmov_cmd_dma);
dd->tx_dmov_cmd = dd->rx_dmov_cmd = NULL;
dd->tx_padding = dd->rx_padding = NULL;
}
static __init int msm_spi_init_dma(struct msm_spi *dd)
{
dmov_box *box;
u32 cache_line = dma_get_cache_alignment();
/* Allocate all as one chunk, since all is smaller than page size */
/* We send NULL device, since it requires coherent_dma_mask id
device definition, we're okay with using system pool */
dd->tx_dmov_cmd = dma_alloc_coherent(NULL, get_chunk_size(dd),
&dd->tx_dmov_cmd_dma, GFP_KERNEL);
if (dd->tx_dmov_cmd == NULL)
return -ENOMEM;
/* DMA addresses should be 64 bit aligned aligned */
dd->rx_dmov_cmd = (struct spi_dmov_cmd *)
ALIGN((size_t)&dd->tx_dmov_cmd[1], DM_BYTE_ALIGN);
dd->rx_dmov_cmd_dma = ALIGN(dd->tx_dmov_cmd_dma +
sizeof(struct spi_dmov_cmd), DM_BYTE_ALIGN);
/* Buffers should be aligned to cache line */
dd->tx_padding = (u8 *)ALIGN((size_t)&dd->rx_dmov_cmd[1], cache_line);
dd->tx_padding_dma = ALIGN(dd->rx_dmov_cmd_dma +
sizeof(struct spi_dmov_cmd), cache_line);
dd->rx_padding = (u8 *)ALIGN((size_t)(dd->tx_padding + dd->burst_size),
cache_line);
dd->rx_padding_dma = ALIGN(dd->tx_padding_dma + dd->burst_size,
cache_line);
/* Setup DM commands */
box = &(dd->rx_dmov_cmd->box);
box->cmd = CMD_MODE_BOX | CMD_SRC_CRCI(dd->rx_dma_crci);
box->src_row_addr = (uint32_t)dd->mem_phys_addr + SPI_INPUT_FIFO;
dd->rx_hdr.cmdptr = DMOV_CMD_PTR_LIST |
DMOV_CMD_ADDR(dd->rx_dmov_cmd_dma +
offsetof(struct spi_dmov_cmd, cmd_ptr));
dd->rx_hdr.complete_func = spi_dmov_rx_complete_func;
box = &(dd->tx_dmov_cmd->box);
box->cmd = CMD_MODE_BOX | CMD_DST_CRCI(dd->tx_dma_crci);
box->dst_row_addr = (uint32_t)dd->mem_phys_addr + SPI_OUTPUT_FIFO;
dd->tx_hdr.cmdptr = DMOV_CMD_PTR_LIST |
DMOV_CMD_ADDR(dd->tx_dmov_cmd_dma +
offsetof(struct spi_dmov_cmd, cmd_ptr));
dd->tx_hdr.complete_func = spi_dmov_tx_complete_func;
dd->tx_dmov_cmd->single_pad.cmd = CMD_MODE_SINGLE | CMD_LC |
CMD_DST_CRCI(dd->tx_dma_crci);
dd->tx_dmov_cmd->single_pad.dst = (uint32_t)dd->mem_phys_addr +
SPI_OUTPUT_FIFO;
dd->rx_dmov_cmd->single_pad.cmd = CMD_MODE_SINGLE | CMD_LC |
CMD_SRC_CRCI(dd->rx_dma_crci);
dd->rx_dmov_cmd->single_pad.src = (uint32_t)dd->mem_phys_addr +
SPI_INPUT_FIFO;
/* Clear remaining activities on channel */
msm_dmov_flush(dd->tx_dma_chan, 1);
msm_dmov_flush(dd->rx_dma_chan, 1);
return 0;
}
struct msm_spi_platform_data *msm_spi_dt_to_pdata(struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node;
struct msm_spi_platform_data *pdata;
pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata) {
pr_err("Unable to allocate platform data\n");
return NULL;
}
of_property_read_u32(node, "spi-max-frequency",
&pdata->max_clock_speed);
of_property_read_u32(node, "infinite_mode",
&pdata->infinite_mode);
return pdata;
}
static int __init msm_spi_probe(struct platform_device *pdev)
{
struct spi_master *master;
struct msm_spi *dd;
struct resource *resource;
int rc = -ENXIO;
int locked = 0;
int i = 0;
int clk_enabled = 0;
int pclk_enabled = 0;
struct msm_spi_platform_data *pdata;
enum of_gpio_flags flags;
master = spi_alloc_master(&pdev->dev, sizeof(struct msm_spi));
if (!master) {
rc = -ENOMEM;
dev_err(&pdev->dev, "master allocation failed\n");
goto err_probe_exit;
}
master->bus_num = pdev->id;
master->mode_bits = SPI_SUPPORTED_MODES;
master->num_chipselect = SPI_NUM_CHIPSELECTS;
master->setup = msm_spi_setup;
master->transfer = msm_spi_transfer;
platform_set_drvdata(pdev, master);
dd = spi_master_get_devdata(master);
if (pdev->dev.of_node) {
dd->qup_ver = SPI_QUP_VERSION_BFAM;
master->dev.of_node = pdev->dev.of_node;
pdata = msm_spi_dt_to_pdata(pdev);
if (!pdata) {
rc = -ENOMEM;
goto err_probe_exit;
}
rc = of_property_read_u32(pdev->dev.of_node,
"cell-index", &pdev->id);
if (rc)
dev_warn(&pdev->dev,
"using default bus_num %d\n", pdev->id);
else
master->bus_num = pdev->id;
for (i = 0; i < ARRAY_SIZE(spi_rsrcs); ++i) {
dd->spi_gpios[i] = of_get_gpio_flags(pdev->dev.of_node,
i, &flags);
}
for (i = 0; i < ARRAY_SIZE(spi_cs_rsrcs); ++i) {
dd->cs_gpios[i].gpio_num = of_get_named_gpio_flags(
pdev->dev.of_node, "cs-gpios",
i, &flags);
dd->cs_gpios[i].valid = 0;
}
} else {
pdata = pdev->dev.platform_data;
dd->qup_ver = SPI_QUP_VERSION_NONE;
for (i = 0; i < ARRAY_SIZE(spi_rsrcs); ++i) {
resource = platform_get_resource(pdev, IORESOURCE_IO,
i);
dd->spi_gpios[i] = resource ? resource->start : -1;
}
for (i = 0; i < ARRAY_SIZE(spi_cs_rsrcs); ++i) {
resource = platform_get_resource(pdev, IORESOURCE_IO,
i + ARRAY_SIZE(spi_rsrcs));
dd->cs_gpios[i].gpio_num = resource ?
resource->start : -1;
dd->cs_gpios[i].valid = 0;
}
}
dd->pdata = pdata;
resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!resource) {
rc = -ENXIO;
goto err_probe_res;
}
dd->mem_phys_addr = resource->start;
dd->mem_size = resource_size(resource);
if (pdata) {
if (pdata->dma_config) {
rc = pdata->dma_config();
if (rc) {
dev_warn(&pdev->dev,
"%s: DM mode not supported\n",
__func__);
dd->use_dma = 0;
goto skip_dma_resources;
}
}
resource = platform_get_resource(pdev, IORESOURCE_DMA, 0);
if (resource) {
dd->rx_dma_chan = resource->start;
dd->tx_dma_chan = resource->end;
resource = platform_get_resource(pdev, IORESOURCE_DMA,
1);
if (!resource) {
rc = -ENXIO;
goto err_probe_res;
}
dd->rx_dma_crci = resource->start;
dd->tx_dma_crci = resource->end;
dd->use_dma = 1;
master->dma_alignment = dma_get_cache_alignment();
}
}
skip_dma_resources:
spin_lock_init(&dd->queue_lock);
mutex_init(&dd->core_lock);
INIT_LIST_HEAD(&dd->queue);
INIT_WORK(&dd->work_data, msm_spi_workq);
init_waitqueue_head(&dd->continue_suspend);
dd->workqueue = create_singlethread_workqueue(
dev_name(master->dev.parent));
if (!dd->workqueue)
goto err_probe_workq;
if (!devm_request_mem_region(&pdev->dev, dd->mem_phys_addr,
dd->mem_size, SPI_DRV_NAME)) {
rc = -ENXIO;
goto err_probe_reqmem;
}
dd->base = devm_ioremap(&pdev->dev, dd->mem_phys_addr, dd->mem_size);
if (!dd->base) {
rc = -ENOMEM;
goto err_probe_reqmem;
}
if (pdata && pdata->rsl_id) {
struct remote_mutex_id rmid;
rmid.r_spinlock_id = pdata->rsl_id;
rmid.delay_us = SPI_TRYLOCK_DELAY;
rc = remote_mutex_init(&dd->r_lock, &rmid);
if (rc) {
dev_err(&pdev->dev, "%s: unable to init remote_mutex "
"(%s), (rc=%d)\n", rmid.r_spinlock_id,
__func__, rc);
goto err_probe_rlock_init;
}
dd->use_rlock = 1;
dd->pm_lat = pdata->pm_lat;
pm_qos_add_request(&qos_req_list, PM_QOS_CPU_DMA_LATENCY,
PM_QOS_DEFAULT_VALUE);
}
mutex_lock(&dd->core_lock);
if (dd->use_rlock)
remote_mutex_lock(&dd->r_lock);
locked = 1;
dd->dev = &pdev->dev;
dd->clk = clk_get(&pdev->dev, "core_clk");
if (IS_ERR(dd->clk)) {
dev_err(&pdev->dev, "%s: unable to get core_clk\n", __func__);
rc = PTR_ERR(dd->clk);
goto err_probe_clk_get;
}
dd->pclk = clk_get(&pdev->dev, "iface_clk");
if (IS_ERR(dd->pclk)) {
dev_err(&pdev->dev, "%s: unable to get iface_clk\n", __func__);
rc = PTR_ERR(dd->pclk);
goto err_probe_pclk_get;
}
if (pdata && pdata->max_clock_speed)
msm_spi_clock_set(dd, dd->pdata->max_clock_speed);
rc = clk_prepare_enable(dd->clk);
if (rc) {
dev_err(&pdev->dev, "%s: unable to enable core_clk\n",
__func__);
goto err_probe_clk_enable;
}
clk_enabled = 1;
rc = clk_prepare_enable(dd->pclk);
if (rc) {
dev_err(&pdev->dev, "%s: unable to enable iface_clk\n",
__func__);
goto err_probe_pclk_enable;
}
pclk_enabled = 1;
rc = msm_spi_configure_gsbi(dd, pdev);
if (rc)
goto err_probe_gsbi;
msm_spi_calculate_fifo_size(dd);
if (dd->use_dma) {
rc = msm_spi_init_dma(dd);
if (rc)
goto err_probe_dma;
}
msm_spi_register_init(dd);
/*
* The SPI core generates a bogus input overrun error on some targets,
* when a transition from run to reset state occurs and if the FIFO has
* an odd number of entries. Hence we disable the INPUT_OVER_RUN_ERR_EN
* bit.
*/
msm_spi_enable_error_flags(dd);
writel_relaxed(SPI_IO_C_NO_TRI_STATE, dd->base + SPI_IO_CONTROL);
rc = msm_spi_set_state(dd, SPI_OP_STATE_RESET);
if (rc)
goto err_probe_state;
clk_disable_unprepare(dd->clk);
clk_disable_unprepare(dd->pclk);
clk_enabled = 0;
pclk_enabled = 0;
dd->suspended = 0;
dd->transfer_pending = 0;
dd->multi_xfr = 0;
dd->mode = SPI_MODE_NONE;
rc = msm_spi_request_irq(dd, pdev, master);
if (rc)
goto err_probe_irq;
msm_spi_disable_irqs(dd);
if (dd->use_rlock)
remote_mutex_unlock(&dd->r_lock);
mutex_unlock(&dd->core_lock);
locked = 0;
rc = spi_register_master(master);
if (rc)
goto err_probe_reg_master;
rc = sysfs_create_group(&(dd->dev->kobj), &dev_attr_grp);
if (rc) {
dev_err(&pdev->dev, "failed to create dev. attrs : %d\n", rc);
goto err_attrs;
}
spi_debugfs_init(dd);
return 0;
err_attrs:
spi_unregister_master(master);
err_probe_reg_master:
err_probe_irq:
err_probe_state:
msm_spi_teardown_dma(dd);
err_probe_dma:
err_probe_gsbi:
if (pclk_enabled)
clk_disable_unprepare(dd->pclk);
err_probe_pclk_enable:
if (clk_enabled)
clk_disable_unprepare(dd->clk);
err_probe_clk_enable:
clk_put(dd->pclk);
err_probe_pclk_get:
clk_put(dd->clk);
err_probe_clk_get:
if (locked) {
if (dd->use_rlock)
remote_mutex_unlock(&dd->r_lock);
mutex_unlock(&dd->core_lock);
}
err_probe_rlock_init:
err_probe_reqmem:
destroy_workqueue(dd->workqueue);
err_probe_workq:
err_probe_res:
spi_master_put(master);
err_probe_exit:
return rc;
}
#ifdef CONFIG_PM
static int msm_spi_suspend(struct platform_device *pdev, pm_message_t state)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct msm_spi *dd;
unsigned long flags;
if (!master)
goto suspend_exit;
dd = spi_master_get_devdata(master);
if (!dd)
goto suspend_exit;
/* Make sure nothing is added to the queue while we're suspending */
spin_lock_irqsave(&dd->queue_lock, flags);
dd->suspended = 1;
spin_unlock_irqrestore(&dd->queue_lock, flags);
/* Wait for transactions to end, or time out */
wait_event_interruptible(dd->continue_suspend, !dd->transfer_pending);
suspend_exit:
return 0;
}
static int msm_spi_resume(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct msm_spi *dd;
if (!master)
goto resume_exit;
dd = spi_master_get_devdata(master);
if (!dd)
goto resume_exit;
dd->suspended = 0;
resume_exit:
return 0;
}
#else
#define msm_spi_suspend NULL
#define msm_spi_resume NULL
#endif /* CONFIG_PM */
static int __devexit msm_spi_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct msm_spi *dd = spi_master_get_devdata(master);
pm_qos_remove_request(&qos_req_list);
spi_debugfs_exit(dd);
sysfs_remove_group(&pdev->dev.kobj, &dev_attr_grp);
msm_spi_teardown_dma(dd);
clk_put(dd->clk);
clk_put(dd->pclk);
destroy_workqueue(dd->workqueue);
platform_set_drvdata(pdev, 0);
spi_unregister_master(master);
spi_master_put(master);
return 0;
}
static struct of_device_id msm_spi_dt_match[] = {
{
.compatible = "qcom,spi-qup-v2",
},
{}
};
static struct platform_driver msm_spi_driver = {
.driver = {
.name = SPI_DRV_NAME,
.owner = THIS_MODULE,
.of_match_table = msm_spi_dt_match,
},
.suspend = msm_spi_suspend,
.resume = msm_spi_resume,
.remove = __exit_p(msm_spi_remove),
};
static int __init msm_spi_init(void)
{
return platform_driver_probe(&msm_spi_driver, msm_spi_probe);
}
module_init(msm_spi_init);
static void __exit msm_spi_exit(void)
{
platform_driver_unregister(&msm_spi_driver);
}
module_exit(msm_spi_exit);
MODULE_LICENSE("GPL v2");
MODULE_VERSION("0.4");
MODULE_ALIAS("platform:"SPI_DRV_NAME);
|