1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2002,2007-2021, The Linux Foundation. All rights reserved.
* Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <asm/cacheflush.h>
#include <linux/highmem.h>
#include <linux/slab.h>
#include <soc/qcom/scm.h>
#include <soc/qcom/secure_buffer.h>
#include <linux/shmem_fs.h>
#include <linux/bitfield.h>
#include "kgsl_reclaim.h"
#include "kgsl_sharedmem.h"
/*
* The user can set this from debugfs to force failed memory allocations to
* fail without trying OOM first. This is a debug setting useful for
* stress applications that want to test failure cases without pushing the
* system into unrecoverable OOM panics
*/
static bool sharedmem_noretry_flag;
static DEFINE_MUTEX(kernel_map_global_lock);
struct cp2_mem_chunks {
unsigned int chunk_list;
unsigned int chunk_list_size;
unsigned int chunk_size;
} __attribute__ ((__packed__));
struct cp2_lock_req {
struct cp2_mem_chunks chunks;
unsigned int mem_usage;
unsigned int lock;
} __attribute__ ((__packed__));
#define MEM_PROTECT_LOCK_ID2 0x0A
#define MEM_PROTECT_LOCK_ID2_FLAT 0x11
int kgsl_allocate_global(struct kgsl_device *device,
struct kgsl_memdesc *memdesc, uint64_t size, uint64_t flags,
unsigned int priv, const char *name)
{
int ret;
kgsl_memdesc_init(device, memdesc, flags);
memdesc->priv |= priv;
if (((memdesc->priv & KGSL_MEMDESC_CONTIG) != 0) ||
(kgsl_mmu_get_mmutype(device) == KGSL_MMU_TYPE_NONE))
ret = kgsl_sharedmem_alloc_contig(device, memdesc,
(size_t) size);
else {
ret = kgsl_sharedmem_page_alloc_user(memdesc, (size_t) size);
if (ret == 0) {
if (kgsl_memdesc_map(memdesc) == NULL) {
kgsl_sharedmem_free(memdesc);
ret = -ENOMEM;
}
}
}
if (ret == 0)
kgsl_mmu_add_global(device, memdesc, name);
return ret;
}
void kgsl_free_global(struct kgsl_device *device,
struct kgsl_memdesc *memdesc)
{
kgsl_mmu_remove_global(device, memdesc);
kgsl_sharedmem_free(memdesc);
}
/* An attribute for showing per-process memory statistics */
struct kgsl_mem_entry_attribute {
struct kgsl_process_attribute attr;
int memtype;
ssize_t (*show)(struct kgsl_process_private *priv,
int type, char *buf);
};
static inline struct kgsl_process_attribute *to_process_attr(
struct attribute *attr)
{
return container_of(attr, struct kgsl_process_attribute, attr);
}
#define to_mem_entry_attr(a) \
container_of(a, struct kgsl_mem_entry_attribute, attr)
#define __MEM_ENTRY_ATTR(_type, _name, _show) \
{ \
.attr = __ATTR(_name, 0444, mem_entry_sysfs_show, NULL), \
.memtype = _type, \
.show = _show, \
}
static ssize_t mem_entry_sysfs_show(struct kobject *kobj,
struct kgsl_process_attribute *attr, char *buf)
{
struct kgsl_mem_entry_attribute *pattr = to_mem_entry_attr(attr);
struct kgsl_process_private *priv =
container_of(kobj, struct kgsl_process_private, kobj);
return pattr->show(priv, pattr->memtype, buf);
}
/*
* A structure to hold the attributes for a particular memory type.
* For each memory type in each process we store the current and maximum
* memory usage and display the counts in sysfs. This structure and
* the following macro allow us to simplify the definition for those
* adding new memory types
*/
struct mem_entry_stats {
int memtype;
struct kgsl_mem_entry_attribute attr;
struct kgsl_mem_entry_attribute max_attr;
};
#define MEM_ENTRY_STAT(_type, _name) \
{ \
.memtype = _type, \
.attr = __MEM_ENTRY_ATTR(_type, _name, mem_entry_show), \
.max_attr = __MEM_ENTRY_ATTR(_type, _name##_max, \
mem_entry_max_show), \
}
static void kgsl_cma_unlock_secure(struct kgsl_memdesc *memdesc);
static ssize_t
imported_mem_show(struct kgsl_process_private *priv,
int type, char *buf)
{
struct kgsl_mem_entry *entry;
uint64_t imported_mem = 0;
int id = 0;
spin_lock(&priv->mem_lock);
for (entry = idr_get_next(&priv->mem_idr, &id); entry;
id++, entry = idr_get_next(&priv->mem_idr, &id)) {
int egl_surface_count = 0, egl_image_count = 0;
struct kgsl_memdesc *m;
if (kgsl_mem_entry_get(entry) == 0)
continue;
spin_unlock(&priv->mem_lock);
m = &entry->memdesc;
if (kgsl_memdesc_usermem_type(m) == KGSL_MEM_ENTRY_ION) {
kgsl_get_egl_counts(entry, &egl_surface_count,
&egl_image_count);
if (kgsl_memdesc_get_memtype(m) ==
KGSL_MEMTYPE_EGL_SURFACE)
imported_mem += m->size;
else if (egl_surface_count == 0) {
uint64_t size = m->size;
do_div(size, (egl_image_count ?
egl_image_count : 1));
imported_mem += size;
}
}
/*
* If refcount on mem entry is the last refcount, we will
* call kgsl_mem_entry_destroy and detach it from process
* list. When there is no refcount on the process private,
* we will call kgsl_destroy_process_private to do cleanup.
* During cleanup, we will try to remove the same sysfs
* node which is in use by the current thread and this
* situation will end up in a deadloack.
* To avoid this situation, use a worker to put the refcount
* on mem entry.
*/
kgsl_mem_entry_put_deferred(entry);
spin_lock(&priv->mem_lock);
}
spin_unlock(&priv->mem_lock);
return scnprintf(buf, PAGE_SIZE, "%llu\n", imported_mem);
}
static ssize_t
gpumem_mapped_show(struct kgsl_process_private *priv,
int type, char *buf)
{
return scnprintf(buf, PAGE_SIZE, "%ld\n",
atomic_long_read(&priv->gpumem_mapped));
}
static ssize_t
gpumem_unmapped_show(struct kgsl_process_private *priv, int type, char *buf)
{
u64 gpumem_total = atomic_long_read(&priv->stats[type].cur);
u64 gpumem_mapped = atomic_long_read(&priv->gpumem_mapped);
if (gpumem_mapped > gpumem_total)
return -EIO;
return scnprintf(buf, PAGE_SIZE, "%llu\n",
gpumem_total - gpumem_mapped);
}
static struct kgsl_mem_entry_attribute debug_memstats[] = {
__MEM_ENTRY_ATTR(0, imported_mem, imported_mem_show),
__MEM_ENTRY_ATTR(0, gpumem_mapped, gpumem_mapped_show),
__MEM_ENTRY_ATTR(KGSL_MEM_ENTRY_KERNEL, gpumem_unmapped,
gpumem_unmapped_show),
};
/**
* Show the current amount of memory allocated for the given memtype
*/
static ssize_t
mem_entry_show(struct kgsl_process_private *priv, int type, char *buf)
{
return scnprintf(buf, PAGE_SIZE, "%ld\n",
atomic_long_read(&priv->stats[type].cur));
}
/**
* Show the maximum memory allocated for the given memtype through the life of
* the process
*/
static ssize_t
mem_entry_max_show(struct kgsl_process_private *priv, int type, char *buf)
{
return scnprintf(buf, PAGE_SIZE, "%llu\n", priv->stats[type].max);
}
static ssize_t process_sysfs_show(struct kobject *kobj,
struct attribute *attr, char *buf)
{
struct kgsl_process_attribute *pattr = to_process_attr(attr);
return pattr->show(kobj, pattr, buf);
}
static ssize_t process_sysfs_store(struct kobject *kobj,
struct attribute *attr, const char *buf, size_t count)
{
struct kgsl_process_attribute *pattr = to_process_attr(attr);
if (pattr->store)
return pattr->store(kobj, pattr, buf, count);
return -EIO;
}
/* Dummy release function - we have nothing to do here */
static void process_sysfs_release(struct kobject *kobj)
{
}
static const struct sysfs_ops process_sysfs_ops = {
.show = process_sysfs_show,
.store = process_sysfs_store,
};
static struct kobj_type process_ktype = {
.sysfs_ops = &process_sysfs_ops,
.release = &process_sysfs_release,
};
static struct mem_entry_stats mem_stats[] = {
MEM_ENTRY_STAT(KGSL_MEM_ENTRY_KERNEL, kernel),
MEM_ENTRY_STAT(KGSL_MEM_ENTRY_USER, user),
#if IS_ENABLED(CONFIG_ION)
MEM_ENTRY_STAT(KGSL_MEM_ENTRY_ION, ion),
#endif
};
#ifdef CONFIG_QCOM_KGSL_PROCESS_RECLAIM
static struct device_attribute dev_attr_max_reclaim_limit = {
.attr = { .name = "max_reclaim_limit", .mode = 0644 },
.show = kgsl_proc_max_reclaim_limit_show,
.store = kgsl_proc_max_reclaim_limit_store,
};
#endif
void
kgsl_process_uninit_sysfs(struct kgsl_process_private *private)
{
kobject_put(&private->kobj);
}
/**
* kgsl_process_init_sysfs() - Initialize and create sysfs files for a process
*
* @device: Pointer to kgsl device struct
* @private: Pointer to the structure for the process
*
* kgsl_process_init_sysfs() is called at the time of creating the
* process struct when a process opens the kgsl device for the first time.
* This function creates the sysfs files for the process.
*/
void kgsl_process_init_sysfs(struct kgsl_device *device,
struct kgsl_process_private *private)
{
int i;
if (kobject_init_and_add(&private->kobj, &process_ktype,
kgsl_driver.prockobj, "%d", pid_nr(private->pid))) {
dev_err(device->dev, "Unable to add sysfs for process %d\n",
pid_nr(private->pid));
return;
}
for (i = 0; i < ARRAY_SIZE(mem_stats); i++) {
int ret;
ret = sysfs_create_file(&private->kobj,
&mem_stats[i].attr.attr.attr);
ret |= sysfs_create_file(&private->kobj,
&mem_stats[i].max_attr.attr.attr);
if (ret)
dev_err(device->dev,
"Unable to create sysfs files for process %d\n",
pid_nr(private->pid));
}
for (i = 0; i < ARRAY_SIZE(debug_memstats); i++) {
if (sysfs_create_file(&private->kobj,
&debug_memstats[i].attr.attr))
WARN(1, "Couldn't create sysfs file '%s'\n",
debug_memstats[i].attr.attr.name);
}
kgsl_reclaim_proc_sysfs_init(private);
}
static ssize_t memstat_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
uint64_t val = 0;
if (!strcmp(attr->attr.name, "vmalloc"))
val = atomic_long_read(&kgsl_driver.stats.vmalloc);
else if (!strcmp(attr->attr.name, "vmalloc_max"))
val = atomic_long_read(&kgsl_driver.stats.vmalloc_max);
else if (!strcmp(attr->attr.name, "page_alloc"))
val = atomic_long_read(&kgsl_driver.stats.page_alloc);
else if (!strcmp(attr->attr.name, "page_alloc_max"))
val = atomic_long_read(&kgsl_driver.stats.page_alloc_max);
else if (!strcmp(attr->attr.name, "coherent"))
val = atomic_long_read(&kgsl_driver.stats.coherent);
else if (!strcmp(attr->attr.name, "coherent_max"))
val = atomic_long_read(&kgsl_driver.stats.coherent_max);
else if (!strcmp(attr->attr.name, "secure"))
val = atomic_long_read(&kgsl_driver.stats.secure);
else if (!strcmp(attr->attr.name, "secure_max"))
val = atomic_long_read(&kgsl_driver.stats.secure_max);
else if (!strcmp(attr->attr.name, "mapped"))
val = atomic_long_read(&kgsl_driver.stats.mapped);
else if (!strcmp(attr->attr.name, "mapped_max"))
val = atomic_long_read(&kgsl_driver.stats.mapped_max);
return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
}
static ssize_t full_cache_threshold_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned int thresh = 0;
ret = kgsl_sysfs_store(buf, &thresh);
if (ret)
return ret;
kgsl_driver.full_cache_threshold = thresh;
return count;
}
static ssize_t full_cache_threshold_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return scnprintf(buf, PAGE_SIZE, "%d\n",
kgsl_driver.full_cache_threshold);
}
static DEVICE_ATTR(vmalloc, 0444, memstat_show, NULL);
static DEVICE_ATTR(vmalloc_max, 0444, memstat_show, NULL);
static DEVICE_ATTR(page_alloc, 0444, memstat_show, NULL);
static DEVICE_ATTR(page_alloc_max, 0444, memstat_show, NULL);
static DEVICE_ATTR(coherent, 0444, memstat_show, NULL);
static DEVICE_ATTR(coherent_max, 0444, memstat_show, NULL);
static DEVICE_ATTR(secure, 0444, memstat_show, NULL);
static DEVICE_ATTR(secure_max, 0444, memstat_show, NULL);
static DEVICE_ATTR(mapped, 0444, memstat_show, NULL);
static DEVICE_ATTR(mapped_max, 0444, memstat_show, NULL);
static DEVICE_ATTR_RW(full_cache_threshold);
static const struct attribute *drv_attr_list[] = {
&dev_attr_vmalloc.attr,
&dev_attr_vmalloc_max.attr,
&dev_attr_page_alloc.attr,
&dev_attr_page_alloc_max.attr,
&dev_attr_coherent.attr,
&dev_attr_coherent_max.attr,
&dev_attr_secure.attr,
&dev_attr_secure_max.attr,
&dev_attr_mapped.attr,
&dev_attr_mapped_max.attr,
&dev_attr_full_cache_threshold.attr,
#ifdef CONFIG_QCOM_KGSL_PROCESS_RECLAIM
&dev_attr_max_reclaim_limit.attr,
#endif
NULL,
};
void
kgsl_sharedmem_uninit_sysfs(void)
{
sysfs_remove_files(&kgsl_driver.virtdev.kobj, drv_attr_list);
}
int
kgsl_sharedmem_init_sysfs(void)
{
return sysfs_create_files(&kgsl_driver.virtdev.kobj, drv_attr_list);
}
static int kgsl_cma_alloc_secure(struct kgsl_device *device,
struct kgsl_memdesc *memdesc, uint64_t size);
static int kgsl_allocate_secure(struct kgsl_device *device,
struct kgsl_memdesc *memdesc,
uint64_t size)
{
int ret;
if (MMU_FEATURE(&device->mmu, KGSL_MMU_HYP_SECURE_ALLOC))
ret = kgsl_sharedmem_page_alloc_user(memdesc, size);
else
ret = kgsl_cma_alloc_secure(device, memdesc, size);
return ret;
}
int kgsl_allocate_user(struct kgsl_device *device,
struct kgsl_memdesc *memdesc,
uint64_t size, uint64_t flags)
{
int ret;
kgsl_memdesc_init(device, memdesc, flags);
if (kgsl_mmu_get_mmutype(device) == KGSL_MMU_TYPE_NONE)
ret = kgsl_sharedmem_alloc_contig(device, memdesc, size);
else if (flags & KGSL_MEMFLAGS_SECURE)
ret = kgsl_allocate_secure(device, memdesc, size);
else
ret = kgsl_sharedmem_page_alloc_user(memdesc, size);
return ret;
}
static int kgsl_page_alloc_vmfault(struct kgsl_memdesc *memdesc,
struct vm_area_struct *vma,
struct vm_fault *vmf)
{
int pgoff;
unsigned int offset;
struct page *page;
struct kgsl_process_private *priv =
((struct kgsl_mem_entry *)vma->vm_private_data)->priv;
offset = vmf->address - vma->vm_start;
if (offset >= memdesc->size)
return VM_FAULT_SIGBUS;
pgoff = offset >> PAGE_SHIFT;
spin_lock(&memdesc->lock);
if (memdesc->pages[pgoff]) {
page = memdesc->pages[pgoff];
get_page(page);
}
else {
/* We are here because page was reclaimed */
spin_unlock(&memdesc->lock);
page = shmem_read_mapping_page_gfp(
memdesc->shmem_filp->f_mapping, pgoff,
kgsl_gfp_mask(0));
if (IS_ERR(page))
return VM_FAULT_SIGBUS;
kgsl_flush_page(page);
spin_lock(&memdesc->lock);
/*
* Update the pages array only if the page was
* not already brought back.
*/
if (!memdesc->pages[pgoff]) {
memdesc->pages[pgoff] = page;
memdesc->reclaimed_page_count--;
atomic_dec(&priv->reclaimed_page_count);
get_page(page);
}
}
spin_unlock(&memdesc->lock);
vmf->page = page;
return 0;
}
/*
* kgsl_page_alloc_unmap_kernel() - Unmap the memory in memdesc
*
* @memdesc: The memory descriptor which contains information about the memory
*
* Unmaps the memory mapped into kernel address space
*/
static void kgsl_page_alloc_unmap_kernel(struct kgsl_memdesc *memdesc)
{
mutex_lock(&kernel_map_global_lock);
if (!memdesc->hostptr) {
/* If already unmapped the refcount should be 0 */
WARN_ON(memdesc->hostptr_count);
goto done;
}
memdesc->hostptr_count--;
if (memdesc->hostptr_count)
goto done;
vunmap(memdesc->hostptr);
atomic_long_sub(memdesc->size, &kgsl_driver.stats.vmalloc);
memdesc->hostptr = NULL;
done:
mutex_unlock(&kernel_map_global_lock);
}
static int kgsl_lock_sgt(struct sg_table *sgt, u64 size)
{
int dest_perms = PERM_READ | PERM_WRITE;
int source_vm = VMID_HLOS;
int dest_vm = VMID_CP_PIXEL;
int ret;
do {
ret = hyp_assign_table(sgt, &source_vm, 1, &dest_vm,
&dest_perms, 1);
} while (ret == -EAGAIN);
if (ret) {
/*
* If returned error code is EADDRNOTAVAIL, then this
* memory may no longer be in a usable state as security
* state of the pages is unknown after this failure. This
* memory can neither be added back to the pool nor buddy
* system.
*/
if (ret == -EADDRNOTAVAIL)
pr_err("Failure to lock secure GPU memory 0x%llx bytes will not be recoverable\n",
size);
return ret;
}
return 0;
}
static int kgsl_unlock_sgt(struct sg_table *sgt)
{
int dest_perms = PERM_READ | PERM_WRITE | PERM_EXEC;
int source_vm = VMID_CP_PIXEL;
int dest_vm = VMID_HLOS;
int ret;
do {
ret = hyp_assign_table(sgt, &source_vm, 1, &dest_vm,
&dest_perms, 1);
} while (ret == -EAGAIN);
if (ret)
return ret;
return 0;
}
static void kgsl_page_alloc_free(struct kgsl_memdesc *memdesc)
{
if (memdesc->priv & KGSL_MEMDESC_MAPPED)
return;
kgsl_page_alloc_unmap_kernel(memdesc);
/* we certainly do not expect the hostptr to still be mapped */
BUG_ON(memdesc->hostptr);
/* Secure buffers need to be unlocked before being freed */
if (memdesc->priv & KGSL_MEMDESC_TZ_LOCKED) {
int ret;
ret = kgsl_unlock_sgt(memdesc->sgt);
if (ret) {
/*
* Unlock of the secure buffer failed. This buffer will
* be stuck in secure side forever and is unrecoverable.
* Give up on the buffer and don't return it to the
* pool.
*/
pr_err("kgsl: secure buf unlock failed: gpuaddr: %llx size: %llx ret: %d\n",
memdesc->gpuaddr, memdesc->size, ret);
return;
}
atomic_long_sub(memdesc->size, &kgsl_driver.stats.secure);
} else {
atomic_long_sub(memdesc->size, &kgsl_driver.stats.page_alloc);
}
/* Free pages using the pages array for non secure paged memory */
if (memdesc->pages != NULL)
kgsl_free_pages(memdesc);
else
kgsl_free_pages_from_sgt(memdesc);
if (memdesc->shmem_filp) {
fput(memdesc->shmem_filp);
memdesc->shmem_filp = NULL;
}
}
/*
* kgsl_page_alloc_map_kernel - Map the memory in memdesc to kernel address
* space
*
* @memdesc - The memory descriptor which contains information about the memory
*
* Return: 0 on success else error code
*/
static int kgsl_page_alloc_map_kernel(struct kgsl_memdesc *memdesc)
{
int ret = 0;
/* Sanity check - don't map more than we could possibly chew */
if (memdesc->size > ULONG_MAX)
return -ENOMEM;
mutex_lock(&kernel_map_global_lock);
if ((!memdesc->hostptr) && (memdesc->pages != NULL)) {
pgprot_t page_prot = pgprot_writecombine(PAGE_KERNEL);
memdesc->hostptr = vmap(memdesc->pages, memdesc->page_count,
VM_IOREMAP, page_prot);
if (memdesc->hostptr)
KGSL_STATS_ADD(memdesc->size,
&kgsl_driver.stats.vmalloc,
&kgsl_driver.stats.vmalloc_max);
else
ret = -ENOMEM;
}
if (memdesc->hostptr)
memdesc->hostptr_count++;
mutex_unlock(&kernel_map_global_lock);
return ret;
}
static int kgsl_contiguous_vmfault(struct kgsl_memdesc *memdesc,
struct vm_area_struct *vma,
struct vm_fault *vmf)
{
unsigned long offset, pfn;
int ret;
offset = ((unsigned long) vmf->address - vma->vm_start) >>
PAGE_SHIFT;
pfn = (memdesc->physaddr >> PAGE_SHIFT) + offset;
ret = vm_insert_pfn(vma, (unsigned long) vmf->address, pfn);
if (ret == -ENOMEM || ret == -EAGAIN)
return VM_FAULT_OOM;
else if (ret == -EFAULT)
return VM_FAULT_SIGBUS;
return VM_FAULT_NOPAGE;
}
static void kgsl_cma_coherent_free(struct kgsl_memdesc *memdesc)
{
unsigned long attrs = 0;
if (memdesc->priv & KGSL_MEMDESC_MAPPED)
return;
if (memdesc->hostptr) {
if (memdesc->priv & KGSL_MEMDESC_SECURE) {
atomic_long_sub(memdesc->size,
&kgsl_driver.stats.secure);
kgsl_cma_unlock_secure(memdesc);
attrs = memdesc->attrs;
} else
atomic_long_sub(memdesc->size,
&kgsl_driver.stats.coherent);
mod_node_page_state(page_pgdat(phys_to_page(memdesc->physaddr)),
NR_UNRECLAIMABLE_PAGES, -(memdesc->size >> PAGE_SHIFT));
dma_free_attrs(memdesc->dev, (size_t) memdesc->size,
memdesc->hostptr, memdesc->physaddr, attrs);
}
}
/* Global */
static struct kgsl_memdesc_ops kgsl_page_alloc_ops = {
.free = kgsl_page_alloc_free,
.vmflags = VM_DONTDUMP | VM_DONTEXPAND | VM_DONTCOPY,
.vmfault = kgsl_page_alloc_vmfault,
.map_kernel = kgsl_page_alloc_map_kernel,
.unmap_kernel = kgsl_page_alloc_unmap_kernel,
};
/* CMA ops - used during NOMMU mode */
static struct kgsl_memdesc_ops kgsl_cma_ops = {
.free = kgsl_cma_coherent_free,
.vmflags = VM_DONTDUMP | VM_PFNMAP | VM_DONTEXPAND | VM_DONTCOPY,
.vmfault = kgsl_contiguous_vmfault,
};
#ifdef CONFIG_ARM64
/*
* For security reasons, ARMv8 doesn't allow invalidate only on read-only
* mapping. It would be performance prohibitive to read the permissions on
* the buffer before the operation. Every use case that we have found does not
* assume that an invalidate operation is invalidate only, so we feel
* comfortable turning invalidates into flushes for these targets
*/
static inline unsigned int _fixup_cache_range_op(unsigned int op)
{
if (op == KGSL_CACHE_OP_INV)
return KGSL_CACHE_OP_FLUSH;
return op;
}
#else
static inline unsigned int _fixup_cache_range_op(unsigned int op)
{
return op;
}
#endif
static inline void _cache_op(unsigned int op,
const void *start, const void *end)
{
/*
* The dmac_xxx_range functions handle addresses and sizes that
* are not aligned to the cacheline size correctly.
*/
switch (_fixup_cache_range_op(op)) {
case KGSL_CACHE_OP_FLUSH:
dmac_flush_range(start, end);
break;
case KGSL_CACHE_OP_CLEAN:
dmac_clean_range(start, end);
break;
case KGSL_CACHE_OP_INV:
dmac_inv_range(start, end);
break;
}
}
static int kgsl_do_cache_op(struct page *page, void *addr,
uint64_t offset, uint64_t size, unsigned int op)
{
if (page != NULL) {
unsigned long pfn = page_to_pfn(page) + offset / PAGE_SIZE;
/*
* page_address() returns the kernel virtual address of page.
* For high memory kernel virtual address exists only if page
* has been mapped. So use a version of kmap rather than
* page_address() for high memory.
*/
if (PageHighMem(page)) {
offset &= ~PAGE_MASK;
do {
unsigned int len = size;
if (len + offset > PAGE_SIZE)
len = PAGE_SIZE - offset;
page = pfn_to_page(pfn++);
addr = kmap_atomic(page);
_cache_op(op, addr + offset,
addr + offset + len);
kunmap_atomic(addr);
size -= len;
offset = 0;
} while (size);
return 0;
}
addr = page_address(page);
}
_cache_op(op, addr + offset, addr + offset + (size_t) size);
return 0;
}
int kgsl_cache_range_op(struct kgsl_memdesc *memdesc, uint64_t offset,
uint64_t size, unsigned int op)
{
void *addr = NULL;
struct sg_table *sgt = NULL;
struct scatterlist *sg;
unsigned int i, pos = 0;
int ret = 0;
if (size == 0 || size > UINT_MAX)
return -EINVAL;
/* Make sure that the offset + size does not overflow */
if ((offset + size < offset) || (offset + size < size))
return -ERANGE;
/* Check that offset+length does not exceed memdesc->size */
if (offset + size > memdesc->size)
return -ERANGE;
if (memdesc->hostptr) {
addr = memdesc->hostptr;
/* Make sure the offset + size do not overflow the address */
if (addr + ((size_t) offset + (size_t) size) < addr)
return -ERANGE;
ret = kgsl_do_cache_op(NULL, addr, offset, size, op);
return ret;
}
/*
* If the buffer is not to mapped to kernel, perform cache
* operations after mapping to kernel.
*/
if (memdesc->sgt != NULL)
sgt = memdesc->sgt;
else {
if (memdesc->pages == NULL)
return ret;
sgt = kgsl_alloc_sgt_from_pages(memdesc);
if (IS_ERR(sgt))
return PTR_ERR(sgt);
}
for_each_sg(sgt->sgl, sg, sgt->nents, i) {
uint64_t sg_offset, sg_left;
if (offset >= (pos + sg->length)) {
pos += sg->length;
continue;
}
sg_offset = offset > pos ? offset - pos : 0;
sg_left = (sg->length - sg_offset > size) ? size :
sg->length - sg_offset;
ret = kgsl_do_cache_op(sg_page(sg), NULL, sg_offset,
sg_left, op);
size -= sg_left;
if (size == 0)
break;
pos += sg->length;
}
if (memdesc->sgt == NULL)
kgsl_free_sgt(sgt);
return ret;
}
EXPORT_SYMBOL(kgsl_cache_range_op);
void kgsl_memdesc_init(struct kgsl_device *device,
struct kgsl_memdesc *memdesc, uint64_t flags)
{
struct kgsl_mmu *mmu = &device->mmu;
unsigned int align;
u32 cachemode;
memset(memdesc, 0, sizeof(*memdesc));
/* Turn off SVM if the system doesn't support it */
if (!kgsl_mmu_use_cpu_map(mmu))
flags &= ~((uint64_t) KGSL_MEMFLAGS_USE_CPU_MAP);
/* Secure memory disables advanced addressing modes */
if (flags & KGSL_MEMFLAGS_SECURE)
flags &= ~((uint64_t) KGSL_MEMFLAGS_USE_CPU_MAP);
/* Disable IO coherence if it is not supported on the chip */
if (!MMU_FEATURE(mmu, KGSL_MMU_IO_COHERENT))
flags &= ~((uint64_t) KGSL_MEMFLAGS_IOCOHERENT);
/*
* We can't enable I/O coherency on uncached surfaces because of
* situations where hardware might snoop the cpu caches which can
* have stale data. This happens primarily due to the limitations
* of dma caching APIs available on arm64
*/
cachemode = FIELD_GET(KGSL_CACHEMODE_MASK, flags);
if ((cachemode == KGSL_CACHEMODE_WRITECOMBINE ||
cachemode == KGSL_CACHEMODE_UNCACHED))
flags &= ~((u64) KGSL_MEMFLAGS_IOCOHERENT);
if (MMU_FEATURE(mmu, KGSL_MMU_NEED_GUARD_PAGE))
memdesc->priv |= KGSL_MEMDESC_GUARD_PAGE;
if (flags & KGSL_MEMFLAGS_SECURE)
memdesc->priv |= KGSL_MEMDESC_SECURE;
memdesc->flags = flags;
memdesc->dev = device->dev->parent;
align = max_t(unsigned int,
(memdesc->flags & KGSL_MEMALIGN_MASK) >> KGSL_MEMALIGN_SHIFT,
ilog2(PAGE_SIZE));
kgsl_memdesc_set_align(memdesc, align);
spin_lock_init(&memdesc->lock);
spin_lock_init(&memdesc->gpuaddr_lock);
}
#ifdef CONFIG_QCOM_KGSL_USE_SHMEM
static int kgsl_alloc_page(int *page_size, struct page **pages,
unsigned int pages_len, unsigned int *align,
struct file *shmem_filp, unsigned int page_off)
{
struct page *page;
if (pages == NULL)
return -EINVAL;
page = shmem_read_mapping_page_gfp(shmem_filp->f_mapping, page_off,
kgsl_gfp_mask(0));
if (IS_ERR(page))
return PTR_ERR(page);
kgsl_zero_page(page, 0);
*pages = page;
return 1;
}
void kgsl_free_pages(struct kgsl_memdesc *memdesc)
{
int i;
for (i = 0; i < memdesc->page_count; i++)
if (memdesc->pages[i])
put_page(memdesc->pages[i]);
}
static void kgsl_free_page(struct page *p)
{
put_page(p);
}
static int kgsl_memdesc_file_setup(struct kgsl_memdesc *memdesc, uint64_t size)
{
int ret;
memdesc->shmem_filp = shmem_file_setup("kgsl-3d0", size,
VM_NORESERVE);
if (IS_ERR(memdesc->shmem_filp)) {
ret = PTR_ERR(memdesc->shmem_filp);
pr_err("kgsl: unable to setup shmem file err %d\n",
ret);
memdesc->shmem_filp = NULL;
return ret;
}
mapping_set_unevictable(memdesc->shmem_filp->f_mapping);
return 0;
}
#else
static int kgsl_alloc_page(int *page_size, struct page **pages,
unsigned int pages_len, unsigned int *align,
struct file *shmem_filp, unsigned int page_off)
{
return kgsl_pool_alloc_page(page_size, pages, pages_len, align);
}
void kgsl_free_pages(struct kgsl_memdesc *memdesc)
{
kgsl_pool_free_pages(memdesc->pages, memdesc->page_count);
}
static void kgsl_free_page(struct page *p)
{
kgsl_pool_free_page(p);
}
static int kgsl_memdesc_file_setup(struct kgsl_memdesc *memdesc, uint64_t size)
{
return 0;
}
#endif
void kgsl_free_pages_from_sgt(struct kgsl_memdesc *memdesc)
{
int i;
struct scatterlist *sg;
for_each_sg(memdesc->sgt->sgl, sg, memdesc->sgt->nents, i) {
/*
* sg_alloc_table_from_pages() will collapse any physically
* adjacent pages into a single scatterlist entry. We cannot
* just call __free_pages() on the entire set since we cannot
* ensure that the size is a whole order. Instead, free each
* page or compound page group individually.
*/
struct page *p = sg_page(sg), *next;
unsigned int count;
unsigned int j = 0;
while (j < (sg->length/PAGE_SIZE)) {
count = 1 << compound_order(p);
next = nth_page(p, count);
kgsl_free_page(p);
p = next;
j += count;
}
}
}
int
kgsl_sharedmem_page_alloc_user(struct kgsl_memdesc *memdesc,
uint64_t size)
{
int ret = 0;
unsigned int j, page_size, len_alloc;
unsigned int pcount = 0;
size_t len;
unsigned int align;
bool memwq_flush_done = false;
static DEFINE_RATELIMIT_STATE(_rs,
DEFAULT_RATELIMIT_INTERVAL,
DEFAULT_RATELIMIT_BURST);
size = PAGE_ALIGN(size);
if (size == 0 || size > UINT_MAX)
return -EINVAL;
align = (memdesc->flags & KGSL_MEMALIGN_MASK) >> KGSL_MEMALIGN_SHIFT;
/*
* As 1MB is the max supported page size, use the alignment
* corresponding to 1MB page to make sure higher order pages
* are used if possible for a given memory size. Also, we
* don't need to update alignment in memdesc flags in case
* higher order page is used, as memdesc flags represent the
* virtual alignment specified by the user which is anyways
* getting satisfied.
*/
if (align < ilog2(SZ_1M))
align = ilog2(SZ_1M);
page_size = kgsl_get_page_size(size, align);
/*
* The alignment cannot be less than the intended page size - it can be
* larger however to accommodate hardware quirks
*/
if (align < ilog2(page_size)) {
kgsl_memdesc_set_align(memdesc, ilog2(page_size));
align = ilog2(page_size);
}
/*
* There needs to be enough room in the page array to be able to
* service the allocation entirely with PAGE_SIZE sized chunks
*/
len_alloc = PAGE_ALIGN(size) >> PAGE_SHIFT;
memdesc->ops = &kgsl_page_alloc_ops;
/*
* Allocate space to store the list of pages. This is an array of
* pointers so we can track 1024 pages per page of allocation.
* Keep this array around for non global non secure buffers that
* are allocated by kgsl. This helps with improving the vm fault
* routine by finding the faulted page in constant time.
*/
memdesc->pages = kvcalloc(len_alloc, sizeof(*memdesc->pages),
GFP_KERNEL);
memdesc->page_count = 0;
memdesc->size = 0;
if (memdesc->pages == NULL) {
ret = -ENOMEM;
goto done;
}
len = size;
ret = kgsl_memdesc_file_setup(memdesc, size);
if (ret)
goto done;
while (len > 0) {
int page_count;
page_count = kgsl_alloc_page(&page_size,
memdesc->pages + pcount,
len_alloc - pcount,
&align, memdesc->shmem_filp, pcount);
if (page_count <= 0) {
if (page_count == -EAGAIN)
continue;
/* if OoM, retry once after flushing mem_wq */
if (page_count == -ENOMEM && !memwq_flush_done) {
flush_workqueue(kgsl_driver.mem_workqueue);
memwq_flush_done = true;
continue;
}
/*
* Update sglen and memdesc size,as requested allocation
* not served fully. So that they can be correctly freed
* in kgsl_sharedmem_free().
*/
memdesc->size = (size - len);
if (!sharedmem_noretry_flag && __ratelimit(&_rs))
pr_err(
"kgsl: out of memory: only allocated %lldKB of %lldKB requested\n",
(size - len) >> 10, size >> 10);
ret = -ENOMEM;
goto done;
}
pcount += page_count;
len -= page_size;
memdesc->size += page_size;
memdesc->page_count += page_count;
/* Get the needed page size for the next iteration */
page_size = kgsl_get_page_size(len, align);
}
/* Call to the hypervisor to lock any secure buffer allocations */
if (memdesc->flags & KGSL_MEMFLAGS_SECURE) {
memdesc->sgt = kmalloc(sizeof(struct sg_table), GFP_KERNEL);
if (memdesc->sgt == NULL) {
ret = -ENOMEM;
goto done;
}
ret = sg_alloc_table_from_pages(memdesc->sgt, memdesc->pages,
memdesc->page_count, 0, memdesc->size, GFP_KERNEL);
if (ret) {
kfree(memdesc->sgt);
goto done;
}
ret = kgsl_lock_sgt(memdesc->sgt, memdesc->size);
if (ret) {
sg_free_table(memdesc->sgt);
kfree(memdesc->sgt);
memdesc->sgt = NULL;
if (ret == -EADDRNOTAVAIL) {
kvfree(memdesc->pages);
memset(memdesc, 0, sizeof(*memdesc));
return ret;
}
goto done;
}
memdesc->priv |= KGSL_MEMDESC_TZ_LOCKED;
/* Record statistics */
KGSL_STATS_ADD(memdesc->size, &kgsl_driver.stats.secure,
&kgsl_driver.stats.secure_max);
/*
* We don't need the array for secure buffers because they are
* not mapped to CPU
*/
kvfree(memdesc->pages);
memdesc->pages = NULL;
memdesc->page_count = 0;
/* Don't map and zero the locked secure buffer */
goto done;
}
KGSL_STATS_ADD(memdesc->size, &kgsl_driver.stats.page_alloc,
&kgsl_driver.stats.page_alloc_max);
done:
if (ret) {
if (memdesc->pages) {
unsigned int count = 1;
for (j = 0; j < pcount; j += count) {
count = 1 << compound_order(memdesc->pages[j]);
kgsl_free_page(memdesc->pages[j]);
}
}
kvfree(memdesc->pages);
if (memdesc->shmem_filp)
fput(memdesc->shmem_filp);
memset(memdesc, 0, sizeof(*memdesc));
}
return ret;
}
void kgsl_sharedmem_free(struct kgsl_memdesc *memdesc)
{
if (memdesc == NULL || memdesc->size == 0)
return;
/* Make sure the memory object has been unmapped */
kgsl_mmu_put_gpuaddr(memdesc);
if (memdesc->ops && memdesc->ops->free)
memdesc->ops->free(memdesc);
if (memdesc->sgt) {
sg_free_table(memdesc->sgt);
kfree(memdesc->sgt);
memdesc->sgt = NULL;
}
memdesc->page_count = 0;
kvfree(memdesc->pages);
memdesc->pages = NULL;
}
EXPORT_SYMBOL(kgsl_sharedmem_free);
void kgsl_free_secure_page(struct page *page)
{
struct sg_table sgt;
struct scatterlist sgl;
if (!page)
return;
sgt.sgl = &sgl;
sgt.nents = 1;
sgt.orig_nents = 1;
sg_init_table(&sgl, 1);
sg_set_page(&sgl, page, PAGE_SIZE, 0);
kgsl_unlock_sgt(&sgt);
__free_page(page);
}
struct page *kgsl_alloc_secure_page(void)
{
struct page *page;
struct sg_table sgt;
struct scatterlist sgl;
int status;
page = alloc_page(GFP_KERNEL | __GFP_ZERO |
__GFP_NORETRY | __GFP_HIGHMEM);
if (!page)
return NULL;
sgt.sgl = &sgl;
sgt.nents = 1;
sgt.orig_nents = 1;
sg_init_table(&sgl, 1);
sg_set_page(&sgl, page, PAGE_SIZE, 0);
status = kgsl_lock_sgt(&sgt, PAGE_SIZE);
if (status) {
if (status == -EADDRNOTAVAIL)
return NULL;
__free_page(page);
return NULL;
}
return page;
}
int
kgsl_sharedmem_readl(const struct kgsl_memdesc *memdesc,
uint32_t *dst,
uint64_t offsetbytes)
{
uint32_t *src;
if (WARN_ON(memdesc == NULL || memdesc->hostptr == NULL ||
dst == NULL))
return -EINVAL;
WARN_ON(offsetbytes % sizeof(uint32_t) != 0);
if (offsetbytes % sizeof(uint32_t) != 0)
return -EINVAL;
WARN_ON(offsetbytes > (memdesc->size - sizeof(uint32_t)));
if (offsetbytes > (memdesc->size - sizeof(uint32_t)))
return -ERANGE;
/*
* We are reading shared memory between CPU and GPU.
* Make sure reads before this are complete
*/
rmb();
src = (uint32_t *)(memdesc->hostptr + offsetbytes);
*dst = *src;
return 0;
}
EXPORT_SYMBOL(kgsl_sharedmem_readl);
int
kgsl_sharedmem_writel(struct kgsl_device *device,
const struct kgsl_memdesc *memdesc,
uint64_t offsetbytes,
uint32_t src)
{
uint32_t *dst;
if (WARN_ON(memdesc == NULL || memdesc->hostptr == NULL))
return -EINVAL;
WARN_ON(offsetbytes % sizeof(uint32_t) != 0);
if (offsetbytes % sizeof(uint32_t) != 0)
return -EINVAL;
WARN_ON(offsetbytes > (memdesc->size - sizeof(uint32_t)));
if (offsetbytes > (memdesc->size - sizeof(uint32_t)))
return -ERANGE;
dst = (uint32_t *)(memdesc->hostptr + offsetbytes);
*dst = src;
/*
* We are writing to shared memory between CPU and GPU.
* Make sure write above is posted immediately
*/
wmb();
return 0;
}
EXPORT_SYMBOL(kgsl_sharedmem_writel);
int
kgsl_sharedmem_readq(const struct kgsl_memdesc *memdesc,
uint64_t *dst,
uint64_t offsetbytes)
{
uint64_t *src;
if (WARN_ON(memdesc == NULL || memdesc->hostptr == NULL ||
dst == NULL))
return -EINVAL;
WARN_ON(offsetbytes % sizeof(uint32_t) != 0);
if (offsetbytes % sizeof(uint32_t) != 0)
return -EINVAL;
WARN_ON(offsetbytes > (memdesc->size - sizeof(uint32_t)));
if (offsetbytes > (memdesc->size - sizeof(uint32_t)))
return -ERANGE;
/*
* We are reading shared memory between CPU and GPU.
* Make sure reads before this are complete
*/
rmb();
src = (uint64_t *)(memdesc->hostptr + offsetbytes);
*dst = *src;
return 0;
}
EXPORT_SYMBOL(kgsl_sharedmem_readq);
int
kgsl_sharedmem_writeq(struct kgsl_device *device,
const struct kgsl_memdesc *memdesc,
uint64_t offsetbytes,
uint64_t src)
{
uint64_t *dst;
if (WARN_ON(memdesc == NULL || memdesc->hostptr == NULL))
return -EINVAL;
WARN_ON(offsetbytes % sizeof(uint32_t) != 0);
if (offsetbytes % sizeof(uint32_t) != 0)
return -EINVAL;
WARN_ON(offsetbytes > (memdesc->size - sizeof(uint32_t)));
if (offsetbytes > (memdesc->size - sizeof(uint32_t)))
return -ERANGE;
dst = (uint64_t *)(memdesc->hostptr + offsetbytes);
*dst = src;
/*
* We are writing to shared memory between CPU and GPU.
* Make sure write above is posted immediately
*/
wmb();
return 0;
}
EXPORT_SYMBOL(kgsl_sharedmem_writeq);
int
kgsl_sharedmem_set(struct kgsl_device *device,
const struct kgsl_memdesc *memdesc, uint64_t offsetbytes,
unsigned int value, uint64_t sizebytes)
{
if (WARN_ON(memdesc == NULL || memdesc->hostptr == NULL))
return -EINVAL;
if (WARN_ON(offsetbytes + sizebytes > memdesc->size))
return -EINVAL;
memset(memdesc->hostptr + offsetbytes, value, sizebytes);
return 0;
}
EXPORT_SYMBOL(kgsl_sharedmem_set);
static const char * const memtype_str[] = {
[KGSL_MEMTYPE_OBJECTANY] = "any(0)",
[KGSL_MEMTYPE_FRAMEBUFFER] = "framebuffer",
[KGSL_MEMTYPE_RENDERBUFFER] = "renderbuffer",
[KGSL_MEMTYPE_ARRAYBUFFER] = "arraybuffer",
[KGSL_MEMTYPE_ELEMENTARRAYBUFFER] = "elementarraybuffer",
[KGSL_MEMTYPE_VERTEXARRAYBUFFER] = "vertexarraybuffer",
[KGSL_MEMTYPE_TEXTURE] = "texture",
[KGSL_MEMTYPE_SURFACE] = "surface",
[KGSL_MEMTYPE_EGL_SURFACE] = "egl_surface",
[KGSL_MEMTYPE_GL] = "gl",
[KGSL_MEMTYPE_CL] = "cl",
[KGSL_MEMTYPE_CL_BUFFER_MAP] = "cl_buffer_map",
[KGSL_MEMTYPE_CL_BUFFER_NOMAP] = "cl_buffer_nomap",
[KGSL_MEMTYPE_CL_IMAGE_MAP] = "cl_image_map",
[KGSL_MEMTYPE_CL_IMAGE_NOMAP] = "cl_image_nomap",
[KGSL_MEMTYPE_CL_KERNEL_STACK] = "cl_kernel_stack",
[KGSL_MEMTYPE_COMMAND] = "command",
[KGSL_MEMTYPE_2D] = "2d",
[KGSL_MEMTYPE_EGL_IMAGE] = "egl_image",
[KGSL_MEMTYPE_EGL_SHADOW] = "egl_shadow",
[KGSL_MEMTYPE_MULTISAMPLE] = "egl_multisample",
/* KGSL_MEMTYPE_KERNEL handled below, to avoid huge array */
};
void kgsl_get_memory_usage(char *name, size_t name_size, uint64_t memflags)
{
unsigned int type = MEMFLAGS(memflags, KGSL_MEMTYPE_MASK,
KGSL_MEMTYPE_SHIFT);
if (type == KGSL_MEMTYPE_KERNEL)
strlcpy(name, "kernel", name_size);
else if (type < ARRAY_SIZE(memtype_str) && memtype_str[type] != NULL)
strlcpy(name, memtype_str[type], name_size);
else
snprintf(name, name_size, "VK/others(%3d)", type);
}
EXPORT_SYMBOL(kgsl_get_memory_usage);
int kgsl_memdesc_sg_dma(struct kgsl_memdesc *memdesc,
phys_addr_t addr, u64 size)
{
int ret;
struct page *page = phys_to_page(addr);
memdesc->sgt = kmalloc(sizeof(*memdesc->sgt), GFP_KERNEL);
if (memdesc->sgt == NULL)
return -ENOMEM;
ret = sg_alloc_table(memdesc->sgt, 1, GFP_KERNEL);
if (ret) {
kfree(memdesc->sgt);
memdesc->sgt = NULL;
return ret;
}
sg_set_page(memdesc->sgt->sgl, page, (size_t) size, 0);
return 0;
}
int kgsl_sharedmem_alloc_contig(struct kgsl_device *device,
struct kgsl_memdesc *memdesc, uint64_t size)
{
int result = 0;
size = PAGE_ALIGN(size);
if (size == 0 || size > SIZE_MAX)
return -EINVAL;
memdesc->size = size;
memdesc->ops = &kgsl_cma_ops;
memdesc->dev = device->dev->parent;
memdesc->hostptr = dma_alloc_attrs(memdesc->dev, (size_t) size,
&memdesc->physaddr, GFP_KERNEL, 0);
if (memdesc->hostptr == NULL) {
result = -ENOMEM;
goto err;
}
result = kgsl_memdesc_sg_dma(memdesc, memdesc->physaddr, size);
if (result)
goto err;
/* Record statistics */
if (kgsl_mmu_get_mmutype(device) == KGSL_MMU_TYPE_NONE)
memdesc->gpuaddr = memdesc->physaddr;
KGSL_STATS_ADD(size, &kgsl_driver.stats.coherent,
&kgsl_driver.stats.coherent_max);
mod_node_page_state(page_pgdat(phys_to_page(memdesc->physaddr)),
NR_UNRECLAIMABLE_PAGES, (size >> PAGE_SHIFT));
err:
if (result)
kgsl_sharedmem_free(memdesc);
return result;
}
EXPORT_SYMBOL(kgsl_sharedmem_alloc_contig);
static int scm_lock_chunk(struct kgsl_memdesc *memdesc, int lock)
{
struct cp2_lock_req request;
unsigned int resp;
unsigned int *chunk_list;
struct scm_desc desc = {0};
int result;
/*
* Flush the virt addr range before sending the memory to the
* secure environment to ensure the data is actually present
* in RAM
*
* Chunk_list holds the physical address of secure memory.
* Pass in the virtual address of chunk_list to flush.
* Chunk_list size is 1 because secure memory is physically
* contiguous.
*/
chunk_list = kzalloc(sizeof(unsigned int), GFP_KERNEL);
if (!chunk_list)
return -ENOMEM;
chunk_list[0] = memdesc->physaddr;
dmac_flush_range((void *)chunk_list, (void *)chunk_list + 1);
request.chunks.chunk_list = virt_to_phys(chunk_list);
/*
* virt_to_phys(chunk_list) may be an address > 4GB. It is guaranteed
* that when using scm_call (the older interface), the phys addresses
* will be restricted to below 4GB.
*/
desc.args[0] = virt_to_phys(chunk_list);
desc.args[1] = request.chunks.chunk_list_size = 1;
desc.args[2] = request.chunks.chunk_size = (unsigned int) memdesc->size;
desc.args[3] = request.mem_usage = 0;
desc.args[4] = request.lock = lock;
desc.args[5] = 0;
desc.arginfo = SCM_ARGS(6, SCM_RW, SCM_VAL, SCM_VAL, SCM_VAL, SCM_VAL,
SCM_VAL);
kmap_flush_unused();
kmap_atomic_flush_unused();
/*
* scm_call2 now supports both 32 and 64 bit calls
* so we dont need scm_call separately.
*/
result = scm_call2(SCM_SIP_FNID(SCM_SVC_MP,
MEM_PROTECT_LOCK_ID2_FLAT), &desc);
resp = desc.ret[0];
kfree(chunk_list);
return result;
}
static int kgsl_cma_alloc_secure(struct kgsl_device *device,
struct kgsl_memdesc *memdesc, uint64_t size)
{
struct kgsl_iommu *iommu = KGSL_IOMMU_PRIV(device);
int result = 0;
size_t aligned;
/* Align size to 1M boundaries */
aligned = ALIGN(size, SZ_1M);
/* The SCM call uses an unsigned int for the size */
if (aligned == 0 || aligned > UINT_MAX)
return -EINVAL;
/*
* If there is more than a page gap between the requested size and the
* aligned size we don't need to add more memory for a guard page. Yay!
*/
if (memdesc->priv & KGSL_MEMDESC_GUARD_PAGE)
if (aligned - size >= SZ_4K)
memdesc->priv &= ~KGSL_MEMDESC_GUARD_PAGE;
memdesc->size = aligned;
memdesc->ops = &kgsl_cma_ops;
memdesc->dev = iommu->ctx[KGSL_IOMMU_CONTEXT_SECURE].dev;
memdesc->attrs |= DMA_ATTR_STRONGLY_ORDERED;
memdesc->hostptr = dma_alloc_attrs(memdesc->dev, aligned,
&memdesc->physaddr, GFP_KERNEL, memdesc->attrs);
if (memdesc->hostptr == NULL) {
result = -ENOMEM;
goto err;
}
result = kgsl_memdesc_sg_dma(memdesc, memdesc->physaddr, aligned);
if (result)
goto err;
result = scm_lock_chunk(memdesc, 1);
if (result != 0)
goto err;
memdesc->priv |= KGSL_MEMDESC_TZ_LOCKED;
/* Record statistics */
KGSL_STATS_ADD(aligned, &kgsl_driver.stats.secure,
&kgsl_driver.stats.secure_max);
mod_node_page_state(page_pgdat(phys_to_page(memdesc->physaddr)),
NR_UNRECLAIMABLE_PAGES, (aligned >> PAGE_SHIFT));
err:
if (result)
kgsl_sharedmem_free(memdesc);
return result;
}
/**
* kgsl_cma_unlock_secure() - Unlock secure memory by calling TZ
* @memdesc: memory descriptor
*/
static void kgsl_cma_unlock_secure(struct kgsl_memdesc *memdesc)
{
if (memdesc->size == 0 || !(memdesc->priv & KGSL_MEMDESC_TZ_LOCKED))
return;
scm_lock_chunk(memdesc, 0);
}
void kgsl_sharedmem_set_noretry(bool val)
{
sharedmem_noretry_flag = val;
}
bool kgsl_sharedmem_get_noretry(void)
{
return sharedmem_noretry_flag;
}
void kgsl_zero_page(struct page *p, unsigned int order)
{
int i;
for (i = 0; i < (1 << order); i++) {
struct page *page = nth_page(p, i);
void *addr = kmap_atomic(page);
memset(addr, 0, PAGE_SIZE);
dmac_flush_range(addr, addr + PAGE_SIZE);
kunmap_atomic(addr);
}
}
void kgsl_flush_page(struct page *page)
{
void *addr = kmap_atomic(page);
dmac_flush_range(addr, addr + PAGE_SIZE);
kunmap_atomic(addr);
}
unsigned int kgsl_gfp_mask(unsigned int page_order)
{
unsigned int gfp_mask = __GFP_HIGHMEM;
if (page_order > 0) {
gfp_mask |= __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN;
gfp_mask &= ~__GFP_RECLAIM;
} else
gfp_mask |= GFP_KERNEL;
if (kgsl_sharedmem_get_noretry())
gfp_mask |= __GFP_NORETRY | __GFP_NOWARN;
return gfp_mask;
}
|