aboutsummaryrefslogtreecommitdiff
path: root/drivers/power/qpnp-bms.c
blob: 8b5e28c0079304512fe280f46aec7f1d6c803d35 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
/* Copyright (c) 2011-2014, The Linux Foundation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 and
 * only version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#define pr_fmt(fmt)	"BMS: %s: " fmt, __func__

#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/power_supply.h>
#include <linux/spmi.h>
#include <linux/rtc.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/qpnp/qpnp-adc.h>
#include <linux/qpnp/power-on.h>
#include <linux/of_batterydata.h>
#include <linux/wakelock.h>

/* BMS Register Offsets */
#define REVISION1			0x0
#define REVISION2			0x1
#define BMS1_STATUS1			0x8
#define BMS1_MODE_CTL			0X40
/* Coulomb counter clear registers */
#define BMS1_CC_DATA_CTL		0x42
#define BMS1_CC_CLEAR_CTL		0x43
/* BMS Tolerances */
#define BMS1_TOL_CTL			0X44
/* OCV limit registers */
#define BMS1_OCV_USE_LOW_LIMIT_THR0	0x48
#define BMS1_OCV_USE_LOW_LIMIT_THR1	0x49
#define BMS1_OCV_USE_HIGH_LIMIT_THR0	0x4A
#define BMS1_OCV_USE_HIGH_LIMIT_THR1	0x4B
#define BMS1_OCV_USE_LIMIT_CTL		0x4C
/* Delay control */
#define BMS1_S1_DELAY_CTL		0x5A
/* OCV interrupt threshold */
#define BMS1_OCV_THR0			0x50
#define BMS1_S2_SAMP_AVG_CTL		0x61
/* SW CC interrupt threshold */
#define BMS1_SW_CC_THR0			0xA0
/* OCV for r registers */
#define BMS1_OCV_FOR_R_DATA0		0x80
#define BMS1_VSENSE_FOR_R_DATA0		0x82
/* Coulomb counter data */
#define BMS1_CC_DATA0			0x8A
/* Shadow Coulomb counter data */
#define BMS1_SW_CC_DATA0		0xA8
/* OCV for soc data */
#define BMS1_OCV_FOR_SOC_DATA0		0x90
#define BMS1_VSENSE_PON_DATA0		0x94
#define BMS1_VSENSE_AVG_DATA0		0x98
#define BMS1_VBAT_AVG_DATA0		0x9E
/* Extra bms registers */
#define SOC_STORAGE_REG			0xB0
#define IAVG_STORAGE_REG		0xB1
#define BMS_FCC_COUNT			0xB2
#define BMS_FCC_BASE_REG		0xB3 /* FCC updates - 0xB3 to 0xB7 */
#define BMS_CHGCYL_BASE_REG		0xB8 /* FCC chgcyl - 0xB8 to 0xBC */
#define CHARGE_INCREASE_STORAGE		0xBD
#define CHARGE_CYCLE_STORAGE_LSB	0xBE /* LSB=0xBE, MSB=0xBF */

/* IADC Channel Select */
#define IADC1_BMS_REVISION2		0x01
#define IADC1_BMS_ADC_CH_SEL_CTL	0x48
#define IADC1_BMS_ADC_INT_RSNSN_CTL	0x49
#define IADC1_BMS_FAST_AVG_EN		0x5B

/* Configuration for saving of shutdown soc/iavg */
#define IGNORE_SOC_TEMP_DECIDEG		50
#define IAVG_STEP_SIZE_MA		10
#define IAVG_INVALID			0xFF
#define SOC_INVALID			0x7E

#define IAVG_SAMPLES 16

/* FCC learning constants */
#define MAX_FCC_CYCLES				5
#define DELTA_FCC_PERCENT                       5
#define VALID_FCC_CHGCYL_RANGE                  50
#define CHGCYL_RESOLUTION			20
#define FCC_DEFAULT_TEMP			250

#define QPNP_BMS_DEV_NAME "qcom,qpnp-bms"

enum {
	SHDW_CC,
	CC
};

enum {
	NORESET,
	RESET
};

struct soc_params {
	int		fcc_uah;
	int		cc_uah;
	int		rbatt_mohm;
	int		iavg_ua;
	int		uuc_uah;
	int		ocv_charge_uah;
	int		delta_time_s;
};

struct raw_soc_params {
	uint16_t	last_good_ocv_raw;
	int64_t		cc;
	int64_t		shdw_cc;
	int		last_good_ocv_uv;
};

struct fcc_sample {
	int fcc_new;
	int chargecycles;
};

struct bms_irq {
	int		irq;
	unsigned long	disabled;
	bool		ready;
};

struct bms_wakeup_source {
	struct wakeup_source	source;
	unsigned long		disabled;
};

struct qpnp_bms_chip {
	struct device			*dev;
	struct power_supply		bms_psy;
	bool				bms_psy_registered;
	struct power_supply		*batt_psy;
	struct spmi_device		*spmi;
	wait_queue_head_t		bms_wait_queue;
	u16				base;
	u16				iadc_base;
	u16				batt_pres_addr;
	u16				soc_storage_addr;

	u8				revision1;
	u8				revision2;

	u8				iadc_bms_revision1;
	u8				iadc_bms_revision2;

	int				battery_present;
	int				battery_status;
	bool				batfet_closed;
	bool				new_battery;
	bool				done_charging;
	bool				last_soc_invalid;
	/* platform data */
	int				r_sense_uohm;
	unsigned int			v_cutoff_uv;
	int				max_voltage_uv;
	int				r_conn_mohm;
	int				shutdown_soc_valid_limit;
	int				adjust_soc_low_threshold;
	int				chg_term_ua;
	enum battery_type		batt_type;
	unsigned int			fcc_mah;
	struct single_row_lut		*fcc_temp_lut;
	struct single_row_lut		*fcc_sf_lut;
	struct pc_temp_ocv_lut		*pc_temp_ocv_lut;
	struct sf_lut			*pc_sf_lut;
	struct sf_lut			*rbatt_sf_lut;
	int				default_rbatt_mohm;
	int				rbatt_capacitive_mohm;
	int				rbatt_mohm;

	struct delayed_work		calculate_soc_delayed_work;
	struct work_struct		recalc_work;
	struct work_struct		batfet_open_work;

	struct mutex			bms_output_lock;
	struct mutex			last_ocv_uv_mutex;
	struct mutex			vbat_monitor_mutex;
	struct mutex			soc_invalidation_mutex;
	struct mutex			last_soc_mutex;
	struct mutex			status_lock;

	bool				use_external_rsense;
	bool				use_ocv_thresholds;

	bool				ignore_shutdown_soc;
	bool				shutdown_soc_invalid;
	int				shutdown_soc;
	int				shutdown_iavg_ma;

	struct wake_lock		low_voltage_wake_lock;
	int				low_voltage_threshold;
	int				low_soc_calc_threshold;
	int				low_soc_calculate_soc_ms;
	int				low_voltage_calculate_soc_ms;
	int				calculate_soc_ms;
	struct bms_wakeup_source	soc_wake_source;
	struct wake_lock		cv_wake_lock;

	uint16_t			ocv_reading_at_100;
	uint16_t			prev_last_good_ocv_raw;
	int				insertion_ocv_uv;
	int				last_ocv_uv;
	int				charging_adjusted_ocv;
	int				last_ocv_temp;
	int				last_cc_uah;
	unsigned long			last_soc_change_sec;
	unsigned long			tm_sec;
	unsigned long			report_tm_sec;
	bool				first_time_calc_soc;
	bool				first_time_calc_uuc;
	int64_t				software_cc_uah;
	int64_t				software_shdw_cc_uah;

	int				iavg_samples_ma[IAVG_SAMPLES];
	int				iavg_index;
	int				iavg_num_samples;
	struct timespec			t_soc_queried;
	int				last_soc;
	int				last_soc_est;
	int				last_soc_unbound;
	bool				was_charging_at_sleep;
	int				charge_start_tm_sec;
	int				catch_up_time_sec;
	struct single_row_lut		*adjusted_fcc_temp_lut;

	struct qpnp_adc_tm_btm_param	vbat_monitor_params;
	struct qpnp_adc_tm_btm_param	die_temp_monitor_params;
	int				temperature_margin;
	unsigned int			vadc_v0625;
	unsigned int			vadc_v1250;

	int				system_load_count;
	int				prev_uuc_iavg_ma;
	int				prev_pc_unusable;
	int				ibat_at_cv_ua;
	int				soc_at_cv;
	int				prev_chg_soc;
	int				calculated_soc;
	int				prev_voltage_based_soc;
	bool				use_voltage_soc;
	bool				in_cv_range;

	int				prev_batt_terminal_uv;
	int				high_ocv_correction_limit_uv;
	int				low_ocv_correction_limit_uv;
	int				flat_ocv_threshold_uv;
	int				hold_soc_est;

	int				ocv_high_threshold_uv;
	int				ocv_low_threshold_uv;
	unsigned long			last_recalc_time;

	struct fcc_sample		*fcc_learning_samples;
	u8				fcc_sample_count;
	int				enable_fcc_learning;
	int				min_fcc_learning_soc;
	int				min_fcc_ocv_pc;
	int				min_fcc_learning_samples;
	int				start_soc;
	int				end_soc;
	int				start_pc;
	int				start_cc_uah;
	int				start_real_soc;
	int				end_cc_uah;
	uint16_t			fcc_new_mah;
	int				fcc_new_batt_temp;
	uint16_t			charge_cycles;
	u8				charge_increase;
	int				fcc_resolution;
	bool				battery_removed;
	bool				in_taper_charge;
	struct bms_irq			sw_cc_thr_irq;
	struct bms_irq			ocv_thr_irq;
	struct qpnp_vadc_chip		*vadc_dev;
	struct qpnp_iadc_chip		*iadc_dev;
	struct qpnp_adc_tm_chip		*adc_tm_dev;
};

static struct of_device_id qpnp_bms_match_table[] = {
	{ .compatible = QPNP_BMS_DEV_NAME },
	{}
};

static char *qpnp_bms_supplicants[] = {
	"battery"
};

static enum power_supply_property msm_bms_power_props[] = {
	POWER_SUPPLY_PROP_CAPACITY,
	POWER_SUPPLY_PROP_STATUS,
	POWER_SUPPLY_PROP_CURRENT_NOW,
	POWER_SUPPLY_PROP_RESISTANCE,
	POWER_SUPPLY_PROP_CHARGE_COUNTER,
	POWER_SUPPLY_PROP_CHARGE_COUNTER_SHADOW,
	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
	POWER_SUPPLY_PROP_CHARGE_FULL,
	POWER_SUPPLY_PROP_CYCLE_COUNT,
};

static int discard_backup_fcc_data(struct qpnp_bms_chip *chip);
static void backup_charge_cycle(struct qpnp_bms_chip *chip);

static bool bms_reset;

static int qpnp_read_wrapper(struct qpnp_bms_chip *chip, u8 *val,
			u16 base, int count)
{
	int rc;
	struct spmi_device *spmi = chip->spmi;

	rc = spmi_ext_register_readl(spmi->ctrl, spmi->sid, base, val, count);
	if (rc) {
		pr_err("SPMI read failed rc=%d\n", rc);
		return rc;
	}
	return 0;
}

static int qpnp_write_wrapper(struct qpnp_bms_chip *chip, u8 *val,
			u16 base, int count)
{
	int rc;
	struct spmi_device *spmi = chip->spmi;

	rc = spmi_ext_register_writel(spmi->ctrl, spmi->sid, base, val, count);
	if (rc) {
		pr_err("SPMI write failed rc=%d\n", rc);
		return rc;
	}
	return 0;
}

static int qpnp_masked_write_base(struct qpnp_bms_chip *chip, u16 addr,
							u8 mask, u8 val)
{
	int rc;
	u8 reg;

	rc = qpnp_read_wrapper(chip, &reg, addr, 1);
	if (rc) {
		pr_err("read failed addr = %03X, rc = %d\n", addr, rc);
		return rc;
	}
	reg &= ~mask;
	reg |= val & mask;
	rc = qpnp_write_wrapper(chip, &reg, addr, 1);
	if (rc) {
		pr_err("write failed addr = %03X, val = %02x, mask = %02x, reg = %02x, rc = %d\n",
					addr, val, mask, reg, rc);
		return rc;
	}
	return 0;
}

static int qpnp_masked_write_iadc(struct qpnp_bms_chip *chip, u16 addr,
							u8 mask, u8 val)
{
	return qpnp_masked_write_base(chip, chip->iadc_base + addr, mask, val);
}

static int qpnp_masked_write(struct qpnp_bms_chip *chip, u16 addr,
							u8 mask, u8 val)
{
	return qpnp_masked_write_base(chip, chip->base + addr, mask, val);
}

static void bms_stay_awake(struct bms_wakeup_source *source)
{
	if (__test_and_clear_bit(0, &source->disabled)) {
		__pm_stay_awake(&source->source);
		pr_debug("enabled source %s\n", source->source.name);
	}
}

static void bms_relax(struct bms_wakeup_source *source)
{
	if (!__test_and_set_bit(0, &source->disabled)) {
		__pm_relax(&source->source);
		pr_debug("disabled source %s\n", source->source.name);
	}
}

static void enable_bms_irq(struct bms_irq *irq)
{
	if (irq->ready && __test_and_clear_bit(0, &irq->disabled)) {
		enable_irq(irq->irq);
		pr_debug("enabled irq %d\n", irq->irq);
	}
}

static void disable_bms_irq(struct bms_irq *irq)
{
	if (irq->ready && !__test_and_set_bit(0, &irq->disabled)) {
		disable_irq(irq->irq);
		pr_debug("disabled irq %d\n", irq->irq);
	}
}

static void disable_bms_irq_nosync(struct bms_irq *irq)
{
	if (irq->ready && !__test_and_set_bit(0, &irq->disabled)) {
		disable_irq_nosync(irq->irq);
		pr_debug("disabled irq %d\n", irq->irq);
	}
}

#define HOLD_OREG_DATA		BIT(0)
static int lock_output_data(struct qpnp_bms_chip *chip)
{
	int rc;

	rc = qpnp_masked_write(chip, BMS1_CC_DATA_CTL,
				HOLD_OREG_DATA, HOLD_OREG_DATA);
	if (rc) {
		pr_err("couldnt lock bms output rc = %d\n", rc);
		return rc;
	}
	/*
	 * Sleep for at least 60 microseconds here to make sure there has
	 * been at least two cycles of the sleep clock so that the registers
	 * are correctly locked.
	 */
	usleep_range(60, 2000);
	return 0;
}

static int unlock_output_data(struct qpnp_bms_chip *chip)
{
	int rc;

	rc = qpnp_masked_write(chip, BMS1_CC_DATA_CTL, HOLD_OREG_DATA, 0);
	if (rc) {
		pr_err("fail to unlock BMS_CONTROL rc = %d\n", rc);
		return rc;
	}
	return 0;
}

#define V_PER_BIT_MUL_FACTOR	97656
#define V_PER_BIT_DIV_FACTOR	1000
#define VADC_INTRINSIC_OFFSET	0x6000

static int vadc_reading_to_uv(int reading)
{
	if (reading <= VADC_INTRINSIC_OFFSET)
		return 0;

	return (reading - VADC_INTRINSIC_OFFSET)
			* V_PER_BIT_MUL_FACTOR / V_PER_BIT_DIV_FACTOR;
}

#define VADC_CALIB_UV		625000
#define VBATT_MUL_FACTOR	3
static int adjust_vbatt_reading(struct qpnp_bms_chip *chip, int reading_uv)
{
	s64 numerator, denominator;

	if (reading_uv == 0)
		return 0;

	/* don't adjust if not calibrated */
	if (chip->vadc_v0625 == 0 || chip->vadc_v1250 == 0) {
		pr_debug("No cal yet return %d\n",
				VBATT_MUL_FACTOR * reading_uv);
		return VBATT_MUL_FACTOR * reading_uv;
	}

	numerator = ((s64)reading_uv - chip->vadc_v0625) * VADC_CALIB_UV;
	denominator =  (s64)chip->vadc_v1250 - chip->vadc_v0625;
	if (denominator == 0)
		return reading_uv * VBATT_MUL_FACTOR;
	return (VADC_CALIB_UV + div_s64(numerator, denominator))
						* VBATT_MUL_FACTOR;
}

static int convert_vbatt_uv_to_raw(struct qpnp_bms_chip *chip,
					int unadjusted_vbatt)
{
	int scaled_vbatt = unadjusted_vbatt / VBATT_MUL_FACTOR;

	if (scaled_vbatt <= 0)
		return VADC_INTRINSIC_OFFSET;
	return ((scaled_vbatt * V_PER_BIT_DIV_FACTOR) / V_PER_BIT_MUL_FACTOR)
						+ VADC_INTRINSIC_OFFSET;
}

static inline int convert_vbatt_raw_to_uv(struct qpnp_bms_chip *chip,
					uint16_t reading, bool is_pon_ocv)
{
	int64_t uv;
	int rc;

	uv = vadc_reading_to_uv(reading);
	pr_debug("%u raw converted into %lld uv\n", reading, uv);
	uv = adjust_vbatt_reading(chip, uv);
	pr_debug("adjusted into %lld uv\n", uv);
	rc = qpnp_vbat_sns_comp_result(chip->vadc_dev, &uv, is_pon_ocv);
	if (rc)
		pr_debug("could not compensate vbatt\n");
	pr_debug("compensated into %lld uv\n", uv);
	return uv;
}

#define CC_READING_RESOLUTION_N	542535
#define CC_READING_RESOLUTION_D	100000
static s64 cc_reading_to_uv(s64 reading)
{
	return div_s64(reading * CC_READING_RESOLUTION_N,
					CC_READING_RESOLUTION_D);
}

#define QPNP_ADC_GAIN_IDEAL				3291LL
static s64 cc_adjust_for_gain(s64 uv, uint16_t gain)
{
	s64 result_uv;

	pr_debug("adjusting_uv = %lld\n", uv);
	if (gain == 0) {
		pr_debug("gain is %d, not adjusting\n", gain);
		return uv;
	}
	pr_debug("adjusting by factor: %lld/%hu = %lld%%\n",
			QPNP_ADC_GAIN_IDEAL, gain,
			div_s64(QPNP_ADC_GAIN_IDEAL * 100LL, (s64)gain));

	result_uv = div_s64(uv * QPNP_ADC_GAIN_IDEAL, (s64)gain);
	pr_debug("result_uv = %lld\n", result_uv);
	return result_uv;
}

static s64 cc_reverse_adjust_for_gain(struct qpnp_bms_chip *chip, s64 uv)
{
	struct qpnp_iadc_calib calibration;
	int gain;
	s64 result_uv;

	qpnp_iadc_get_gain_and_offset(chip->iadc_dev, &calibration);
	gain = (int)calibration.gain_raw - (int)calibration.offset_raw;

	pr_debug("reverse adjusting_uv = %lld\n", uv);
	if (gain == 0) {
		pr_debug("gain is %d, not adjusting\n", gain);
		return uv;
	}
	pr_debug("adjusting by factor: %hu/%lld = %lld%%\n",
			gain, QPNP_ADC_GAIN_IDEAL,
			div64_s64((s64)gain * 100LL,
				(s64)QPNP_ADC_GAIN_IDEAL));

	result_uv = div64_s64(uv * (s64)gain, QPNP_ADC_GAIN_IDEAL);
	pr_debug("result_uv = %lld\n", result_uv);
	return result_uv;
}

static int convert_vsense_to_uv(struct qpnp_bms_chip *chip,
					int16_t reading)
{
	struct qpnp_iadc_calib calibration;

	qpnp_iadc_get_gain_and_offset(chip->iadc_dev, &calibration);
	return cc_adjust_for_gain(cc_reading_to_uv(reading),
			calibration.gain_raw - calibration.offset_raw);
}

static int read_vsense_avg(struct qpnp_bms_chip *chip, int *result_uv)
{
	int rc;
	int16_t reading;

	rc = qpnp_read_wrapper(chip, (u8 *)&reading,
			chip->base + BMS1_VSENSE_AVG_DATA0, 2);

	if (rc) {
		pr_err("fail to read VSENSE_AVG rc = %d\n", rc);
		return rc;
	}

	*result_uv = convert_vsense_to_uv(chip, reading);
	return 0;
}

static int get_battery_current(struct qpnp_bms_chip *chip, int *result_ua)
{
	int rc, vsense_uv = 0;
	int64_t temp_current;

	if (chip->r_sense_uohm == 0) {
		pr_err("r_sense is zero\n");
		return -EINVAL;
	}

	mutex_lock(&chip->bms_output_lock);
	lock_output_data(chip);
	read_vsense_avg(chip, &vsense_uv);
	unlock_output_data(chip);
	mutex_unlock(&chip->bms_output_lock);

	pr_debug("vsense_uv=%duV\n", vsense_uv);
	/* cast for signed division */
	temp_current = div_s64((vsense_uv * 1000000LL),
				(int)chip->r_sense_uohm);

	*result_ua = temp_current;
	rc = qpnp_iadc_comp_result(chip->iadc_dev, &temp_current);
	if (rc)
		pr_debug("error compensation failed: %d\n", rc);

	pr_debug("%d uA err compensated ibat=%llduA\n",
			*result_ua, temp_current);
	*result_ua = temp_current;
	return 0;
}

static int get_battery_voltage(struct qpnp_bms_chip *chip, int *result_uv)
{
	int rc;
	struct qpnp_vadc_result adc_result;

	rc = qpnp_vadc_read(chip->vadc_dev, VBAT_SNS, &adc_result);
	if (rc) {
		pr_err("error reading adc channel = %d, rc = %d\n",
					VBAT_SNS, rc);
		return rc;
	}
	pr_debug("mvolts phy = %lld meas = 0x%llx\n", adc_result.physical,
						adc_result.measurement);
	*result_uv = (int)adc_result.physical;
	return 0;
}

#define CC_36_BIT_MASK 0xFFFFFFFFFLL
static uint64_t convert_s64_to_s36(int64_t raw64)
{
	return (uint64_t) raw64 & CC_36_BIT_MASK;
}

#define SIGN_EXTEND_36_TO_64_MASK (-1LL ^ CC_36_BIT_MASK)
static int64_t convert_s36_to_s64(uint64_t raw36)
{
	raw36 = raw36 & CC_36_BIT_MASK;
	/* convert 36 bit signed value into 64 signed value */
	return (raw36 >> 35) == 0LL ?
		raw36 : (SIGN_EXTEND_36_TO_64_MASK | raw36);
}

static int read_cc_raw(struct qpnp_bms_chip *chip, int64_t *reading,
							int cc_type)
{
	int64_t raw_reading;
	int rc;

	if (cc_type == SHDW_CC)
		rc = qpnp_read_wrapper(chip, (u8 *)&raw_reading,
				chip->base + BMS1_SW_CC_DATA0, 5);
	else
		rc = qpnp_read_wrapper(chip, (u8 *)&raw_reading,
				chip->base + BMS1_CC_DATA0, 5);
	if (rc) {
		pr_err("Error reading cc: rc = %d\n", rc);
		return -ENXIO;
	}

	*reading = convert_s36_to_s64(raw_reading);

	return 0;
}

static int calib_vadc(struct qpnp_bms_chip *chip)
{
	int rc, raw_0625, raw_1250;
	struct qpnp_vadc_result result;

	rc = qpnp_vadc_read(chip->vadc_dev, REF_625MV, &result);
	if (rc) {
		pr_debug("vadc read failed with rc = %d\n", rc);
		return rc;
	}
	raw_0625 = result.adc_code;

	rc = qpnp_vadc_read(chip->vadc_dev, REF_125V, &result);
	if (rc) {
		pr_debug("vadc read failed with rc = %d\n", rc);
		return rc;
	}
	raw_1250 = result.adc_code;
	chip->vadc_v0625 = vadc_reading_to_uv(raw_0625);
	chip->vadc_v1250 = vadc_reading_to_uv(raw_1250);
	pr_debug("vadc calib: 0625 = %d raw (%d uv), 1250 = %d raw (%d uv)\n",
			raw_0625, chip->vadc_v0625,
			raw_1250, chip->vadc_v1250);
	return 0;
}

static void convert_and_store_ocv(struct qpnp_bms_chip *chip,
				struct raw_soc_params *raw,
				int batt_temp, bool is_pon_ocv)
{
	int rc;

	pr_debug("prev_last_good_ocv_raw = %d, last_good_ocv_raw = %d\n",
			chip->prev_last_good_ocv_raw,
			raw->last_good_ocv_raw);
	rc = calib_vadc(chip);
	if (rc)
		pr_err("Vadc reference voltage read failed, rc = %d\n", rc);
	chip->prev_last_good_ocv_raw = raw->last_good_ocv_raw;
	raw->last_good_ocv_uv = convert_vbatt_raw_to_uv(chip,
					raw->last_good_ocv_raw, is_pon_ocv);
	chip->last_ocv_uv = raw->last_good_ocv_uv;
	chip->last_ocv_temp = batt_temp;
	chip->software_cc_uah = 0;
	pr_debug("last_good_ocv_uv = %d\n", raw->last_good_ocv_uv);
}

#define CLEAR_CC			BIT(7)
#define CLEAR_SHDW_CC			BIT(6)
/**
 * reset both cc and sw-cc.
 * note: this should only be ever called from one thread
 * or there may be a race condition where CC is never enabled
 * again
 */
static void reset_cc(struct qpnp_bms_chip *chip, u8 flags)
{
	int rc;

	pr_debug("resetting cc manually with flags %hhu\n", flags);
	mutex_lock(&chip->bms_output_lock);
	rc = qpnp_masked_write(chip, BMS1_CC_CLEAR_CTL,
				flags,
				flags);
	if (rc)
		pr_err("cc reset failed: %d\n", rc);

	/* wait for 100us for cc to reset */
	udelay(100);

	rc = qpnp_masked_write(chip, BMS1_CC_CLEAR_CTL,
				flags, 0);
	if (rc)
		pr_err("cc reenable failed: %d\n", rc);
	mutex_unlock(&chip->bms_output_lock);
}

static int get_battery_status(struct qpnp_bms_chip *chip)
{
	union power_supply_propval ret = {0,};
	int rc;

	if (chip->batt_psy == NULL)
		chip->batt_psy = power_supply_get_by_name("battery");
	if (chip->batt_psy) {
		/* if battery has been registered, use the status property */
		rc = chip->batt_psy->get_property(chip->batt_psy,
					POWER_SUPPLY_PROP_STATUS, &ret);
		if (rc) {
			pr_debug("Battery does not export status: %d\n", rc);
			return POWER_SUPPLY_STATUS_UNKNOWN;
		}
		return ret.intval;
	}

	/* Default to false if the battery power supply is not registered. */
	pr_debug("battery power supply is not registered\n");
	return POWER_SUPPLY_STATUS_UNKNOWN;
}

static int get_battery_charge_type(struct qpnp_bms_chip *chip)
{
	union power_supply_propval ret = {0,};
	int rc;

	if (chip->batt_psy == NULL)
		chip->batt_psy = power_supply_get_by_name("battery");
	if (chip->batt_psy) {
		/* if battery has been registered, use the type property */
		rc = chip->batt_psy->get_property(chip->batt_psy,
				POWER_SUPPLY_PROP_CHARGE_TYPE, &ret);
		if (rc) {
			pr_debug("Battery does not export charge type: %d\n"
									, rc);
			return POWER_SUPPLY_CHARGE_TYPE_NONE;
		}
		return ret.intval;
	}

	/* Default to false if the battery power supply is not registered. */
	pr_debug("battery power supply is not registered\n");
	return POWER_SUPPLY_CHARGE_TYPE_NONE;
}

static bool is_battery_charging(struct qpnp_bms_chip *chip)
{
	return get_battery_status(chip) == POWER_SUPPLY_STATUS_CHARGING;
}

static bool is_battery_full(struct qpnp_bms_chip *chip)
{
	return get_battery_status(chip) == POWER_SUPPLY_STATUS_FULL;
}

#define BAT_PRES_BIT		BIT(7)
static bool is_battery_present(struct qpnp_bms_chip *chip)
{
	union power_supply_propval ret = {0,};
	int rc;
	u8 batt_pres;

	/* first try to use the batt_pres register if given */
	if (chip->batt_pres_addr) {
		rc = qpnp_read_wrapper(chip, &batt_pres,
				chip->batt_pres_addr, 1);
		if (!rc && (batt_pres & BAT_PRES_BIT))
			return true;
		else
			return false;
	}
	if (chip->batt_psy == NULL)
		chip->batt_psy = power_supply_get_by_name("battery");
	if (chip->batt_psy) {
		/* if battery has been registered, use the present property */
		rc = chip->batt_psy->get_property(chip->batt_psy,
					POWER_SUPPLY_PROP_PRESENT, &ret);
		if (rc) {
			pr_debug("battery does not export present: %d\n", rc);
			return true;
		}
		return ret.intval;
	}

	/* Default to false if the battery power supply is not registered. */
	pr_debug("battery power supply is not registered\n");
	return false;
}

static int get_battery_insertion_ocv_uv(struct qpnp_bms_chip *chip)
{
	union power_supply_propval ret = {0,};
	int rc, vbat;

	if (chip->batt_psy == NULL)
		chip->batt_psy = power_supply_get_by_name("battery");
	if (chip->batt_psy) {
		/* if battery has been registered, use the ocv property */
		rc = chip->batt_psy->get_property(chip->batt_psy,
				POWER_SUPPLY_PROP_VOLTAGE_OCV, &ret);
		if (rc) {
			/*
			 * Default to vbatt if the battery OCV is not
			 * registered.
			 */
			pr_debug("Battery psy does not have voltage ocv\n");
			rc = get_battery_voltage(chip, &vbat);
			if (rc)
				return -EINVAL;
			return vbat;
		}
		return ret.intval;
	}

	pr_debug("battery power supply is not registered\n");
	return -EINVAL;
}

static bool is_batfet_closed(struct qpnp_bms_chip *chip)
{
	union power_supply_propval ret = {0,};
	int rc;

	if (chip->batt_psy == NULL)
		chip->batt_psy = power_supply_get_by_name("battery");
	if (chip->batt_psy) {
		/* if battery has been registered, use the online property */
		rc = chip->batt_psy->get_property(chip->batt_psy,
					POWER_SUPPLY_PROP_ONLINE, &ret);
		if (rc) {
			pr_debug("Battery does not export online: %d\n", rc);
			return true;
		}
		return !!ret.intval;
	}

	/* Default to true if the battery power supply is not registered. */
	pr_debug("battery power supply is not registered\n");
	return true;
}

static int get_simultaneous_batt_v_and_i(struct qpnp_bms_chip *chip,
					int *ibat_ua, int *vbat_uv)
{
	struct qpnp_iadc_result i_result;
	struct qpnp_vadc_result v_result;
	enum qpnp_iadc_channels iadc_channel;
	int rc;

	iadc_channel = chip->use_external_rsense ?
				EXTERNAL_RSENSE : INTERNAL_RSENSE;
	if (is_battery_full(chip)) {
		rc = get_battery_current(chip, ibat_ua);
		if (rc) {
			pr_err("bms current read failed with rc: %d\n", rc);
			return rc;
		}
		rc = qpnp_vadc_read(chip->vadc_dev, VBAT_SNS, &v_result);
		if (rc) {
			pr_err("vadc read failed with rc: %d\n", rc);
			return rc;
		}
		*vbat_uv = (int)v_result.physical;
	} else {
		rc = qpnp_iadc_vadc_sync_read(chip->iadc_dev,
					iadc_channel, &i_result,
					VBAT_SNS, &v_result);
		if (rc) {
			pr_err("adc sync read failed with rc: %d\n", rc);
			return rc;
		}
		/*
		* reverse the current read by the iadc, since the bms uses
		* flipped battery current polarity.
		*/
		*ibat_ua = -1 * (int)i_result.result_ua;
		*vbat_uv = (int)v_result.physical;
	}

	return 0;
}

static int get_rbatt(struct qpnp_bms_chip *chip,
					int soc_rbatt_mohm, int batt_temp)
{
	int rbatt_mohm, scalefactor;

	rbatt_mohm = chip->default_rbatt_mohm;
	if (chip->rbatt_sf_lut == NULL)  {
		pr_debug("RBATT = %d\n", rbatt_mohm);
		return rbatt_mohm;
	}
	/* Convert the batt_temp to DegC from deciDegC */
	scalefactor = interpolate_scalingfactor(chip->rbatt_sf_lut,
						batt_temp, soc_rbatt_mohm);
	rbatt_mohm = (rbatt_mohm * scalefactor) / 100;

	rbatt_mohm += chip->r_conn_mohm;
	rbatt_mohm += chip->rbatt_capacitive_mohm;
	return rbatt_mohm;
}

#define DEFAULT_RBATT_SOC	50
static int estimate_ocv(struct qpnp_bms_chip *chip, int batt_temp)
{
	int ibat_ua, vbat_uv, ocv_est_uv, rbatt_mohm, rc;

	rbatt_mohm = get_rbatt(chip, DEFAULT_RBATT_SOC, batt_temp);
	rc = get_simultaneous_batt_v_and_i(chip, &ibat_ua, &vbat_uv);
	if (rc) {
		pr_err("simultaneous failed rc = %d\n", rc);
		return rc;
	}

	ocv_est_uv = vbat_uv + (ibat_ua * rbatt_mohm) / 1000;
	pr_debug("estimated pon ocv = %d, vbat_uv = %d ibat_ua = %d rbatt_mohm = %d\n",
			ocv_est_uv, vbat_uv, ibat_ua, rbatt_mohm);
	return ocv_est_uv;
}

#define MIN_IAVG_MA 250
static void reset_for_new_battery(struct qpnp_bms_chip *chip, int batt_temp)
{
	chip->last_ocv_uv = chip->insertion_ocv_uv;
	mutex_lock(&chip->last_soc_mutex);
	chip->last_soc = -EINVAL;
	chip->last_soc_invalid = true;
	mutex_unlock(&chip->last_soc_mutex);
	chip->soc_at_cv = -EINVAL;
	chip->shutdown_soc_invalid = true;
	chip->shutdown_soc = 0;
	chip->shutdown_iavg_ma = MIN_IAVG_MA;
	chip->prev_pc_unusable = -EINVAL;
	reset_cc(chip, CLEAR_CC | CLEAR_SHDW_CC);
	chip->software_cc_uah = 0;
	chip->software_shdw_cc_uah = 0;
	chip->last_cc_uah = INT_MIN;
	chip->last_ocv_temp = batt_temp;
	chip->prev_batt_terminal_uv = 0;
	if (chip->enable_fcc_learning) {
		chip->adjusted_fcc_temp_lut = NULL;
		chip->fcc_new_mah = -EINVAL;
		/* reset the charge-cycle and charge-increase registers */
		chip->charge_increase = 0;
		chip->charge_cycles = 0;
		backup_charge_cycle(chip);
		/* discard all the FCC learnt data and reset the local table */
		discard_backup_fcc_data(chip);
		memset(chip->fcc_learning_samples, 0,
			chip->min_fcc_learning_samples *
				sizeof(struct fcc_sample));
	}
}

#define SIGN(x) ((x) < 0 ? -1 : 1)
#define UV_PER_SPIN 50000
static int find_ocv_for_pc(struct qpnp_bms_chip *chip, int batt_temp, int pc)
{
	int new_pc;
	int ocv_mv;
	int delta_mv = 5;
	int max_spin_count;
	int count = 0;
	int sign, new_sign;

	ocv_mv = interpolate_ocv(chip->pc_temp_ocv_lut, batt_temp, pc);

	new_pc = interpolate_pc(chip->pc_temp_ocv_lut, batt_temp, ocv_mv);
	pr_debug("test revlookup pc = %d for ocv = %d\n", new_pc, ocv_mv);
	max_spin_count = 1 + (chip->max_voltage_uv - chip->v_cutoff_uv)
						/ UV_PER_SPIN;
	sign = SIGN(pc - new_pc);

	while (abs(new_pc - pc) != 0 && count < max_spin_count) {
		/*
		 * If the newly interpolated pc is larger than the lookup pc,
		 * the ocv should be reduced and vice versa
		 */
		new_sign = SIGN(pc - new_pc);
		/*
		 * If the sign has changed, then we have passed the lookup pc.
		 * reduce the ocv step size to get finer results.
		 *
		 * If we have already reduced the ocv step size and still
		 * passed the lookup pc, just stop and use the current ocv.
		 * This can only happen if the batterydata profile is
		 * non-monotonic anyways.
		 */
		if (new_sign != sign) {
			if (delta_mv > 1)
				delta_mv = 1;
			else
				break;
		}
		sign = new_sign;

		ocv_mv = ocv_mv + delta_mv * sign;
		new_pc = interpolate_pc(chip->pc_temp_ocv_lut,
				batt_temp, ocv_mv);
		pr_debug("test revlookup pc = %d for ocv = %d\n",
			new_pc, ocv_mv);
		count++;
	}

	return ocv_mv * 1000;
}

#define OCV_RAW_UNINITIALIZED	0xFFFF
#define MIN_OCV_UV		2000000
static int read_soc_params_raw(struct qpnp_bms_chip *chip,
				struct raw_soc_params *raw,
				int batt_temp)
{
	int warm_reset, rc;

	mutex_lock(&chip->bms_output_lock);

	lock_output_data(chip);

	rc = qpnp_read_wrapper(chip, (u8 *)&raw->last_good_ocv_raw,
			chip->base + BMS1_OCV_FOR_SOC_DATA0, 2);
	if (rc) {
		pr_err("Error reading ocv: rc = %d\n", rc);
		goto param_err;
	}

	rc = read_cc_raw(chip, &raw->cc, CC);
	rc |= read_cc_raw(chip, &raw->shdw_cc, SHDW_CC);
	if (rc) {
		pr_err("Failed to read raw cc data, rc = %d\n", rc);
		goto param_err;
	}

	unlock_output_data(chip);
	mutex_unlock(&chip->bms_output_lock);

	if (chip->prev_last_good_ocv_raw == OCV_RAW_UNINITIALIZED) {
		convert_and_store_ocv(chip, raw, batt_temp, true);
		pr_debug("PON_OCV_UV = %d, cc = %llx\n",
				chip->last_ocv_uv, raw->cc);
		warm_reset = qpnp_pon_is_warm_reset();
		if (raw->last_good_ocv_uv < MIN_OCV_UV || warm_reset > 0) {
			pr_debug("OCV is stale or bad, estimating new OCV.\n");
			chip->last_ocv_uv = estimate_ocv(chip, batt_temp);
			raw->last_good_ocv_uv = chip->last_ocv_uv;
			reset_cc(chip, CLEAR_CC | CLEAR_SHDW_CC);
			pr_debug("New PON_OCV_UV = %d, cc = %llx\n",
					chip->last_ocv_uv, raw->cc);
		}
	} else if (chip->new_battery) {
		/* if a new battery was inserted, estimate the ocv */
		reset_for_new_battery(chip, batt_temp);
		raw->cc = 0;
		raw->shdw_cc = 0;
		raw->last_good_ocv_uv = chip->last_ocv_uv;
		chip->new_battery = false;
	} else if (chip->done_charging) {
		chip->done_charging = false;
		/* if we just finished charging, reset CC and fake 100% */
		chip->ocv_reading_at_100 = raw->last_good_ocv_raw;
		chip->last_ocv_uv = find_ocv_for_pc(chip, batt_temp, 100);
		raw->last_good_ocv_uv = chip->last_ocv_uv;
		raw->cc = 0;
		raw->shdw_cc = 0;
		reset_cc(chip, CLEAR_CC | CLEAR_SHDW_CC);
		chip->last_ocv_temp = batt_temp;
		chip->software_cc_uah = 0;
		chip->software_shdw_cc_uah = 0;
		chip->last_cc_uah = INT_MIN;
		pr_debug("EOC Battery full ocv_reading = 0x%x\n",
				chip->ocv_reading_at_100);
	} else if (chip->prev_last_good_ocv_raw != raw->last_good_ocv_raw) {
		convert_and_store_ocv(chip, raw, batt_temp, false);
		/* forget the old cc value upon ocv */
		chip->last_cc_uah = INT_MIN;
	} else {
		raw->last_good_ocv_uv = chip->last_ocv_uv;
	}

	/* stop faking a high OCV if we get a new OCV */
	if (chip->ocv_reading_at_100 != raw->last_good_ocv_raw)
		chip->ocv_reading_at_100 = OCV_RAW_UNINITIALIZED;

	pr_debug("last_good_ocv_raw= 0x%x, last_good_ocv_uv= %duV\n",
			raw->last_good_ocv_raw, raw->last_good_ocv_uv);
	pr_debug("cc_raw= 0x%llx\n", raw->cc);
	return 0;

param_err:
	unlock_output_data(chip);
	mutex_unlock(&chip->bms_output_lock);
	return rc;
}

static int calculate_pc(struct qpnp_bms_chip *chip, int ocv_uv,
							int batt_temp)
{
	int pc;

	pc = interpolate_pc(chip->pc_temp_ocv_lut,
			batt_temp, ocv_uv / 1000);
	pr_debug("pc = %u %% for ocv = %d uv batt_temp = %d\n",
					pc, ocv_uv, batt_temp);
	/* Multiply the initial FCC value by the scale factor. */
	return pc;
}

static int calculate_fcc(struct qpnp_bms_chip *chip, int batt_temp)
{
	int fcc_uah;

	if (chip->adjusted_fcc_temp_lut == NULL) {
		/* interpolate_fcc returns a mv value. */
		fcc_uah = interpolate_fcc(chip->fcc_temp_lut,
						batt_temp) * 1000;
		pr_debug("fcc = %d uAh\n", fcc_uah);
		return fcc_uah;
	} else {
		return 1000 * interpolate_fcc(chip->adjusted_fcc_temp_lut,
				batt_temp);
	}
}

/* calculate remaining charge at the time of ocv */
static int calculate_ocv_charge(struct qpnp_bms_chip *chip,
						struct raw_soc_params *raw,
						int fcc_uah)
{
	int  ocv_uv, pc;

	ocv_uv = raw->last_good_ocv_uv;
	pc = calculate_pc(chip, ocv_uv, chip->last_ocv_temp);
	pr_debug("ocv_uv = %d pc = %d\n", ocv_uv, pc);
	return (fcc_uah * pc) / 100;
}

#define CC_READING_TICKS	56
#define SLEEP_CLK_HZ		32764
#define SECONDS_PER_HOUR	3600

static s64 cc_uv_to_pvh(s64 cc_uv)
{
	/* Note that it is necessary need to multiply by 1000000 to convert
	 * from uvh to pvh here.
	 * However, the maximum Coulomb Counter value is 2^35, which can cause
	 * an over flow.
	 * Multiply by 100000 first to perserve as much precision as possible
	 * then multiply by 10 after doing the division in order to avoid
	 * overflow on the maximum Coulomb Counter value.
	 */
	return div_s64(cc_uv * CC_READING_TICKS * 100000,
			SLEEP_CLK_HZ * SECONDS_PER_HOUR) * 10;
}

/**
 * calculate_cc() - converts a hardware coulomb counter reading into uah
 * @chip:		the bms chip pointer
 * @cc:			the cc reading from bms h/w
 * @cc_type:		calcualte cc from regular or shadow coulomb counter
 * @clear_cc:		whether this function should clear the hardware counter
 *			after reading
 *
 * Converts the 64 bit hardware coulomb counter into microamp-hour by taking
 * into account hardware resolution and adc errors.
 *
 * Return: the coulomb counter based charge in uAh (micro-amp hour)
 */
static int calculate_cc(struct qpnp_bms_chip *chip, int64_t cc,
					int cc_type, int clear_cc)
{
	struct qpnp_iadc_calib calibration;
	struct qpnp_vadc_result result;
	int64_t cc_voltage_uv, cc_pvh, cc_uah, *software_counter;
	int rc;

	software_counter = cc_type == SHDW_CC ?
			&chip->software_shdw_cc_uah : &chip->software_cc_uah;
	rc = qpnp_vadc_read(chip->vadc_dev, DIE_TEMP, &result);
	if (rc) {
		pr_err("could not read pmic die temperature: %d\n", rc);
		return *software_counter;
	}

	qpnp_iadc_get_gain_and_offset(chip->iadc_dev, &calibration);
	pr_debug("%scc = %lld, die_temp = %lld\n",
			cc_type == SHDW_CC ? "shdw_" : "",
			cc, result.physical);
	cc_voltage_uv = cc_reading_to_uv(cc);
	cc_voltage_uv = cc_adjust_for_gain(cc_voltage_uv,
					calibration.gain_raw
					- calibration.offset_raw);
	cc_pvh = cc_uv_to_pvh(cc_voltage_uv);
	cc_uah = div_s64(cc_pvh, chip->r_sense_uohm);
	rc = qpnp_iadc_comp_result(chip->iadc_dev, &cc_uah);
	if (rc)
		pr_debug("error compensation failed: %d\n", rc);
	if (clear_cc == RESET) {
		pr_debug("software_%scc = %lld, added cc_uah = %lld\n",
				cc_type == SHDW_CC ? "sw_" : "",
				*software_counter, cc_uah);
		*software_counter += cc_uah;
		reset_cc(chip, cc_type == SHDW_CC ? CLEAR_SHDW_CC : CLEAR_CC);
		return (int)*software_counter;
	} else {
		pr_debug("software_%scc = %lld, cc_uah = %lld, total = %lld\n",
				cc_type == SHDW_CC ? "shdw_" : "",
				*software_counter, cc_uah,
				*software_counter + cc_uah);
		return *software_counter + cc_uah;
	}
}

#define IAVG_MINIMAL_TIME	2
static void calculate_iavg(struct qpnp_bms_chip *chip, int cc_uah,
				int *iavg_ua, int delta_time_s)
{
	int delta_cc_uah = 0;

	/*
	 * use the battery current if called too quickly
	 */
	if (delta_time_s < IAVG_MINIMAL_TIME
			|| chip->last_cc_uah == INT_MIN) {
		get_battery_current(chip, iavg_ua);
		goto out;
	}

	delta_cc_uah = cc_uah - chip->last_cc_uah;

	*iavg_ua = div_s64((s64)delta_cc_uah * 3600, delta_time_s);

out:
	pr_debug("delta_cc = %d iavg_ua = %d\n", delta_cc_uah, (int)*iavg_ua);

	/* remember cc_uah */
	chip->last_cc_uah = cc_uah;
}

static int calculate_termination_uuc(struct qpnp_bms_chip *chip,
					struct soc_params *params,
					int batt_temp, int uuc_iavg_ma,
					int *ret_pc_unusable)
{
	int unusable_uv, pc_unusable, uuc_uah;
	int i = 0;
	int ocv_mv;
	int rbatt_mohm;
	int delta_uv;
	int prev_delta_uv = 0;
	int prev_rbatt_mohm = 0;
	int uuc_rbatt_mohm;

	for (i = 0; i <= 100; i++) {
		ocv_mv = interpolate_ocv(chip->pc_temp_ocv_lut,
				batt_temp, i);
		rbatt_mohm = get_rbatt(chip, i, batt_temp);
		unusable_uv = (rbatt_mohm * uuc_iavg_ma)
							+ (chip->v_cutoff_uv);
		delta_uv = ocv_mv * 1000 - unusable_uv;

		if (delta_uv > 0)
			break;

		prev_delta_uv = delta_uv;
		prev_rbatt_mohm = rbatt_mohm;
	}

	uuc_rbatt_mohm = linear_interpolate(rbatt_mohm, delta_uv,
					prev_rbatt_mohm, prev_delta_uv,
					0);

	unusable_uv = (uuc_rbatt_mohm * uuc_iavg_ma) + (chip->v_cutoff_uv);

	pc_unusable = calculate_pc(chip, unusable_uv, batt_temp);
	uuc_uah = (params->fcc_uah * pc_unusable) / 100;
	pr_debug("For uuc_iavg_ma = %d, unusable_rbatt = %d unusable_uv = %d unusable_pc = %d rbatt_pc = %d uuc = %d\n",
					uuc_iavg_ma,
					uuc_rbatt_mohm, unusable_uv,
					pc_unusable, i, uuc_uah);
	*ret_pc_unusable = pc_unusable;
	return uuc_uah;
}

#define TIME_PER_PERCENT_UUC			60
static int adjust_uuc(struct qpnp_bms_chip *chip,
			struct soc_params *params,
			int new_pc_unusable,
			int new_uuc_uah,
			int batt_temp)
{
	int new_unusable_mv, new_iavg_ma;
	int max_percent_change;

	max_percent_change = max(params->delta_time_s
				/ TIME_PER_PERCENT_UUC, 1);

	if (chip->first_time_calc_uuc || chip->prev_pc_unusable == -EINVAL
		|| abs(chip->prev_pc_unusable - new_pc_unusable)
			<= max_percent_change) {
		chip->prev_pc_unusable = new_pc_unusable;
		return new_uuc_uah;
	}

	/* the uuc is trying to change more than 1% restrict it */
	if (new_pc_unusable > chip->prev_pc_unusable)
		chip->prev_pc_unusable += max_percent_change;
	else
		chip->prev_pc_unusable -= max_percent_change;

	new_uuc_uah = (params->fcc_uah * chip->prev_pc_unusable) / 100;

	/* also find update the iavg_ma accordingly */
	new_unusable_mv = interpolate_ocv(chip->pc_temp_ocv_lut,
			batt_temp, chip->prev_pc_unusable);
	if (new_unusable_mv < chip->v_cutoff_uv/1000)
		new_unusable_mv = chip->v_cutoff_uv/1000;

	new_iavg_ma = (new_unusable_mv * 1000 - chip->v_cutoff_uv)
						/ params->rbatt_mohm;
	if (new_iavg_ma == 0)
		new_iavg_ma = 1;
	chip->prev_uuc_iavg_ma = new_iavg_ma;
	pr_debug("Restricting UUC to %d (%d%%) unusable_mv = %d iavg_ma = %d\n",
					new_uuc_uah, chip->prev_pc_unusable,
					new_unusable_mv, new_iavg_ma);

	return new_uuc_uah;
}

static int calculate_unusable_charge_uah(struct qpnp_bms_chip *chip,
					struct soc_params *params,
					int batt_temp)
{
	int uuc_uah_iavg;
	int i;
	int uuc_iavg_ma = params->iavg_ua / 1000;
	int pc_unusable;

	/*
	 * if called first time, fill all the samples with
	 * the shutdown_iavg_ma
	 */
	if (chip->first_time_calc_uuc && chip->shutdown_iavg_ma != 0) {
		pr_debug("Using shutdown_iavg_ma = %d in all samples\n",
				chip->shutdown_iavg_ma);
		for (i = 0; i < IAVG_SAMPLES; i++)
			chip->iavg_samples_ma[i] = chip->shutdown_iavg_ma;

		chip->iavg_index = 0;
		chip->iavg_num_samples = IAVG_SAMPLES;
	}

	if (params->delta_time_s >= IAVG_MINIMAL_TIME) {
		/*
		* if charging use a nominal avg current to keep
		* a reasonable UUC while charging
		*/
		if (uuc_iavg_ma < MIN_IAVG_MA)
			uuc_iavg_ma = MIN_IAVG_MA;
		chip->iavg_samples_ma[chip->iavg_index] = uuc_iavg_ma;
		chip->iavg_index = (chip->iavg_index + 1) % IAVG_SAMPLES;
		chip->iavg_num_samples++;
		if (chip->iavg_num_samples >= IAVG_SAMPLES)
			chip->iavg_num_samples = IAVG_SAMPLES;
	}

	/* now that this sample is added calcualte the average */
	uuc_iavg_ma = 0;
	if (chip->iavg_num_samples != 0) {
		for (i = 0; i < chip->iavg_num_samples; i++) {
			pr_debug("iavg_samples_ma[%d] = %d\n", i,
					chip->iavg_samples_ma[i]);
			uuc_iavg_ma += chip->iavg_samples_ma[i];
		}

		uuc_iavg_ma = DIV_ROUND_CLOSEST(uuc_iavg_ma,
						chip->iavg_num_samples);
	}

	/*
	 * if we're in bms reset mode, force uuc to be 3% of fcc
	 */
	if (bms_reset)
		return (params->fcc_uah * 3) / 100;

	uuc_uah_iavg = calculate_termination_uuc(chip, params, batt_temp,
						uuc_iavg_ma, &pc_unusable);
	pr_debug("uuc_iavg_ma = %d uuc with iavg = %d\n",
						uuc_iavg_ma, uuc_uah_iavg);

	chip->prev_uuc_iavg_ma = uuc_iavg_ma;
	/* restrict the uuc such that it can increase only by one percent */
	uuc_uah_iavg = adjust_uuc(chip, params, pc_unusable,
					uuc_uah_iavg, batt_temp);

	return uuc_uah_iavg;
}

static s64 find_ocv_charge_for_soc(struct qpnp_bms_chip *chip,
				struct soc_params *params, int soc)
{
	return div_s64((s64)soc * (params->fcc_uah - params->uuc_uah),
			100) + params->cc_uah + params->uuc_uah;
}

static int find_pc_for_soc(struct qpnp_bms_chip *chip,
			struct soc_params *params, int soc)
{
	int ocv_charge_uah = find_ocv_charge_for_soc(chip, params, soc);
	int pc;

	pc = DIV_ROUND_CLOSEST((int)ocv_charge_uah * 100, params->fcc_uah);
	pc = clamp(pc, 0, 100);
	pr_debug("soc = %d, fcc = %d uuc = %d rc = %d pc = %d\n",
			soc, params->fcc_uah, params->uuc_uah,
			ocv_charge_uah, pc);
	return pc;
}

static int get_current_time(unsigned long *now_tm_sec)
{
	struct rtc_time tm;
	struct rtc_device *rtc;
	int rc;

	rtc = rtc_class_open(CONFIG_RTC_HCTOSYS_DEVICE);
	if (rtc == NULL) {
		pr_err("%s: unable to open rtc device (%s)\n",
			__FILE__, CONFIG_RTC_HCTOSYS_DEVICE);
		return -EINVAL;
	}

	rc = rtc_read_time(rtc, &tm);
	if (rc) {
		pr_err("Error reading rtc device (%s) : %d\n",
			CONFIG_RTC_HCTOSYS_DEVICE, rc);
		goto close_time;
	}

	rc = rtc_valid_tm(&tm);
	if (rc) {
		pr_err("Invalid RTC time (%s): %d\n",
			CONFIG_RTC_HCTOSYS_DEVICE, rc);
		goto close_time;
	}
	rtc_tm_to_time(&tm, now_tm_sec);

close_time:
	rtc_class_close(rtc);
	return rc;
}

/* Returns estimated battery resistance */
static int get_prop_bms_batt_resistance(struct qpnp_bms_chip *chip)
{
	return chip->rbatt_mohm * 1000;
}

/* Returns instantaneous current in uA */
static int get_prop_bms_current_now(struct qpnp_bms_chip *chip)
{
	int rc, result_ua;

	rc = get_battery_current(chip, &result_ua);
	if (rc) {
		pr_err("failed to get current: %d\n", rc);
		return rc;
	}
	return result_ua;
}

/* Returns coulomb counter in uAh */
static int get_prop_bms_charge_counter(struct qpnp_bms_chip *chip)
{
	int64_t cc_raw;

	mutex_lock(&chip->bms_output_lock);
	lock_output_data(chip);
	read_cc_raw(chip, &cc_raw, CC);
	unlock_output_data(chip);
	mutex_unlock(&chip->bms_output_lock);

	return calculate_cc(chip, cc_raw, CC, NORESET);
}

/* Returns shadow coulomb counter in uAh */
static int get_prop_bms_charge_counter_shadow(struct qpnp_bms_chip *chip)
{
	int64_t cc_raw;

	mutex_lock(&chip->bms_output_lock);
	lock_output_data(chip);
	read_cc_raw(chip, &cc_raw, SHDW_CC);
	unlock_output_data(chip);
	mutex_unlock(&chip->bms_output_lock);

	return calculate_cc(chip, cc_raw, SHDW_CC, NORESET);
}

/* Returns full charge design in uAh */
static int get_prop_bms_charge_full_design(struct qpnp_bms_chip *chip)
{
	return chip->fcc_mah * 1000;
}

/* Returns the current full charge in uAh */
static int get_prop_bms_charge_full(struct qpnp_bms_chip *chip)
{
	int rc;
	struct qpnp_vadc_result result;

	rc = qpnp_vadc_read(chip->vadc_dev, LR_MUX1_BATT_THERM, &result);
	if (rc) {
		pr_err("Unable to read battery temperature\n");
		return rc;
	}

	return calculate_fcc(chip, (int)result.physical);
}

static int calculate_delta_time(unsigned long *time_stamp, int *delta_time_s)
{
	unsigned long now_tm_sec = 0;

	/* default to delta time = 0 if anything fails */
	*delta_time_s = 0;

	if (get_current_time(&now_tm_sec)) {
		pr_err("RTC read failed\n");
		return 0;
	}

	*delta_time_s = (now_tm_sec - *time_stamp);

	/* remember this time */
	*time_stamp = now_tm_sec;
	return 0;
}

static void calculate_soc_params(struct qpnp_bms_chip *chip,
						struct raw_soc_params *raw,
						struct soc_params *params,
						int batt_temp)
{
	int soc_rbatt, shdw_cc_uah;

	calculate_delta_time(&chip->tm_sec, &params->delta_time_s);
	pr_debug("tm_sec = %ld, delta_s = %d\n",
		chip->tm_sec, params->delta_time_s);
	params->fcc_uah = calculate_fcc(chip, batt_temp);
	pr_debug("FCC = %uuAh batt_temp = %d\n", params->fcc_uah, batt_temp);

	/* calculate remainging charge */
	params->ocv_charge_uah = calculate_ocv_charge(
						chip, raw,
						params->fcc_uah);
	pr_debug("ocv_charge_uah = %uuAh\n", params->ocv_charge_uah);

	/* calculate cc micro_volt_hour */
	params->cc_uah = calculate_cc(chip, raw->cc, CC, RESET);
	shdw_cc_uah = calculate_cc(chip, raw->shdw_cc, SHDW_CC, RESET);
	pr_debug("cc_uah = %duAh raw->cc = %llx, shdw_cc_uah = %duAh raw->shdw_cc = %llx\n",
			params->cc_uah, raw->cc,
			shdw_cc_uah, raw->shdw_cc);

	soc_rbatt = ((params->ocv_charge_uah - params->cc_uah) * 100)
							/ params->fcc_uah;
	if (soc_rbatt < 0)
		soc_rbatt = 0;
	params->rbatt_mohm = get_rbatt(chip, soc_rbatt, batt_temp);
	pr_debug("rbatt_mohm = %d\n", params->rbatt_mohm);

	if (params->rbatt_mohm != chip->rbatt_mohm) {
		chip->rbatt_mohm = params->rbatt_mohm;
		if (chip->bms_psy_registered)
			power_supply_changed(&chip->bms_psy);
	}

	calculate_iavg(chip, params->cc_uah, &params->iavg_ua,
						params->delta_time_s);

	params->uuc_uah = calculate_unusable_charge_uah(chip, params,
							batt_temp);
	pr_debug("UUC = %uuAh\n", params->uuc_uah);
}

static int bound_soc(int soc)
{
	soc = max(0, soc);
	soc = min(100, soc);
	return soc;
}

#define IBAT_TOL_MASK		0x0F
#define OCV_TOL_MASK		0xF0
#define IBAT_TOL_DEFAULT	0x03
#define IBAT_TOL_NOCHG		0x0F
#define OCV_TOL_DEFAULT		0x20
#define OCV_TOL_NO_OCV		0x00
static int stop_ocv_updates(struct qpnp_bms_chip *chip)
{
	pr_debug("stopping ocv updates\n");
	return qpnp_masked_write(chip, BMS1_TOL_CTL,
			OCV_TOL_MASK, OCV_TOL_NO_OCV);
}

static int reset_bms_for_test(struct qpnp_bms_chip *chip)
{
	int ibat_ua = 0, vbat_uv = 0, rc;
	int ocv_est_uv;

	if (!chip) {
		pr_err("BMS driver has not been initialized yet!\n");
		return -EINVAL;
	}

	rc = get_simultaneous_batt_v_and_i(chip, &ibat_ua, &vbat_uv);

	/*
	 * Don't include rbatt and rbatt_capacitative since we expect this to
	 * be used with a fake battery which does not have internal resistances
	 */
	ocv_est_uv = vbat_uv + (ibat_ua * chip->r_conn_mohm) / 1000;
	pr_debug("forcing ocv to be %d due to bms reset mode\n", ocv_est_uv);
	chip->last_ocv_uv = ocv_est_uv;
	mutex_lock(&chip->last_soc_mutex);
	chip->last_soc = -EINVAL;
	chip->last_soc_invalid = true;
	mutex_unlock(&chip->last_soc_mutex);
	reset_cc(chip, CLEAR_CC | CLEAR_SHDW_CC);
	chip->software_cc_uah = 0;
	chip->software_shdw_cc_uah = 0;
	chip->last_cc_uah = INT_MIN;
	stop_ocv_updates(chip);

	pr_debug("bms reset to ocv = %duv vbat_ua = %d ibat_ua = %d\n",
			chip->last_ocv_uv, vbat_uv, ibat_ua);

	return rc;
}

static int bms_reset_set(const char *val, const struct kernel_param *kp)
{
	int rc;

	rc = param_set_bool(val, kp);
	if (rc) {
		pr_err("Unable to set bms_reset: %d\n", rc);
		return rc;
	}

	if (*(bool *)kp->arg) {
		struct power_supply *bms_psy = power_supply_get_by_name("bms");
		struct qpnp_bms_chip *chip = container_of(bms_psy,
					struct qpnp_bms_chip, bms_psy);

		rc = reset_bms_for_test(chip);
		if (rc) {
			pr_err("Unable to modify bms_reset: %d\n", rc);
			return rc;
		}
	}
	return 0;
}

static struct kernel_param_ops bms_reset_ops = {
	.set = bms_reset_set,
	.get = param_get_bool,
};

module_param_cb(bms_reset, &bms_reset_ops, &bms_reset, 0644);

#define SOC_STORAGE_MASK	0xFE
static void backup_soc_and_iavg(struct qpnp_bms_chip *chip, int batt_temp,
				int soc)
{
	u8 temp;
	int rc;
	int iavg_ma = chip->prev_uuc_iavg_ma;

	if (iavg_ma > MIN_IAVG_MA)
		temp = (iavg_ma - MIN_IAVG_MA) / IAVG_STEP_SIZE_MA;
	else
		temp = 0;

	rc = qpnp_write_wrapper(chip, &temp, chip->base + IAVG_STORAGE_REG, 1);

	/* store an invalid soc if temperature is below 5degC */
	if (batt_temp > IGNORE_SOC_TEMP_DECIDEG)
		qpnp_masked_write_base(chip, chip->soc_storage_addr,
				SOC_STORAGE_MASK, (soc + 1) << 1);
	else
		qpnp_masked_write_base(chip, chip->soc_storage_addr,
				SOC_STORAGE_MASK, SOC_STORAGE_MASK);
}

static int scale_soc_while_chg(struct qpnp_bms_chip *chip, int chg_time_sec,
				int catch_up_sec, int new_soc, int prev_soc)
{
	int scaled_soc;
	int numerator;

	/*
	 * Don't report a high value immediately slowly scale the
	 * value from prev_soc to the new soc based on a charge time
	 * weighted average
	 */
	pr_debug("cts = %d catch_up_sec = %d\n", chg_time_sec, catch_up_sec);
	if (catch_up_sec == 0)
		return new_soc;

	if (chg_time_sec > catch_up_sec)
		return new_soc;

	numerator = (catch_up_sec - chg_time_sec) * prev_soc
			+ chg_time_sec * new_soc;
	scaled_soc = numerator / catch_up_sec;

	pr_debug("cts = %d new_soc = %d prev_soc = %d scaled_soc = %d\n",
			chg_time_sec, new_soc, prev_soc, scaled_soc);

	return scaled_soc;
}

/*
 * bms_fake_battery is set in setups where a battery emulator is used instead
 * of a real battery. This makes the bms driver report a different/fake value
 * regardless of the calculated state of charge.
 */
static int bms_fake_battery = -EINVAL;
module_param(bms_fake_battery, int, 0644);

static int report_voltage_based_soc(struct qpnp_bms_chip *chip)
{
	pr_debug("Reported voltage based soc = %d\n",
			chip->prev_voltage_based_soc);
	return chip->prev_voltage_based_soc;
}

#define SOC_CATCHUP_SEC_MAX		600
#define SOC_CATCHUP_SEC_PER_PERCENT	60
#define MAX_CATCHUP_SOC	(SOC_CATCHUP_SEC_MAX / SOC_CATCHUP_SEC_PER_PERCENT)
#define SOC_CHANGE_PER_SEC		5
#define REPORT_SOC_WAIT_MS		10000
static int report_cc_based_soc(struct qpnp_bms_chip *chip)
{
	int soc, soc_change;
	int time_since_last_change_sec, charge_time_sec = 0;
	unsigned long last_change_sec;
	struct qpnp_vadc_result result;
	int batt_temp;
	int rc;
	bool charging, charging_since_last_report;

	rc = wait_event_interruptible_timeout(chip->bms_wait_queue,
			chip->calculated_soc != -EINVAL,
			round_jiffies_relative(msecs_to_jiffies
			(REPORT_SOC_WAIT_MS)));

	if (rc == 0 && chip->calculated_soc == -EINVAL) {
		pr_debug("calculate soc timed out\n");
	} else if (rc == -ERESTARTSYS) {
		pr_err("Wait for SoC interrupted.\n");
		return rc;
	}

	rc = qpnp_vadc_read(chip->vadc_dev, LR_MUX1_BATT_THERM, &result);

	if (rc) {
		pr_err("error reading adc channel = %d, rc = %d\n",
					LR_MUX1_BATT_THERM, rc);
		return rc;
	}
	pr_debug("batt_temp phy = %lld meas = 0x%llx\n", result.physical,
						result.measurement);
	batt_temp = (int)result.physical;

	mutex_lock(&chip->last_soc_mutex);
	soc = chip->calculated_soc;

	last_change_sec = chip->last_soc_change_sec;
	calculate_delta_time(&last_change_sec, &time_since_last_change_sec);

	charging = chip->battery_status == POWER_SUPPLY_STATUS_CHARGING;
	charging_since_last_report = charging || (chip->last_soc_unbound
			&& chip->was_charging_at_sleep);
	/*
	 * account for charge time - limit it to SOC_CATCHUP_SEC to
	 * avoid overflows when charging continues for extended periods
	 */
	if (charging) {
		if (chip->charge_start_tm_sec == 0) {
			/*
			 * calculating soc for the first time
			 * after start of chg. Initialize catchup time
			 */
			if (abs(soc - chip->last_soc) < MAX_CATCHUP_SOC)
				chip->catch_up_time_sec =
				(soc - chip->last_soc)
					* SOC_CATCHUP_SEC_PER_PERCENT;
			else
				chip->catch_up_time_sec = SOC_CATCHUP_SEC_MAX;

			if (chip->catch_up_time_sec < 0)
				chip->catch_up_time_sec = 0;
			chip->charge_start_tm_sec = last_change_sec;
		}

		charge_time_sec = min(SOC_CATCHUP_SEC_MAX, (int)last_change_sec
				- chip->charge_start_tm_sec);

		/* end catchup if calculated soc and last soc are same */
		if (chip->last_soc == soc)
			chip->catch_up_time_sec = 0;
	}

	if (chip->last_soc != -EINVAL) {
		/*
		 * last_soc < soc  ... if we have not been charging at all
		 * since the last time this was called, report previous SoC.
		 * Otherwise, scale and catch up.
		 */
		if (chip->last_soc < soc && !charging_since_last_report)
			soc = chip->last_soc;
		else if (chip->last_soc < soc && soc != 100)
			soc = scale_soc_while_chg(chip, charge_time_sec,
					chip->catch_up_time_sec,
					soc, chip->last_soc);

		/* if the battery is close to cutoff allow more change */
		if (wake_lock_active(&chip->low_voltage_wake_lock))
			soc_change = min((int)abs(chip->last_soc - soc),
				time_since_last_change_sec);
		else
			soc_change = min((int)abs(chip->last_soc - soc),
				time_since_last_change_sec
					/ SOC_CHANGE_PER_SEC);

		if (chip->last_soc_unbound) {
			chip->last_soc_unbound = false;
		} else {
			/*
			 * if soc have not been unbound by resume,
			 * only change reported SoC by 1.
			 */
			soc_change = min(1, soc_change);
		}

		if (soc < chip->last_soc && soc != 0)
			soc = chip->last_soc - soc_change;
		if (soc > chip->last_soc && soc != 100)
			soc = chip->last_soc + soc_change;
	}

	if (chip->last_soc != soc && !chip->last_soc_unbound)
		chip->last_soc_change_sec = last_change_sec;

	pr_debug("last_soc = %d, calculated_soc = %d, soc = %d, time since last change = %d\n",
			chip->last_soc, chip->calculated_soc,
			soc, time_since_last_change_sec);
	chip->last_soc = bound_soc(soc);
	backup_soc_and_iavg(chip, batt_temp, chip->last_soc);
	pr_debug("Reported SOC = %d\n", chip->last_soc);
	mutex_unlock(&chip->last_soc_mutex);

	return soc;
}

static int report_state_of_charge(struct qpnp_bms_chip *chip)
{
	if (bms_fake_battery != -EINVAL) {
		pr_debug("Returning Fake SOC = %d%%\n", bms_fake_battery);
		return bms_fake_battery;
	} else if (chip->use_voltage_soc)
		return report_voltage_based_soc(chip);
	else
		return report_cc_based_soc(chip);
}

#define VDD_MAX_ERR			5000
#define VDD_STEP_SIZE			10000
#define MAX_COUNT_BEFORE_RESET_TO_CC	3
static int charging_adjustments(struct qpnp_bms_chip *chip,
				struct soc_params *params, int soc,
				int vbat_uv, int ibat_ua, int batt_temp)
{
	int chg_soc, soc_ibat, batt_terminal_uv, weight_ibat, weight_cc;

	batt_terminal_uv = vbat_uv + (ibat_ua * chip->r_conn_mohm) / 1000;

	if (chip->soc_at_cv == -EINVAL) {
		if (batt_terminal_uv >= chip->max_voltage_uv - VDD_MAX_ERR ||
							chip->in_taper_charge) {
			chip->soc_at_cv = soc;
			chip->prev_chg_soc = soc;
			chip->ibat_at_cv_ua = params->iavg_ua;
			pr_debug("CC_TO_CV ibat_ua = %d CHG SOC %d\n",
					ibat_ua, soc);
		} else {
			/* In constant current charging return the calc soc */
			pr_debug("CC CHG SOC %d\n", soc);
		}

		chip->prev_batt_terminal_uv = batt_terminal_uv;
		chip->system_load_count = 0;
		return soc;
	} else if (ibat_ua > 0 && batt_terminal_uv
			< chip->max_voltage_uv - (VDD_MAX_ERR * 2)) {
		if (chip->system_load_count > MAX_COUNT_BEFORE_RESET_TO_CC) {
			chip->soc_at_cv = -EINVAL;
			pr_debug("Vbat below CV threshold, resetting CC_TO_CV\n");
			chip->system_load_count = 0;
		} else {
			chip->system_load_count += 1;
			pr_debug("Vbat below CV threshold, count: %d\n",
					chip->system_load_count);
		}
		return soc;
	} else if (ibat_ua > 0) {
		pr_debug("NOT CHARGING SOC %d\n", soc);
		chip->system_load_count = 0;
		chip->prev_chg_soc = soc;
		return soc;
	}

	chip->system_load_count = 0;
	/*
	 * battery is in CV phase - begin linear interpolation of soc based on
	 * battery charge current
	 */

	/*
	 * if voltage lessened (possibly because of a system load)
	 * keep reporting the prev chg soc
	 */
	if (batt_terminal_uv <= chip->prev_batt_terminal_uv - VDD_STEP_SIZE) {
		pr_debug("batt_terminal_uv %d < (max = %d - 10000); CC CHG SOC %d\n",
			batt_terminal_uv, chip->prev_batt_terminal_uv,
			chip->prev_chg_soc);
		chip->prev_batt_terminal_uv = batt_terminal_uv;
		return chip->prev_chg_soc;
	}

	soc_ibat = bound_soc(linear_interpolate(chip->soc_at_cv,
					chip->ibat_at_cv_ua,
					100, -1 * chip->chg_term_ua,
					params->iavg_ua));
	weight_ibat = bound_soc(linear_interpolate(1, chip->soc_at_cv,
					100, 100, chip->prev_chg_soc));
	weight_cc = 100 - weight_ibat;
	chg_soc = bound_soc(DIV_ROUND_CLOSEST(soc_ibat * weight_ibat
			+ weight_cc * soc, 100));

	pr_debug("weight_ibat = %d, weight_cc = %d, soc_ibat = %d, soc_cc = %d\n",
			weight_ibat, weight_cc, soc_ibat, soc);

	/* always report a higher soc */
	if (chg_soc > chip->prev_chg_soc) {
		chip->prev_chg_soc = chg_soc;

		chip->charging_adjusted_ocv = find_ocv_for_pc(chip, batt_temp,
				find_pc_for_soc(chip, params, chg_soc));
		pr_debug("CC CHG ADJ OCV = %d CHG SOC %d\n",
				chip->charging_adjusted_ocv,
				chip->prev_chg_soc);
	}

	pr_debug("Reporting CHG SOC %d\n", chip->prev_chg_soc);
	chip->prev_batt_terminal_uv = batt_terminal_uv;
	return chip->prev_chg_soc;
}

static void very_low_voltage_check(struct qpnp_bms_chip *chip, int vbat_uv)
{
	/*
	 * if battery is very low (v_cutoff voltage + 20mv) hold
	 * a wakelock untill soc = 0%
	 */
	if (vbat_uv <= chip->low_voltage_threshold
			&& !wake_lock_active(&chip->low_voltage_wake_lock)) {
		pr_debug("voltage = %d low holding wakelock\n", vbat_uv);
		wake_lock(&chip->low_voltage_wake_lock);
	} else if (vbat_uv > chip->low_voltage_threshold
			&& wake_lock_active(&chip->low_voltage_wake_lock)) {
		pr_debug("voltage = %d releasing wakelock\n", vbat_uv);
		wake_unlock(&chip->low_voltage_wake_lock);
	}
}

#define VBATT_ERROR_MARGIN	20000
static void cv_voltage_check(struct qpnp_bms_chip *chip, int vbat_uv)
{
	/*
	 * if battery is very low (v_cutoff voltage + 20mv) hold
	 * a wakelock untill soc = 0%
	 */
	if (wake_lock_active(&chip->cv_wake_lock)) {
		if (chip->soc_at_cv != -EINVAL) {
			pr_debug("hit CV, releasing cv wakelock\n");
			wake_unlock(&chip->cv_wake_lock);
		} else if (!is_battery_charging(chip)) {
			pr_debug("charging stopped, releasing cv wakelock\n");
			wake_unlock(&chip->cv_wake_lock);
		}
	} else if (vbat_uv > chip->max_voltage_uv - VBATT_ERROR_MARGIN
			&& chip->soc_at_cv == -EINVAL
			&& is_battery_charging(chip)
			&& !wake_lock_active(&chip->cv_wake_lock)) {
		pr_debug("voltage = %d holding cv wakelock\n", vbat_uv);
		wake_lock(&chip->cv_wake_lock);
	}
}

#define NO_ADJUST_HIGH_SOC_THRESHOLD	98
static int adjust_soc(struct qpnp_bms_chip *chip, struct soc_params *params,
							int soc, int batt_temp)
{
	int ibat_ua = 0, vbat_uv = 0;
	int ocv_est_uv = 0, soc_est = 0, pc_est = 0, pc = 0;
	int delta_ocv_uv = 0;
	int n = 0;
	int rc_new_uah = 0;
	int pc_new = 0;
	int soc_new = 0;
	int slope = 0;
	int rc = 0;
	int delta_ocv_uv_limit = 0;
	int correction_limit_uv = 0;

	rc = get_simultaneous_batt_v_and_i(chip, &ibat_ua, &vbat_uv);
	if (rc < 0) {
		pr_err("simultaneous vbat ibat failed err = %d\n", rc);
		goto out;
	}

	very_low_voltage_check(chip, vbat_uv);
	cv_voltage_check(chip, vbat_uv);

	delta_ocv_uv_limit = DIV_ROUND_CLOSEST(ibat_ua, 1000);

	ocv_est_uv = vbat_uv + (ibat_ua * params->rbatt_mohm)/1000;

	pc_est = calculate_pc(chip, ocv_est_uv, batt_temp);
	soc_est = div_s64((s64)params->fcc_uah * pc_est - params->uuc_uah*100,
				(s64)params->fcc_uah - params->uuc_uah);
	soc_est = bound_soc(soc_est);

	/* never adjust during bms reset mode */
	if (bms_reset) {
		pr_debug("bms reset mode, SOC adjustment skipped\n");
		goto out;
	}

	if (is_battery_charging(chip)) {
		soc = charging_adjustments(chip, params, soc, vbat_uv, ibat_ua,
				batt_temp);
		/* Skip adjustments if we are in CV or ibat is negative */
		if (chip->soc_at_cv != -EINVAL || ibat_ua < 0)
			goto out;
	}

	/*
	 * do not adjust
	 * if soc_est is same as what bms calculated
	 * OR if soc_est > adjust_soc_low_threshold
	 * OR if soc is above 90
	 * because we might pull it low
	 * and cause a bad user experience
	 */
	if (!wake_lock_active(&chip->low_voltage_wake_lock) &&
			(soc_est == soc
			|| soc_est > chip->adjust_soc_low_threshold
			|| soc >= NO_ADJUST_HIGH_SOC_THRESHOLD))
		goto out;

	if (chip->last_soc_est == -EINVAL)
		chip->last_soc_est = soc;

	n = min(200, max(1 , soc + soc_est + chip->last_soc_est));
	chip->last_soc_est = soc_est;

	pc = calculate_pc(chip, chip->last_ocv_uv, chip->last_ocv_temp);
	if (pc > 0) {
		pc_new = calculate_pc(chip,
				chip->last_ocv_uv - (++slope * 1000),
				chip->last_ocv_temp);
		while (pc_new == pc) {
			/* start taking 10mV steps */
			slope = slope + 10;
			pc_new = calculate_pc(chip,
				chip->last_ocv_uv - (slope * 1000),
				chip->last_ocv_temp);
		}
	} else {
		/*
		 * pc is already at the lowest point,
		 * assume 1 millivolt translates to 1% pc
		 */
		pc = 1;
		pc_new = 0;
		slope = 1;
	}

	delta_ocv_uv = div_s64((soc - soc_est) * (s64)slope * 1000,
							n * (pc - pc_new));

	if (abs(delta_ocv_uv) > delta_ocv_uv_limit) {
		pr_debug("limiting delta ocv %d limit = %d\n", delta_ocv_uv,
				delta_ocv_uv_limit);

		if (delta_ocv_uv > 0)
			delta_ocv_uv = delta_ocv_uv_limit;
		else
			delta_ocv_uv = -1 * delta_ocv_uv_limit;
		pr_debug("new delta ocv = %d\n", delta_ocv_uv);
	}

	if (wake_lock_active(&chip->low_voltage_wake_lock)) {
		/* when in the cutoff region, do not correct upwards */
		delta_ocv_uv = max(0, delta_ocv_uv);
		goto skip_limits;
	}

	if (chip->last_ocv_uv > chip->flat_ocv_threshold_uv)
		correction_limit_uv = chip->high_ocv_correction_limit_uv;
	else
		correction_limit_uv = chip->low_ocv_correction_limit_uv;

	if (abs(delta_ocv_uv) > correction_limit_uv) {
		pr_debug("limiting delta ocv %d limit = %d\n",
			delta_ocv_uv, correction_limit_uv);
		if (delta_ocv_uv > 0)
			delta_ocv_uv = correction_limit_uv;
		else
			delta_ocv_uv = -correction_limit_uv;
		pr_debug("new delta ocv = %d\n", delta_ocv_uv);
	}

skip_limits:

	chip->last_ocv_uv -= delta_ocv_uv;

	if (chip->last_ocv_uv >= chip->max_voltage_uv)
		chip->last_ocv_uv = chip->max_voltage_uv;

	/* calculate the soc based on this new ocv */
	pc_new = calculate_pc(chip, chip->last_ocv_uv, chip->last_ocv_temp);
	rc_new_uah = (params->fcc_uah * pc_new) / 100;
	soc_new = (rc_new_uah - params->cc_uah - params->uuc_uah)*100
					/ (params->fcc_uah - params->uuc_uah);

	/*
	 * if soc_new is ZERO force it higher so that phone doesnt report soc=0
	 * soc = 0 should happen only when soc_est is above a set value
	 */
	if (soc_new == 0 && soc_est >= chip->hold_soc_est)
		soc_new = 1;

	soc = soc_new;

out:
	pr_debug("ibat_ua = %d, vbat_uv = %d, ocv_est_uv = %d, pc_est = %d, soc_est = %d, n = %d, delta_ocv_uv = %d, last_ocv_uv = %d, pc_new = %d, soc_new = %d, rbatt = %d, slope = %d\n",
		ibat_ua, vbat_uv, ocv_est_uv, pc_est,
		soc_est, n, delta_ocv_uv, chip->last_ocv_uv,
		pc_new, soc_new, params->rbatt_mohm, slope);

	return soc;
}

static int clamp_soc_based_on_voltage(struct qpnp_bms_chip *chip, int soc)
{
	int rc, vbat_uv;

	rc = get_battery_voltage(chip, &vbat_uv);
	if (rc < 0) {
		pr_err("adc vbat failed err = %d\n", rc);
		return soc;
	}

	/* only clamp when discharging */
	if (is_battery_charging(chip))
		return soc;

	if (soc <= 0 && vbat_uv > chip->v_cutoff_uv) {
		pr_debug("clamping soc to 1, vbat (%d) > cutoff (%d)\n",
						vbat_uv, chip->v_cutoff_uv);
		return 1;
	} else {
		pr_debug("not clamping, using soc = %d, vbat = %d and cutoff = %d\n",
				soc, vbat_uv, chip->v_cutoff_uv);
		return soc;
	}
}

static int64_t convert_cc_uah_to_raw(struct qpnp_bms_chip *chip, int64_t cc_uah)
{
	int64_t cc_uv, cc_pvh, cc_raw;

	cc_pvh = cc_uah * chip->r_sense_uohm;
	cc_uv = div_s64(cc_pvh * SLEEP_CLK_HZ * SECONDS_PER_HOUR,
				CC_READING_TICKS * 1000000LL);
	cc_raw = div_s64(cc_uv * CC_READING_RESOLUTION_D,
			CC_READING_RESOLUTION_N);
	return cc_raw;
}

#define CC_STEP_INCREMENT_UAH	1500
#define OCV_STEP_INCREMENT	0x10
static void configure_soc_wakeup(struct qpnp_bms_chip *chip,
				struct soc_params *params,
				int batt_temp, int target_soc)
{
	int target_ocv_uv;
	int64_t target_cc_uah, cc_raw_64, current_shdw_cc_raw_64;
	int64_t current_shdw_cc_uah, iadc_comp_factor;
	uint64_t cc_raw, current_shdw_cc_raw;
	int16_t ocv_raw, current_ocv_raw;

	current_shdw_cc_raw = 0;
	mutex_lock(&chip->bms_output_lock);
	lock_output_data(chip);
	qpnp_read_wrapper(chip, (u8 *)&current_ocv_raw,
			chip->base + BMS1_OCV_FOR_SOC_DATA0, 2);
	unlock_output_data(chip);
	mutex_unlock(&chip->bms_output_lock);
	current_shdw_cc_uah = get_prop_bms_charge_counter_shadow(chip);
	current_shdw_cc_raw_64 = convert_cc_uah_to_raw(chip,
			current_shdw_cc_uah);

	/*
	 * Calculate the target shadow coulomb counter threshold for when
	 * the SoC changes.
	 *
	 * Since the BMS driver resets the shadow coulomb counter every
	 * 20 seconds when the device is awake, calculate the threshold as
	 * a delta from the current shadow coulomb count.
	 */
	target_cc_uah = (100 - target_soc)
		* (params->fcc_uah - params->uuc_uah)
		/ 100 - current_shdw_cc_uah;
	if (target_cc_uah < 0) {
		/*
		 * If the target cc is below 0, that means we have already
		 * passed the point where SoC should have fallen.
		 * Set a wakeup in a few more mAh and check back again
		 */
		target_cc_uah = CC_STEP_INCREMENT_UAH;
	}
	iadc_comp_factor = 100000;
	qpnp_iadc_comp_result(chip->iadc_dev, &iadc_comp_factor);
	target_cc_uah = div64_s64(target_cc_uah * 100000, iadc_comp_factor);
	target_cc_uah = cc_reverse_adjust_for_gain(chip, target_cc_uah);
	cc_raw_64 = convert_cc_uah_to_raw(chip, target_cc_uah);
	cc_raw = convert_s64_to_s36(cc_raw_64);

	target_ocv_uv = find_ocv_for_pc(chip, batt_temp,
				find_pc_for_soc(chip, params, target_soc));
	ocv_raw = convert_vbatt_uv_to_raw(chip, target_ocv_uv);

	/*
	 * If the current_ocv_raw was updated since reaching 100% and is lower
	 * than the calculated target ocv threshold, set the new target
	 * threshold 1.5mAh lower in order to check if the SoC changed yet.
	 */
	if (current_ocv_raw != chip->ocv_reading_at_100
			&& current_ocv_raw < ocv_raw)
		ocv_raw = current_ocv_raw - OCV_STEP_INCREMENT;

	qpnp_write_wrapper(chip, (u8 *)&cc_raw,
			chip->base + BMS1_SW_CC_THR0, 5);
	qpnp_write_wrapper(chip, (u8 *)&ocv_raw,
			chip->base + BMS1_OCV_THR0, 2);

	enable_bms_irq(&chip->ocv_thr_irq);
	enable_bms_irq(&chip->sw_cc_thr_irq);
	pr_debug("current sw_cc_raw = 0x%llx, current ocv = 0x%hx\n",
			current_shdw_cc_raw, (uint16_t)current_ocv_raw);
	pr_debug("target_cc_uah = %lld, raw64 = 0x%llx, raw 36 = 0x%llx, ocv_raw = 0x%hx\n",
			target_cc_uah,
			(uint64_t)cc_raw_64, cc_raw,
			(uint16_t)ocv_raw);
}

#define BAD_SOC_THRESH	-10
static int calculate_raw_soc(struct qpnp_bms_chip *chip,
					struct raw_soc_params *raw,
					struct soc_params *params,
					int batt_temp)
{
	int soc, remaining_usable_charge_uah;

	/* calculate remaining usable charge */
	remaining_usable_charge_uah = params->ocv_charge_uah
					- params->cc_uah
					- params->uuc_uah;
	pr_debug("RUC = %duAh\n", remaining_usable_charge_uah);

	soc = DIV_ROUND_CLOSEST((remaining_usable_charge_uah * 100),
				(params->fcc_uah - params->uuc_uah));

	if (chip->first_time_calc_soc && soc > BAD_SOC_THRESH && soc < 0) {
		/*
		 * first time calcualtion and the pon ocv  is too low resulting
		 * in a bad soc. Adjust ocv to get 0 soc
		 */
		pr_debug("soc is %d, adjusting pon ocv to make it 0\n", soc);
		chip->last_ocv_uv = find_ocv_for_pc(chip, batt_temp,
				find_pc_for_soc(chip, params, 0));
		params->ocv_charge_uah = find_ocv_charge_for_soc(chip,
				params, 0);

		remaining_usable_charge_uah = params->ocv_charge_uah
					- params->cc_uah
					- params->uuc_uah;

		soc = DIV_ROUND_CLOSEST((remaining_usable_charge_uah * 100),
					(params->fcc_uah
						- params->uuc_uah));
		pr_debug("DONE for O soc is %d, pon ocv adjusted to %duV\n",
				soc, chip->last_ocv_uv);
	}

	if (soc > 100)
		soc = 100;

	if (soc > BAD_SOC_THRESH && soc < 0) {
		pr_debug("bad rem_usb_chg = %d rem_chg %d, cc_uah %d, unusb_chg %d\n",
				remaining_usable_charge_uah,
				params->ocv_charge_uah,
				params->cc_uah, params->uuc_uah);

		pr_debug("for bad rem_usb_chg last_ocv_uv = %d batt_temp = %d fcc = %d soc =%d\n",
				chip->last_ocv_uv, batt_temp,
				params->fcc_uah, soc);
		soc = 0;
	}

	return soc;
}

#define SLEEP_RECALC_INTERVAL	3
static int calculate_state_of_charge(struct qpnp_bms_chip *chip,
					struct raw_soc_params *raw,
					int batt_temp)
{
	struct soc_params params;
	int soc, previous_soc, shutdown_soc, new_calculated_soc;
	int remaining_usable_charge_uah;

	calculate_soc_params(chip, raw, &params, batt_temp);
	if (!is_battery_present(chip)) {
		pr_debug("battery gone, reporting 100\n");
		new_calculated_soc = 100;
		goto done_calculating;
	}

	if (params.fcc_uah - params.uuc_uah <= 0) {
		pr_debug("FCC = %duAh, UUC = %duAh forcing soc = 0\n",
						params.fcc_uah,
						params.uuc_uah);
		new_calculated_soc = 0;
		goto done_calculating;
	}

	soc = calculate_raw_soc(chip, raw, &params, batt_temp);

	mutex_lock(&chip->soc_invalidation_mutex);
	shutdown_soc = chip->shutdown_soc;

	if (chip->first_time_calc_soc && soc != shutdown_soc
			&& !chip->shutdown_soc_invalid) {
		/*
		 * soc for the first time - use shutdown soc
		 * to adjust pon ocv since it is a small percent away from
		 * the real soc
		 */
		pr_debug("soc = %d before forcing shutdown_soc = %d\n",
							soc, shutdown_soc);
		chip->last_ocv_uv = find_ocv_for_pc(chip, batt_temp,
				find_pc_for_soc(chip, &params, shutdown_soc));
		params.ocv_charge_uah = find_ocv_charge_for_soc(chip,
				&params, shutdown_soc);

		remaining_usable_charge_uah = params.ocv_charge_uah
					- params.cc_uah
					- params.uuc_uah;

		soc = DIV_ROUND_CLOSEST((remaining_usable_charge_uah * 100),
					(params.fcc_uah
						- params.uuc_uah));

		pr_debug("DONE for shutdown_soc = %d soc is %d, adjusted ocv to %duV\n",
				shutdown_soc, soc, chip->last_ocv_uv);
	}
	mutex_unlock(&chip->soc_invalidation_mutex);

	if (chip->first_time_calc_soc && !chip->shutdown_soc_invalid) {
		pr_debug("Skip adjustment when shutdown SOC has been forced\n");
		new_calculated_soc = soc;
	} else {
		pr_debug("SOC before adjustment = %d\n", soc);
		new_calculated_soc = adjust_soc(chip, &params, soc, batt_temp);
	}

	/* always clamp soc due to BMS hw/sw immaturities */
	new_calculated_soc = clamp_soc_based_on_voltage(chip,
					new_calculated_soc);

	new_calculated_soc = bound_soc(new_calculated_soc);
	/*
	 * If the battery is full, configure the cc threshold so the system
	 * wakes up after SoC changes
	 */
	if (is_battery_full(chip)) {
		configure_soc_wakeup(chip, &params,
				batt_temp, bound_soc(new_calculated_soc - 1));
	} else {
		disable_bms_irq(&chip->ocv_thr_irq);
		disable_bms_irq(&chip->sw_cc_thr_irq);
	}
done_calculating:
	mutex_lock(&chip->last_soc_mutex);
	previous_soc = chip->calculated_soc;
	chip->calculated_soc = new_calculated_soc;
	pr_debug("CC based calculated SOC = %d\n", chip->calculated_soc);
	if (chip->last_soc_invalid) {
		chip->last_soc_invalid = false;
		chip->last_soc = -EINVAL;
	}
	/*
	 * Check if more than a long time has passed since the last
	 * calculation (more than n times compared to the soc recalculation
	 * rate, where n is defined by SLEEP_RECALC_INTERVAL). If this is true,
	 * then the system must have gone through a long sleep, and SoC can be
	 * allowed to become unbounded by the last reported SoC
	 */
	if (params.delta_time_s * 1000 >
			chip->calculate_soc_ms * SLEEP_RECALC_INTERVAL
			&& !chip->first_time_calc_soc) {
		chip->last_soc_unbound = true;
		chip->last_soc_change_sec = chip->last_recalc_time;
		pr_debug("last_soc unbound because elapsed time = %d\n",
				params.delta_time_s);
	}
	mutex_unlock(&chip->last_soc_mutex);
	wake_up_interruptible(&chip->bms_wait_queue);

	if (new_calculated_soc != previous_soc && chip->bms_psy_registered) {
		power_supply_changed(&chip->bms_psy);
		pr_debug("power supply changed\n");
	} else {
		/*
		 * Call report state of charge anyways to periodically update
		 * reported SoC. This prevents reported SoC from being stuck
		 * when calculated soc doesn't change.
		 */
		report_state_of_charge(chip);
	}

	get_current_time(&chip->last_recalc_time);
	chip->first_time_calc_soc = 0;
	chip->first_time_calc_uuc = 0;
	return chip->calculated_soc;
}

static int calculate_soc_from_voltage(struct qpnp_bms_chip *chip)
{
	int voltage_range_uv, voltage_remaining_uv, voltage_based_soc;
	int rc, vbat_uv;

	rc = get_battery_voltage(chip, &vbat_uv);
	if (rc < 0) {
		pr_err("adc vbat failed err = %d\n", rc);
		return rc;
	}
	voltage_range_uv = chip->max_voltage_uv - chip->v_cutoff_uv;
	voltage_remaining_uv = vbat_uv - chip->v_cutoff_uv;
	voltage_based_soc = voltage_remaining_uv * 100 / voltage_range_uv;

	voltage_based_soc = clamp(voltage_based_soc, 0, 100);

	if (chip->prev_voltage_based_soc != voltage_based_soc
				&& chip->bms_psy_registered) {
		power_supply_changed(&chip->bms_psy);
		pr_debug("power supply changed\n");
	}
	chip->prev_voltage_based_soc = voltage_based_soc;

	pr_debug("vbat used = %duv\n", vbat_uv);
	pr_debug("Calculated voltage based soc = %d\n", voltage_based_soc);
	return voltage_based_soc;
}

static int recalculate_raw_soc(struct qpnp_bms_chip *chip)
{
	int batt_temp, rc, soc;
	struct qpnp_vadc_result result;
	struct raw_soc_params raw;
	struct soc_params params;

	bms_stay_awake(&chip->soc_wake_source);
	if (chip->use_voltage_soc) {
		soc = calculate_soc_from_voltage(chip);
	} else {
		if (!chip->batfet_closed)
			qpnp_iadc_calibrate_for_trim(chip->iadc_dev, false);
		rc = qpnp_vadc_read(chip->vadc_dev, LR_MUX1_BATT_THERM,
								&result);
		if (rc) {
			pr_err("error reading vadc LR_MUX1_BATT_THERM = %d, rc = %d\n",
						LR_MUX1_BATT_THERM, rc);
			soc = chip->calculated_soc;
		} else {
			pr_debug("batt_temp phy = %lld meas = 0x%llx\n",
							result.physical,
							result.measurement);
			batt_temp = (int)result.physical;

			mutex_lock(&chip->last_ocv_uv_mutex);
			rc = read_soc_params_raw(chip, &raw, batt_temp);
			if (rc) {
				pr_err("Unable to read params, rc: %d\n", rc);
				soc = 0;
				goto done;
			}
			calculate_soc_params(chip, &raw, &params, batt_temp);
			if (!is_battery_present(chip)) {
				pr_debug("battery gone\n");
				soc = 0;
			} else if (params.fcc_uah - params.uuc_uah <= 0) {
				pr_debug("FCC = %duAh, UUC = %duAh forcing soc = 0\n",
							params.fcc_uah,
							params.uuc_uah);
				soc = 0;
			} else {
				soc = calculate_raw_soc(chip, &raw,
							&params, batt_temp);
			}
done:
			mutex_unlock(&chip->last_ocv_uv_mutex);
		}
	}
	bms_relax(&chip->soc_wake_source);
	return soc;
}

static int recalculate_soc(struct qpnp_bms_chip *chip)
{
	int batt_temp, rc, soc;
	struct qpnp_vadc_result result;
	struct raw_soc_params raw;

	bms_stay_awake(&chip->soc_wake_source);
	mutex_lock(&chip->vbat_monitor_mutex);
	if (chip->vbat_monitor_params.state_request !=
			ADC_TM_HIGH_LOW_THR_DISABLE)
		qpnp_adc_tm_channel_measure(chip->adc_tm_dev,
					&chip->vbat_monitor_params);
	mutex_unlock(&chip->vbat_monitor_mutex);
	if (chip->use_voltage_soc) {
		soc = calculate_soc_from_voltage(chip);
	} else {
		if (!chip->batfet_closed)
			qpnp_iadc_calibrate_for_trim(chip->iadc_dev, false);
		rc = qpnp_vadc_read(chip->vadc_dev, LR_MUX1_BATT_THERM,
								&result);
		if (rc) {
			pr_err("error reading vadc LR_MUX1_BATT_THERM = %d, rc = %d\n",
						LR_MUX1_BATT_THERM, rc);
			soc = chip->calculated_soc;
		} else {
			pr_debug("batt_temp phy = %lld meas = 0x%llx\n",
							result.physical,
							result.measurement);
			batt_temp = (int)result.physical;

			mutex_lock(&chip->last_ocv_uv_mutex);
			rc = read_soc_params_raw(chip, &raw, batt_temp);
			if (rc) {
				pr_err("Unable to read params, rc: %d\n", rc);
				soc = chip->calculated_soc;
			} else {
				soc = calculate_state_of_charge(chip,
						&raw, batt_temp);
			}
			mutex_unlock(&chip->last_ocv_uv_mutex);
		}
	}
	bms_relax(&chip->soc_wake_source);
	return soc;
}

static void recalculate_work(struct work_struct *work)
{
	struct qpnp_bms_chip *chip = container_of(work,
				struct qpnp_bms_chip,
				recalc_work);

	recalculate_soc(chip);
}

static int get_calculation_delay_ms(struct qpnp_bms_chip *chip)
{
	if (wake_lock_active(&chip->low_voltage_wake_lock))
		return chip->low_voltage_calculate_soc_ms;
	else if (chip->calculated_soc < chip->low_soc_calc_threshold)
		return chip->low_soc_calculate_soc_ms;
	else
		return chip->calculate_soc_ms;
}

static void calculate_soc_work(struct work_struct *work)
{
	struct qpnp_bms_chip *chip = container_of(work,
				struct qpnp_bms_chip,
				calculate_soc_delayed_work.work);

	recalculate_soc(chip);
	schedule_delayed_work(&chip->calculate_soc_delayed_work,
		round_jiffies_relative(msecs_to_jiffies
		(get_calculation_delay_ms(chip))));
}

static void configure_vbat_monitor_low(struct qpnp_bms_chip *chip)
{
	mutex_lock(&chip->vbat_monitor_mutex);
	if (chip->vbat_monitor_params.state_request
			== ADC_TM_HIGH_LOW_THR_ENABLE) {
		/*
		 * Battery is now around or below v_cutoff
		 */
		pr_debug("battery entered cutoff range\n");
		if (!wake_lock_active(&chip->low_voltage_wake_lock)) {
			pr_debug("voltage low, holding wakelock\n");
			wake_lock(&chip->low_voltage_wake_lock);
			cancel_delayed_work_sync(
					&chip->calculate_soc_delayed_work);
			schedule_delayed_work(
					&chip->calculate_soc_delayed_work, 0);
		}
		chip->vbat_monitor_params.state_request =
					ADC_TM_HIGH_THR_ENABLE;
		chip->vbat_monitor_params.high_thr =
			(chip->low_voltage_threshold + VBATT_ERROR_MARGIN);
		pr_debug("set low thr to %d and high to %d\n",
				chip->vbat_monitor_params.low_thr,
				chip->vbat_monitor_params.high_thr);
		chip->vbat_monitor_params.low_thr = 0;
	} else if (chip->vbat_monitor_params.state_request
			== ADC_TM_LOW_THR_ENABLE) {
		/*
		 * Battery is in normal operation range.
		 */
		pr_debug("battery entered normal range\n");
		if (wake_lock_active(&chip->cv_wake_lock)) {
			wake_unlock(&chip->cv_wake_lock);
			pr_debug("releasing cv wake lock\n");
		}
		chip->in_cv_range = false;
		chip->vbat_monitor_params.state_request =
					ADC_TM_HIGH_LOW_THR_ENABLE;
		chip->vbat_monitor_params.high_thr = chip->max_voltage_uv
				- VBATT_ERROR_MARGIN;
		chip->vbat_monitor_params.low_thr =
				chip->low_voltage_threshold;
		pr_debug("set low thr to %d and high to %d\n",
				chip->vbat_monitor_params.low_thr,
				chip->vbat_monitor_params.high_thr);
	}
	qpnp_adc_tm_channel_measure(chip->adc_tm_dev,
					&chip->vbat_monitor_params);
	mutex_unlock(&chip->vbat_monitor_mutex);
}

#define CV_LOW_THRESHOLD_HYST_UV 100000
static void configure_vbat_monitor_high(struct qpnp_bms_chip *chip)
{
	mutex_lock(&chip->vbat_monitor_mutex);
	if (chip->vbat_monitor_params.state_request
			== ADC_TM_HIGH_LOW_THR_ENABLE) {
		/*
		 * Battery is around vddmax
		 */
		pr_debug("battery entered vddmax range\n");
		chip->in_cv_range = true;
		if (!wake_lock_active(&chip->cv_wake_lock)) {
			wake_lock(&chip->cv_wake_lock);
			pr_debug("holding cv wake lock\n");
		}
		schedule_work(&chip->recalc_work);
		chip->vbat_monitor_params.state_request =
					ADC_TM_LOW_THR_ENABLE;
		chip->vbat_monitor_params.low_thr =
			(chip->max_voltage_uv - CV_LOW_THRESHOLD_HYST_UV);
		chip->vbat_monitor_params.high_thr = chip->max_voltage_uv * 2;
		pr_debug("set low thr to %d and high to %d\n",
				chip->vbat_monitor_params.low_thr,
				chip->vbat_monitor_params.high_thr);
	} else if (chip->vbat_monitor_params.state_request
			== ADC_TM_HIGH_THR_ENABLE) {
		/*
		 * Battery is in normal operation range.
		 */
		pr_debug("battery entered normal range\n");
		if (wake_lock_active(&chip->low_voltage_wake_lock)) {
			pr_debug("voltage high, releasing wakelock\n");
			wake_unlock(&chip->low_voltage_wake_lock);
		}
		chip->vbat_monitor_params.state_request =
					ADC_TM_HIGH_LOW_THR_ENABLE;
		chip->vbat_monitor_params.high_thr =
			chip->max_voltage_uv - VBATT_ERROR_MARGIN;
		chip->vbat_monitor_params.low_thr =
				chip->low_voltage_threshold;
		pr_debug("set low thr to %d and high to %d\n",
				chip->vbat_monitor_params.low_thr,
				chip->vbat_monitor_params.high_thr);
	}
	qpnp_adc_tm_channel_measure(chip->adc_tm_dev,
					&chip->vbat_monitor_params);
	mutex_unlock(&chip->vbat_monitor_mutex);
}

static void btm_notify_vbat(enum qpnp_tm_state state, void *ctx)
{
	struct qpnp_bms_chip *chip = ctx;
	int vbat_uv;
	struct qpnp_vadc_result result;
	int rc;

	rc = qpnp_vadc_read(chip->vadc_dev, VBAT_SNS, &result);
	pr_debug("vbat = %lld, raw = 0x%x\n", result.physical, result.adc_code);

	get_battery_voltage(chip, &vbat_uv);
	pr_debug("vbat is at %d, state is at %d\n", vbat_uv, state);

	if (state == ADC_TM_LOW_STATE) {
		pr_debug("low voltage btm notification triggered\n");
		if (vbat_uv - VBATT_ERROR_MARGIN
				< chip->vbat_monitor_params.low_thr) {
			configure_vbat_monitor_low(chip);
		} else {
			pr_debug("faulty btm trigger, discarding\n");
			qpnp_adc_tm_channel_measure(chip->adc_tm_dev,
					&chip->vbat_monitor_params);
		}
	} else if (state == ADC_TM_HIGH_STATE) {
		pr_debug("high voltage btm notification triggered\n");
		if (vbat_uv + VBATT_ERROR_MARGIN
				> chip->vbat_monitor_params.high_thr) {
			configure_vbat_monitor_high(chip);
		} else {
			pr_debug("faulty btm trigger, discarding\n");
			qpnp_adc_tm_channel_measure(chip->adc_tm_dev,
					&chip->vbat_monitor_params);
		}
	} else {
		pr_debug("unknown voltage notification state: %d\n", state);
	}
	if (chip->bms_psy_registered)
		power_supply_changed(&chip->bms_psy);
}

static int reset_vbat_monitoring(struct qpnp_bms_chip *chip)
{
	int rc;

	chip->vbat_monitor_params.state_request = ADC_TM_HIGH_LOW_THR_DISABLE;

	rc = qpnp_adc_tm_channel_measure(chip->adc_tm_dev,
						&chip->vbat_monitor_params);
	if (rc) {
		pr_err("tm disable failed: %d\n", rc);
		return rc;
	}
	if (wake_lock_active(&chip->low_voltage_wake_lock)) {
		pr_debug("battery removed, releasing wakelock\n");
		wake_unlock(&chip->low_voltage_wake_lock);
	}
	if (chip->in_cv_range) {
		pr_debug("battery removed, removing in_cv_range state\n");
		chip->in_cv_range = false;
	}
	return 0;
}

static int setup_vbat_monitoring(struct qpnp_bms_chip *chip)
{
	int rc;

	chip->vbat_monitor_params.low_thr = chip->low_voltage_threshold;
	chip->vbat_monitor_params.high_thr = chip->max_voltage_uv
							- VBATT_ERROR_MARGIN;
	chip->vbat_monitor_params.state_request = ADC_TM_HIGH_LOW_THR_ENABLE;
	chip->vbat_monitor_params.channel = VBAT_SNS;
	chip->vbat_monitor_params.btm_ctx = (void *)chip;
	chip->vbat_monitor_params.timer_interval = ADC_MEAS1_INTERVAL_1S;
	chip->vbat_monitor_params.threshold_notification = &btm_notify_vbat;
	pr_debug("set low thr to %d and high to %d\n",
			chip->vbat_monitor_params.low_thr,
			chip->vbat_monitor_params.high_thr);

	if (!is_battery_present(chip)) {
		pr_debug("no battery inserted, do not enable vbat monitoring\n");
		chip->vbat_monitor_params.state_request =
			ADC_TM_HIGH_LOW_THR_DISABLE;
	} else {
		rc = qpnp_adc_tm_channel_measure(chip->adc_tm_dev,
						&chip->vbat_monitor_params);
		if (rc) {
			pr_err("tm setup failed: %d\n", rc);
		return rc;
		}
	}

	pr_debug("setup complete\n");
	return 0;
}

static void readjust_fcc_table(struct qpnp_bms_chip *chip)
{
	struct single_row_lut *temp, *old;
	int i, fcc, ratio;

	if (!chip->enable_fcc_learning)
		return;

	if (!chip->fcc_temp_lut) {
		pr_err("The static fcc lut table is NULL\n");
		return;
	}

	temp = devm_kzalloc(chip->dev, sizeof(struct single_row_lut),
			GFP_KERNEL);
	if (!temp) {
		pr_err("Cannot allocate memory for adjusted fcc table\n");
		return;
	}

	fcc = interpolate_fcc(chip->fcc_temp_lut, chip->fcc_new_batt_temp);

	temp->cols = chip->fcc_temp_lut->cols;
	for (i = 0; i < chip->fcc_temp_lut->cols; i++) {
		temp->x[i] = chip->fcc_temp_lut->x[i];
		ratio = div_u64(chip->fcc_temp_lut->y[i] * 1000, fcc);
		temp->y[i] =  (ratio * chip->fcc_new_mah);
		temp->y[i] /= 1000;
	}

	old = chip->adjusted_fcc_temp_lut;
	chip->adjusted_fcc_temp_lut = temp;
	devm_kfree(chip->dev, old);
}

static int read_fcc_data_from_backup(struct qpnp_bms_chip *chip)
{
	int rc, i;
	u8 fcc = 0, chgcyl = 0;

	for (i = 0; i < chip->min_fcc_learning_samples; i++) {
		rc = qpnp_read_wrapper(chip, &fcc,
			chip->base + BMS_FCC_BASE_REG + i, 1);
		rc |= qpnp_read_wrapper(chip, &chgcyl,
			chip->base + BMS_CHGCYL_BASE_REG + i, 1);
		if (rc) {
			pr_err("Unable to read FCC data\n");
			return rc;
		}
		if (fcc == 0 || (fcc == 0xFF && chgcyl == 0xFF)) {
			/* FCC invalid/not present */
			chip->fcc_learning_samples[i].fcc_new = 0;
			chip->fcc_learning_samples[i].chargecycles = 0;
		} else {
			/* valid FCC data */
			chip->fcc_sample_count++;
			chip->fcc_learning_samples[i].fcc_new =
						fcc * chip->fcc_resolution;
			chip->fcc_learning_samples[i].chargecycles =
						chgcyl * CHGCYL_RESOLUTION;
		}
	}

	return 0;
}

static int discard_backup_fcc_data(struct qpnp_bms_chip *chip)
{
	int rc = 0, i;
	u8 temp_u8 = 0;

	chip->fcc_sample_count = 0;
	for (i = 0; i < chip->min_fcc_learning_samples; i++) {
		rc = qpnp_write_wrapper(chip, &temp_u8,
			chip->base + BMS_FCC_BASE_REG + i, 1);
		rc |= qpnp_write_wrapper(chip, &temp_u8,
			chip->base + BMS_CHGCYL_BASE_REG + i, 1);
		if (rc) {
			pr_err("Unable to clear FCC data\n");
			return rc;
		}
	}

	return 0;
}

static void
average_fcc_samples_and_readjust_fcc_table(struct qpnp_bms_chip *chip)
{
	int i, temp_fcc_avg = 0, temp_fcc_delta = 0, new_fcc_avg = 0;
	struct fcc_sample *ft;

	for (i = 0; i < chip->min_fcc_learning_samples; i++)
		temp_fcc_avg += chip->fcc_learning_samples[i].fcc_new;

	temp_fcc_avg /= chip->min_fcc_learning_samples;
	temp_fcc_delta = div_u64(temp_fcc_avg * DELTA_FCC_PERCENT, 100);

	/* fix the fcc if its an outlier i.e. > 5% of the average */
	for (i = 0; i < chip->min_fcc_learning_samples; i++) {
		ft = &chip->fcc_learning_samples[i];
		if (abs(ft->fcc_new - temp_fcc_avg) > temp_fcc_delta)
			new_fcc_avg += temp_fcc_avg;
		else
			new_fcc_avg += ft->fcc_new;
	}
	new_fcc_avg /= chip->min_fcc_learning_samples;

	chip->fcc_new_mah = new_fcc_avg;
	chip->fcc_new_batt_temp = FCC_DEFAULT_TEMP;
	pr_info("FCC update: New fcc_mah=%d, fcc_batt_temp=%d\n",
				new_fcc_avg, FCC_DEFAULT_TEMP);
	readjust_fcc_table(chip);
}

static void backup_charge_cycle(struct qpnp_bms_chip *chip)
{
	int rc = 0;

	if (chip->charge_increase >= 0) {
		rc = qpnp_write_wrapper(chip, &chip->charge_increase,
			chip->base + CHARGE_INCREASE_STORAGE, 1);
		if (rc)
			pr_err("Unable to backup charge_increase\n");
	}

	if (chip->charge_cycles >= 0) {
		rc = qpnp_write_wrapper(chip, (u8 *)&chip->charge_cycles,
				chip->base + CHARGE_CYCLE_STORAGE_LSB, 2);
		if (rc)
			pr_err("Unable to backup charge_cycles\n");
	}
}

static bool chargecycles_in_range(struct qpnp_bms_chip *chip)
{
	int i, min_cycle, max_cycle, valid_range;

	/* find the smallest and largest charge cycle */
	max_cycle = min_cycle = chip->fcc_learning_samples[0].chargecycles;
	for (i = 1; i < chip->min_fcc_learning_samples; i++) {
		if (min_cycle > chip->fcc_learning_samples[i].chargecycles)
			min_cycle = chip->fcc_learning_samples[i].chargecycles;
		if (max_cycle < chip->fcc_learning_samples[i].chargecycles)
			max_cycle = chip->fcc_learning_samples[i].chargecycles;
	}

	/* check if chargecyles are in range to continue with FCC update */
	valid_range = DIV_ROUND_UP(VALID_FCC_CHGCYL_RANGE,
					CHGCYL_RESOLUTION) * CHGCYL_RESOLUTION;
	if (abs(max_cycle - min_cycle) > valid_range)
		return false;

	return true;
}

static int read_chgcycle_data_from_backup(struct qpnp_bms_chip *chip)
{
	int rc;
	uint16_t temp_u16 = 0;
	u8 temp_u8 = 0;

	rc = qpnp_read_wrapper(chip, &temp_u8,
				chip->base + CHARGE_INCREASE_STORAGE, 1);
	if (!rc && temp_u8 != 0xFF)
		chip->charge_increase = temp_u8;

	rc = qpnp_read_wrapper(chip, (u8 *)&temp_u16,
				chip->base + CHARGE_CYCLE_STORAGE_LSB, 2);
	if (!rc && temp_u16 != 0xFFFF)
		chip->charge_cycles = temp_u16;

	return rc;
}

static void
attempt_learning_new_fcc(struct qpnp_bms_chip *chip)
{
	pr_debug("Total FCC sample count=%d\n", chip->fcc_sample_count);

	/* update FCC if we have the required samples */
	if ((chip->fcc_sample_count == chip->min_fcc_learning_samples) &&
						chargecycles_in_range(chip))
		average_fcc_samples_and_readjust_fcc_table(chip);
}

static int calculate_real_soc(struct qpnp_bms_chip *chip,
		int batt_temp, struct raw_soc_params *raw, int cc_uah)
{
	int fcc_uah, rc_uah;

	fcc_uah = calculate_fcc(chip, batt_temp);
	rc_uah = calculate_ocv_charge(chip, raw, fcc_uah);

	return ((rc_uah - cc_uah) * 100) / fcc_uah;
}

#define MAX_U8_VALUE		((u8)(~0U))

static int backup_new_fcc(struct qpnp_bms_chip *chip, int fcc_mah,
							int chargecycles)
{
	int rc, min_cycle, i;
	u8 fcc_new, chgcyl, pos = 0;
	struct fcc_sample *ft;

	if ((fcc_mah > (chip->fcc_resolution * MAX_U8_VALUE)) ||
		(chargecycles > (CHGCYL_RESOLUTION * MAX_U8_VALUE))) {
		pr_warn("FCC/Chgcyl beyond storage limit. FCC=%d, chgcyl=%d\n",
							fcc_mah, chargecycles);
		return -EINVAL;
	}

	if (chip->fcc_sample_count == chip->min_fcc_learning_samples) {
		/* search best location - oldest entry */
		min_cycle = chip->fcc_learning_samples[0].chargecycles;
		for (i = 1; i < chip->min_fcc_learning_samples; i++) {
			if (min_cycle >
				chip->fcc_learning_samples[i].chargecycles) {
				pos = i;
				break;
			}
		}
	} else {
		/* find an empty location */
		for (i = 0; i < chip->min_fcc_learning_samples; i++) {
			ft = &chip->fcc_learning_samples[i];
			if (ft->fcc_new == 0 || (ft->fcc_new == 0xFF &&
						ft->chargecycles == 0xFF)) {
				pos = i;
				break;
			}
		}
		chip->fcc_sample_count++;
	}
	chip->fcc_learning_samples[pos].fcc_new = fcc_mah;
	chip->fcc_learning_samples[pos].chargecycles = chargecycles;

	fcc_new = DIV_ROUND_UP(fcc_mah, chip->fcc_resolution);
	rc = qpnp_write_wrapper(chip, (u8 *)&fcc_new,
			chip->base + BMS_FCC_BASE_REG + pos, 1);
	if (rc)
		return rc;

	chgcyl = DIV_ROUND_UP(chargecycles, CHGCYL_RESOLUTION);
	rc = qpnp_write_wrapper(chip, (u8 *)&chgcyl,
			chip->base + BMS_CHGCYL_BASE_REG + pos, 1);
	if (rc)
		return rc;

	pr_debug("Backup new FCC: fcc_new=%d, chargecycle=%d, pos=%d\n",
						fcc_new, chgcyl, pos);

	return rc;
}

static void update_fcc_learning_table(struct qpnp_bms_chip *chip,
			int new_fcc_uah, int chargecycles, int batt_temp)
{
	int rc, fcc_default, fcc_temp;

	/* convert the fcc at batt_temp to new fcc at FCC_DEFAULT_TEMP */
	fcc_default = calculate_fcc(chip, FCC_DEFAULT_TEMP) / 1000;
	fcc_temp = calculate_fcc(chip, batt_temp) / 1000;
	new_fcc_uah = (new_fcc_uah / fcc_temp) * fcc_default;

	rc = backup_new_fcc(chip, new_fcc_uah / 1000, chargecycles);
	if (rc) {
		pr_err("Unable to backup new FCC\n");
		return;
	}
	/* check if FCC can be updated */
	attempt_learning_new_fcc(chip);
}

static bool is_new_fcc_valid(int new_fcc_uah, int fcc_uah)
{
	if ((new_fcc_uah >= (fcc_uah / 2)) &&
		((new_fcc_uah * 100) <= (fcc_uah * 105)))
		return true;

	pr_debug("FCC rejected - not within valid limit\n");
	return false;
}

static void fcc_learning_config(struct qpnp_bms_chip *chip, bool start)
{
	int rc, batt_temp;
	struct raw_soc_params raw;
	struct qpnp_vadc_result result;
	int fcc_uah, new_fcc_uah, delta_cc_uah, delta_soc;

	rc = qpnp_vadc_read(chip->vadc_dev, LR_MUX1_BATT_THERM, &result);
	if (rc) {
		pr_err("Unable to read batt_temp\n");
		return;
	} else {
		batt_temp = (int)result.physical;
	}

	rc = read_soc_params_raw(chip, &raw, batt_temp);
	if (rc) {
		pr_err("Unable to read CC, cannot update FCC\n");
		return;
	}

	if (start) {
		chip->start_pc = interpolate_pc(chip->pc_temp_ocv_lut,
			batt_temp, raw.last_good_ocv_uv / 1000);
		chip->start_cc_uah = calculate_cc(chip, raw.cc, CC, NORESET);
		chip->start_real_soc = calculate_real_soc(chip,
				batt_temp, &raw, chip->start_cc_uah);
		pr_debug("start_pc=%d, start_cc=%d, start_soc=%d real_soc=%d\n",
			chip->start_pc, chip->start_cc_uah,
			chip->start_soc, chip->start_real_soc);
	} else {
		chip->end_cc_uah = calculate_cc(chip, raw.cc, CC, NORESET);
		delta_soc = 100 - chip->start_real_soc;
		delta_cc_uah = abs(chip->end_cc_uah - chip->start_cc_uah);
		new_fcc_uah = div_u64(delta_cc_uah * 100, delta_soc);
		fcc_uah = calculate_fcc(chip, batt_temp);
		pr_debug("start_soc=%d, start_pc=%d, start_real_soc=%d, start_cc=%d, end_cc=%d, new_fcc=%d\n",
			chip->start_soc, chip->start_pc, chip->start_real_soc,
			chip->start_cc_uah, chip->end_cc_uah, new_fcc_uah);

		if (is_new_fcc_valid(new_fcc_uah, fcc_uah))
			update_fcc_learning_table(chip, new_fcc_uah,
					chip->charge_cycles, batt_temp);
	}
}

#define MAX_CAL_TRIES	200
#define MIN_CAL_UA	3000
static void batfet_open_work(struct work_struct *work)
{
	int i;
	int rc;
	int result_ua;
	u8 orig_delay, sample_delay;
	struct qpnp_bms_chip *chip = container_of(work,
				struct qpnp_bms_chip,
				batfet_open_work);

	rc = qpnp_read_wrapper(chip, &orig_delay,
			chip->base + BMS1_S1_DELAY_CTL, 1);

	sample_delay = 0x0;
	rc = qpnp_write_wrapper(chip, &sample_delay,
			chip->base + BMS1_S1_DELAY_CTL, 1);

	/*
	 * In certain PMICs there is a coupling issue which causes
	 * bad calibration value that result in a huge battery current
	 * even when the BATFET is open. Do continious calibrations until
	 * we hit reasonable cal values which result in low battery current
	 */

	for (i = 0; (!chip->batfet_closed) && i < MAX_CAL_TRIES; i++) {
		rc = qpnp_iadc_calibrate_for_trim(chip->iadc_dev, false);
		/*
		 * Wait 20mS after calibration and before reading battery
		 * current. The BMS h/w uses calibration values in the
		 * next sampling of vsense.
		 */
		msleep(20);
		rc |= get_battery_current(chip, &result_ua);
		if (rc == 0 && abs(result_ua) <= MIN_CAL_UA) {
			pr_debug("good cal at %d attempt\n", i);
			break;
		}
	}
	pr_debug("batfet_closed = %d i = %d result_ua = %d\n",
			chip->batfet_closed, i, result_ua);

	rc = qpnp_write_wrapper(chip, &orig_delay,
			chip->base + BMS1_S1_DELAY_CTL, 1);
}

static void charging_began(struct qpnp_bms_chip *chip)
{
	mutex_lock(&chip->last_soc_mutex);
	chip->charge_start_tm_sec = 0;
	chip->catch_up_time_sec = 0;
	mutex_unlock(&chip->last_soc_mutex);

	chip->start_soc = report_state_of_charge(chip);

	mutex_lock(&chip->last_ocv_uv_mutex);
	if (chip->enable_fcc_learning)
		fcc_learning_config(chip, true);
	chip->soc_at_cv = -EINVAL;
	chip->prev_chg_soc = -EINVAL;
	mutex_unlock(&chip->last_ocv_uv_mutex);
}

static void charging_ended(struct qpnp_bms_chip *chip)
{
	mutex_lock(&chip->last_soc_mutex);
	chip->charge_start_tm_sec = 0;
	chip->catch_up_time_sec = 0;
	mutex_unlock(&chip->last_soc_mutex);

	chip->end_soc = report_state_of_charge(chip);

	mutex_lock(&chip->last_ocv_uv_mutex);
	chip->soc_at_cv = -EINVAL;
	chip->prev_chg_soc = -EINVAL;
	chip->in_taper_charge = false;

	/* update the chargecycles */
	if (chip->end_soc > chip->start_soc) {
		chip->charge_increase += (chip->end_soc - chip->start_soc);
		if (chip->charge_increase > 100) {
			chip->charge_cycles++;
			chip->charge_increase = chip->charge_increase % 100;
		}
		if (chip->enable_fcc_learning)
			backup_charge_cycle(chip);
	}

	if (get_battery_status(chip) == POWER_SUPPLY_STATUS_FULL) {
		if (chip->enable_fcc_learning &&
			(chip->start_soc <= chip->min_fcc_learning_soc) &&
			(chip->start_pc <= chip->min_fcc_ocv_pc))
			fcc_learning_config(chip, false);
		chip->done_charging = true;
		chip->last_soc_invalid = true;
	} else if (chip->charging_adjusted_ocv > 0) {
		pr_debug("Charging stopped before full, adjusted OCV = %d\n",
				chip->charging_adjusted_ocv);
		chip->last_ocv_uv = chip->charging_adjusted_ocv;
	}

	chip->charging_adjusted_ocv = -EINVAL;

	mutex_unlock(&chip->last_ocv_uv_mutex);
}

static void battery_status_check(struct qpnp_bms_chip *chip)
{
	int status = get_battery_status(chip);

	mutex_lock(&chip->status_lock);
	if (chip->battery_status != status) {
		pr_debug("status = %d, shadow status = %d\n",
				status, chip->battery_status);
		if (status == POWER_SUPPLY_STATUS_CHARGING) {
			pr_debug("charging started\n");
			charging_began(chip);
		} else if (chip->battery_status
				== POWER_SUPPLY_STATUS_CHARGING) {
			pr_debug("charging ended\n");
			charging_ended(chip);
		}

		if (status == POWER_SUPPLY_STATUS_FULL) {
			pr_debug("battery full\n");
			recalculate_soc(chip);
		} else if (chip->battery_status
				== POWER_SUPPLY_STATUS_FULL) {
			pr_debug("battery not full any more\n");
			disable_bms_irq(&chip->ocv_thr_irq);
			disable_bms_irq(&chip->sw_cc_thr_irq);
		}

		chip->battery_status = status;
		/* battery charge status has changed, so force a soc
		 * recalculation to update the SoC */
		schedule_work(&chip->recalc_work);
	}
	mutex_unlock(&chip->status_lock);
}

#define CALIB_WRKARND_DIG_MAJOR_MAX		0x03
static void batfet_status_check(struct qpnp_bms_chip *chip)
{
	bool batfet_closed;

	batfet_closed = is_batfet_closed(chip);
	if (chip->batfet_closed != batfet_closed) {
		chip->batfet_closed = batfet_closed;
		if (chip->iadc_bms_revision2 > CALIB_WRKARND_DIG_MAJOR_MAX)
			return;
		if (batfet_closed == false) {
			/* batfet opened */
			schedule_work(&chip->batfet_open_work);
			qpnp_iadc_skip_calibration(chip->iadc_dev);
		} else {
			/* batfet closed */
			qpnp_iadc_calibrate_for_trim(chip->iadc_dev, true);
			qpnp_iadc_resume_calibration(chip->iadc_dev);
		}
	}
}

static void battery_insertion_check(struct qpnp_bms_chip *chip)
{
	int present = (int)is_battery_present(chip);
	int insertion_ocv_uv = get_battery_insertion_ocv_uv(chip);
	int insertion_ocv_taken = (insertion_ocv_uv > 0);

	mutex_lock(&chip->vbat_monitor_mutex);
	if (chip->battery_present != present
			&& (present == insertion_ocv_taken
				|| chip->battery_present == -EINVAL)) {
		pr_debug("status = %d, shadow status = %d, insertion_ocv_uv = %d\n",
				present, chip->battery_present,
				insertion_ocv_uv);
		if (chip->battery_present != -EINVAL) {
			if (present) {
				chip->insertion_ocv_uv = insertion_ocv_uv;
				setup_vbat_monitoring(chip);
				chip->new_battery = true;
			} else {
				reset_vbat_monitoring(chip);
			}
		}
		chip->battery_present = present;
		/* a new battery was inserted or removed, so force a soc
		 * recalculation to update the SoC */
		schedule_work(&chip->recalc_work);
	}
	mutex_unlock(&chip->vbat_monitor_mutex);
}

/* Returns capacity as a SoC percentage between 0 and 100 */
static int get_prop_bms_capacity(struct qpnp_bms_chip *chip)
{
	return report_state_of_charge(chip);
}

static void qpnp_bms_external_power_changed(struct power_supply *psy)
{
	struct qpnp_bms_chip *chip = container_of(psy, struct qpnp_bms_chip,
								bms_psy);

	battery_insertion_check(chip);
	batfet_status_check(chip);
	battery_status_check(chip);

	if (POWER_SUPPLY_CHARGE_TYPE_TAPER == get_battery_charge_type(chip))
		chip->in_taper_charge = true;
	else
		chip->in_taper_charge = false;
}

static int qpnp_bms_power_get_property(struct power_supply *psy,
					enum power_supply_property psp,
					union power_supply_propval *val)
{
	struct qpnp_bms_chip *chip = container_of(psy, struct qpnp_bms_chip,
								bms_psy);

	switch (psp) {
	case POWER_SUPPLY_PROP_CAPACITY:
		val->intval = get_prop_bms_capacity(chip);
		break;
	case POWER_SUPPLY_PROP_STATUS:
		val->intval = chip->battery_status;
		break;
	case POWER_SUPPLY_PROP_CURRENT_NOW:
		val->intval = get_prop_bms_current_now(chip);
		break;
	case POWER_SUPPLY_PROP_RESISTANCE:
		val->intval = get_prop_bms_batt_resistance(chip);
		break;
	case POWER_SUPPLY_PROP_CHARGE_COUNTER:
		val->intval = get_prop_bms_charge_counter(chip);
		break;
	case POWER_SUPPLY_PROP_CHARGE_COUNTER_SHADOW:
		val->intval = get_prop_bms_charge_counter_shadow(chip);
		break;
	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
		val->intval = get_prop_bms_charge_full_design(chip);
		break;
	case POWER_SUPPLY_PROP_CHARGE_FULL:
		val->intval = get_prop_bms_charge_full(chip);
		break;
	case POWER_SUPPLY_PROP_CYCLE_COUNT:
		val->intval = chip->charge_cycles;
		break;
	default:
		return -EINVAL;
	}
	return 0;
}

#define OCV_USE_LIMIT_EN		BIT(7)
static int set_ocv_voltage_thresholds(struct qpnp_bms_chip *chip,
					int low_voltage_threshold,
					int high_voltage_threshold)
{
	uint16_t low_voltage_raw, high_voltage_raw;
	int rc;

	low_voltage_raw = convert_vbatt_uv_to_raw(chip,
				low_voltage_threshold);
	high_voltage_raw = convert_vbatt_uv_to_raw(chip,
				high_voltage_threshold);
	rc = qpnp_write_wrapper(chip, (u8 *)&low_voltage_raw,
			chip->base + BMS1_OCV_USE_LOW_LIMIT_THR0, 2);
	if (rc) {
		pr_err("Failed to set ocv low voltage threshold: %d\n", rc);
		return rc;
	}
	rc = qpnp_write_wrapper(chip, (u8 *)&high_voltage_raw,
			chip->base + BMS1_OCV_USE_HIGH_LIMIT_THR0, 2);
	if (rc) {
		pr_err("Failed to set ocv high voltage threshold: %d\n", rc);
		return rc;
	}
	rc = qpnp_masked_write(chip, BMS1_OCV_USE_LIMIT_CTL,
				OCV_USE_LIMIT_EN, OCV_USE_LIMIT_EN);
	if (rc) {
		pr_err("Failed to enabled ocv voltage thresholds: %d\n", rc);
		return rc;
	}
	pr_debug("ocv low threshold set to %d uv or 0x%x raw\n",
				low_voltage_threshold, low_voltage_raw);
	pr_debug("ocv high threshold set to %d uv or 0x%x raw\n",
				high_voltage_threshold, high_voltage_raw);
	return 0;
}

static int read_shutdown_iavg_ma(struct qpnp_bms_chip *chip)
{
	u8 iavg;
	int rc;

	rc = qpnp_read_wrapper(chip, &iavg, chip->base + IAVG_STORAGE_REG, 1);
	if (rc) {
		pr_err("failed to read addr = %d %d assuming %d\n",
				chip->base + IAVG_STORAGE_REG, rc,
				MIN_IAVG_MA);
		return MIN_IAVG_MA;
	} else if (iavg == IAVG_INVALID) {
		pr_err("invalid iavg read from BMS1_DATA_REG_1, using %d\n",
				MIN_IAVG_MA);
		return MIN_IAVG_MA;
	} else {
		if (iavg == 0)
			return MIN_IAVG_MA;
		else
			return MIN_IAVG_MA + IAVG_STEP_SIZE_MA * iavg;
	}
}

static int read_shutdown_soc(struct qpnp_bms_chip *chip)
{
	u8 stored_soc;
	int rc, shutdown_soc;

	/*
	 * The previous SOC is stored in the first 7 bits of the register as
	 * (Shutdown SOC + 1). This allows for register reset values of both
	 * 0x00 and 0x7F.
	 */
	rc = qpnp_read_wrapper(chip, &stored_soc, chip->soc_storage_addr, 1);
	if (rc) {
		pr_err("failed to read addr = %d %d\n",
				chip->soc_storage_addr, rc);
		return SOC_INVALID;
	}

	if ((stored_soc >> 1) > 0)
		shutdown_soc = (stored_soc >> 1) - 1;
	else
		shutdown_soc = SOC_INVALID;

	pr_debug("stored soc = 0x%02x, shutdown_soc = %d\n",
			stored_soc, shutdown_soc);
	return shutdown_soc;
}

#define BAT_REMOVED_OFFMODE_BIT		BIT(6)
static bool is_battery_replaced_in_offmode(struct qpnp_bms_chip *chip)
{
	u8 batt_pres;
	int rc;

	if (chip->batt_pres_addr) {
		rc = qpnp_read_wrapper(chip, &batt_pres,
				chip->batt_pres_addr, 1);
		pr_debug("offmode removed: %02x\n", batt_pres);
		if (!rc && (batt_pres & BAT_REMOVED_OFFMODE_BIT))
			return true;
	}
	return false;
}

static void load_shutdown_data(struct qpnp_bms_chip *chip)
{
	int calculated_soc, shutdown_soc;
	bool invalid_stored_soc;
	bool offmode_battery_replaced;
	bool shutdown_soc_out_of_limit;

	/*
	 * Read the saved shutdown SoC from the configured register and
	 * check if the value has been reset
	 */
	shutdown_soc = read_shutdown_soc(chip);
	invalid_stored_soc = (shutdown_soc == SOC_INVALID);

	/*
	 * Do a quick run of SoC calculation to find whether the shutdown soc
	 * is close enough.
	 */
	chip->shutdown_iavg_ma = MIN_IAVG_MA;
	calculated_soc = recalculate_raw_soc(chip);
	shutdown_soc_out_of_limit = (abs(shutdown_soc - calculated_soc)
			> chip->shutdown_soc_valid_limit);
	pr_debug("calculated_soc = %d, valid_limit = %d\n",
			calculated_soc, chip->shutdown_soc_valid_limit);

	/*
	 * Check if the battery has been replaced while the system was powered
	 * down.
	 */
	offmode_battery_replaced = is_battery_replaced_in_offmode(chip);

	/* Invalidate the shutdown SoC if any of these conditions hold true */
	if (chip->ignore_shutdown_soc
			|| invalid_stored_soc
			|| offmode_battery_replaced
			|| shutdown_soc_out_of_limit) {
		chip->battery_removed = true;
		chip->shutdown_soc_invalid = true;
		chip->shutdown_iavg_ma = MIN_IAVG_MA;
		pr_debug("Ignoring shutdown SoC: invalid = %d, offmode = %d, out_of_limit = %d\n",
				invalid_stored_soc, offmode_battery_replaced,
				shutdown_soc_out_of_limit);
	} else {
		chip->shutdown_iavg_ma = read_shutdown_iavg_ma(chip);
		chip->shutdown_soc = shutdown_soc;
	}

	pr_debug("raw_soc = %d shutdown_soc = %d shutdown_iavg = %d shutdown_soc_invalid = %d, battery_removed = %d\n",
			calculated_soc,
			chip->shutdown_soc,
			chip->shutdown_iavg_ma,
			chip->shutdown_soc_invalid,
			chip->battery_removed);
}

static irqreturn_t bms_ocv_thr_irq_handler(int irq, void *_chip)
{
	struct qpnp_bms_chip *chip = _chip;

	pr_debug("ocv_thr irq triggered\n");
	bms_stay_awake(&chip->soc_wake_source);
	schedule_work(&chip->recalc_work);
	return IRQ_HANDLED;
}

static irqreturn_t bms_sw_cc_thr_irq_handler(int irq, void *_chip)
{
	struct qpnp_bms_chip *chip = _chip;

	pr_debug("sw_cc_thr irq triggered\n");
	disable_bms_irq_nosync(&chip->sw_cc_thr_irq);
	bms_stay_awake(&chip->soc_wake_source);
	schedule_work(&chip->recalc_work);
	return IRQ_HANDLED;
}

static int64_t read_battery_id(struct qpnp_bms_chip *chip)
{
	int rc;
	struct qpnp_vadc_result result;

	rc = qpnp_vadc_read(chip->vadc_dev, LR_MUX2_BAT_ID, &result);
	if (rc) {
		pr_err("error reading batt id channel = %d, rc = %d\n",
					LR_MUX2_BAT_ID, rc);
		return rc;
	}

	return result.physical;
}

static int set_battery_data(struct qpnp_bms_chip *chip)
{
	int64_t battery_id;
	int rc = 0, dt_data = false;
	struct bms_battery_data *batt_data;
	struct device_node *node;

	if (chip->batt_type == BATT_DESAY) {
		batt_data = &desay_5200_data;
	} else if (chip->batt_type == BATT_PALLADIUM) {
		batt_data = &palladium_1500_data;
	} else if (chip->batt_type == BATT_OEM) {
		batt_data = &oem_batt_data;
	} else if (chip->batt_type == BATT_QRD_4V35_2000MAH) {
		batt_data = &QRD_4v35_2000mAh_data;
	} else if (chip->batt_type == BATT_QRD_4V2_1300MAH) {
		batt_data = &qrd_4v2_1300mah_data;
	} else {
		battery_id = read_battery_id(chip);
		if (battery_id < 0) {
			pr_err("cannot read battery id err = %lld\n",
							battery_id);
			return battery_id;
		}

		node = of_find_node_by_name(chip->spmi->dev.of_node,
				"qcom,battery-data");
		if (!node) {
			pr_warn("No available batterydata, using palladium 1500\n");
			batt_data = &palladium_1500_data;
			goto assign_data;
		}
		batt_data = devm_kzalloc(chip->dev,
				sizeof(struct bms_battery_data), GFP_KERNEL);
		if (!batt_data) {
			pr_err("Could not alloc battery data\n");
			batt_data = &palladium_1500_data;
			goto assign_data;
		}
		batt_data->fcc_temp_lut = devm_kzalloc(chip->dev,
				sizeof(struct single_row_lut),
				GFP_KERNEL);
		batt_data->pc_temp_ocv_lut = devm_kzalloc(chip->dev,
				sizeof(struct pc_temp_ocv_lut),
				GFP_KERNEL);
		batt_data->rbatt_sf_lut = devm_kzalloc(chip->dev,
				sizeof(struct sf_lut),
				GFP_KERNEL);

		batt_data->max_voltage_uv = -1;
		batt_data->cutoff_uv = -1;
		batt_data->iterm_ua = -1;

		/*
		 * if the alloced luts are 0s, of_batterydata_read_data ignores
		 * them.
		 */
		rc = of_batterydata_read_data(node, batt_data, battery_id);
		if (rc == 0 && batt_data->fcc_temp_lut
				&& batt_data->pc_temp_ocv_lut
				&& batt_data->rbatt_sf_lut) {
			dt_data = true;
		} else {
			pr_err("battery data load failed, using palladium 1500\n");
			devm_kfree(chip->dev, batt_data->fcc_temp_lut);
			devm_kfree(chip->dev, batt_data->pc_temp_ocv_lut);
			devm_kfree(chip->dev, batt_data->rbatt_sf_lut);
			devm_kfree(chip->dev, batt_data);
			batt_data = &palladium_1500_data;
		}
	}

assign_data:
	chip->fcc_mah = batt_data->fcc;
	chip->fcc_temp_lut = batt_data->fcc_temp_lut;
	chip->fcc_sf_lut = batt_data->fcc_sf_lut;
	chip->pc_temp_ocv_lut = batt_data->pc_temp_ocv_lut;
	chip->pc_sf_lut = batt_data->pc_sf_lut;
	chip->rbatt_sf_lut = batt_data->rbatt_sf_lut;
	chip->default_rbatt_mohm = batt_data->default_rbatt_mohm;
	chip->rbatt_capacitive_mohm = batt_data->rbatt_capacitive_mohm;
	chip->flat_ocv_threshold_uv = batt_data->flat_ocv_threshold_uv;

	/* Override battery properties if specified in the battery profile */
	if (batt_data->max_voltage_uv >= 0 && dt_data)
		chip->max_voltage_uv = batt_data->max_voltage_uv;
	if (batt_data->cutoff_uv >= 0 && dt_data)
		chip->v_cutoff_uv = batt_data->cutoff_uv;
	if (batt_data->iterm_ua >= 0 && dt_data)
		chip->chg_term_ua = batt_data->iterm_ua;

	if (chip->pc_temp_ocv_lut == NULL) {
		pr_err("temp ocv lut table has not been loaded\n");
		if (dt_data) {
			devm_kfree(chip->dev, batt_data->fcc_temp_lut);
			devm_kfree(chip->dev, batt_data->pc_temp_ocv_lut);
			devm_kfree(chip->dev, batt_data->rbatt_sf_lut);
			devm_kfree(chip->dev, batt_data);
		}
		return -EINVAL;
	}

	if (dt_data)
		devm_kfree(chip->dev, batt_data);

	return 0;
}

static int bms_get_adc(struct qpnp_bms_chip *chip,
					struct spmi_device *spmi)
{
	int rc = 0;

	chip->vadc_dev = qpnp_get_vadc(&spmi->dev, "bms");
	if (IS_ERR(chip->vadc_dev)) {
		rc = PTR_ERR(chip->vadc_dev);
		if (rc != -EPROBE_DEFER)
			pr_err("vadc property missing, rc=%d\n", rc);
		return rc;
	}

	chip->iadc_dev = qpnp_get_iadc(&spmi->dev, "bms");
	if (IS_ERR(chip->iadc_dev)) {
		rc = PTR_ERR(chip->iadc_dev);
		if (rc != -EPROBE_DEFER)
			pr_err("iadc property missing, rc=%d\n", rc);
		return rc;
	}

	chip->adc_tm_dev = qpnp_get_adc_tm(&spmi->dev, "bms");
	if (IS_ERR(chip->adc_tm_dev)) {
		rc = PTR_ERR(chip->adc_tm_dev);
		if (rc != -EPROBE_DEFER)
			pr_err("adc-tm not ready, defer probe\n");
		return rc;
	}

	return 0;
}

#define SPMI_PROP_READ(chip_prop, qpnp_spmi_property, retval)		\
do {									\
	if (retval)							\
		break;							\
	retval = of_property_read_u32(chip->spmi->dev.of_node,		\
				"qcom," qpnp_spmi_property,		\
					&chip->chip_prop);		\
	if (retval) {							\
		pr_err("Error reading " #qpnp_spmi_property		\
						" property %d\n", rc);	\
	}								\
} while (0)

#define SPMI_PROP_READ_BOOL(chip_prop, qpnp_spmi_property)		\
do {									\
	chip->chip_prop = of_property_read_bool(chip->spmi->dev.of_node,\
				"qcom," qpnp_spmi_property);		\
} while (0)

static inline int bms_read_properties(struct qpnp_bms_chip *chip)
{
	int rc = 0;

	SPMI_PROP_READ(r_sense_uohm, "r-sense-uohm", rc);
	SPMI_PROP_READ(v_cutoff_uv, "v-cutoff-uv", rc);
	SPMI_PROP_READ(max_voltage_uv, "max-voltage-uv", rc);
	SPMI_PROP_READ(r_conn_mohm, "r-conn-mohm", rc);
	SPMI_PROP_READ(chg_term_ua, "chg-term-ua", rc);
	SPMI_PROP_READ(shutdown_soc_valid_limit,
			"shutdown-soc-valid-limit", rc);
	SPMI_PROP_READ(adjust_soc_low_threshold,
			"adjust-soc-low-threshold", rc);
	SPMI_PROP_READ(batt_type, "batt-type", rc);
	SPMI_PROP_READ(low_soc_calc_threshold,
			"low-soc-calculate-soc-threshold", rc);
	SPMI_PROP_READ(low_soc_calculate_soc_ms,
			"low-soc-calculate-soc-ms", rc);
	SPMI_PROP_READ(low_voltage_calculate_soc_ms,
			"low-voltage-calculate-soc-ms", rc);
	SPMI_PROP_READ(calculate_soc_ms, "calculate-soc-ms", rc);
	SPMI_PROP_READ(high_ocv_correction_limit_uv,
			"high-ocv-correction-limit-uv", rc);
	SPMI_PROP_READ(low_ocv_correction_limit_uv,
			"low-ocv-correction-limit-uv", rc);
	SPMI_PROP_READ(hold_soc_est,
			"hold-soc-est", rc);
	SPMI_PROP_READ(ocv_high_threshold_uv,
			"ocv-voltage-high-threshold-uv", rc);
	SPMI_PROP_READ(ocv_low_threshold_uv,
			"ocv-voltage-low-threshold-uv", rc);
	SPMI_PROP_READ(low_voltage_threshold, "low-voltage-threshold", rc);
	SPMI_PROP_READ(temperature_margin, "tm-temp-margin", rc);

	chip->use_external_rsense = of_property_read_bool(
			chip->spmi->dev.of_node,
			"qcom,use-external-rsense");
	chip->ignore_shutdown_soc = of_property_read_bool(
			chip->spmi->dev.of_node,
			"qcom,ignore-shutdown-soc");
	chip->use_voltage_soc = of_property_read_bool(chip->spmi->dev.of_node,
			"qcom,use-voltage-soc");
	chip->use_ocv_thresholds = of_property_read_bool(
			chip->spmi->dev.of_node,
			"qcom,use-ocv-thresholds");

	if (chip->adjust_soc_low_threshold >= 45)
		chip->adjust_soc_low_threshold = 45;

	SPMI_PROP_READ_BOOL(enable_fcc_learning, "enable-fcc-learning");
	if (chip->enable_fcc_learning) {
		SPMI_PROP_READ(min_fcc_learning_soc,
				"min-fcc-learning-soc", rc);
		SPMI_PROP_READ(min_fcc_ocv_pc,
				"min-fcc-ocv-pc", rc);
		SPMI_PROP_READ(min_fcc_learning_samples,
				"min-fcc-learning-samples", rc);
		SPMI_PROP_READ(fcc_resolution,
				"fcc-resolution", rc);
		if (chip->min_fcc_learning_samples > MAX_FCC_CYCLES)
			chip->min_fcc_learning_samples = MAX_FCC_CYCLES;
		chip->fcc_learning_samples = devm_kzalloc(&chip->spmi->dev,
				(sizeof(struct fcc_sample) *
				chip->min_fcc_learning_samples), GFP_KERNEL);
		if (chip->fcc_learning_samples == NULL)
			return -ENOMEM;
		pr_debug("min-fcc-soc=%d, min-fcc-pc=%d, min-fcc-cycles=%d\n",
			chip->min_fcc_learning_soc, chip->min_fcc_ocv_pc,
			chip->min_fcc_learning_samples);
	}

	if (rc) {
		pr_err("Missing required properties.\n");
		return rc;
	}

	pr_debug("dts data: r_sense_uohm:%d, v_cutoff_uv:%d, max_v:%d\n",
			chip->r_sense_uohm, chip->v_cutoff_uv,
			chip->max_voltage_uv);
	pr_debug("r_conn:%d, shutdown_soc: %d, adjust_soc_low:%d\n",
			chip->r_conn_mohm, chip->shutdown_soc_valid_limit,
			chip->adjust_soc_low_threshold);
	pr_debug("chg_term_ua:%d, batt_type:%d\n",
			chip->chg_term_ua,
			chip->batt_type);
	pr_debug("ignore_shutdown_soc:%d, use_voltage_soc:%d\n",
			chip->ignore_shutdown_soc, chip->use_voltage_soc);
	pr_debug("use external rsense: %d\n", chip->use_external_rsense);
	return 0;
}

static inline void bms_initialize_constants(struct qpnp_bms_chip *chip)
{
	chip->prev_pc_unusable = -EINVAL;
	chip->soc_at_cv = -EINVAL;
	chip->calculated_soc = -EINVAL;
	chip->last_soc = -EINVAL;
	chip->last_soc_est = -EINVAL;
	chip->battery_present = -EINVAL;
	chip->battery_status = POWER_SUPPLY_STATUS_UNKNOWN;
	chip->last_cc_uah = INT_MIN;
	chip->ocv_reading_at_100 = OCV_RAW_UNINITIALIZED;
	chip->prev_last_good_ocv_raw = OCV_RAW_UNINITIALIZED;
	chip->first_time_calc_soc = 1;
	chip->first_time_calc_uuc = 1;
}

#define SPMI_FIND_IRQ(chip, irq_name)					\
do {									\
	chip->irq_name##_irq.irq = spmi_get_irq_byname(chip->spmi,	\
					resource, #irq_name);		\
	if (chip->irq_name##_irq.irq < 0) {				\
		pr_err("Unable to get " #irq_name " irq\n");		\
		return -ENXIO;						\
	}								\
} while (0)

static int bms_find_irqs(struct qpnp_bms_chip *chip,
			struct spmi_resource *resource)
{
	SPMI_FIND_IRQ(chip, sw_cc_thr);
	SPMI_FIND_IRQ(chip, ocv_thr);
	return 0;
}

#define SPMI_REQUEST_IRQ(chip, rc, irq_name)				\
do {									\
	rc = devm_request_irq(chip->dev, chip->irq_name##_irq.irq,	\
			bms_##irq_name##_irq_handler,			\
			IRQF_TRIGGER_RISING, #irq_name, chip);		\
	if (rc < 0) {							\
		pr_err("Unable to request " #irq_name " irq: %d\n", rc);\
		return -ENXIO;						\
	}								\
	chip->irq_name##_irq.ready = true;				\
} while (0)

static int bms_request_irqs(struct qpnp_bms_chip *chip)
{
	int rc;

	SPMI_REQUEST_IRQ(chip, rc, sw_cc_thr);
	disable_bms_irq(&chip->sw_cc_thr_irq);
	enable_irq_wake(chip->sw_cc_thr_irq.irq);
	SPMI_REQUEST_IRQ(chip, rc, ocv_thr);
	disable_bms_irq(&chip->ocv_thr_irq);
	enable_irq_wake(chip->ocv_thr_irq.irq);
	return 0;
}

#define REG_OFFSET_PERP_TYPE			0x04
#define REG_OFFSET_PERP_SUBTYPE			0x05
#define BMS_BMS_TYPE				0xD
#define BMS_BMS1_SUBTYPE			0x1
#define BMS_IADC_TYPE				0x8
#define BMS_IADC1_SUBTYPE			0x3
#define BMS_IADC2_SUBTYPE			0x5

static int register_spmi(struct qpnp_bms_chip *chip, struct spmi_device *spmi)
{
	struct spmi_resource *spmi_resource;
	struct resource *resource;
	int rc;
	u8 type, subtype;

	chip->dev = &(spmi->dev);
	chip->spmi = spmi;

	spmi_for_each_container_dev(spmi_resource, spmi) {
		if (!spmi_resource) {
			pr_err("qpnp_bms: spmi resource absent\n");
			return -ENXIO;
		}

		resource = spmi_get_resource(spmi, spmi_resource,
						IORESOURCE_MEM, 0);
		if (!(resource && resource->start)) {
			pr_err("node %s IO resource absent!\n",
				spmi->dev.of_node->full_name);
			return -ENXIO;
		}

		pr_debug("Node name = %s\n", spmi_resource->of_node->name);

		if (strcmp("qcom,batt-pres-status",
					spmi_resource->of_node->name) == 0) {
			chip->batt_pres_addr = resource->start;
			continue;
		} else if (strcmp("qcom,soc-storage-reg",
					spmi_resource->of_node->name) == 0) {
			chip->soc_storage_addr = resource->start;
			continue;
		}

		rc = qpnp_read_wrapper(chip, &type,
				resource->start + REG_OFFSET_PERP_TYPE, 1);
		if (rc) {
			pr_err("Peripheral type read failed rc=%d\n", rc);
			return rc;
		}
		rc = qpnp_read_wrapper(chip, &subtype,
				resource->start + REG_OFFSET_PERP_SUBTYPE, 1);
		if (rc) {
			pr_err("Peripheral subtype read failed rc=%d\n", rc);
			return rc;
		}

		if (type == BMS_BMS_TYPE && subtype == BMS_BMS1_SUBTYPE) {
			chip->base = resource->start;
			rc = bms_find_irqs(chip, spmi_resource);
			if (rc) {
				pr_err("Could not find irqs\n");
				return rc;
			}
		} else if (type == BMS_IADC_TYPE
				&& (subtype == BMS_IADC1_SUBTYPE
				|| subtype == BMS_IADC2_SUBTYPE)) {
			chip->iadc_base = resource->start;
		} else {
			pr_err("Invalid peripheral start=0x%x type=0x%x, subtype=0x%x\n",
					resource->start, type, subtype);
		}
	}

	if (chip->base == 0) {
		dev_err(&spmi->dev, "BMS peripheral was not registered\n");
		return -EINVAL;
	}
	if (chip->iadc_base == 0) {
		dev_err(&spmi->dev, "BMS_IADC peripheral was not registered\n");
		return -EINVAL;
	}
	if (chip->soc_storage_addr == 0) {
		/* default to dvdd backed BMS data reg0 */
		chip->soc_storage_addr = chip->base + SOC_STORAGE_REG;
	}

	pr_debug("bms-base = 0x%04x, iadc-base = 0x%04x, bat-pres-reg = 0x%04x, soc-storage-reg = 0x%04x\n",
			chip->base, chip->iadc_base,
			chip->batt_pres_addr, chip->soc_storage_addr);
	return 0;
}

#define ADC_CH_SEL_MASK				0x7
#define ADC_INT_RSNSN_CTL_MASK			0x3
#define ADC_INT_RSNSN_CTL_VALUE_EXT_RENSE	0x2
#define FAST_AVG_EN_MASK			0x80
#define FAST_AVG_EN_VALUE_EXT_RSENSE		0x80
static int read_iadc_channel_select(struct qpnp_bms_chip *chip)
{
	u8 iadc_channel_select;
	int32_t rds_rsense_nohm;
	int rc;

	rc = qpnp_read_wrapper(chip, &iadc_channel_select,
			chip->iadc_base + IADC1_BMS_ADC_CH_SEL_CTL, 1);
	if (rc) {
		pr_err("Error reading bms_iadc channel register %d\n", rc);
		return rc;
	}

	iadc_channel_select &= ADC_CH_SEL_MASK;
	if (iadc_channel_select != EXTERNAL_RSENSE
			&& iadc_channel_select != INTERNAL_RSENSE) {
		pr_err("IADC1_BMS_IADC configured incorrectly. Selected channel = %d\n",
						iadc_channel_select);
		return -EINVAL;
	}

	if (chip->use_external_rsense) {
		pr_debug("External rsense selected\n");
		if (iadc_channel_select == INTERNAL_RSENSE) {
			pr_debug("Internal rsense detected; Changing rsense to external\n");
			rc = qpnp_masked_write_iadc(chip,
					IADC1_BMS_ADC_CH_SEL_CTL,
					ADC_CH_SEL_MASK,
					EXTERNAL_RSENSE);
			if (rc) {
				pr_err("Unable to set IADC1_BMS channel %x to %x: %d\n",
						IADC1_BMS_ADC_CH_SEL_CTL,
						EXTERNAL_RSENSE, rc);
				return rc;
			}
			reset_cc(chip, CLEAR_CC | CLEAR_SHDW_CC);
			chip->software_cc_uah = 0;
			chip->software_shdw_cc_uah = 0;
		}
	} else {
		pr_debug("Internal rsense selected\n");
		if (iadc_channel_select == EXTERNAL_RSENSE) {
			pr_debug("External rsense detected; Changing rsense to internal\n");
			rc = qpnp_masked_write_iadc(chip,
					IADC1_BMS_ADC_CH_SEL_CTL,
					ADC_CH_SEL_MASK,
					INTERNAL_RSENSE);
			if (rc) {
				pr_err("Unable to set IADC1_BMS channel %x to %x: %d\n",
						IADC1_BMS_ADC_CH_SEL_CTL,
						INTERNAL_RSENSE, rc);
				return rc;
			}
			reset_cc(chip, CLEAR_CC | CLEAR_SHDW_CC);
			chip->software_shdw_cc_uah = 0;
		}

		rc = qpnp_iadc_get_rsense(chip->iadc_dev, &rds_rsense_nohm);
		if (rc) {
			pr_err("Unable to read RDS resistance value from IADC; rc = %d\n",
								rc);
			return rc;
		}
		chip->r_sense_uohm = rds_rsense_nohm/1000;
		pr_debug("rds_rsense = %d nOhm, saved as %d uOhm\n",
					rds_rsense_nohm, chip->r_sense_uohm);
	}
	/* prevent shorting of leads by IADC_BMS when external Rsense is used */
	if (chip->use_external_rsense) {
		if (chip->iadc_bms_revision2 > CALIB_WRKARND_DIG_MAJOR_MAX) {
			rc = qpnp_masked_write_iadc(chip,
					IADC1_BMS_ADC_INT_RSNSN_CTL,
					ADC_INT_RSNSN_CTL_MASK,
					ADC_INT_RSNSN_CTL_VALUE_EXT_RENSE);
			if (rc) {
				pr_err("Unable to set batfet config %x to %x: %d\n",
					IADC1_BMS_ADC_INT_RSNSN_CTL,
					ADC_INT_RSNSN_CTL_VALUE_EXT_RENSE, rc);
				return rc;
			}
		} else {
			/* In older PMICS use FAST_AVG_EN register bit 7 */
			rc = qpnp_masked_write_iadc(chip,
					IADC1_BMS_FAST_AVG_EN,
					FAST_AVG_EN_MASK,
					FAST_AVG_EN_VALUE_EXT_RSENSE);
			if (rc) {
				pr_err("Unable to set batfet config %x to %x: %d\n",
					IADC1_BMS_FAST_AVG_EN,
					FAST_AVG_EN_VALUE_EXT_RSENSE, rc);
				return rc;
			}
		}
	} else {
		rc = qpnp_masked_write_iadc(chip,
				IADC1_BMS_ADC_INT_RSNSN_CTL,
				ADC_INT_RSNSN_CTL_MASK, 0x0);
		if (rc) {
			pr_err("Unable to set batfet config %x to %x: %d\n",
				IADC1_BMS_ADC_INT_RSNSN_CTL, 0x0, rc);
			return rc;
		}
	}

	return 0;
}

static int refresh_die_temp_monitor(struct qpnp_bms_chip *chip)
{
	struct qpnp_vadc_result result;
	int rc;

	rc = qpnp_vadc_read(chip->vadc_dev, DIE_TEMP, &result);

	pr_debug("low = %lld, high = %lld\n",
			result.physical - chip->temperature_margin,
			result.physical + chip->temperature_margin);
	chip->die_temp_monitor_params.high_temp = result.physical
						+ chip->temperature_margin;
	chip->die_temp_monitor_params.low_temp = result.physical
						- chip->temperature_margin;
	chip->die_temp_monitor_params.state_request =
						ADC_TM_HIGH_LOW_THR_ENABLE;
	return qpnp_adc_tm_channel_measure(chip->adc_tm_dev,
					&chip->die_temp_monitor_params);
}

static void btm_notify_die_temp(enum qpnp_tm_state state, void *ctx)
{
	struct qpnp_bms_chip *chip = ctx;
	struct qpnp_vadc_result result;
	int rc;

	rc = qpnp_vadc_read(chip->vadc_dev, DIE_TEMP, &result);

	if (state == ADC_TM_LOW_STATE)
		pr_debug("low state triggered\n");
	else if (state == ADC_TM_HIGH_STATE)
		pr_debug("high state triggered\n");
	pr_debug("die temp = %lld, raw = 0x%x\n",
			result.physical, result.adc_code);
	schedule_work(&chip->recalc_work);
	refresh_die_temp_monitor(chip);
}

static int setup_die_temp_monitoring(struct qpnp_bms_chip *chip)
{
	int rc;

	chip->die_temp_monitor_params.channel = DIE_TEMP;
	chip->die_temp_monitor_params.btm_ctx = (void *)chip;
	chip->die_temp_monitor_params.timer_interval = ADC_MEAS1_INTERVAL_1S;
	chip->die_temp_monitor_params.threshold_notification =
						&btm_notify_die_temp;
	rc = refresh_die_temp_monitor(chip);
	if (rc) {
		pr_err("tm setup failed: %d\n", rc);
		return rc;
	}
	pr_debug("setup complete\n");
	return 0;
}

static int qpnp_bms_probe(struct spmi_device *spmi)
{
	struct qpnp_bms_chip *chip;
	bool warm_reset;
	int rc, vbatt;

	chip = devm_kzalloc(&spmi->dev, sizeof(struct qpnp_bms_chip),
			GFP_KERNEL);

	if (chip == NULL) {
		pr_err("kzalloc() failed.\n");
		return -ENOMEM;
	}

	rc = bms_get_adc(chip, spmi);
	if (rc < 0)
		goto error_read;

	mutex_init(&chip->bms_output_lock);
	mutex_init(&chip->last_ocv_uv_mutex);
	mutex_init(&chip->vbat_monitor_mutex);
	mutex_init(&chip->soc_invalidation_mutex);
	mutex_init(&chip->last_soc_mutex);
	mutex_init(&chip->status_lock);
	init_waitqueue_head(&chip->bms_wait_queue);

	warm_reset = qpnp_pon_is_warm_reset();
	rc = warm_reset;
	if (rc < 0)
		goto error_read;

	rc = register_spmi(chip, spmi);
	if (rc) {
		pr_err("error registering spmi resource %d\n", rc);
		goto error_resource;
	}

	rc = qpnp_read_wrapper(chip, &chip->revision1,
			chip->base + REVISION1, 1);
	if (rc) {
		pr_err("error reading version register %d\n", rc);
		goto error_read;
	}

	rc = qpnp_read_wrapper(chip, &chip->revision2,
			chip->base + REVISION2, 1);
	if (rc) {
		pr_err("Error reading version register %d\n", rc);
		goto error_read;
	}
	pr_debug("BMS version: %hhu.%hhu\n", chip->revision2, chip->revision1);

	rc = qpnp_read_wrapper(chip, &chip->iadc_bms_revision2,
			chip->iadc_base + REVISION2, 1);
	if (rc) {
		pr_err("Error reading version register %d\n", rc);
		goto error_read;
	}

	rc = qpnp_read_wrapper(chip, &chip->iadc_bms_revision1,
			chip->iadc_base + REVISION1, 1);
	if (rc) {
		pr_err("Error reading version register %d\n", rc);
		goto error_read;
	}
	pr_debug("IADC_BMS version: %hhu.%hhu\n",
			chip->iadc_bms_revision2, chip->iadc_bms_revision1);

	rc = bms_read_properties(chip);
	if (rc) {
		pr_err("Unable to read all bms properties, rc = %d\n", rc);
		goto error_read;
	}

	rc = read_iadc_channel_select(chip);
	if (rc) {
		pr_err("Unable to get iadc selected channel = %d\n", rc);
		goto error_read;
	}

	if (chip->use_ocv_thresholds) {
		rc = set_ocv_voltage_thresholds(chip,
				chip->ocv_low_threshold_uv,
				chip->ocv_high_threshold_uv);
		if (rc) {
			pr_err("Could not set ocv voltage thresholds: %d\n",
					rc);
			goto error_read;
		}
	}

	rc = set_battery_data(chip);
	if (rc) {
		pr_err("Bad battery data %d\n", rc);
		goto error_read;
	}

	bms_initialize_constants(chip);

	wakeup_source_init(&chip->soc_wake_source.source, "qpnp_soc_wake");
	wake_lock_init(&chip->low_voltage_wake_lock, WAKE_LOCK_SUSPEND,
			"qpnp_low_voltage_lock");
	wake_lock_init(&chip->cv_wake_lock, WAKE_LOCK_SUSPEND,
			"qpnp_cv_lock");
	INIT_DELAYED_WORK(&chip->calculate_soc_delayed_work,
			calculate_soc_work);
	INIT_WORK(&chip->recalc_work, recalculate_work);
	INIT_WORK(&chip->batfet_open_work, batfet_open_work);

	dev_set_drvdata(&spmi->dev, chip);
	device_init_wakeup(&spmi->dev, 1);

	load_shutdown_data(chip);

	if (chip->enable_fcc_learning) {
		if (chip->battery_removed) {
			rc = discard_backup_fcc_data(chip);
			if (rc)
				pr_err("Could not discard backed-up FCC data\n");
		} else {
			rc = read_chgcycle_data_from_backup(chip);
			if (rc)
				pr_err("Unable to restore charge-cycle data\n");

			rc = read_fcc_data_from_backup(chip);
			if (rc)
				pr_err("Unable to restore FCC-learning data\n");
			else
				attempt_learning_new_fcc(chip);
		}
	}

	rc = setup_vbat_monitoring(chip);
	if (rc < 0) {
		pr_err("failed to set up voltage notifications: %d\n", rc);
		goto error_setup;
	}

	rc = setup_die_temp_monitoring(chip);
	if (rc < 0) {
		pr_err("failed to set up die temp notifications: %d\n", rc);
		goto error_setup;
	}

	rc = bms_request_irqs(chip);
	if (rc) {
		pr_err("error requesting bms irqs, rc = %d\n", rc);
		goto error_setup;
	}

	battery_insertion_check(chip);
	batfet_status_check(chip);
	battery_status_check(chip);

	calculate_soc_work(&(chip->calculate_soc_delayed_work.work));

	/* setup & register the battery power supply */
	chip->bms_psy.name = "bms";
	chip->bms_psy.type = POWER_SUPPLY_TYPE_BMS;
	chip->bms_psy.properties = msm_bms_power_props;
	chip->bms_psy.num_properties = ARRAY_SIZE(msm_bms_power_props);
	chip->bms_psy.get_property = qpnp_bms_power_get_property;
	chip->bms_psy.external_power_changed =
		qpnp_bms_external_power_changed;
	chip->bms_psy.supplied_to = qpnp_bms_supplicants;
	chip->bms_psy.num_supplicants = ARRAY_SIZE(qpnp_bms_supplicants);

	rc = power_supply_register(chip->dev, &chip->bms_psy);

	if (rc < 0) {
		pr_err("power_supply_register bms failed rc = %d\n", rc);
		goto unregister_dc;
	}

	chip->bms_psy_registered = true;
	vbatt = 0;
	rc = get_battery_voltage(chip, &vbatt);
	if (rc) {
		pr_err("error reading vbat_sns adc channel = %d, rc = %d\n",
						VBAT_SNS, rc);
		goto unregister_dc;
	}

	pr_info("probe success: soc =%d vbatt = %d ocv = %d r_sense_uohm = %u warm_reset = %d\n",
			get_prop_bms_capacity(chip), vbatt, chip->last_ocv_uv,
			chip->r_sense_uohm, warm_reset);
	return 0;

unregister_dc:
	chip->bms_psy_registered = false;
	power_supply_unregister(&chip->bms_psy);
error_setup:
	dev_set_drvdata(&spmi->dev, NULL);
	wakeup_source_trash(&chip->soc_wake_source.source);
	wake_lock_destroy(&chip->low_voltage_wake_lock);
	wake_lock_destroy(&chip->cv_wake_lock);
error_resource:
error_read:
	return rc;
}

static int qpnp_bms_remove(struct spmi_device *spmi)
{
	dev_set_drvdata(&spmi->dev, NULL);
	return 0;
}

static int bms_suspend(struct device *dev)
{
	struct qpnp_bms_chip *chip = dev_get_drvdata(dev);

	cancel_delayed_work_sync(&chip->calculate_soc_delayed_work);
	chip->was_charging_at_sleep = is_battery_charging(chip);
	return 0;
}

static int bms_resume(struct device *dev)
{
	int rc;
	int soc_calc_period;
	int time_until_next_recalc = 0;
	unsigned long time_since_last_recalc;
	unsigned long tm_now_sec;
	struct qpnp_bms_chip *chip = dev_get_drvdata(dev);

	rc = get_current_time(&tm_now_sec);
	if (rc) {
		pr_err("Could not read current time: %d\n", rc);
	} else {
		soc_calc_period = get_calculation_delay_ms(chip);
		time_since_last_recalc = tm_now_sec - chip->last_recalc_time;
		pr_debug("Time since last recalc: %lu\n",
				time_since_last_recalc);
		time_until_next_recalc = max(0, soc_calc_period
				- (int)(time_since_last_recalc * 1000));
	}

	if (time_until_next_recalc == 0)
		bms_stay_awake(&chip->soc_wake_source);
	schedule_delayed_work(&chip->calculate_soc_delayed_work,
		round_jiffies_relative(msecs_to_jiffies
		(time_until_next_recalc)));
	return 0;
}

static const struct dev_pm_ops qpnp_bms_pm_ops = {
	.resume		= bms_resume,
	.suspend	= bms_suspend,
};

static struct spmi_driver qpnp_bms_driver = {
	.probe		= qpnp_bms_probe,
	.remove		= qpnp_bms_remove,
	.driver		= {
		.name		= QPNP_BMS_DEV_NAME,
		.owner		= THIS_MODULE,
		.of_match_table	= qpnp_bms_match_table,
		.pm		= &qpnp_bms_pm_ops,
	},
};

static int __init qpnp_bms_init(void)
{
	pr_info("QPNP BMS INIT\n");
	return spmi_driver_register(&qpnp_bms_driver);
}

static void __exit qpnp_bms_exit(void)
{
	pr_info("QPNP BMS EXIT\n");
	return spmi_driver_unregister(&qpnp_bms_driver);
}

module_init(qpnp_bms_init);
module_exit(qpnp_bms_exit);

MODULE_DESCRIPTION("QPNP BMS Driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" QPNP_BMS_DEV_NAME);