1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
|
/* Copyright (c) 2014, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "FG: %s: " fmt, __func__
#include <linux/atomic.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/of.h>
#include <linux/rtc.h>
#include <linux/err.h>
#include <linux/debugfs.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/init.h>
#include <linux/spmi.h>
#include <linux/of_irq.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/power_supply.h>
#include <linux/of_batterydata.h>
#include <linux/string_helpers.h>
/* Register offsets */
/* Interrupt offsets */
#define INT_RT_STS(base) (base + 0x10)
#define INT_EN_CLR(base) (base + 0x16)
/* SPMI Register offsets */
#define SOC_MONOTONIC_SOC 0x09
#define MEM_INTF_CFG 0x40
#define MEM_INTF_CTL 0x41
#define MEM_INTF_ADDR_LSB 0x42
#define MEM_INTF_ADDR_MSB 0x43
#define MEM_INTF_WR_DATA0 0x48
#define MEM_INTF_WR_DATA1 0x49
#define MEM_INTF_WR_DATA2 0x4A
#define MEM_INTF_WR_DATA3 0x4B
#define MEM_INTF_RD_DATA0 0x4C
#define MEM_INTF_RD_DATA1 0x4D
#define MEM_INTF_RD_DATA2 0x4E
#define MEM_INTF_RD_DATA3 0x4F
#define OTP_CFG1 0xE2
#define SOC_BOOT_MOD 0x50
#define SOC_RESTART 0x51
#define REG_OFFSET_PERP_SUBTYPE 0x05
/* RAM register offsets */
#define RAM_OFFSET 0x400
/* Bit/Mask definitions */
#define FULL_PERCENT 0xFF
#define MAX_TRIES_SOC 5
#define MA_MV_BIT_RES 39
#define MSB_SIGN BIT(7)
#define IBAT_VBAT_MASK 0x7F
#define NO_OTP_PROF_RELOAD BIT(6)
#define REDO_FIRST_ESTIMATE BIT(3)
#define RESTART_GO BIT(0)
/* SUBTYPE definitions */
#define FG_SOC 0x9
#define FG_BATT 0xA
#define FG_ADC 0xB
#define FG_MEMIF 0xC
#define QPNP_FG_DEV_NAME "qcom,qpnp-fg"
#define MEM_IF_TIMEOUT_MS 5000
/* Debug Flag Definitions */
enum {
FG_SPMI_DEBUG_WRITES = BIT(0), /* Show SPMI writes */
FG_SPMI_DEBUG_READS = BIT(1), /* Show SPMI reads */
FG_IRQS = BIT(2), /* Show interrupts */
FG_MEM_DEBUG_WRITES = BIT(3), /* Show SRAM writes */
FG_MEM_DEBUG_READS = BIT(4), /* Show SRAM reads */
FG_POWER_SUPPLY = BIT(5), /* Show POWER_SUPPLY */
FG_STATUS = BIT(6), /* Show FG status changes */
};
struct fg_mem_setting {
u16 address;
u8 offset;
int value;
};
struct fg_mem_data {
u16 address;
u8 offset;
unsigned int len;
int value;
};
/* FG_MEMIF setting index */
enum fg_mem_setting_index {
FG_MEM_SOFT_COLD = 0,
FG_MEM_SOFT_HOT,
FG_MEM_HARD_COLD,
FG_MEM_HARD_HOT,
FG_MEM_RESUME_SOC,
FG_MEM_SETTING_MAX,
};
/* FG_MEMIF data index */
enum fg_mem_data_index {
FG_DATA_BATT_TEMP = 0,
FG_DATA_OCV,
FG_DATA_VOLTAGE,
FG_DATA_CURRENT,
FG_DATA_BATT_ESR,
FG_DATA_BATT_ID,
FG_DATA_BATT_ID_INFO,
FG_DATA_MAX,
};
#define SETTING(_idx, _address, _offset, _value) \
[FG_MEM_##_idx] = { \
.address = _address, \
.offset = _offset, \
.value = _value, \
} \
static struct fg_mem_setting settings[FG_MEM_SETTING_MAX] = {
/* ID Address, Offset, Value*/
SETTING(SOFT_COLD, 0x454, 0, 100),
SETTING(SOFT_HOT, 0x454, 1, 400),
SETTING(HARD_COLD, 0x454, 2, 50),
SETTING(HARD_HOT, 0x454, 3, 450),
SETTING(RESUME_SOC, 0x45C, 1, 0),
};
#define DATA(_idx, _address, _offset, _length, _value) \
[FG_DATA_##_idx] = { \
.address = _address, \
.offset = _offset, \
.len = _length, \
.value = _value, \
} \
static struct fg_mem_data fg_data[FG_DATA_MAX] = {
/* ID Address, Offset, Length, Value*/
DATA(BATT_TEMP, 0x550, 2, 2, -EINVAL),
DATA(OCV, 0x588, 3, 2, -EINVAL),
DATA(VOLTAGE, 0x5CC, 1, 2, -EINVAL),
DATA(CURRENT, 0x5CC, 3, 2, -EINVAL),
DATA(BATT_ESR, 0x554, 2, 2, -EINVAL),
DATA(BATT_ID, 0x594, 1, 1, -EINVAL),
DATA(BATT_ID_INFO, 0x594, 3, 1, -EINVAL),
};
static int fg_debug_mask;
module_param_named(
debug_mask, fg_debug_mask, int, S_IRUSR | S_IWUSR
);
static int fg_sense_type = -EINVAL;
static int fg_est_dump;
module_param_named(
first_est_dump, fg_est_dump, int, S_IRUSR | S_IWUSR
);
static char *fg_batt_type;
module_param_named(
battery_type, fg_batt_type, charp, S_IRUSR | S_IWUSR
);
struct fg_irq {
int irq;
unsigned long disabled;
};
enum fg_soc_irq {
HIGH_SOC,
LOW_SOC,
FULL_SOC,
EMPTY_SOC,
DELTA_SOC,
FIRST_EST_DONE,
SW_FALLBK_OCV,
SW_FALLBK_NEW_BATTRT_STS,
FG_SOC_IRQ_COUNT,
};
enum fg_batt_irq {
JEITA_SOFT_COLD,
JEITA_SOFT_HOT,
VBATT_LOW,
BATT_IDENTIFIED,
BATT_ID_REQ,
BATTERY_UNKNOWN,
BATT_MISSING,
BATT_MATCH,
FG_BATT_IRQ_COUNT,
};
enum fg_mem_if_irq {
FG_MEM_AVAIL,
TA_RCVRY_SUG,
FG_MEM_IF_IRQ_COUNT,
};
#define THERMAL_COEFF_N_BYTES 6
struct fg_chip {
struct device *dev;
struct spmi_device *spmi;
u16 soc_base;
u16 batt_base;
u16 mem_base;
u16 vbat_adc_addr;
u16 ibat_adc_addr;
atomic_t memif_user_cnt;
struct fg_irq soc_irq[FG_SOC_IRQ_COUNT];
struct fg_irq batt_irq[FG_BATT_IRQ_COUNT];
struct fg_irq mem_irq[FG_MEM_IF_IRQ_COUNT];
struct completion sram_access;
struct completion batt_id_avail;
struct power_supply bms_psy;
struct mutex rw_lock;
struct work_struct batt_profile_init;
struct work_struct dump_sram;
struct power_supply *batt_psy;
bool profile_loaded;
bool use_otp_profile;
bool battery_missing;
bool power_supply_registered;
struct delayed_work update_jeita_setting;
struct delayed_work update_sram_data;
char *batt_profile;
u8 thermal_coefficients[THERMAL_COEFF_N_BYTES];
bool use_thermal_coefficients;
unsigned int batt_profile_len;
const char *batt_type;
unsigned long last_sram_update_time;
};
/* FG_MEMIF DEBUGFS structures */
#define ADDR_LEN 4 /* 3 byte address + 1 space character */
#define CHARS_PER_ITEM 3 /* Format is 'XX ' */
#define ITEMS_PER_LINE 4 /* 4 data items per line */
#define MAX_LINE_LENGTH (ADDR_LEN + (ITEMS_PER_LINE * CHARS_PER_ITEM) + 1)
#define MAX_REG_PER_TRANSACTION (8)
static const char *DFS_ROOT_NAME = "fg_memif";
static const mode_t DFS_MODE = S_IRUSR | S_IWUSR;
static const char *default_batt_type = "Unknown Battery";
static const char *loading_batt_type = "Loading Battery Data";
static const char *missing_batt_type = "Disconnected Battery";
/* Log buffer */
struct fg_log_buffer {
size_t rpos; /* Current 'read' position in buffer */
size_t wpos; /* Current 'write' position in buffer */
size_t len; /* Length of the buffer */
char data[0]; /* Log buffer */
};
/* transaction parameters */
struct fg_trans {
u32 cnt; /* Number of bytes to read */
u16 addr; /* 12-bit address in SRAM */
u32 offset; /* Offset of last read data + byte offset */
struct fg_chip *chip;
struct fg_log_buffer *log; /* log buffer */
u8 *data; /* fg data that is read */
};
struct fg_dbgfs {
u32 cnt;
u32 addr;
struct fg_chip *chip;
struct dentry *root;
struct mutex lock;
struct debugfs_blob_wrapper help_msg;
};
static struct fg_dbgfs dbgfs_data = {
.lock = __MUTEX_INITIALIZER(dbgfs_data.lock),
.help_msg = {
.data =
"FG Debug-FS support\n"
"\n"
"Hierarchy schema:\n"
"/sys/kernel/debug/fg_memif\n"
" /help -- Static help text\n"
" /address -- Starting register address for reads or writes\n"
" /count -- Number of registers to read (only used for reads)\n"
" /data -- Initiates the SRAM read (formatted output)\n"
"\n",
},
};
static const struct of_device_id fg_match_table[] = {
{ .compatible = QPNP_FG_DEV_NAME, },
{}
};
static char *fg_supplicants[] = {
"battery"
};
#define DEBUG_PRINT_BUFFER_SIZE 64
static void fill_string(char *str, size_t str_len, u8 *buf, int buf_len)
{
int pos = 0;
int i;
for (i = 0; i < buf_len; i++) {
pos += scnprintf(str + pos, str_len - pos, "%02X", buf[i]);
if (i < buf_len - 1)
pos += scnprintf(str + pos, str_len - pos, " ");
}
}
static int fg_write(struct fg_chip *chip, u8 *val, u16 addr, int len)
{
int rc = 0;
struct spmi_device *spmi = chip->spmi;
char str[DEBUG_PRINT_BUFFER_SIZE];
if ((addr & 0xff00) == 0) {
pr_err("addr cannot be zero base=0x%02x sid=0x%02x rc=%d\n",
addr, spmi->sid, rc);
return -EINVAL;
}
rc = spmi_ext_register_writel(spmi->ctrl, spmi->sid, addr, val, len);
if (rc) {
pr_err("write failed addr=0x%02x sid=0x%02x rc=%d\n",
addr, spmi->sid, rc);
return rc;
}
if (!rc && (fg_debug_mask & FG_SPMI_DEBUG_WRITES)) {
str[0] = '\0';
fill_string(str, DEBUG_PRINT_BUFFER_SIZE, val, len);
pr_info("write(0x%04X), sid=%d, len=%d; %s\n",
addr, spmi->sid, len, str);
}
return rc;
}
static int fg_read(struct fg_chip *chip, u8 *val, u16 addr, int len)
{
int rc = 0;
struct spmi_device *spmi = chip->spmi;
char str[DEBUG_PRINT_BUFFER_SIZE];
if ((addr & 0xff00) == 0) {
pr_err("base cannot be zero base=0x%02x sid=0x%02x rc=%d\n",
addr, spmi->sid, rc);
return -EINVAL;
}
rc = spmi_ext_register_readl(spmi->ctrl, spmi->sid, addr, val, len);
if (rc) {
pr_err("SPMI read failed base=0x%02x sid=0x%02x rc=%d\n", addr,
spmi->sid, rc);
return rc;
}
if (!rc && (fg_debug_mask & FG_SPMI_DEBUG_READS)) {
str[0] = '\0';
fill_string(str, DEBUG_PRINT_BUFFER_SIZE, val, len);
pr_info("read(0x%04x), sid=%d, len=%d; %s\n",
addr, spmi->sid, len, str);
}
return rc;
}
static int fg_masked_write(struct fg_chip *chip, u16 addr,
u8 mask, u8 val, int len)
{
int rc;
u8 reg;
rc = fg_read(chip, ®, addr, len);
if (rc) {
pr_err("spmi read failed: addr=%03X, rc=%d\n", addr, rc);
return rc;
}
pr_debug("addr = 0x%x read 0x%x\n", addr, reg);
reg &= ~mask;
reg |= val & mask;
pr_debug("Writing 0x%x\n", reg);
rc = fg_write(chip, ®, addr, len);
if (rc) {
pr_err("spmi write failed: addr=%03X, rc=%d\n", addr, rc);
return rc;
}
return rc;
}
#define RIF_MEM_ACCESS_REQ BIT(7)
static inline bool fg_check_sram_access(struct fg_chip *chip)
{
int rc;
u8 mem_if_sts;
rc = fg_read(chip, &mem_if_sts, INT_RT_STS(chip->mem_base), 1);
if (rc) {
pr_err("failed to read mem status rc=%d\n", rc);
return 0;
}
if ((mem_if_sts & BIT(FG_MEM_AVAIL)) == 0)
return false;
rc = fg_read(chip, &mem_if_sts, chip->mem_base + MEM_INTF_CFG, 1);
if (rc) {
pr_err("failed to read mem status rc=%d\n", rc);
return 0;
}
if ((mem_if_sts & RIF_MEM_ACCESS_REQ) == 0)
return false;
return true;
}
#define RIF_MEM_ACCESS_REQ BIT(7)
static inline int fg_assert_sram_access(struct fg_chip *chip)
{
int rc;
u8 mem_if_sts;
rc = fg_read(chip, &mem_if_sts, INT_RT_STS(chip->mem_base), 1);
if (rc) {
pr_err("failed to read mem status rc=%d\n", rc);
return rc;
}
if ((mem_if_sts & BIT(FG_MEM_AVAIL)) == 0) {
pr_err("mem_avail not high: %02x\n", mem_if_sts);
return -EINVAL;
}
rc = fg_read(chip, &mem_if_sts, chip->mem_base + MEM_INTF_CFG, 1);
if (rc) {
pr_err("failed to read mem status rc=%d\n", rc);
return rc;
}
if ((mem_if_sts & RIF_MEM_ACCESS_REQ) == 0) {
pr_err("mem_avail not high: %02x\n", mem_if_sts);
return -EINVAL;
}
return 0;
}
#define INTF_CTL_BURST BIT(7)
#define INTF_CTL_WR_EN BIT(6)
static int fg_config_access(struct fg_chip *chip, bool write,
bool burst, bool otp)
{
int rc;
u8 intf_ctl = 0;
if (otp) {
/* Configure OTP access */
rc = fg_masked_write(chip, chip->mem_base + OTP_CFG1,
0xFF, 0x00, 1);
if (rc) {
pr_err("failed to set OTP cfg\n");
return -EIO;
}
}
intf_ctl = (write ? INTF_CTL_WR_EN : 0) | (burst ? INTF_CTL_BURST : 0);
rc = fg_write(chip, &intf_ctl, chip->mem_base + MEM_INTF_CTL, 1);
if (rc) {
pr_err("failed to set mem access bit\n");
return -EIO;
}
return rc;
}
static int fg_req_and_wait_access(struct fg_chip *chip, int timeout)
{
int rc = 0, ret = 0;
bool tried_again = false;
if (!fg_check_sram_access(chip)) {
rc = fg_masked_write(chip, chip->mem_base + MEM_INTF_CFG,
RIF_MEM_ACCESS_REQ, RIF_MEM_ACCESS_REQ, 1);
if (rc) {
pr_err("failed to set mem access bit\n");
return -EIO;
}
}
wait:
/* Wait for MEM_AVAIL IRQ. */
ret = wait_for_completion_interruptible_timeout(&chip->sram_access,
msecs_to_jiffies(timeout));
/* If we were interrupted wait again one more time. */
if (ret == -ERESTARTSYS && !tried_again) {
tried_again = true;
goto wait;
} else if (ret <= 0) {
rc = -ETIMEDOUT;
pr_err("transaction timed out rc=%d\n", rc);
return rc;
}
return rc;
}
static void fg_release_access_if_necessary(struct fg_chip *chip)
{
mutex_lock(&chip->rw_lock);
if (atomic_sub_return(1, &chip->memif_user_cnt) <= 0) {
fg_masked_write(chip, chip->mem_base + MEM_INTF_CFG,
RIF_MEM_ACCESS_REQ, 0, 1);
INIT_COMPLETION(chip->sram_access);
}
mutex_unlock(&chip->rw_lock);
}
static int fg_set_ram_addr(struct fg_chip *chip, u16 *address)
{
int rc;
rc = fg_write(chip, (u8 *) address,
chip->mem_base + MEM_INTF_ADDR_LSB, 2);
if (rc) {
pr_err("spmi write failed: addr=%03X, rc=%d\n",
chip->mem_base + MEM_INTF_ADDR_LSB, rc);
return rc;
}
return rc;
}
#define BUF_LEN 4
static int fg_mem_read(struct fg_chip *chip, u8 *val, u16 address, int len,
int offset, bool keep_access)
{
int rc = 0, user_cnt = 0, total_len = 0, orig_address = address;
u8 *rd_data = val;
bool otp;
char str[DEBUG_PRINT_BUFFER_SIZE];
if (address < RAM_OFFSET)
otp = 1;
if (offset > 3) {
pr_err("offset too large %d\n", offset);
return -EINVAL;
}
address = ((orig_address + offset) / 4) * 4;
offset = (orig_address + offset) % 4;
user_cnt = atomic_add_return(1, &chip->memif_user_cnt);
if (fg_debug_mask & FG_MEM_DEBUG_READS)
pr_info("user_cnt %d\n", user_cnt);
mutex_lock(&chip->rw_lock);
if (!fg_check_sram_access(chip)) {
rc = fg_req_and_wait_access(chip, MEM_IF_TIMEOUT_MS);
if (rc)
goto out;
}
rc = fg_config_access(chip, 0, (len > 4), otp);
if (rc)
goto out;
rc = fg_set_ram_addr(chip, &address);
if (rc)
goto out;
if (fg_debug_mask & FG_MEM_DEBUG_READS)
pr_info("length %d addr=%02X keep_access %d\n",
len, address, keep_access);
total_len = len;
while (len > 0) {
if (!offset) {
rc = fg_read(chip, rd_data,
chip->mem_base + MEM_INTF_RD_DATA0,
(len > BUF_LEN) ? BUF_LEN : len);
} else {
rc = fg_read(chip, rd_data,
chip->mem_base + MEM_INTF_RD_DATA0 + offset,
BUF_LEN - offset);
/* manually set address to allow continous reads */
address += BUF_LEN;
rc = fg_set_ram_addr(chip, &address);
if (rc)
goto out;
}
if (rc) {
pr_err("spmi read failed: addr=%03x, rc=%d\n",
chip->mem_base + MEM_INTF_RD_DATA0, rc);
goto out;
}
rd_data += (BUF_LEN - offset);
len -= (BUF_LEN - offset);
offset = 0;
}
if (fg_debug_mask & FG_MEM_DEBUG_READS) {
fill_string(str, DEBUG_PRINT_BUFFER_SIZE, val, total_len);
pr_info("data: %s\n", str);
}
out:
user_cnt = atomic_sub_return(1, &chip->memif_user_cnt);
if (fg_debug_mask & FG_MEM_DEBUG_READS)
pr_info("user_cnt %d\n", user_cnt);
fg_assert_sram_access(chip);
if (!keep_access && (user_cnt == 0) && !rc) {
rc = fg_masked_write(chip, chip->mem_base + MEM_INTF_CFG,
RIF_MEM_ACCESS_REQ, 0, 1);
if (rc)
pr_err("failed to set mem access bit\n");
INIT_COMPLETION(chip->sram_access);
}
mutex_unlock(&chip->rw_lock);
return rc;
}
static int fg_mem_write(struct fg_chip *chip, u8 *val, u16 address,
unsigned int len, unsigned int offset, bool keep_access)
{
int rc = 0, user_cnt = 0, orig_address = address;
u8 *wr_data = val;
if (address < RAM_OFFSET)
return -EINVAL;
if (offset > 3)
return -EINVAL;
address = ((orig_address + offset) / 4) * 4;
offset = (orig_address + offset) % 4;
user_cnt = atomic_add_return(1, &chip->memif_user_cnt);
if (fg_debug_mask & FG_MEM_DEBUG_WRITES)
pr_info("user_cnt %d\n", user_cnt);
mutex_lock(&chip->rw_lock);
if (!fg_check_sram_access(chip)) {
rc = fg_req_and_wait_access(chip, MEM_IF_TIMEOUT_MS);
if (rc)
goto out;
}
rc = fg_config_access(chip, 1, (len > 4), 0);
if (rc)
goto out;
rc = fg_set_ram_addr(chip, &address);
if (rc)
goto out;
if (fg_debug_mask & FG_MEM_DEBUG_WRITES)
pr_info("length %d addr=%02X\n", len, address);
while (len > 0) {
if (offset)
rc = fg_write(chip, wr_data,
chip->mem_base + MEM_INTF_WR_DATA0 + offset,
(len > 4) ? 4 : len);
else
rc = fg_write(chip, wr_data,
chip->mem_base + MEM_INTF_WR_DATA0,
(len > 4) ? 4 : len);
if (rc) {
pr_err("spmi read failed: addr=%03x, rc=%d\n",
chip->mem_base + MEM_INTF_RD_DATA0, rc);
goto out;
}
if (offset) {
wr_data += 4-offset;
if (len >= 4)
len -= 4-offset;
else
len = 0;
} else {
wr_data += 4;
if (len >= 4)
len -= 4;
else
len = 0;
}
}
out:
user_cnt = atomic_sub_return(1, &chip->memif_user_cnt);
if (fg_debug_mask & FG_MEM_DEBUG_WRITES)
pr_info("user_cnt %d\n", user_cnt);
fg_assert_sram_access(chip);
if (!keep_access && (user_cnt == 0) && !rc) {
rc = fg_masked_write(chip, chip->mem_base + MEM_INTF_CFG,
RIF_MEM_ACCESS_REQ, 0, 1);
if (rc) {
pr_err("failed to set mem access bit\n");
rc = -EIO;
}
INIT_COMPLETION(chip->sram_access);
}
mutex_unlock(&chip->rw_lock);
return rc;
}
static int fg_mem_masked_write(struct fg_chip *chip, u16 addr,
u8 mask, u8 val, u8 offset)
{
int rc = 0;
u8 reg[4];
char str[DEBUG_PRINT_BUFFER_SIZE];
rc = fg_mem_read(chip, reg, addr, 4, 0, 1);
if (rc) {
pr_err("spmi read failed: addr=%03X, rc=%d\n", addr, rc);
return rc;
}
reg[offset] &= ~mask;
reg[offset] |= val & mask;
str[0] = '\0';
fill_string(str, DEBUG_PRINT_BUFFER_SIZE, reg, 4);
pr_debug("Writing %s address %03x, offset %d\n", str, addr, offset);
rc = fg_mem_write(chip, reg, addr, 4, 0, 0);
if (rc) {
pr_err("spmi write failed: addr=%03X, rc=%d\n", addr, rc);
return rc;
}
return rc;
}
static int get_current_time(unsigned long *now_tm_sec)
{
struct rtc_time tm;
struct rtc_device *rtc;
int rc;
rtc = rtc_class_open(CONFIG_RTC_HCTOSYS_DEVICE);
if (rtc == NULL) {
pr_err("%s: unable to open rtc device (%s)\n",
__FILE__, CONFIG_RTC_HCTOSYS_DEVICE);
return -EINVAL;
}
rc = rtc_read_time(rtc, &tm);
if (rc) {
pr_err("Error reading rtc device (%s) : %d\n",
CONFIG_RTC_HCTOSYS_DEVICE, rc);
goto close_time;
}
rc = rtc_valid_tm(&tm);
if (rc) {
pr_err("Invalid RTC time (%s): %d\n",
CONFIG_RTC_HCTOSYS_DEVICE, rc);
goto close_time;
}
rtc_tm_to_time(&tm, now_tm_sec);
close_time:
rtc_class_close(rtc);
return rc;
}
#define DEFAULT_CAPACITY 50
#define MISSING_CAPACITY 100
static int get_prop_capacity(struct fg_chip *chip)
{
u8 cap[2];
int rc, capacity = 0, tries = 0;
if (chip->battery_missing)
return MISSING_CAPACITY;
if (!chip->profile_loaded && !chip->use_otp_profile)
return DEFAULT_CAPACITY;
while (tries < MAX_TRIES_SOC) {
rc = fg_read(chip, cap,
chip->soc_base + SOC_MONOTONIC_SOC, 2);
if (rc) {
pr_err("spmi read failed: addr=%03x, rc=%d\n",
chip->soc_base + SOC_MONOTONIC_SOC, rc);
return rc;
}
if (cap[0] == cap[1])
break;
tries++;
}
if (tries == MAX_TRIES_SOC) {
pr_err("shadow registers do not match\n");
return -EINVAL;
}
if (cap[0] > 0)
capacity = (cap[0] * 100 / FULL_PERCENT);
if (fg_debug_mask & FG_POWER_SUPPLY)
pr_info_ratelimited("capacity: %d, raw: 0x%02x\n",
capacity, cap[0]);
return capacity;
}
#define HIGH_BIAS 3
#define MED_BIAS BIT(1)
#define LOW_BIAS BIT(0)
static u8 bias_ua[] = {
[HIGH_BIAS] = 150,
[MED_BIAS] = 15,
[LOW_BIAS] = 5,
};
static int64_t get_batt_id(unsigned int battery_id_uv, u8 bid_info)
{
u64 battery_id_ohm;
if (!(bid_info & 0x3) >= 1) {
pr_err("can't determine battery id %d\n", bid_info);
return -EINVAL;
}
battery_id_ohm = div_u64(battery_id_uv, bias_ua[bid_info & 0x3]);
return battery_id_ohm;
}
#define DEFAULT_TEMP_DEGC 250
static int get_sram_prop_now(struct fg_chip *chip, unsigned int type)
{
if (fg_debug_mask & FG_POWER_SUPPLY)
pr_info("addr 0x%02X, offset %d value %d\n",
fg_data[type].address, fg_data[type].offset,
fg_data[type].value);
if (type == FG_DATA_BATT_ID)
return get_batt_id(fg_data[type].value,
fg_data[FG_DATA_BATT_ID_INFO].value);
return fg_data[type].value;
}
#define MIN_TEMP_DEGC -300
#define MAX_TEMP_DEGC 970
static int get_prop_jeita_temp(struct fg_chip *chip, unsigned int type)
{
if (fg_debug_mask & FG_POWER_SUPPLY)
pr_info("addr 0x%02X, offset %d\n", settings[type].address,
settings[type].offset);
return settings[type].value;
}
static int set_prop_jeita_temp(struct fg_chip *chip,
unsigned int type, int decidegc)
{
int rc = 0;
if (fg_debug_mask & FG_POWER_SUPPLY)
pr_info("addr 0x%02X, offset %d temp%d\n",
settings[type].address,
settings[type].offset, decidegc);
settings[type].value = decidegc;
cancel_delayed_work_sync(
&chip->update_jeita_setting);
schedule_delayed_work(
&chip->update_jeita_setting, 0);
return rc;
}
#define EXTERNAL_SENSE_SELECT 0x4AC
#define EXTERNAL_SENSE_OFFSET 0x2
#define EXTERNAL_SENSE_BIT BIT(2)
static int set_prop_sense_type(struct fg_chip *chip, int ext_sense_type)
{
int rc;
rc = fg_mem_masked_write(chip, EXTERNAL_SENSE_SELECT,
EXTERNAL_SENSE_BIT,
ext_sense_type ? EXTERNAL_SENSE_BIT : 0,
EXTERNAL_SENSE_OFFSET);
if (rc) {
pr_err("failed to write profile rc=%d\n", rc);
return rc;
}
return 0;
}
#define EXPONENT_MASK 0xF800
#define MANTISSA_MASK 0x3FF
#define SIGN BIT(10)
#define EXPONENT_SHIFT 11
#define MICRO_UNIT 1000000ULL
static int64_t float_decode(u16 reg)
{
int64_t final_val, exponent_val, mantissa_val;
int exponent, mantissa, n;
bool sign;
exponent = (reg & EXPONENT_MASK) >> EXPONENT_SHIFT;
mantissa = (reg & MANTISSA_MASK);
sign = !!(reg & SIGN);
pr_debug("exponent=%d mantissa=%d sign=%d\n", exponent, mantissa, sign);
mantissa_val = mantissa * MICRO_UNIT;
n = exponent - 15;
if (n < 0)
exponent_val = MICRO_UNIT >> -n;
else
exponent_val = MICRO_UNIT << n;
n = n - 10;
if (n < 0)
mantissa_val >>= -n;
else
mantissa_val <<= n;
final_val = exponent_val + mantissa_val;
if (sign)
final_val *= -1;
return final_val;
}
#define BATT_IDED BIT(3)
static int fg_is_batt_id_valid(struct fg_chip *chip)
{
u8 fg_batt_sts;
int rc;
rc = fg_read(chip, &fg_batt_sts,
INT_RT_STS(chip->batt_base), 1);
if (rc) {
pr_err("spmi read failed: addr=%03X, rc=%d\n",
INT_RT_STS(chip->batt_base), rc);
return rc;
}
if (fg_debug_mask & FG_IRQS)
pr_info("fg batt sts 0x%x\n", fg_batt_sts);
return (fg_batt_sts & BATT_IDED) ? 1 : 0;
}
#define LSB_16B 153
#define LSB_8B 9800
#define TEMP_LSB_16B 625
#define DECIKELVIN 2730
#define SRAM_PERIOD_UPDATE_MS 30000
#define SRAM_PERIOD_NO_ID_UPDATE_MS 100
static void update_sram_data(struct work_struct *work)
{
struct fg_chip *chip = container_of(work,
struct fg_chip,
update_sram_data.work);
int i, resched_ms, rc = 0;
u8 reg[2];
s16 temp;
int battid_valid = fg_is_batt_id_valid(chip);
for (i = 0; i < FG_DATA_MAX; i++) {
rc = fg_mem_read(chip, reg, fg_data[i].address,
fg_data[i].len, fg_data[i].offset,
(i+1 == FG_DATA_MAX) ? 0 : 1);
if (rc) {
pr_err("Failed to update sram data\n");
break;
}
if (fg_data[i].len > 1)
temp = reg[0] | (reg[1] << 8);
switch (i) {
case FG_DATA_BATT_TEMP:
fg_data[i].value = (temp * TEMP_LSB_16B / 1000)
- DECIKELVIN;
break;
case FG_DATA_OCV:
case FG_DATA_VOLTAGE:
fg_data[i].value = ((u16) temp) * LSB_16B;
break;
case FG_DATA_CURRENT:
fg_data[i].value = temp * LSB_16B;
break;
case FG_DATA_BATT_ESR:
fg_data[i].value = float_decode((u16) temp);
break;
case FG_DATA_BATT_ID:
if (battid_valid)
fg_data[i].value = reg[0] * LSB_8B;
break;
case FG_DATA_BATT_ID_INFO:
if (battid_valid)
fg_data[i].value = reg[0];
break;
};
if (fg_debug_mask & FG_MEM_DEBUG_READS)
pr_info("%d %d %d\n", i, temp, fg_data[i].value);
}
if (battid_valid) {
complete_all(&chip->batt_id_avail);
resched_ms = SRAM_PERIOD_UPDATE_MS;
} else {
resched_ms = SRAM_PERIOD_NO_ID_UPDATE_MS;
}
get_current_time(&chip->last_sram_update_time);
schedule_delayed_work(
&chip->update_sram_data,
msecs_to_jiffies(resched_ms));
}
static void update_jeita_setting(struct work_struct *work)
{
struct fg_chip *chip = container_of(work,
struct fg_chip,
update_jeita_setting.work);
u8 reg[4];
int i, rc;
for (i = 0; i < 4; i++)
reg[i] = (settings[FG_MEM_SOFT_COLD + i].value / 10) + 30;
rc = fg_mem_write(chip, reg, settings[FG_MEM_SOFT_COLD].address,
4, settings[FG_MEM_SOFT_COLD].offset, 0);
if (rc)
pr_err("failed to update JEITA setting rc=%d\n", rc);
}
#define FG_ALG_SYSCTL_1 0x4B0
#define SYSCTL_OFFSET 1
#define AUTO_RCHG_BIT BIT(1)
static int fg_set_auto_recharge(struct fg_chip *chip)
{
int rc;
rc = fg_mem_masked_write(chip, FG_ALG_SYSCTL_1, AUTO_RCHG_BIT,
AUTO_RCHG_BIT, SYSCTL_OFFSET);
if (rc)
pr_err("write failed rc=%d\n", rc);
else
pr_info("setting auto recharge\n");
return rc;
}
static int fg_set_resume_soc(struct fg_chip *chip, u8 threshold)
{
u16 address;
int offset, rc;
address = settings[FG_MEM_RESUME_SOC].address;
offset = settings[FG_MEM_RESUME_SOC].offset;
rc = fg_mem_masked_write(chip, address, 0xFF, threshold, offset);
if (rc)
pr_err("write failed rc=%d\n", rc);
else
pr_info("setting resume-soc to %x\n", threshold);
return rc;
}
static enum power_supply_property fg_power_props[] = {
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_VOLTAGE_OCV,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_COOL_TEMP,
POWER_SUPPLY_PROP_WARM_TEMP,
POWER_SUPPLY_PROP_RESISTANCE,
POWER_SUPPLY_PROP_RESISTANCE_ID,
POWER_SUPPLY_PROP_BATTERY_TYPE,
};
static int fg_power_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
struct fg_chip *chip = container_of(psy, struct fg_chip, bms_psy);
switch (psp) {
case POWER_SUPPLY_PROP_BATTERY_TYPE:
val->strval = chip->batt_type;
break;
case POWER_SUPPLY_PROP_CAPACITY:
val->intval = get_prop_capacity(chip);
break;
case POWER_SUPPLY_PROP_CURRENT_NOW:
val->intval = get_sram_prop_now(chip, FG_DATA_CURRENT);
break;
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
val->intval = get_sram_prop_now(chip, FG_DATA_VOLTAGE);
break;
case POWER_SUPPLY_PROP_VOLTAGE_OCV:
val->intval = get_sram_prop_now(chip, FG_DATA_OCV);
break;
case POWER_SUPPLY_PROP_TEMP:
val->intval = get_sram_prop_now(chip, FG_DATA_BATT_TEMP);
break;
case POWER_SUPPLY_PROP_COOL_TEMP:
val->intval = get_prop_jeita_temp(chip, FG_MEM_SOFT_COLD);
break;
case POWER_SUPPLY_PROP_WARM_TEMP:
val->intval = get_prop_jeita_temp(chip, FG_MEM_SOFT_HOT);
break;
case POWER_SUPPLY_PROP_RESISTANCE:
val->intval = get_sram_prop_now(chip, FG_DATA_BATT_ESR);
break;
case POWER_SUPPLY_PROP_RESISTANCE_ID:
val->intval = get_sram_prop_now(chip, FG_DATA_BATT_ID);
break;
default:
return -EINVAL;
}
return 0;
}
static int fg_power_set_property(struct power_supply *psy,
enum power_supply_property psp,
const union power_supply_propval *val)
{
struct fg_chip *chip = container_of(psy, struct fg_chip, bms_psy);
int rc = 0;
switch (psp) {
case POWER_SUPPLY_PROP_COOL_TEMP:
rc = set_prop_jeita_temp(chip,
FG_MEM_SOFT_COLD, val->intval);
break;
case POWER_SUPPLY_PROP_WARM_TEMP:
rc = set_prop_jeita_temp(chip,
FG_MEM_SOFT_HOT, val->intval);
break;
default:
return -EINVAL;
};
return rc;
};
static int fg_property_is_writeable(struct power_supply *psy,
enum power_supply_property psp)
{
switch (psp) {
case POWER_SUPPLY_PROP_COOL_TEMP:
case POWER_SUPPLY_PROP_WARM_TEMP:
return 1;
default:
break;
}
return 0;
}
#define SRAM_DUMP_START 0x400
#define SRAM_DUMP_LEN 0x200
static void dump_sram(struct work_struct *work)
{
int i, rc;
u8 *buffer;
char str[16];
struct fg_chip *chip = container_of(work,
struct fg_chip,
dump_sram);
buffer = devm_kzalloc(chip->dev, SRAM_DUMP_LEN, GFP_KERNEL);
if (buffer == NULL) {
pr_err("Can't allocate buffer\n");
return;
}
rc = fg_mem_read(chip, buffer, SRAM_DUMP_START, SRAM_DUMP_LEN, 0, 0);
if (rc) {
pr_err("dump failed: rc = %d\n", rc);
return;
}
for (i = 0; i < SRAM_DUMP_LEN; i += 4) {
str[0] = '\0';
fill_string(str, DEBUG_PRINT_BUFFER_SIZE, buffer + i, 4);
pr_info("%03X %s\n", SRAM_DUMP_START + i, str);
}
devm_kfree(chip->dev, buffer);
}
#define BATT_MISSING_STS BIT(6)
static bool is_battery_missing(struct fg_chip *chip)
{
int rc;
u8 fg_batt_sts;
rc = fg_read(chip, &fg_batt_sts,
INT_RT_STS(chip->batt_base), 1);
if (rc) {
pr_err("spmi read failed: addr=%03X, rc=%d\n",
INT_RT_STS(chip->batt_base), rc);
return false;
}
return (fg_batt_sts & BATT_MISSING_STS) ? true : false;
}
static irqreturn_t fg_batt_missing_irq_handler(int irq, void *_chip)
{
struct fg_chip *chip = _chip;
bool batt_missing = is_battery_missing(chip);
if (batt_missing) {
chip->battery_missing = true;
chip->batt_type = missing_batt_type;
} else {
if (!chip->use_otp_profile) {
INIT_COMPLETION(chip->batt_id_avail);
schedule_work(&chip->batt_profile_init);
cancel_delayed_work(&chip->update_sram_data);
schedule_delayed_work(
&chip->update_sram_data,
msecs_to_jiffies(0));
} else {
chip->battery_missing = false;
}
}
if (fg_debug_mask & FG_IRQS)
pr_info("batt-missing triggered: %s\n",
batt_missing ? "missing" : "present");
if (chip->power_supply_registered)
power_supply_changed(&chip->bms_psy);
return IRQ_HANDLED;
}
static irqreturn_t fg_mem_avail_irq_handler(int irq, void *_chip)
{
struct fg_chip *chip = _chip;
u8 mem_if_sts;
int rc;
rc = fg_read(chip, &mem_if_sts, INT_RT_STS(chip->mem_base), 1);
if (rc) {
pr_err("failed to read mem status rc=%d\n", rc);
return IRQ_HANDLED;
}
if (fg_check_sram_access(chip)) {
if (fg_debug_mask & FG_IRQS)
pr_info("sram access granted\n");
complete_all(&chip->sram_access);
} else {
if (fg_debug_mask & FG_IRQS)
pr_info("sram access revoked\n");
}
if (!rc && (fg_debug_mask & FG_IRQS))
pr_info("mem_if sts 0x%02x\n", mem_if_sts);
return IRQ_HANDLED;
}
static irqreturn_t fg_soc_irq_handler(int irq, void *_chip)
{
struct fg_chip *chip = _chip;
u8 soc_rt_sts;
int rc;
rc = fg_read(chip, &soc_rt_sts, INT_RT_STS(chip->soc_base), 1);
if (rc) {
pr_err("spmi read failed: addr=%03X, rc=%d\n",
INT_RT_STS(chip->soc_base), rc);
}
if (fg_debug_mask & FG_IRQS)
pr_info("triggered 0x%x\n", soc_rt_sts);
if (chip->power_supply_registered)
power_supply_changed(&chip->bms_psy);
return IRQ_HANDLED;
}
static irqreturn_t fg_first_soc_irq_handler(int irq, void *_chip)
{
struct fg_chip *chip = _chip;
if (fg_debug_mask & FG_IRQS)
pr_info("triggered\n");
if (fg_est_dump)
schedule_work(&chip->dump_sram);
if (chip->power_supply_registered)
power_supply_changed(&chip->bms_psy);
return IRQ_HANDLED;
}
#define OF_READ_SETTING(type, qpnp_dt_property, retval, optional) \
do { \
if (retval) \
break; \
\
retval = of_property_read_u32(chip->spmi->dev.of_node, \
"qcom," qpnp_dt_property, \
&settings[type].value); \
\
if ((retval == -EINVAL) && optional) \
retval = 0; \
else if (retval) \
pr_err("Error reading " #qpnp_dt_property \
" property rc = %d\n", rc); \
} while (0)
#define LOW_LATENCY BIT(6)
#define PROFILE_LOAD_TIMEOUT_MS 5000
#define BATT_PROFILE_OFFSET 0x4C0
#define PROFILE_INTEGRITY_REG 0x53C
#define PROFILE_INTEGRITY_BIT BIT(0)
#define FIRST_EST_DONE_BIT BIT(5)
#define MAX_TRIES_FIRST_EST 3
#define FIRST_EST_WAIT_MS 2000
static int fg_batt_profile_init(struct fg_chip *chip)
{
int rc = 0, ret;
int len, tries;
struct device_node *node = chip->spmi->dev.of_node;
struct device_node *batt_node, *profile_node;
const char *data, *batt_type_str, *old_batt_type;
bool tried_again = false;
u8 reg = 0;
wait:
ret = wait_for_completion_interruptible_timeout(&chip->batt_id_avail,
msecs_to_jiffies(PROFILE_LOAD_TIMEOUT_MS));
/* If we were interrupted wait again one more time. */
if (ret == -ERESTARTSYS && !tried_again) {
tried_again = true;
pr_debug("interrupted, waiting again\n");
goto wait;
} else if (ret <= 0) {
rc = -ETIMEDOUT;
pr_err("profile loading timed out rc=%d\n", rc);
return rc;
}
batt_node = of_find_node_by_name(node, "qcom,battery-data");
if (!batt_node) {
pr_warn("No available batterydata, using OTP defaults\n");
return 0;
}
profile_node = of_batterydata_get_best_profile(batt_node, "bms",
fg_batt_type);
if (!profile_node) {
pr_err("couldn't find profile handle\n");
return -ENODATA;
}
data = of_get_property(profile_node, "qcom,fg-profile-data", &len);
if (!data) {
pr_err("no battery profile loaded\n");
return 0;
}
rc = of_property_read_string(profile_node, "qcom,battery-type",
&batt_type_str);
if (rc) {
pr_err("Could not find battery data type: %d\n", rc);
return 0;
}
if (!chip->batt_profile)
chip->batt_profile = devm_kzalloc(chip->dev,
sizeof(char) * len, GFP_KERNEL);
if (!chip->batt_profile) {
pr_err("out of memory\n");
return -ENOMEM;
}
rc = fg_mem_read(chip, ®, PROFILE_INTEGRITY_REG, 1, 0, 1);
if (rc) {
pr_err("failed to read profile integrity rc=%d\n", rc);
return rc;
}
rc = fg_mem_read(chip, chip->batt_profile, BATT_PROFILE_OFFSET,
len, 0, 1);
if (rc) {
pr_err("failed to read profile rc=%d\n", rc);
return rc;
}
if ((reg & PROFILE_INTEGRITY_BIT)
&& memcmp(chip->batt_profile, data, len - 4) == 0) {
if (fg_debug_mask & FG_STATUS)
pr_info("Battery profiles same, using default\n");
if (fg_est_dump)
schedule_work(&chip->dump_sram);
goto done;
} else {
if (fg_debug_mask & FG_STATUS) {
pr_info("Battery profiles differ, using new profile\n");
print_hex_dump(KERN_INFO, "FG: loaded profile: ",
DUMP_PREFIX_NONE, 16, 1,
chip->batt_profile, len, false);
}
old_batt_type = chip->batt_type;
chip->batt_type = loading_batt_type;
if (chip->power_supply_registered)
power_supply_changed(&chip->bms_psy);
}
memcpy(chip->batt_profile, data, len);
chip->batt_profile_len = len;
if (fg_debug_mask & FG_MEM_DEBUG_WRITES)
print_hex_dump(KERN_INFO, "FG: new profile: ",
DUMP_PREFIX_NONE, 16, 1, chip->batt_profile,
chip->batt_profile_len, false);
/*
* release the sram access and configure the correct settings
* before re-requesting access.
*/
mutex_lock(&chip->rw_lock);
fg_masked_write(chip, chip->mem_base + MEM_INTF_CFG,
RIF_MEM_ACCESS_REQ, 0, 1);
INIT_COMPLETION(chip->sram_access);
rc = fg_masked_write(chip, chip->soc_base + SOC_BOOT_MOD,
NO_OTP_PROF_RELOAD, 0, 1);
if (rc) {
pr_err("failed to set no otp reload bit\n");
goto unlock_and_fail;
}
/* unset the restart bits so the fg doesn't continuously restart */
reg = REDO_FIRST_ESTIMATE | RESTART_GO;
rc = fg_masked_write(chip, chip->soc_base + SOC_RESTART,
reg, 0, 1);
if (rc) {
pr_err("failed to unset fg restart: %d\n", rc);
goto unlock_and_fail;
}
rc = fg_masked_write(chip, chip->mem_base + MEM_INTF_CFG,
LOW_LATENCY, LOW_LATENCY, 1);
if (rc) {
pr_err("failed to set low latency access bit\n");
goto unlock_and_fail;
}
mutex_unlock(&chip->rw_lock);
/* read once to get a fg cycle in */
rc = fg_mem_read(chip, ®, PROFILE_INTEGRITY_REG, 1, 0, 0);
if (rc) {
pr_err("failed to read profile integrity rc=%d\n", rc);
goto fail;
}
/*
* If this is not the first time a profile has been loaded, sleep for
* 3 seconds to make sure the NO_OTP_RELOAD is cleared in memory
*/
if (chip->profile_loaded)
msleep(3000);
mutex_lock(&chip->rw_lock);
fg_masked_write(chip, chip->mem_base + MEM_INTF_CFG,
RIF_MEM_ACCESS_REQ, 0, 1);
INIT_COMPLETION(chip->sram_access);
rc = fg_masked_write(chip, chip->mem_base + MEM_INTF_CFG,
LOW_LATENCY, 0, 1);
if (rc) {
pr_err("failed to set low latency access bit\n");
goto unlock_and_fail;
}
atomic_add_return(1, &chip->memif_user_cnt);
mutex_unlock(&chip->rw_lock);
/* write the battery profile */
rc = fg_mem_write(chip, chip->batt_profile, BATT_PROFILE_OFFSET,
chip->batt_profile_len, 0, 1);
if (rc) {
pr_err("failed to write profile rc=%d\n", rc);
goto sub_and_fail;
}
/* write the integrity bits and release access */
rc = fg_mem_masked_write(chip, PROFILE_INTEGRITY_REG,
PROFILE_INTEGRITY_BIT, PROFILE_INTEGRITY_BIT, 0);
if (rc) {
pr_err("failed to write profile rc=%d\n", rc);
goto sub_and_fail;
}
/* decrement the user count so that memory access can be released */
fg_release_access_if_necessary(chip);
/*
* set the restart bits so that the next fg cycle will reload
* the profile
*/
rc = fg_masked_write(chip, chip->soc_base + SOC_BOOT_MOD,
NO_OTP_PROF_RELOAD, NO_OTP_PROF_RELOAD, 1);
if (rc) {
pr_err("failed to set no otp reload bit\n");
goto fail;
}
reg = REDO_FIRST_ESTIMATE | RESTART_GO;
rc = fg_masked_write(chip, chip->soc_base + SOC_RESTART,
reg, reg, 1);
if (rc) {
pr_err("failed to set fg restart: %d\n", rc);
goto fail;
}
/* wait for the first estimate to complete */
for (tries = 0; tries < MAX_TRIES_FIRST_EST; tries++) {
msleep(FIRST_EST_WAIT_MS);
rc = fg_read(chip, ®, INT_RT_STS(chip->soc_base), 1);
if (rc) {
pr_err("spmi read failed: addr=%03X, rc=%d\n",
INT_RT_STS(chip->soc_base), rc);
}
if (reg & FIRST_EST_DONE_BIT)
break;
else
if (fg_debug_mask & FG_STATUS)
pr_info("waiting for est, tries = %d\n", tries);
}
if ((reg & FIRST_EST_DONE_BIT) == 0)
pr_err("Battery profile reloading failed, no first estimate\n");
rc = fg_masked_write(chip, chip->soc_base + SOC_BOOT_MOD,
NO_OTP_PROF_RELOAD, 0, 1);
if (rc) {
pr_err("failed to set no otp reload bit\n");
goto fail;
}
/* unset the restart bits so the fg doesn't continuously restart */
reg = REDO_FIRST_ESTIMATE | RESTART_GO;
rc = fg_masked_write(chip, chip->soc_base + SOC_RESTART,
reg, 0, 1);
if (rc) {
pr_err("failed to unset fg restart: %d\n", rc);
goto fail;
}
done:
if (fg_batt_type)
chip->batt_type = fg_batt_type;
else
chip->batt_type = batt_type_str;
chip->profile_loaded = true;
chip->battery_missing = is_battery_missing(chip);
if (chip->power_supply_registered)
power_supply_changed(&chip->bms_psy);
return rc;
unlock_and_fail:
mutex_unlock(&chip->rw_lock);
goto fail;
sub_and_fail:
fg_release_access_if_necessary(chip);
goto fail;
fail:
chip->batt_type = old_batt_type;
if (chip->power_supply_registered)
power_supply_changed(&chip->bms_psy);
return rc;
}
static void batt_profile_init(struct work_struct *work)
{
struct fg_chip *chip = container_of(work,
struct fg_chip,
batt_profile_init);
if (fg_batt_profile_init(chip))
pr_err("failed to initialize profile\n");
}
static int fg_of_init(struct fg_chip *chip)
{
int rc = 0, sense_type, len = 0;
const char *data;
OF_READ_SETTING(FG_MEM_SOFT_HOT, "warm-bat-decidegc", rc, 1);
OF_READ_SETTING(FG_MEM_SOFT_COLD, "cool-bat-decidegc", rc, 1);
OF_READ_SETTING(FG_MEM_HARD_HOT, "hot-bat-decidegc", rc, 1);
OF_READ_SETTING(FG_MEM_HARD_COLD, "cold-bat-decidegc", rc, 1);
data = of_get_property(chip->spmi->dev.of_node,
"qcom,thermal-coefficients", &len);
if (data && len == THERMAL_COEFF_N_BYTES) {
memcpy(chip->thermal_coefficients, data, len);
chip->use_thermal_coefficients = true;
}
OF_READ_SETTING(FG_MEM_RESUME_SOC, "resume-soc", rc, 1);
/* Get the use-otp-profile property */
chip->use_otp_profile = of_property_read_bool(
chip->spmi->dev.of_node,
"qcom,use-otp-profile");
sense_type = of_property_read_bool(chip->spmi->dev.of_node,
"qcom,ext-sense-type");
if (rc == 0) {
if (fg_sense_type < 0)
fg_sense_type = sense_type;
if (fg_debug_mask & FG_STATUS) {
if (fg_sense_type == 0)
pr_info("Using internal sense\n");
else if (fg_sense_type == 1)
pr_info("Using external sense\n");
else
pr_info("Using default sense\n");
}
} else {
rc = 0;
}
return rc;
}
static int fg_init_irqs(struct fg_chip *chip)
{
int rc = 0;
struct resource *resource;
struct spmi_resource *spmi_resource;
u8 subtype;
struct spmi_device *spmi = chip->spmi;
spmi_for_each_container_dev(spmi_resource, spmi) {
if (!spmi_resource) {
pr_err("fg: spmi resource absent\n");
return rc;
}
resource = spmi_get_resource(spmi, spmi_resource,
IORESOURCE_MEM, 0);
if (!(resource && resource->start)) {
pr_err("node %s IO resource absent!\n",
spmi->dev.of_node->full_name);
return rc;
}
if ((resource->start == chip->vbat_adc_addr) ||
(resource->start == chip->ibat_adc_addr))
continue;
rc = fg_read(chip, &subtype,
resource->start + REG_OFFSET_PERP_SUBTYPE, 1);
if (rc) {
pr_err("Peripheral subtype read failed rc=%d\n", rc);
return rc;
}
switch (subtype) {
case FG_SOC:
chip->soc_irq[FULL_SOC].irq = spmi_get_irq_byname(
chip->spmi, spmi_resource, "full-soc");
if (chip->soc_irq[FULL_SOC].irq < 0) {
pr_err("Unable to get full-soc irq\n");
return rc;
}
chip->soc_irq[EMPTY_SOC].irq = spmi_get_irq_byname(
chip->spmi, spmi_resource, "empty-soc");
if (chip->soc_irq[EMPTY_SOC].irq < 0) {
pr_err("Unable to get low-soc irq\n");
return rc;
}
chip->soc_irq[DELTA_SOC].irq = spmi_get_irq_byname(
chip->spmi, spmi_resource, "delta-soc");
if (chip->soc_irq[DELTA_SOC].irq < 0) {
pr_err("Unable to get delta-soc irq\n");
return rc;
}
chip->soc_irq[FIRST_EST_DONE].irq = spmi_get_irq_byname(
chip->spmi, spmi_resource, "first-est-done");
if (chip->soc_irq[FIRST_EST_DONE].irq < 0) {
pr_err("Unable to get first-est-done irq\n");
return rc;
}
rc |= devm_request_irq(chip->dev,
chip->soc_irq[FULL_SOC].irq,
fg_soc_irq_handler, IRQF_TRIGGER_RISING,
"full-soc", chip);
if (rc < 0) {
pr_err("Can't request %d full-soc: %d\n",
chip->soc_irq[FULL_SOC].irq, rc);
return rc;
}
rc |= devm_request_irq(chip->dev,
chip->soc_irq[EMPTY_SOC].irq,
fg_soc_irq_handler, IRQF_TRIGGER_RISING,
"empty-soc", chip);
if (rc < 0) {
pr_err("Can't request %d empty-soc: %d\n",
chip->soc_irq[EMPTY_SOC].irq, rc);
return rc;
}
rc |= devm_request_irq(chip->dev,
chip->soc_irq[DELTA_SOC].irq,
fg_soc_irq_handler, IRQF_TRIGGER_RISING,
"delta-soc", chip);
if (rc < 0) {
pr_err("Can't request %d delta-soc: %d\n",
chip->soc_irq[DELTA_SOC].irq, rc);
return rc;
}
rc |= devm_request_irq(chip->dev,
chip->soc_irq[FIRST_EST_DONE].irq,
fg_first_soc_irq_handler, IRQF_TRIGGER_RISING,
"first-est-done", chip);
if (rc < 0) {
pr_err("Can't request %d delta-soc: %d\n",
chip->soc_irq[FIRST_EST_DONE].irq, rc);
return rc;
}
enable_irq_wake(chip->soc_irq[DELTA_SOC].irq);
enable_irq_wake(chip->soc_irq[FULL_SOC].irq);
enable_irq_wake(chip->soc_irq[EMPTY_SOC].irq);
break;
case FG_MEMIF:
chip->mem_irq[FG_MEM_AVAIL].irq = spmi_get_irq_byname(
chip->spmi, spmi_resource, "mem-avail");
if (chip->mem_irq[FG_MEM_AVAIL].irq < 0) {
pr_err("Unable to get mem-avail irq\n");
return rc;
}
rc |= devm_request_irq(chip->dev,
chip->mem_irq[FG_MEM_AVAIL].irq,
fg_mem_avail_irq_handler,
IRQF_TRIGGER_RISING |
IRQF_TRIGGER_FALLING,
"mem-avail", chip);
if (rc < 0) {
pr_err("Can't request %d mem-avail: %d\n",
chip->mem_irq[FG_MEM_AVAIL].irq, rc);
return rc;
}
break;
case FG_BATT:
chip->batt_irq[BATT_MISSING].irq = spmi_get_irq_byname(
chip->spmi, spmi_resource,
"batt-missing");
if (chip->batt_irq[BATT_MISSING].irq < 0) {
pr_err("Unable to get batt-missing irq\n");
rc = -EINVAL;
return rc;
}
rc |= devm_request_irq(chip->dev,
chip->batt_irq[BATT_MISSING].irq,
fg_batt_missing_irq_handler,
IRQF_TRIGGER_RISING |
IRQF_TRIGGER_FALLING,
"batt-missing", chip);
if (rc < 0) {
pr_err("Can't request %d batt-missing: %d\n",
chip->batt_irq[BATT_MISSING].irq, rc);
return rc;
}
case FG_ADC:
break;
default:
pr_err("subtype %d\n", subtype);
return -EINVAL;
}
}
return rc;
}
static int fg_remove(struct spmi_device *spmi)
{
struct fg_chip *chip = dev_get_drvdata(&spmi->dev);
mutex_destroy(&chip->rw_lock);
cancel_delayed_work_sync(&chip->update_jeita_setting);
cancel_work_sync(&chip->batt_profile_init);
cancel_work_sync(&chip->dump_sram);
power_supply_unregister(&chip->bms_psy);
dev_set_drvdata(&spmi->dev, NULL);
return 0;
}
static int fg_memif_data_open(struct inode *inode, struct file *file)
{
struct fg_log_buffer *log;
struct fg_trans *trans;
u8 *data_buf;
size_t logbufsize = SZ_4K;
size_t databufsize = SZ_4K;
if (!dbgfs_data.chip) {
pr_err("Not initialized data\n");
return -EINVAL;
}
/* Per file "transaction" data */
trans = kzalloc(sizeof(*trans), GFP_KERNEL);
if (!trans) {
pr_err("Unable to allocate memory for transaction data\n");
return -ENOMEM;
}
/* Allocate log buffer */
log = kzalloc(logbufsize, GFP_KERNEL);
if (!log) {
kfree(trans);
pr_err("Unable to allocate memory for log buffer\n");
return -ENOMEM;
}
log->rpos = 0;
log->wpos = 0;
log->len = logbufsize - sizeof(*log);
/* Allocate data buffer */
data_buf = kzalloc(databufsize, GFP_KERNEL);
if (!data_buf) {
kfree(trans);
kfree(log);
pr_err("Unable to allocate memory for data buffer\n");
return -ENOMEM;
}
trans->log = log;
trans->data = data_buf;
trans->cnt = dbgfs_data.cnt;
trans->addr = dbgfs_data.addr;
trans->chip = dbgfs_data.chip;
trans->offset = trans->addr;
file->private_data = trans;
return 0;
}
static int fg_memif_dfs_close(struct inode *inode, struct file *file)
{
struct fg_trans *trans = file->private_data;
if (trans && trans->log && trans->data) {
file->private_data = NULL;
kfree(trans->log);
kfree(trans->data);
kfree(trans);
}
return 0;
}
/**
* print_to_log: format a string and place into the log buffer
* @log: The log buffer to place the result into.
* @fmt: The format string to use.
* @...: The arguments for the format string.
*
* The return value is the number of characters written to @log buffer
* not including the trailing '\0'.
*/
static int print_to_log(struct fg_log_buffer *log, const char *fmt, ...)
{
va_list args;
int cnt;
char *buf = &log->data[log->wpos];
size_t size = log->len - log->wpos;
va_start(args, fmt);
cnt = vscnprintf(buf, size, fmt, args);
va_end(args);
log->wpos += cnt;
return cnt;
}
/**
* write_next_line_to_log: Writes a single "line" of data into the log buffer
* @trans: Pointer to SRAM transaction data.
* @offset: SRAM address offset to start reading from.
* @pcnt: Pointer to 'cnt' variable. Indicates the number of bytes to read.
*
* The 'offset' is a 12-bit SRAM address.
*
* On a successful read, the pcnt is decremented by the number of data
* bytes read from the SRAM. When the cnt reaches 0, all requested bytes have
* been read.
*/
static int
write_next_line_to_log(struct fg_trans *trans, int offset, size_t *pcnt)
{
int i, j;
u8 data[ITEMS_PER_LINE];
struct fg_log_buffer *log = trans->log;
int cnt = 0;
int padding = offset % ITEMS_PER_LINE;
int items_to_read = min(ARRAY_SIZE(data) - padding, *pcnt);
int items_to_log = min(ITEMS_PER_LINE, padding + items_to_read);
/* Buffer needs enough space for an entire line */
if ((log->len - log->wpos) < MAX_LINE_LENGTH)
goto done;
memcpy(data, trans->data + (offset - trans->addr), items_to_read);
*pcnt -= items_to_read;
/* Each line starts with the aligned offset (12-bit address) */
cnt = print_to_log(log, "%3.3X ", offset & 0xfff);
if (cnt == 0)
goto done;
/* If the offset is unaligned, add padding to right justify items */
for (i = 0; i < padding; ++i) {
cnt = print_to_log(log, "-- ");
if (cnt == 0)
goto done;
}
/* Log the data items */
for (j = 0; i < items_to_log; ++i, ++j) {
cnt = print_to_log(log, "%2.2X ", data[j]);
if (cnt == 0)
goto done;
}
/* If the last character was a space, then replace it with a newline */
if (log->wpos > 0 && log->data[log->wpos - 1] == ' ')
log->data[log->wpos - 1] = '\n';
done:
return cnt;
}
/**
* get_log_data - reads data from SRAM and saves to the log buffer
* @trans: Pointer to SRAM transaction data.
*
* Returns the number of "items" read or SPMI error code for read failures.
*/
static int get_log_data(struct fg_trans *trans)
{
int cnt, rc;
int last_cnt;
int items_read;
int total_items_read = 0;
u32 offset = trans->offset;
size_t item_cnt = trans->cnt;
struct fg_log_buffer *log = trans->log;
if (item_cnt == 0)
return 0;
if (item_cnt > SZ_4K) {
pr_err("Reading too many bytes\n");
return -EINVAL;
}
rc = fg_mem_read(trans->chip, trans->data,
trans->addr, trans->cnt, 0, 0);
if (rc) {
pr_err("dump failed: rc = %d\n", rc);
return rc;
}
/* Reset the log buffer 'pointers' */
log->wpos = log->rpos = 0;
/* Keep reading data until the log is full */
do {
last_cnt = item_cnt;
cnt = write_next_line_to_log(trans, offset, &item_cnt);
items_read = last_cnt - item_cnt;
offset += items_read;
total_items_read += items_read;
} while (cnt && item_cnt > 0);
/* Adjust the transaction offset and count */
trans->cnt = item_cnt;
trans->offset += total_items_read;
return total_items_read;
}
/**
* fg_memif_dfs_reg_read: reads value(s) from SRAM and fills user's buffer a
* byte array (coded as string)
* @file: file pointer
* @buf: where to put the result
* @count: maximum space available in @buf
* @ppos: starting position
* @return number of user bytes read, or negative error value
*/
static ssize_t fg_memif_dfs_reg_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct fg_trans *trans = file->private_data;
struct fg_log_buffer *log = trans->log;
size_t ret;
size_t len;
/* Is the the log buffer empty */
if (log->rpos >= log->wpos) {
if (get_log_data(trans) <= 0)
return 0;
}
len = min(count, log->wpos - log->rpos);
ret = copy_to_user(buf, &log->data[log->rpos], len);
if (ret == len) {
pr_err("error copy sram register values to user\n");
return -EFAULT;
}
/* 'ret' is the number of bytes not copied */
len -= ret;
*ppos += len;
log->rpos += len;
return len;
}
/**
* fg_memif_dfs_reg_write: write user's byte array (coded as string) to SRAM.
* @file: file pointer
* @buf: user data to be written.
* @count: maximum space available in @buf
* @ppos: starting position
* @return number of user byte written, or negative error value
*/
static ssize_t fg_memif_dfs_reg_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
int bytes_read;
int data;
int pos = 0;
int cnt = 0;
u8 *values;
size_t ret = 0;
struct fg_trans *trans = file->private_data;
u32 offset = trans->offset;
/* Make a copy of the user data */
char *kbuf = kmalloc(count + 1, GFP_KERNEL);
if (!kbuf)
return -ENOMEM;
ret = copy_from_user(kbuf, buf, count);
if (ret == count) {
pr_err("failed to copy data from user\n");
ret = -EFAULT;
goto free_buf;
}
count -= ret;
*ppos += count;
kbuf[count] = '\0';
/* Override the text buffer with the raw data */
values = kbuf;
/* Parse the data in the buffer. It should be a string of numbers */
while (sscanf(kbuf + pos, "%i%n", &data, &bytes_read) == 1) {
pos += bytes_read;
values[cnt++] = data & 0xff;
}
if (!cnt)
goto free_buf;
pr_info("address %x, count %d\n", offset, cnt);
/* Perform the write(s) */
ret = fg_mem_write(trans->chip, values, offset,
cnt, 0, 0);
if (ret) {
pr_err("SPMI write failed, err = %zu\n", ret);
} else {
ret = count;
trans->offset += cnt > 4 ? 4 : cnt;
}
free_buf:
kfree(kbuf);
return ret;
}
static const struct file_operations fg_memif_dfs_reg_fops = {
.open = fg_memif_data_open,
.release = fg_memif_dfs_close,
.read = fg_memif_dfs_reg_read,
.write = fg_memif_dfs_reg_write,
};
/**
* fg_dfs_create_fs: create debugfs file system.
* @return pointer to root directory or NULL if failed to create fs
*/
static struct dentry *fg_dfs_create_fs(void)
{
struct dentry *root, *file;
pr_debug("Creating FG_MEM debugfs file-system\n");
root = debugfs_create_dir(DFS_ROOT_NAME, NULL);
if (IS_ERR_OR_NULL(root)) {
pr_err("Error creating top level directory err:%ld",
(long)root);
if (PTR_ERR(root) == -ENODEV)
pr_err("debugfs is not enabled in the kernel");
return NULL;
}
dbgfs_data.help_msg.size = strlen(dbgfs_data.help_msg.data);
file = debugfs_create_blob("help", S_IRUGO, root, &dbgfs_data.help_msg);
if (!file) {
pr_err("error creating help entry\n");
goto err_remove_fs;
}
return root;
err_remove_fs:
debugfs_remove_recursive(root);
return NULL;
}
/**
* fg_dfs_get_root: return a pointer to FG debugfs root directory.
* @return a pointer to the existing directory, or if no root
* directory exists then create one. Directory is created with file that
* configures SRAM transaction, namely: address, and count.
* @returns valid pointer on success or NULL
*/
struct dentry *fg_dfs_get_root(void)
{
if (dbgfs_data.root)
return dbgfs_data.root;
if (mutex_lock_interruptible(&dbgfs_data.lock) < 0)
return NULL;
/* critical section */
if (!dbgfs_data.root) { /* double checking idiom */
dbgfs_data.root = fg_dfs_create_fs();
}
mutex_unlock(&dbgfs_data.lock);
return dbgfs_data.root;
}
/*
* fg_dfs_create: adds new fg_mem if debugfs entry
* @return zero on success
*/
int fg_dfs_create(struct fg_chip *chip)
{
struct dentry *root;
struct dentry *file;
root = fg_dfs_get_root();
if (!root)
return -ENOENT;
dbgfs_data.chip = chip;
file = debugfs_create_u32("count", DFS_MODE, root, &(dbgfs_data.cnt));
if (!file) {
pr_err("error creating 'count' entry\n");
goto err_remove_fs;
}
file = debugfs_create_x32("address", DFS_MODE,
root, &(dbgfs_data.addr));
if (!file) {
pr_err("error creating 'address' entry\n");
goto err_remove_fs;
}
file = debugfs_create_file("data", DFS_MODE, root, &dbgfs_data,
&fg_memif_dfs_reg_fops);
if (!file) {
pr_err("error creating 'data' entry\n");
goto err_remove_fs;
}
return 0;
err_remove_fs:
debugfs_remove_recursive(root);
return -ENOMEM;
}
static int soc_to_setpoint(int soc)
{
return DIV_ROUND_CLOSEST(soc * 255, 100);
}
#define SOC_CNFG 0x450
#define SOC_DELTA_OFFSET 3
#define DELTA_SOC_PERCENT 1
#define BATT_TEMP_OFFSET 3
#define BATT_TEMP_CNTRL_MASK 0x17
#define BATT_TEMP_ON 0x16
#define BATT_TEMP_OFF 0x01
#define THERMAL_COEFF_ADDR 0x444
#define THERMAL_COEFF_OFFSET 0x2
static int fg_hw_init(struct fg_chip *chip)
{
u8 resume_soc;
int rc = 0;
rc = fg_set_auto_recharge(chip);
if (rc) {
pr_err("Couldn't set auto recharge in FG\n");
return rc;
}
resume_soc = settings[FG_MEM_RESUME_SOC].value;
if (resume_soc > 0) {
resume_soc = resume_soc * 255 / 100;
rc = fg_set_resume_soc(chip, resume_soc);
if (rc) {
pr_err("Couldn't set resume SOC for FG\n");
return rc;
}
} else {
pr_info("FG auto recharge threshold not specified in DT\n");
}
if (fg_sense_type >= 0) {
rc = set_prop_sense_type(chip, fg_sense_type);
if (rc) {
pr_err("failed to config sense type %d rc=%d\n",
fg_sense_type, rc);
return rc;
}
}
rc = fg_mem_masked_write(chip, EXTERNAL_SENSE_SELECT,
BATT_TEMP_CNTRL_MASK,
BATT_TEMP_ON,
BATT_TEMP_OFFSET);
if (rc) {
pr_err("failed to write to memif rc=%d\n", rc);
return rc;
}
rc = fg_mem_masked_write(chip, SOC_CNFG,
0xFF,
soc_to_setpoint(DELTA_SOC_PERCENT),
SOC_DELTA_OFFSET);
if (rc) {
pr_err("failed to write to memif rc=%d\n", rc);
return rc;
}
if (chip->use_thermal_coefficients) {
fg_mem_write(chip, chip->thermal_coefficients,
THERMAL_COEFF_ADDR, 2,
THERMAL_COEFF_OFFSET, 0);
fg_mem_write(chip, chip->thermal_coefficients + 2,
THERMAL_COEFF_ADDR + 4, 4, 0, 0);
}
return 0;
}
#define INIT_JEITA_DELAY_MS 1000
static int fg_probe(struct spmi_device *spmi)
{
struct device *dev = &(spmi->dev);
struct fg_chip *chip;
struct spmi_resource *spmi_resource;
struct resource *resource;
u8 subtype, reg;
int rc = 0;
if (!spmi) {
pr_err("no valid spmi pointer\n");
return -ENODEV;
}
if (!spmi->dev.of_node) {
pr_err("device node missing\n");
return -ENODEV;
}
chip = devm_kzalloc(dev, sizeof(struct fg_chip), GFP_KERNEL);
if (chip == NULL) {
pr_err("Can't allocate fg_chip\n");
return -ENOMEM;
}
chip->spmi = spmi;
chip->dev = &(spmi->dev);
mutex_init(&chip->rw_lock);
INIT_DELAYED_WORK(&chip->update_jeita_setting,
update_jeita_setting);
INIT_DELAYED_WORK(&chip->update_sram_data, update_sram_data);
INIT_WORK(&chip->batt_profile_init,
batt_profile_init);
INIT_WORK(&chip->dump_sram, dump_sram);
init_completion(&chip->sram_access);
init_completion(&chip->batt_id_avail);
dev_set_drvdata(&spmi->dev, chip);
spmi_for_each_container_dev(spmi_resource, spmi) {
if (!spmi_resource) {
pr_err("qpnp_chg: spmi resource absent\n");
rc = -ENXIO;
goto of_init_fail;
}
resource = spmi_get_resource(spmi, spmi_resource,
IORESOURCE_MEM, 0);
if (!(resource && resource->start)) {
pr_err("node %s IO resource absent!\n",
spmi->dev.of_node->full_name);
rc = -ENXIO;
goto of_init_fail;
}
if (strcmp("qcom,fg-adc-vbat",
spmi_resource->of_node->name) == 0) {
chip->vbat_adc_addr = resource->start;
continue;
} else if (strcmp("qcom,fg-adc-ibat",
spmi_resource->of_node->name) == 0) {
chip->ibat_adc_addr = resource->start;
continue;
}
rc = fg_read(chip, &subtype,
resource->start + REG_OFFSET_PERP_SUBTYPE, 1);
if (rc) {
pr_err("Peripheral subtype read failed rc=%d\n", rc);
goto of_init_fail;
}
switch (subtype) {
case FG_SOC:
chip->soc_base = resource->start;
break;
case FG_MEMIF:
chip->mem_base = resource->start;
break;
case FG_BATT:
chip->batt_base = resource->start;
break;
default:
pr_err("Invalid peripheral subtype=0x%x\n", subtype);
rc = -EINVAL;
}
}
rc = fg_of_init(chip);
if (rc) {
pr_err("failed to parse devicetree rc%d\n", rc);
goto of_init_fail;
}
reg = 0xFF;
rc = fg_write(chip, ®, INT_EN_CLR(chip->mem_base), 1);
if (rc) {
pr_err("failed to clear interrupts %d\n", rc);
goto of_init_fail;
}
/* hold memory access until initialization finishes */
atomic_add_return(1, &chip->memif_user_cnt);
rc = fg_init_irqs(chip);
if (rc) {
pr_err("failed to request interrupts %d\n", rc);
goto power_supply_unregister;
}
chip->batt_type = default_batt_type;
chip->bms_psy.name = "bms";
chip->bms_psy.type = POWER_SUPPLY_TYPE_BMS;
chip->bms_psy.properties = fg_power_props;
chip->bms_psy.num_properties = ARRAY_SIZE(fg_power_props);
chip->bms_psy.get_property = fg_power_get_property;
chip->bms_psy.set_property = fg_power_set_property;
chip->bms_psy.supplied_to = fg_supplicants;
chip->bms_psy.num_supplicants = ARRAY_SIZE(fg_supplicants);
chip->bms_psy.property_is_writeable = fg_property_is_writeable;
rc = power_supply_register(chip->dev, &chip->bms_psy);
if (rc < 0) {
pr_err("batt failed to register rc = %d\n", rc);
goto of_init_fail;
}
chip->power_supply_registered = true;
if (chip->mem_base) {
rc = fg_dfs_create(chip);
if (rc < 0) {
pr_err("failed to create debugfs rc = %d\n", rc);
goto power_supply_unregister;
}
}
schedule_delayed_work(
&chip->update_jeita_setting,
msecs_to_jiffies(INIT_JEITA_DELAY_MS));
if (chip->last_sram_update_time == 0)
update_sram_data(&chip->update_sram_data.work);
rc = fg_hw_init(chip);
if (rc) {
pr_err("failed to hw init rc = %d\n", rc);
goto cancel_jeita_work;
}
/* release memory access if necessary */
fg_release_access_if_necessary(chip);
if (!chip->use_otp_profile)
schedule_work(&chip->batt_profile_init);
pr_info("probe success\n");
return rc;
cancel_jeita_work:
cancel_delayed_work_sync(&chip->update_jeita_setting);
power_supply_unregister:
power_supply_unregister(&chip->bms_psy);
of_init_fail:
mutex_destroy(&chip->rw_lock);
return rc;
}
static int fg_suspend(struct device *dev)
{
struct fg_chip *chip = dev_get_drvdata(dev);
ktime_t enter_time;
ktime_t total_time;
int total_time_ms;
int rc;
enter_time = ktime_get();
rc = fg_mem_masked_write(chip, EXTERNAL_SENSE_SELECT,
BATT_TEMP_CNTRL_MASK,
BATT_TEMP_OFF,
BATT_TEMP_OFFSET);
if (rc)
pr_err("failed to write to memif rc=%d\n", rc);
total_time = ktime_sub(ktime_get(), enter_time);
total_time_ms = ktime_to_ms(total_time);
if ((total_time_ms > 1500) && (fg_debug_mask & FG_STATUS))
pr_info("spent %dms configuring rbias\n", total_time_ms);
return 0;
}
static int fg_resume(struct device *dev)
{
struct fg_chip *chip = dev_get_drvdata(dev);
ktime_t enter_time;
ktime_t total_time;
int total_time_ms;
unsigned long current_time = 0, next_update_time, time_left;
int rc;
enter_time = ktime_get();
rc = fg_mem_masked_write(chip, EXTERNAL_SENSE_SELECT,
BATT_TEMP_CNTRL_MASK,
BATT_TEMP_ON,
BATT_TEMP_OFFSET);
if (rc)
pr_err("failed to write to memif rc=%d\n", rc);
total_time = ktime_sub(ktime_get(), enter_time);
total_time_ms = ktime_to_ms(total_time);
if ((total_time_ms > 1500) && (fg_debug_mask & FG_STATUS))
pr_info("spent %dms configuring rbias\n", total_time_ms);
/*
* this may fail, but current time should be still 0,
* triggering an immediate update.
*/
get_current_time(¤t_time);
next_update_time = chip->last_sram_update_time
+ (SRAM_PERIOD_UPDATE_MS / 1000);
if (next_update_time > current_time)
time_left = next_update_time - current_time;
else
time_left = 0;
cancel_delayed_work_sync(
&chip->update_sram_data);
schedule_delayed_work(
&chip->update_sram_data, msecs_to_jiffies(time_left * 1000));
return 0;
}
static const struct dev_pm_ops qpnp_fg_pm_ops = {
.suspend = fg_suspend,
.resume = fg_resume,
};
static int fg_sense_type_set(const char *val, const struct kernel_param *kp)
{
int rc;
struct power_supply *bms_psy;
struct fg_chip *chip;
int old_fg_sense_type = fg_sense_type;
rc = param_set_int(val, kp);
if (rc) {
pr_err("Unable to set fg_sense_type: %d\n", rc);
return rc;
}
if (fg_sense_type != 0 && fg_sense_type != 1) {
pr_err("Bad value %d\n", fg_sense_type);
fg_sense_type = old_fg_sense_type;
return -EINVAL;
}
if (fg_debug_mask & FG_STATUS)
pr_info("fg_sense_type set to %d\n", fg_sense_type);
bms_psy = power_supply_get_by_name("bms");
if (!bms_psy) {
pr_err("bms psy not found\n");
return 0;
}
chip = container_of(bms_psy, struct fg_chip, bms_psy);
rc = set_prop_sense_type(chip, fg_sense_type);
return rc;
}
static struct kernel_param_ops fg_sense_type_ops = {
.set = fg_sense_type_set,
.get = param_get_int,
};
module_param_cb(sense_type, &fg_sense_type_ops, &fg_sense_type, 0644);
static struct spmi_driver fg_driver = {
.driver = {
.name = QPNP_FG_DEV_NAME,
.of_match_table = fg_match_table,
.pm = &qpnp_fg_pm_ops,
},
.probe = fg_probe,
.remove = fg_remove,
};
static int __init fg_init(void)
{
return spmi_driver_register(&fg_driver);
}
static void __exit fg_exit(void)
{
return spmi_driver_unregister(&fg_driver);
}
module_init(fg_init);
module_exit(fg_exit);
MODULE_DESCRIPTION("QPNP Fuel Gauge Driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" QPNP_FG_DEV_NAME);
|