aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorTARKZiM <tom8476oo@gmail.com>2021-08-25 16:11:47 +0800
committerTARKZiM <tom8476oo@gmail.com>2021-08-25 16:11:47 +0800
commita6edbf322f630f90b5f343378410123025ce3c83 (patch)
treed2c3cbf9055d0318ed2100fa684120d09214c1db
parent6c246ad7fcbd47c8fbbbf3a08fdd0f497cbfe2be (diff)
zram/zsmalloc: Update from 3.10 backport with upstream patches
* From armani kernel.
-rw-r--r--drivers/block/zram/zcomp.c36
-rw-r--r--drivers/block/zram/zcomp.h2
-rw-r--r--drivers/block/zram/zcomp_lz4.c15
-rw-r--r--drivers/block/zram/zcomp_lzo.c15
-rw-r--r--drivers/block/zram/zram_drv.c456
-rw-r--r--drivers/block/zram/zram_drv.h29
-rw-r--r--include/linux/zpool.h107
-rw-r--r--include/linux/zsmalloc.h5
-rw-r--r--mm/zsmalloc.c1325
9 files changed, 1596 insertions, 394 deletions
diff --git a/drivers/block/zram/zcomp.c b/drivers/block/zram/zcomp.c
index f1ff39a3d1c..5ee0b456636 100644
--- a/drivers/block/zram/zcomp.c
+++ b/drivers/block/zram/zcomp.c
@@ -74,18 +74,18 @@ static void zcomp_strm_free(struct zcomp *comp, struct zcomp_strm *zstrm)
* allocate new zcomp_strm structure with ->private initialized by
* backend, return NULL on error
*/
-static struct zcomp_strm *zcomp_strm_alloc(struct zcomp *comp)
+static struct zcomp_strm *zcomp_strm_alloc(struct zcomp *comp, gfp_t flags)
{
- struct zcomp_strm *zstrm = kmalloc(sizeof(*zstrm), GFP_KERNEL);
+ struct zcomp_strm *zstrm = kmalloc(sizeof(*zstrm), flags);
if (!zstrm)
return NULL;
- zstrm->private = comp->backend->create();
+ zstrm->private = comp->backend->create(flags);
/*
* allocate 2 pages. 1 for compressed data, plus 1 extra for the
* case when compressed size is larger than the original one
*/
- zstrm->buffer = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
+ zstrm->buffer = (void *)__get_free_pages(flags | __GFP_ZERO, 1);
if (!zstrm->private || !zstrm->buffer) {
zcomp_strm_free(comp, zstrm);
zstrm = NULL;
@@ -120,8 +120,16 @@ static struct zcomp_strm *zcomp_strm_multi_find(struct zcomp *comp)
/* allocate new zstrm stream */
zs->avail_strm++;
spin_unlock(&zs->strm_lock);
-
- zstrm = zcomp_strm_alloc(comp);
+ /*
+ * This function can be called in swapout/fs write path
+ * so we can't use GFP_FS|IO. And it assumes we already
+ * have at least one stream in zram initialization so we
+ * don't do best effort to allocate more stream in here.
+ * A default stream will work well without further multiple
+ * streams. That's why we use NORETRY | NOWARN.
+ */
+ zstrm = zcomp_strm_alloc(comp, GFP_NOIO | __GFP_NORETRY |
+ __GFP_NOWARN);
if (!zstrm) {
spin_lock(&zs->strm_lock);
zs->avail_strm--;
@@ -209,7 +217,7 @@ static int zcomp_strm_multi_create(struct zcomp *comp, int max_strm)
zs->max_strm = max_strm;
zs->avail_strm = 1;
- zstrm = zcomp_strm_alloc(comp);
+ zstrm = zcomp_strm_alloc(comp, GFP_KERNEL);
if (!zstrm) {
kfree(zs);
return -ENOMEM;
@@ -259,7 +267,7 @@ static int zcomp_strm_single_create(struct zcomp *comp)
comp->stream = zs;
mutex_init(&zs->strm_lock);
- zs->zstrm = zcomp_strm_alloc(comp);
+ zs->zstrm = zcomp_strm_alloc(comp, GFP_KERNEL);
if (!zs->zstrm) {
kfree(zs);
return -ENOMEM;
@@ -325,12 +333,14 @@ void zcomp_destroy(struct zcomp *comp)
* allocate new zcomp and initialize it. return compressing
* backend pointer or ERR_PTR if things went bad. ERR_PTR(-EINVAL)
* if requested algorithm is not supported, ERR_PTR(-ENOMEM) in
- * case of allocation error.
+ * case of allocation error, or any other error potentially
+ * returned by functions zcomp_strm_{multi,single}_create.
*/
struct zcomp *zcomp_create(const char *compress, int max_strm)
{
struct zcomp *comp;
struct zcomp_backend *backend;
+ int error;
backend = find_backend(compress);
if (!backend)
@@ -342,12 +352,12 @@ struct zcomp *zcomp_create(const char *compress, int max_strm)
comp->backend = backend;
if (max_strm > 1)
- zcomp_strm_multi_create(comp, max_strm);
+ error = zcomp_strm_multi_create(comp, max_strm);
else
- zcomp_strm_single_create(comp);
- if (!comp->stream) {
+ error = zcomp_strm_single_create(comp);
+ if (error) {
kfree(comp);
- return ERR_PTR(-ENOMEM);
+ return ERR_PTR(error);
}
return comp;
}
diff --git a/drivers/block/zram/zcomp.h b/drivers/block/zram/zcomp.h
index c59d1fca72c..a3848166747 100644
--- a/drivers/block/zram/zcomp.h
+++ b/drivers/block/zram/zcomp.h
@@ -33,7 +33,7 @@ struct zcomp_backend {
int (*decompress)(const unsigned char *src, size_t src_len,
unsigned char *dst);
- void *(*create)(void);
+ void *(*create)(gfp_t flags);
void (*destroy)(void *private);
const char *name;
diff --git a/drivers/block/zram/zcomp_lz4.c b/drivers/block/zram/zcomp_lz4.c
index f2afb7e988c..0110086accb 100644
--- a/drivers/block/zram/zcomp_lz4.c
+++ b/drivers/block/zram/zcomp_lz4.c
@@ -10,17 +10,26 @@
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/lz4.h>
+#include <linux/vmalloc.h>
+#include <linux/mm.h>
#include "zcomp_lz4.h"
-static void *zcomp_lz4_create(void)
+static void *zcomp_lz4_create(gfp_t flags)
{
- return kzalloc(LZ4_MEM_COMPRESS, GFP_KERNEL);
+ void *ret;
+
+ ret = kmalloc(LZ4_MEM_COMPRESS, flags);
+ if (!ret)
+ ret = __vmalloc(LZ4_MEM_COMPRESS,
+ flags | __GFP_HIGHMEM,
+ PAGE_KERNEL);
+ return ret;
}
static void zcomp_lz4_destroy(void *private)
{
- kfree(private);
+ kvfree(private);
}
static int zcomp_lz4_compress(const unsigned char *src, unsigned char *dst,
diff --git a/drivers/block/zram/zcomp_lzo.c b/drivers/block/zram/zcomp_lzo.c
index da1bc47d588..ed7a1f0549e 100644
--- a/drivers/block/zram/zcomp_lzo.c
+++ b/drivers/block/zram/zcomp_lzo.c
@@ -10,17 +10,26 @@
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/lzo.h>
+#include <linux/vmalloc.h>
+#include <linux/mm.h>
#include "zcomp_lzo.h"
-static void *lzo_create(void)
+static void *lzo_create(gfp_t flags)
{
- return kzalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
+ void *ret;
+
+ ret = kmalloc(LZO1X_MEM_COMPRESS, flags);
+ if (!ret)
+ ret = __vmalloc(LZO1X_MEM_COMPRESS,
+ flags | __GFP_HIGHMEM,
+ PAGE_KERNEL);
+ return ret;
}
static void lzo_destroy(void *private)
{
- kfree(private);
+ kvfree(private);
}
static int lzo_compress(const unsigned char *src, unsigned char *dst,
diff --git a/drivers/block/zram/zram_drv.c b/drivers/block/zram/zram_drv.c
index 9f4894cddd1..1ccfae9d18c 100644
--- a/drivers/block/zram/zram_drv.c
+++ b/drivers/block/zram/zram_drv.c
@@ -10,7 +10,6 @@
* Released under the terms of 3-clause BSD License
* Released under the terms of GNU General Public License Version 2.0
*
- * Project home: http://compcache.googlecode.com
*/
#define KMSG_COMPONENT "zram"
@@ -40,7 +39,7 @@
/* Globals */
static int zram_major;
static struct zram *zram_devices;
-static const char *default_compressor = "lz4";
+static const char *default_compressor = "lzo";
/*
* We don't need to see memory allocation errors more than once every 1
@@ -51,20 +50,31 @@ static const char *default_compressor = "lz4";
/* Module params (documentation at end) */
static unsigned int num_devices = 1;
+static inline void deprecated_attr_warn(const char *name)
+{
+ pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
+ task_pid_nr(current),
+ current->comm,
+ name,
+ "See zram documentation.");
+}
+
#define ZRAM_ATTR_RO(name) \
static ssize_t zram_attr_##name##_show(struct device *d, \
struct device_attribute *attr, char *b) \
{ \
struct zram *zram = dev_to_zram(d); \
+ \
+ deprecated_attr_warn(__stringify(name)); \
return scnprintf(b, PAGE_SIZE, "%llu\n", \
(u64)atomic64_read(&zram->stats.name)); \
} \
static struct device_attribute dev_attr_##name = \
__ATTR(name, S_IRUGO, zram_attr_##name##_show, NULL);
-static inline int init_done(struct zram *zram)
+static inline bool init_done(struct zram *zram)
{
- return zram->meta != NULL;
+ return zram->disksize;
}
static inline struct zram *dev_to_zram(struct device *dev)
@@ -72,6 +82,27 @@ static inline struct zram *dev_to_zram(struct device *dev)
return (struct zram *)dev_to_disk(dev)->private_data;
}
+static ssize_t compact_store(struct device *dev,
+ struct device_attribute *attr, const char *buf, size_t len)
+{
+ unsigned long nr_migrated;
+ struct zram *zram = dev_to_zram(dev);
+ struct zram_meta *meta;
+
+ down_read(&zram->init_lock);
+ if (!init_done(zram)) {
+ up_read(&zram->init_lock);
+ return -EINVAL;
+ }
+
+ meta = zram->meta;
+ nr_migrated = zs_compact(meta->mem_pool);
+ atomic64_add(nr_migrated, &zram->stats.num_migrated);
+ up_read(&zram->init_lock);
+
+ return len;
+}
+
static ssize_t disksize_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
@@ -98,6 +129,7 @@ static ssize_t orig_data_size_show(struct device *dev,
{
struct zram *zram = dev_to_zram(dev);
+ deprecated_attr_warn("orig_data_size");
return scnprintf(buf, PAGE_SIZE, "%llu\n",
(u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
}
@@ -107,14 +139,16 @@ static ssize_t mem_used_total_show(struct device *dev,
{
u64 val = 0;
struct zram *zram = dev_to_zram(dev);
- struct zram_meta *meta = zram->meta;
+ deprecated_attr_warn("mem_used_total");
down_read(&zram->init_lock);
- if (init_done(zram))
- val = zs_get_total_size_bytes(meta->mem_pool);
+ if (init_done(zram)) {
+ struct zram_meta *meta = zram->meta;
+ val = zs_get_total_pages(meta->mem_pool);
+ }
up_read(&zram->init_lock);
- return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
+ return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
}
static ssize_t max_comp_streams_show(struct device *dev,
@@ -130,6 +164,75 @@ static ssize_t max_comp_streams_show(struct device *dev,
return scnprintf(buf, PAGE_SIZE, "%d\n", val);
}
+static ssize_t mem_limit_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ u64 val;
+ struct zram *zram = dev_to_zram(dev);
+
+ deprecated_attr_warn("mem_limit");
+ down_read(&zram->init_lock);
+ val = zram->limit_pages;
+ up_read(&zram->init_lock);
+
+ return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
+}
+
+static ssize_t mem_limit_store(struct device *dev,
+ struct device_attribute *attr, const char *buf, size_t len)
+{
+ u64 limit;
+ char *tmp;
+ struct zram *zram = dev_to_zram(dev);
+
+ limit = memparse(buf, &tmp);
+ if (buf == tmp) /* no chars parsed, invalid input */
+ return -EINVAL;
+
+ down_write(&zram->init_lock);
+ zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
+ up_write(&zram->init_lock);
+
+ return len;
+}
+
+static ssize_t mem_used_max_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ u64 val = 0;
+ struct zram *zram = dev_to_zram(dev);
+
+ deprecated_attr_warn("mem_used_max");
+ down_read(&zram->init_lock);
+ if (init_done(zram))
+ val = atomic_long_read(&zram->stats.max_used_pages);
+ up_read(&zram->init_lock);
+
+ return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
+}
+
+static ssize_t mem_used_max_store(struct device *dev,
+ struct device_attribute *attr, const char *buf, size_t len)
+{
+ int err;
+ unsigned long val;
+ struct zram *zram = dev_to_zram(dev);
+
+ err = kstrtoul(buf, 10, &val);
+ if (err || val != 0)
+ return -EINVAL;
+
+ down_read(&zram->init_lock);
+ if (init_done(zram)) {
+ struct zram_meta *meta = zram->meta;
+ atomic_long_set(&zram->stats.max_used_pages,
+ zs_get_total_pages(meta->mem_pool));
+ }
+ up_read(&zram->init_lock);
+
+ return len;
+}
+
static ssize_t max_comp_streams_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
@@ -187,7 +290,6 @@ static ssize_t comp_algorithm_store(struct device *dev,
return len;
}
-/* flag operations needs meta->tb_lock */
static int zram_test_flag(struct zram_meta *meta, u32 index,
enum zram_pageflags flag)
{
@@ -227,18 +329,18 @@ static inline int is_partial_io(struct bio_vec *bvec)
/*
* Check if request is within bounds and aligned on zram logical blocks.
*/
-static inline int valid_io_request(struct zram *zram, struct bio *bio)
+static inline int valid_io_request(struct zram *zram,
+ sector_t start, unsigned int size)
{
- u64 start, end, bound;
+ u64 end, bound;
/* unaligned request */
- if (unlikely(bio->bi_sector & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
+ if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
return 0;
- if (unlikely(bio->bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
+ if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
return 0;
- start = bio->bi_sector;
- end = start + (bio->bi_size >> SECTOR_SHIFT);
+ end = start + (size >> SECTOR_SHIFT);
bound = zram->disksize >> SECTOR_SHIFT;
/* out of range range */
if (unlikely(start >= bound || end > bound || start > end))
@@ -248,43 +350,68 @@ static inline int valid_io_request(struct zram *zram, struct bio *bio)
return 1;
}
-static void zram_meta_free(struct zram_meta *meta)
+static void zram_meta_free(struct zram_meta *meta, u64 disksize)
{
+ size_t num_pages = disksize >> PAGE_SHIFT;
+ size_t index;
+
+ /* Free all pages that are still in this zram device */
+ for (index = 0; index < num_pages; index++) {
+ unsigned long handle = meta->table[index].handle;
+
+ if (!handle)
+ continue;
+
+ zs_free(meta->mem_pool, handle);
+ }
+
zs_destroy_pool(meta->mem_pool);
vfree(meta->table);
kfree(meta);
}
-static struct zram_meta *zram_meta_alloc(u64 disksize)
+static struct zram_meta *zram_meta_alloc(int device_id, u64 disksize)
{
size_t num_pages;
+ char pool_name[8];
struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
+
if (!meta)
- goto out;
+ return NULL;
num_pages = disksize >> PAGE_SHIFT;
meta->table = vzalloc(num_pages * sizeof(*meta->table));
if (!meta->table) {
pr_err("Error allocating zram address table\n");
- goto free_meta;
+ goto out_error;
}
- meta->mem_pool = zs_create_pool(GFP_NOIO | __GFP_HIGHMEM |
+ snprintf(pool_name, sizeof(pool_name), "zram%d", device_id);
+ meta->mem_pool = zs_create_pool(pool_name, GFP_NOIO | __GFP_HIGHMEM |
__GFP_NOWARN);
if (!meta->mem_pool) {
pr_err("Error creating memory pool\n");
- goto free_table;
+ goto out_error;
}
return meta;
-free_table:
+out_error:
vfree(meta->table);
-free_meta:
kfree(meta);
- meta = NULL;
-out:
- return meta;
+ return NULL;
+}
+
+static inline bool zram_meta_get(struct zram *zram)
+{
+ if (atomic_inc_not_zero(&zram->refcount))
+ return true;
+ return false;
+}
+
+static inline void zram_meta_put(struct zram *zram)
+{
+ atomic_dec(&zram->refcount);
}
static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
@@ -393,7 +520,7 @@ static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
}
static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
- u32 index, int offset, struct bio *bio)
+ u32 index, int offset)
{
int ret;
struct page *page;
@@ -442,6 +569,21 @@ out_cleanup:
return ret;
}
+static inline void update_used_max(struct zram *zram,
+ const unsigned long pages)
+{
+ unsigned long old_max, cur_max;
+
+ old_max = atomic_long_read(&zram->stats.max_used_pages);
+
+ do {
+ cur_max = old_max;
+ if (pages > cur_max)
+ old_max = atomic_long_cmpxchg(
+ &zram->stats.max_used_pages, cur_max, pages);
+ } while (old_max != cur_max);
+}
+
static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
int offset)
{
@@ -451,9 +593,10 @@ static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
struct page *page;
unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
struct zram_meta *meta = zram->meta;
- static unsigned long zram_rs_time;
struct zcomp_strm *zstrm;
+ static unsigned long zram_rs_time;
bool locked = false;
+ unsigned long alloced_pages;
page = bvec->bv_page;
if (is_partial_io(bvec)) {
@@ -485,7 +628,8 @@ static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
}
if (page_zero_filled(uncmem)) {
- kunmap_atomic(user_mem);
+ if (user_mem)
+ kunmap_atomic(user_mem);
/* Free memory associated with this sector now. */
bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
zram_free_page(zram, index);
@@ -524,6 +668,16 @@ static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
ret = -ENOMEM;
goto out;
}
+
+ alloced_pages = zs_get_total_pages(meta->mem_pool);
+ if (zram->limit_pages && alloced_pages > zram->limit_pages) {
+ zs_free(meta->mem_pool, handle);
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ update_used_max(zram, alloced_pages);
+
cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
@@ -561,14 +715,13 @@ out:
}
static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
- int offset, struct bio *bio)
+ int offset, int rw)
{
int ret;
- int rw = bio_data_dir(bio);
if (rw == READ) {
atomic64_inc(&zram->stats.num_reads);
- ret = zram_bvec_read(zram, bvec, index, offset, bio);
+ ret = zram_bvec_read(zram, bvec, index, offset);
} else {
atomic64_inc(&zram->stats.num_writes);
ret = zram_bvec_write(zram, bvec, index, offset);
@@ -617,53 +770,54 @@ static void zram_bio_discard(struct zram *zram, u32 index,
bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
zram_free_page(zram, index);
bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
+ atomic64_inc(&zram->stats.notify_free);
index++;
n -= PAGE_SIZE;
}
}
-static void zram_reset_device(struct zram *zram, bool reset_capacity)
+static void zram_reset_device(struct zram *zram)
{
- size_t index;
struct zram_meta *meta;
+ struct zcomp *comp;
+ u64 disksize;
down_write(&zram->init_lock);
+
+ zram->limit_pages = 0;
+
if (!init_done(zram)) {
up_write(&zram->init_lock);
return;
}
meta = zram->meta;
- /* Free all pages that are still in this zram device */
- for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) {
- unsigned long handle = meta->table[index].handle;
- if (!handle)
- continue;
-
- zs_free(meta->mem_pool, handle);
- }
-
- zcomp_destroy(zram->comp);
- zram->max_comp_streams = 1;
+ comp = zram->comp;
+ disksize = zram->disksize;
+ /*
+ * Refcount will go down to 0 eventually and r/w handler
+ * cannot handle further I/O so it will bail out by
+ * check zram_meta_get.
+ */
+ zram_meta_put(zram);
+ /*
+ * We want to free zram_meta in process context to avoid
+ * deadlock between reclaim path and any other locks.
+ */
+ wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
- zram_meta_free(zram->meta);
- zram->meta = NULL;
/* Reset stats */
memset(&zram->stats, 0, sizeof(zram->stats));
-
zram->disksize = 0;
- if (reset_capacity)
- set_capacity(zram->disk, 0);
+ zram->max_comp_streams = 1;
- up_write(&zram->init_lock);
+ set_capacity(zram->disk, 0);
+ part_stat_set_all(&zram->disk->part0, 0);
- /*
- * Revalidate disk out of the init_lock to avoid lockdep splat.
- * It's okay because disk's capacity is protected by init_lock
- * so that revalidate_disk always sees up-to-date capacity.
- */
- if (reset_capacity)
- revalidate_disk(zram->disk);
+ up_write(&zram->init_lock);
+ /* I/O operation under all of CPU are done so let's free */
+ zram_meta_free(meta, disksize);
+ zcomp_destroy(comp);
}
static ssize_t disksize_store(struct device *dev,
@@ -680,7 +834,7 @@ static ssize_t disksize_store(struct device *dev,
return -EINVAL;
disksize = PAGE_ALIGN(disksize);
- meta = zram_meta_alloc(disksize);
+ meta = zram_meta_alloc(zram->disk->first_minor, disksize);
if (!meta)
return -ENOMEM;
@@ -699,6 +853,8 @@ static ssize_t disksize_store(struct device *dev,
goto out_destroy_comp;
}
+ init_waitqueue_head(&zram->io_done);
+ atomic_set(&zram->refcount, 1);
zram->meta = meta;
zram->comp = comp;
zram->disksize = disksize;
@@ -718,7 +874,7 @@ out_destroy_comp:
up_write(&zram->init_lock);
zcomp_destroy(comp);
out_free_meta:
- zram_meta_free(meta);
+ zram_meta_free(meta, disksize);
return err;
}
@@ -736,8 +892,9 @@ static ssize_t reset_store(struct device *dev,
if (!bdev)
return -ENOMEM;
+ mutex_lock(&bdev->bd_mutex);
/* Do not reset an active device! */
- if (bdev->bd_holders) {
+ if (bdev->bd_openers) {
ret = -EBUSY;
goto out;
}
@@ -753,23 +910,27 @@ static ssize_t reset_store(struct device *dev,
/* Make sure all pending I/O is finished */
fsync_bdev(bdev);
+ zram_reset_device(zram);
+
+ mutex_unlock(&bdev->bd_mutex);
+ revalidate_disk(zram->disk);
bdput(bdev);
- zram_reset_device(zram, true);
return len;
out:
+ mutex_unlock(&bdev->bd_mutex);
bdput(bdev);
return ret;
}
static void __zram_make_request(struct zram *zram, struct bio *bio)
{
- int i, offset;
+ int i, offset, rw;
u32 index;
struct bio_vec *bvec;
- index = bio->bi_sector >> SECTORS_PER_PAGE_SHIFT;
+ index = bio->bi_sector >> SECTORS_PER_PAGE_SHIFT;
offset = (bio->bi_sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
if (unlikely(bio->bi_rw & REQ_DISCARD)) {
@@ -778,6 +939,7 @@ static void __zram_make_request(struct zram *zram, struct bio *bio)
return;
}
+ rw = bio_data_dir(bio);
bio_for_each_segment(bvec, bio, i) {
int max_transfer_size = PAGE_SIZE - offset;
@@ -792,15 +954,15 @@ static void __zram_make_request(struct zram *zram, struct bio *bio)
bv.bv_len = max_transfer_size;
bv.bv_offset = bvec->bv_offset;
- if (zram_bvec_rw(zram, &bv, index, offset, bio) < 0)
+ if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
goto out;
bv.bv_len = bvec->bv_len - max_transfer_size;
bv.bv_offset += max_transfer_size;
- if (zram_bvec_rw(zram, &bv, index + 1, 0, bio) < 0)
+ if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
goto out;
} else
- if (zram_bvec_rw(zram, bvec, index, offset, bio) < 0)
+ if (zram_bvec_rw(zram, bvec, index, offset, rw) < 0)
goto out;
update_position(&index, &offset, bvec);
@@ -821,22 +983,21 @@ static void zram_make_request(struct request_queue *queue, struct bio *bio)
{
struct zram *zram = queue->queuedata;
- down_read(&zram->init_lock);
- if (unlikely(!init_done(zram)))
+ if (unlikely(!zram_meta_get(zram)))
goto error;
- if (!valid_io_request(zram, bio)) {
+ if (!valid_io_request(zram, bio->bi_sector,
+ bio->bi_size)) {
atomic64_inc(&zram->stats.invalid_io);
- goto error;
+ goto put_zram;
}
__zram_make_request(zram, bio);
- up_read(&zram->init_lock);
-
+ zram_meta_put(zram);
return;
-
+put_zram:
+ zram_meta_put(zram);
error:
- up_read(&zram->init_lock);
bio_io_error(bio);
}
@@ -860,17 +1021,71 @@ static const struct block_device_operations zram_devops = {
.owner = THIS_MODULE
};
+static DEVICE_ATTR(compact, S_IWUSR, NULL, compact_store);
static DEVICE_ATTR(disksize, S_IRUGO | S_IWUSR,
disksize_show, disksize_store);
static DEVICE_ATTR(initstate, S_IRUGO, initstate_show, NULL);
static DEVICE_ATTR(reset, S_IWUSR, NULL, reset_store);
static DEVICE_ATTR(orig_data_size, S_IRUGO, orig_data_size_show, NULL);
static DEVICE_ATTR(mem_used_total, S_IRUGO, mem_used_total_show, NULL);
+static DEVICE_ATTR(mem_limit, S_IRUGO | S_IWUSR, mem_limit_show,
+ mem_limit_store);
+static DEVICE_ATTR(mem_used_max, S_IRUGO | S_IWUSR, mem_used_max_show,
+ mem_used_max_store);
static DEVICE_ATTR(max_comp_streams, S_IRUGO | S_IWUSR,
max_comp_streams_show, max_comp_streams_store);
static DEVICE_ATTR(comp_algorithm, S_IRUGO | S_IWUSR,
comp_algorithm_show, comp_algorithm_store);
+static ssize_t io_stat_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct zram *zram = dev_to_zram(dev);
+ ssize_t ret;
+
+ down_read(&zram->init_lock);
+ ret = scnprintf(buf, PAGE_SIZE,
+ "%8llu %8llu %8llu %8llu\n",
+ (u64)atomic64_read(&zram->stats.failed_reads),
+ (u64)atomic64_read(&zram->stats.failed_writes),
+ (u64)atomic64_read(&zram->stats.invalid_io),
+ (u64)atomic64_read(&zram->stats.notify_free));
+ up_read(&zram->init_lock);
+
+ return ret;
+}
+
+static ssize_t mm_stat_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct zram *zram = dev_to_zram(dev);
+ u64 orig_size, mem_used = 0;
+ long max_used;
+ ssize_t ret;
+
+ down_read(&zram->init_lock);
+ if (init_done(zram))
+ mem_used = zs_get_total_pages(zram->meta->mem_pool);
+
+ orig_size = atomic64_read(&zram->stats.pages_stored);
+ max_used = atomic_long_read(&zram->stats.max_used_pages);
+
+ ret = scnprintf(buf, PAGE_SIZE,
+ "%8llu %8llu %8llu %8lu %8ld %8llu %8llu\n",
+ orig_size << PAGE_SHIFT,
+ (u64)atomic64_read(&zram->stats.compr_data_size),
+ mem_used << PAGE_SHIFT,
+ zram->limit_pages << PAGE_SHIFT,
+ max_used << PAGE_SHIFT,
+ (u64)atomic64_read(&zram->stats.zero_pages),
+ (u64)atomic64_read(&zram->stats.num_migrated));
+ up_read(&zram->init_lock);
+
+ return ret;
+}
+
+static DEVICE_ATTR(io_stat, S_IRUGO, io_stat_show, NULL);
+static DEVICE_ATTR(mm_stat, S_IRUGO, mm_stat_show, NULL);
ZRAM_ATTR_RO(num_reads);
ZRAM_ATTR_RO(num_writes);
ZRAM_ATTR_RO(failed_reads);
@@ -888,14 +1103,19 @@ static struct attribute *zram_disk_attrs[] = {
&dev_attr_num_writes.attr,
&dev_attr_failed_reads.attr,
&dev_attr_failed_writes.attr,
+ &dev_attr_compact.attr,
&dev_attr_invalid_io.attr,
&dev_attr_notify_free.attr,
&dev_attr_zero_pages.attr,
&dev_attr_orig_data_size.attr,
&dev_attr_compr_data_size.attr,
&dev_attr_mem_used_total.attr,
+ &dev_attr_mem_limit.attr,
+ &dev_attr_mem_used_max.attr,
&dev_attr_max_comp_streams.attr,
&dev_attr_comp_algorithm.attr,
+ &dev_attr_io_stat.attr,
+ &dev_attr_mm_stat.attr,
NULL,
};
@@ -905,32 +1125,34 @@ static struct attribute_group zram_disk_attr_group = {
static int create_device(struct zram *zram, int device_id)
{
+ struct request_queue *queue;
int ret = -ENOMEM;
init_rwsem(&zram->init_lock);
- zram->queue = blk_alloc_queue(GFP_KERNEL);
- if (!zram->queue) {
+ queue = blk_alloc_queue(GFP_KERNEL);
+ if (!queue) {
pr_err("Error allocating disk queue for device %d\n",
device_id);
goto out;
}
- blk_queue_make_request(zram->queue, zram_make_request);
- zram->queue->queuedata = zram;
+ blk_queue_make_request(queue, zram_make_request);
/* gendisk structure */
zram->disk = alloc_disk(1);
if (!zram->disk) {
pr_warn("Error allocating disk structure for device %d\n",
device_id);
+ ret = -ENOMEM;
goto out_free_queue;
}
zram->disk->major = zram_major;
zram->disk->first_minor = device_id;
zram->disk->fops = &zram_devops;
- zram->disk->queue = zram->queue;
+ zram->disk->queue = queue;
+ zram->disk->queue->queuedata = zram;
zram->disk->private_data = zram;
snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
@@ -938,6 +1160,7 @@ static int create_device(struct zram *zram, int device_id)
set_capacity(zram->disk, 0);
/* zram devices sort of resembles non-rotational disks */
queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
+ queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
/*
* To ensure that we always get PAGE_SIZE aligned
* and n*PAGE_SIZED sized I/O requests.
@@ -980,20 +1203,35 @@ out_free_disk:
del_gendisk(zram->disk);
put_disk(zram->disk);
out_free_queue:
- blk_cleanup_queue(zram->queue);
+ blk_cleanup_queue(queue);
out:
return ret;
}
-static void destroy_device(struct zram *zram)
+static void destroy_devices(unsigned int nr)
{
- sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
- &zram_disk_attr_group);
+ struct zram *zram;
+ unsigned int i;
- del_gendisk(zram->disk);
- put_disk(zram->disk);
+ for (i = 0; i < nr; i++) {
+ zram = &zram_devices[i];
+ /*
+ * Remove sysfs first, so no one will perform a disksize
+ * store while we destroy the devices
+ */
+ sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
+ &zram_disk_attr_group);
+
+ zram_reset_device(zram);
+
+ blk_cleanup_queue(zram->disk->queue);
+ del_gendisk(zram->disk);
+ put_disk(zram->disk);
+ }
- blk_cleanup_queue(zram->queue);
+ kfree(zram_devices);
+ unregister_blkdev(zram_major, "zram");
+ pr_info("Destroyed %u device(s)\n", nr);
}
static int __init zram_init(void)
@@ -1003,64 +1241,39 @@ static int __init zram_init(void)
if (num_devices > max_num_devices) {
pr_warn("Invalid value for num_devices: %u\n",
num_devices);
- ret = -EINVAL;
- goto out;
+ return -EINVAL;
}
zram_major = register_blkdev(0, "zram");
if (zram_major <= 0) {
pr_warn("Unable to get major number\n");
- ret = -EBUSY;
- goto out;
+ return -EBUSY;
}
/* Allocate the device array and initialize each one */
zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
if (!zram_devices) {
- ret = -ENOMEM;
- goto unregister;
+ unregister_blkdev(zram_major, "zram");
+ return -ENOMEM;
}
for (dev_id = 0; dev_id < num_devices; dev_id++) {
ret = create_device(&zram_devices[dev_id], dev_id);
if (ret)
- goto free_devices;
+ goto out_error;
}
- pr_info("Created %u device(s) ...\n", num_devices);
-
+ pr_info("Created %u device(s)\n", num_devices);
return 0;
-free_devices:
- while (dev_id)
- destroy_device(&zram_devices[--dev_id]);
- kfree(zram_devices);
-unregister:
- unregister_blkdev(zram_major, "zram");
-out:
+out_error:
+ destroy_devices(dev_id);
return ret;
}
static void __exit zram_exit(void)
{
- int i;
- struct zram *zram;
-
- for (i = 0; i < num_devices; i++) {
- zram = &zram_devices[i];
-
- destroy_device(zram);
- /*
- * Shouldn't access zram->disk after destroy_device
- * because destroy_device already released zram->disk.
- */
- zram_reset_device(zram, false);
- }
-
- unregister_blkdev(zram_major, "zram");
-
- kfree(zram_devices);
- pr_debug("Cleanup done!\n");
+ destroy_devices(num_devices);
}
module_init(zram_init);
@@ -1072,3 +1285,4 @@ MODULE_PARM_DESC(num_devices, "Number of zram devices");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
MODULE_DESCRIPTION("Compressed RAM Block Device");
+MODULE_ALIAS("devname:zram");
diff --git a/drivers/block/zram/zram_drv.h b/drivers/block/zram/zram_drv.h
index 2a4f29cd51e..b18ef3c1e2e 100644
--- a/drivers/block/zram/zram_drv.h
+++ b/drivers/block/zram/zram_drv.h
@@ -2,7 +2,6 @@
* Compressed RAM block device
*
* Copyright (C) 2008, 2009, 2010 Nitin Gupta
- * 2012, 2013 Minchan Kim
*
* This code is released using a dual license strategy: BSD/GPL
* You can choose the licence that better fits your requirements.
@@ -67,8 +66,8 @@ static const size_t max_zpage_size = PAGE_SIZE / 10 * 9;
/* Flags for zram pages (table[page_no].value) */
enum zram_pageflags {
/* Page consists entirely of zeros */
- ZRAM_ZERO = ZRAM_FLAG_SHIFT + 1,
- ZRAM_ACCESS, /* page in now accessed */
+ ZRAM_ZERO = ZRAM_FLAG_SHIFT,
+ ZRAM_ACCESS, /* page is now accessed */
__NR_ZRAM_PAGEFLAGS,
};
@@ -81,16 +80,22 @@ struct zram_table_entry {
unsigned long value;
};
+/*
+ * All 64bit fields should only be manipulated by 64bit atomic accessors.
+ * All modifications to 32bit counter should be protected by zram->lock.
+ */
struct zram_stats {
atomic64_t compr_data_size; /* compressed size of pages stored */
atomic64_t num_reads; /* failed + successful */
atomic64_t num_writes; /* --do-- */
+ atomic64_t num_migrated; /* no. of migrated object */
atomic64_t failed_reads; /* can happen when memory is too low */
atomic64_t failed_writes; /* can happen when memory is too low */
atomic64_t invalid_io; /* non-page-aligned I/O requests */
atomic64_t notify_free; /* no. of swap slot free notifications */
atomic64_t zero_pages; /* no. of zero filled pages */
atomic64_t pages_stored; /* no. of pages currently stored */
+ atomic_long_t max_used_pages; /* no. of maximum pages stored */
};
struct zram_meta {
@@ -100,19 +105,25 @@ struct zram_meta {
struct zram {
struct zram_meta *meta;
- struct request_queue *queue;
- struct gendisk *disk;
struct zcomp *comp;
-
- /* Prevent concurrent execution of device init, reset and R/W request */
+ struct gendisk *disk;
+ /* Prevent concurrent execution of device init */
struct rw_semaphore init_lock;
/*
+ * the number of pages zram can consume for storing compressed data
+ */
+ unsigned long limit_pages;
+ int max_comp_streams;
+
+ struct zram_stats stats;
+ atomic_t refcount; /* refcount for zram_meta */
+ /* wait all IO under all of cpu are done */
+ wait_queue_head_t io_done;
+ /*
* This is the limit on amount of *uncompressed* worth of data
* we can store in a disk.
*/
u64 disksize; /* bytes */
- int max_comp_streams;
- struct zram_stats stats;
char compressor[10];
};
#endif
diff --git a/include/linux/zpool.h b/include/linux/zpool.h
new file mode 100644
index 00000000000..56529b34dc6
--- /dev/null
+++ b/include/linux/zpool.h
@@ -0,0 +1,107 @@
+/*
+ * zpool memory storage api
+ *
+ * Copyright (C) 2014 Dan Streetman
+ *
+ * This is a common frontend for the zbud and zsmalloc memory
+ * storage pool implementations. Typically, this is used to
+ * store compressed memory.
+ */
+
+#ifndef _ZPOOL_H_
+#define _ZPOOL_H_
+
+struct zpool;
+
+struct zpool_ops {
+ int (*evict)(struct zpool *pool, unsigned long handle);
+};
+
+/*
+ * Control how a handle is mapped. It will be ignored if the
+ * implementation does not support it. Its use is optional.
+ * Note that this does not refer to memory protection, it
+ * refers to how the memory will be copied in/out if copying
+ * is necessary during mapping; read-write is the safest as
+ * it copies the existing memory in on map, and copies the
+ * changed memory back out on unmap. Write-only does not copy
+ * in the memory and should only be used for initialization.
+ * If in doubt, use ZPOOL_MM_DEFAULT which is read-write.
+ */
+enum zpool_mapmode {
+ ZPOOL_MM_RW, /* normal read-write mapping */
+ ZPOOL_MM_RO, /* read-only (no copy-out at unmap time) */
+ ZPOOL_MM_WO, /* write-only (no copy-in at map time) */
+
+ ZPOOL_MM_DEFAULT = ZPOOL_MM_RW
+};
+
+struct zpool *zpool_create_pool(char *type, char *name,
+ gfp_t gfp, struct zpool_ops *ops);
+
+char *zpool_get_type(struct zpool *pool);
+
+void zpool_destroy_pool(struct zpool *pool);
+
+int zpool_malloc(struct zpool *pool, size_t size, gfp_t gfp,
+ unsigned long *handle);
+
+void zpool_free(struct zpool *pool, unsigned long handle);
+
+int zpool_shrink(struct zpool *pool, unsigned int pages,
+ unsigned int *reclaimed);
+
+void *zpool_map_handle(struct zpool *pool, unsigned long handle,
+ enum zpool_mapmode mm);
+
+void zpool_unmap_handle(struct zpool *pool, unsigned long handle);
+
+u64 zpool_get_total_size(struct zpool *pool);
+
+
+/**
+ * struct zpool_driver - driver implementation for zpool
+ * @type: name of the driver.
+ * @list: entry in the list of zpool drivers.
+ * @create: create a new pool.
+ * @destroy: destroy a pool.
+ * @malloc: allocate mem from a pool.
+ * @free: free mem from a pool.
+ * @shrink: shrink the pool.
+ * @map: map a handle.
+ * @unmap: unmap a handle.
+ * @total_size: get total size of a pool.
+ *
+ * This is created by a zpool implementation and registered
+ * with zpool.
+ */
+struct zpool_driver {
+ char *type;
+ struct module *owner;
+ atomic_t refcount;
+ struct list_head list;
+
+ void *(*create)(char *name, gfp_t gfp, struct zpool_ops *ops);
+ void (*destroy)(void *pool);
+
+ int (*malloc)(void *pool, size_t size, gfp_t gfp,
+ unsigned long *handle);
+ void (*free)(void *pool, unsigned long handle);
+
+ int (*shrink)(void *pool, unsigned int pages,
+ unsigned int *reclaimed);
+
+ void *(*map)(void *pool, unsigned long handle,
+ enum zpool_mapmode mm);
+ void (*unmap)(void *pool, unsigned long handle);
+
+ u64 (*total_size)(void *pool);
+};
+
+void zpool_register_driver(struct zpool_driver *driver);
+
+int zpool_unregister_driver(struct zpool_driver *driver);
+
+int zpool_evict(void *pool, unsigned long handle);
+
+#endif
diff --git a/include/linux/zsmalloc.h b/include/linux/zsmalloc.h
index e44d634e7fb..1338190b547 100644
--- a/include/linux/zsmalloc.h
+++ b/include/linux/zsmalloc.h
@@ -36,7 +36,7 @@ enum zs_mapmode {
struct zs_pool;
-struct zs_pool *zs_create_pool(gfp_t flags);
+struct zs_pool *zs_create_pool(char *name, gfp_t flags);
void zs_destroy_pool(struct zs_pool *pool);
unsigned long zs_malloc(struct zs_pool *pool, size_t size);
@@ -46,6 +46,7 @@ void *zs_map_object(struct zs_pool *pool, unsigned long handle,
enum zs_mapmode mm);
void zs_unmap_object(struct zs_pool *pool, unsigned long handle);
-u64 zs_get_total_size_bytes(struct zs_pool *pool);
+unsigned long zs_get_total_pages(struct zs_pool *pool);
+unsigned long zs_compact(struct zs_pool *pool);
#endif
diff --git a/mm/zsmalloc.c b/mm/zsmalloc.c
index 4d44c1e70f6..22217b3205d 100644
--- a/mm/zsmalloc.c
+++ b/mm/zsmalloc.c
@@ -12,35 +12,6 @@
*/
/*
- * This allocator is designed for use with zram. Thus, the allocator is
- * supposed to work well under low memory conditions. In particular, it
- * never attempts higher order page allocation which is very likely to
- * fail under memory pressure. On the other hand, if we just use single
- * (0-order) pages, it would suffer from very high fragmentation --
- * any object of size PAGE_SIZE/2 or larger would occupy an entire page.
- * This was one of the major issues with its predecessor (xvmalloc).
- *
- * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
- * and links them together using various 'struct page' fields. These linked
- * pages act as a single higher-order page i.e. an object can span 0-order
- * page boundaries. The code refers to these linked pages as a single entity
- * called zspage.
- *
- * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
- * since this satisfies the requirements of all its current users (in the
- * worst case, page is incompressible and is thus stored "as-is" i.e. in
- * uncompressed form). For allocation requests larger than this size, failure
- * is returned (see zs_malloc).
- *
- * Additionally, zs_malloc() does not return a dereferenceable pointer.
- * Instead, it returns an opaque handle (unsigned long) which encodes actual
- * location of the allocated object. The reason for this indirection is that
- * zsmalloc does not keep zspages permanently mapped since that would cause
- * issues on 32-bit systems where the VA region for kernel space mappings
- * is very small. So, before using the allocating memory, the object has to
- * be mapped using zs_map_object() to get a usable pointer and subsequently
- * unmapped using zs_unmap_object().
- *
* Following is how we use various fields and flags of underlying
* struct page(s) to form a zspage.
*
@@ -57,6 +28,8 @@
*
* page->private (union with page->first_page): refers to the
* component page after the first page
+ * If the page is first_page for huge object, it stores handle.
+ * Look at size_class->huge.
* page->freelist: points to the first free object in zspage.
* Free objects are linked together using in-place
* metadata.
@@ -78,6 +51,7 @@
#include <linux/module.h>
#include <linux/kernel.h>
+#include <linux/sched.h>
#include <linux/bitops.h>
#include <linux/errno.h>
#include <linux/highmem.h>
@@ -92,7 +66,9 @@
#include <linux/hardirq.h>
#include <linux/spinlock.h>
#include <linux/types.h>
+#include <linux/debugfs.h>
#include <linux/zsmalloc.h>
+#include <linux/zpool.h>
/*
* This must be power of 2 and greater than of equal to sizeof(link_free).
@@ -109,6 +85,8 @@
#define ZS_MAX_ZSPAGE_ORDER 2
#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
+#define ZS_HANDLE_SIZE (sizeof(unsigned long))
+
/*
* Object location (<PFN>, <obj_idx>) is encoded as
* as single (unsigned long) handle value.
@@ -132,17 +110,37 @@
#endif
#endif
#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
-#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
+
+/*
+ * Memory for allocating for handle keeps object position by
+ * encoding <page, obj_idx> and the encoded value has a room
+ * in least bit(ie, look at obj_to_location).
+ * We use the bit to synchronize between object access by
+ * user and migration.
+ */
+#define HANDLE_PIN_BIT 0
+
+/*
+ * Head in allocated object should have OBJ_ALLOCATED_TAG
+ * to identify the object was allocated or not.
+ * It's okay to add the status bit in the least bit because
+ * header keeps handle which is 4byte-aligned address so we
+ * have room for two bit at least.
+ */
+#define OBJ_ALLOCATED_TAG 1
+#define OBJ_TAG_BITS 1
+#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
#define MAX(a, b) ((a) >= (b) ? (a) : (b))
/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
#define ZS_MIN_ALLOC_SIZE \
MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
+/* each chunk includes extra space to keep handle */
#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
/*
- * On systems with 4K page size, this gives 254 size classes! There is a
+ * On systems with 4K page size, this gives 255 size classes! There is a
* trader-off here:
* - Large number of size classes is potentially wasteful as free page are
* spread across these classes
@@ -155,8 +153,6 @@
* (reason above)
*/
#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
-#define ZS_SIZE_CLASSES ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / \
- ZS_SIZE_CLASS_DELTA + 1)
/*
* We do not maintain any list for completely empty or full pages
@@ -170,12 +166,35 @@ enum fullness_group {
ZS_FULL
};
+enum zs_stat_type {
+ OBJ_ALLOCATED,
+ OBJ_USED,
+ CLASS_ALMOST_FULL,
+ CLASS_ALMOST_EMPTY,
+ NR_ZS_STAT_TYPE,
+};
+
+#ifdef CONFIG_ZSMALLOC_STAT
+
+static struct dentry *zs_stat_root;
+
+struct zs_size_stat {
+ unsigned long objs[NR_ZS_STAT_TYPE];
+};
+
+#endif
+
+/*
+ * number of size_classes
+ */
+static int zs_size_classes;
+
/*
* We assign a page to ZS_ALMOST_EMPTY fullness group when:
* n <= N / f, where
* n = number of allocated objects
* N = total number of objects zspage can store
- * f = 1/fullness_threshold_frac
+ * f = fullness_threshold_frac
*
* Similarly, we assign zspage to:
* ZS_ALMOST_FULL when n > N / f
@@ -196,11 +215,14 @@ struct size_class {
/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
int pages_per_zspage;
+ /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
+ bool huge;
- spinlock_t lock;
+#ifdef CONFIG_ZSMALLOC_STAT
+ struct zs_size_stat stats;
+#endif
- /* stats */
- u64 pages_allocated;
+ spinlock_t lock;
struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
};
@@ -212,14 +234,31 @@ struct size_class {
* This must be power of 2 and less than or equal to ZS_ALIGN
*/
struct link_free {
- /* Handle of next free chunk (encodes <PFN, obj_idx>) */
- void *next;
+ union {
+ /*
+ * Position of next free chunk (encodes <PFN, obj_idx>)
+ * It's valid for non-allocated object
+ */
+ void *next;
+ /*
+ * Handle of allocated object.
+ */
+ unsigned long handle;
+ };
};
struct zs_pool {
- struct size_class size_class[ZS_SIZE_CLASSES];
+ char *name;
+
+ struct size_class **size_class;
+ struct kmem_cache *handle_cachep;
gfp_t flags; /* allocation flags used when growing pool */
+ atomic_long_t pages_allocated;
+
+#ifdef CONFIG_ZSMALLOC_STAT
+ struct dentry *stat_dentry;
+#endif
};
/*
@@ -239,8 +278,119 @@ struct mapping_area {
#endif
char *vm_addr; /* address of kmap_atomic()'ed pages */
enum zs_mapmode vm_mm; /* mapping mode */
+ bool huge;
};
+static int create_handle_cache(struct zs_pool *pool)
+{
+ pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
+ 0, 0, NULL);
+ return pool->handle_cachep ? 0 : 1;
+}
+
+static void destroy_handle_cache(struct zs_pool *pool)
+{
+ if (pool->handle_cachep)
+ kmem_cache_destroy(pool->handle_cachep);
+}
+
+static unsigned long alloc_handle(struct zs_pool *pool)
+{
+ return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
+ pool->flags & ~__GFP_HIGHMEM);
+}
+
+static void free_handle(struct zs_pool *pool, unsigned long handle)
+{
+ kmem_cache_free(pool->handle_cachep, (void *)handle);
+}
+
+static void record_obj(unsigned long handle, unsigned long obj)
+{
+ *(unsigned long *)handle = obj;
+}
+
+/* zpool driver */
+
+#ifdef CONFIG_ZPOOL
+
+static void *zs_zpool_create(char *name, gfp_t gfp, struct zpool_ops *zpool_ops)
+{
+ return zs_create_pool(name, gfp);
+}
+
+static void zs_zpool_destroy(void *pool)
+{
+ zs_destroy_pool(pool);
+}
+
+static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
+ unsigned long *handle)
+{
+ *handle = zs_malloc(pool, size);
+ return *handle ? 0 : -1;
+}
+static void zs_zpool_free(void *pool, unsigned long handle)
+{
+ zs_free(pool, handle);
+}
+
+static int zs_zpool_shrink(void *pool, unsigned int pages,
+ unsigned int *reclaimed)
+{
+ return -EINVAL;
+}
+
+static void *zs_zpool_map(void *pool, unsigned long handle,
+ enum zpool_mapmode mm)
+{
+ enum zs_mapmode zs_mm;
+
+ switch (mm) {
+ case ZPOOL_MM_RO:
+ zs_mm = ZS_MM_RO;
+ break;
+ case ZPOOL_MM_WO:
+ zs_mm = ZS_MM_WO;
+ break;
+ case ZPOOL_MM_RW: /* fallthru */
+ default:
+ zs_mm = ZS_MM_RW;
+ break;
+ }
+
+ return zs_map_object(pool, handle, zs_mm);
+}
+static void zs_zpool_unmap(void *pool, unsigned long handle)
+{
+ zs_unmap_object(pool, handle);
+}
+
+static u64 zs_zpool_total_size(void *pool)
+{
+ return zs_get_total_pages(pool) << PAGE_SHIFT;
+}
+
+static struct zpool_driver zs_zpool_driver = {
+ .type = "zsmalloc",
+ .owner = THIS_MODULE,
+ .create = zs_zpool_create,
+ .destroy = zs_zpool_destroy,
+ .malloc = zs_zpool_malloc,
+ .free = zs_zpool_free,
+ .shrink = zs_zpool_shrink,
+ .map = zs_zpool_map,
+ .unmap = zs_zpool_unmap,
+ .total_size = zs_zpool_total_size,
+};
+
+MODULE_ALIAS("zpool-zsmalloc");
+#endif /* CONFIG_ZPOOL */
+
+static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
+{
+ return pages_per_zspage * PAGE_SIZE / size;
+}
/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
@@ -292,9 +442,182 @@ static int get_size_class_index(int size)
idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
ZS_SIZE_CLASS_DELTA);
- return idx;
+ return min(zs_size_classes - 1, idx);
+}
+
+#ifdef CONFIG_ZSMALLOC_STAT
+
+static inline void zs_stat_inc(struct size_class *class,
+ enum zs_stat_type type, unsigned long cnt)
+{
+ class->stats.objs[type] += cnt;
+}
+
+static inline void zs_stat_dec(struct size_class *class,
+ enum zs_stat_type type, unsigned long cnt)
+{
+ class->stats.objs[type] -= cnt;
+}
+
+static inline unsigned long zs_stat_get(struct size_class *class,
+ enum zs_stat_type type)
+{
+ return class->stats.objs[type];
+}
+
+static int __init zs_stat_init(void)
+{
+ if (!debugfs_initialized())
+ return -ENODEV;
+
+ zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
+ if (!zs_stat_root)
+ return -ENOMEM;
+
+ return 0;
+}
+
+static void __exit zs_stat_exit(void)
+{
+ debugfs_remove_recursive(zs_stat_root);
+}
+
+static int zs_stats_size_show(struct seq_file *s, void *v)
+{
+ int i;
+ struct zs_pool *pool = s->private;
+ struct size_class *class;
+ int objs_per_zspage;
+ unsigned long class_almost_full, class_almost_empty;
+ unsigned long obj_allocated, obj_used, pages_used;
+ unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
+ unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
+
+ seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s\n",
+ "class", "size", "almost_full", "almost_empty",
+ "obj_allocated", "obj_used", "pages_used",
+ "pages_per_zspage");
+
+ for (i = 0; i < zs_size_classes; i++) {
+ class = pool->size_class[i];
+
+ if (class->index != i)
+ continue;
+
+ spin_lock(&class->lock);
+ class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
+ class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
+ obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
+ obj_used = zs_stat_get(class, OBJ_USED);
+ spin_unlock(&class->lock);
+
+ objs_per_zspage = get_maxobj_per_zspage(class->size,
+ class->pages_per_zspage);
+ pages_used = obj_allocated / objs_per_zspage *
+ class->pages_per_zspage;
+
+ seq_printf(s, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n",
+ i, class->size, class_almost_full, class_almost_empty,
+ obj_allocated, obj_used, pages_used,
+ class->pages_per_zspage);
+
+ total_class_almost_full += class_almost_full;
+ total_class_almost_empty += class_almost_empty;
+ total_objs += obj_allocated;
+ total_used_objs += obj_used;
+ total_pages += pages_used;
+ }
+
+ seq_puts(s, "\n");
+ seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n",
+ "Total", "", total_class_almost_full,
+ total_class_almost_empty, total_objs,
+ total_used_objs, total_pages);
+
+ return 0;
+}
+
+static int zs_stats_size_open(struct inode *inode, struct file *file)
+{
+ return single_open(file, zs_stats_size_show, inode->i_private);
+}
+
+static const struct file_operations zs_stat_size_ops = {
+ .open = zs_stats_size_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = single_release,
+};
+
+static int zs_pool_stat_create(char *name, struct zs_pool *pool)
+{
+ struct dentry *entry;
+
+ if (!zs_stat_root)
+ return -ENODEV;
+
+ entry = debugfs_create_dir(name, zs_stat_root);
+ if (!entry) {
+ pr_warn("debugfs dir <%s> creation failed\n", name);
+ return -ENOMEM;
+ }
+ pool->stat_dentry = entry;
+
+ entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
+ pool->stat_dentry, pool, &zs_stat_size_ops);
+ if (!entry) {
+ pr_warn("%s: debugfs file entry <%s> creation failed\n",
+ name, "classes");
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+static void zs_pool_stat_destroy(struct zs_pool *pool)
+{
+ debugfs_remove_recursive(pool->stat_dentry);
+}
+
+#else /* CONFIG_ZSMALLOC_STAT */
+
+static inline void zs_stat_inc(struct size_class *class,
+ enum zs_stat_type type, unsigned long cnt)
+{
+}
+
+static inline void zs_stat_dec(struct size_class *class,
+ enum zs_stat_type type, unsigned long cnt)
+{
+}
+
+static inline unsigned long zs_stat_get(struct size_class *class,
+ enum zs_stat_type type)
+{
+ return 0;
+}
+
+static int __init zs_stat_init(void)
+{
+ return 0;
}
+static void __exit zs_stat_exit(void)
+{
+}
+
+static inline int zs_pool_stat_create(char *name, struct zs_pool *pool)
+{
+ return 0;
+}
+
+static inline void zs_pool_stat_destroy(struct zs_pool *pool)
+{
+}
+
+#endif
+
+
/*
* For each size class, zspages are divided into different groups
* depending on how "full" they are. This was done so that we could
@@ -315,7 +638,7 @@ static enum fullness_group get_fullness_group(struct page *page)
fg = ZS_EMPTY;
else if (inuse == max_objects)
fg = ZS_FULL;
- else if (inuse <= max_objects / fullness_threshold_frac)
+ else if (inuse <= 3 * max_objects / fullness_threshold_frac)
fg = ZS_ALMOST_EMPTY;
else
fg = ZS_ALMOST_FULL;
@@ -344,6 +667,8 @@ static void insert_zspage(struct page *page, struct size_class *class,
list_add_tail(&page->lru, &(*head)->lru);
*head = page;
+ zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
+ CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
}
/*
@@ -369,6 +694,8 @@ static void remove_zspage(struct page *page, struct size_class *class,
struct page, lru);
list_del_init(&page->lru);
+ zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
+ CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
}
/*
@@ -380,11 +707,10 @@ static void remove_zspage(struct page *page, struct size_class *class,
* page from the freelist of the old fullness group to that of the new
* fullness group.
*/
-static enum fullness_group fix_fullness_group(struct zs_pool *pool,
+static enum fullness_group fix_fullness_group(struct size_class *class,
struct page *page)
{
int class_idx;
- struct size_class *class;
enum fullness_group currfg, newfg;
BUG_ON(!is_first_page(page));
@@ -394,7 +720,6 @@ static enum fullness_group fix_fullness_group(struct zs_pool *pool,
if (newfg == currfg)
goto out;
- class = &pool->size_class[class_idx];
remove_zspage(page, class, currfg);
insert_zspage(page, class, newfg);
set_zspage_mapping(page, class_idx, newfg);
@@ -408,7 +733,8 @@ out:
* to form a zspage for each size class. This is important
* to reduce wastage due to unusable space left at end of
* each zspage which is given as:
- * wastage = Zp - Zp % size_class
+ * wastage = Zp % class_size
+ * usage = Zp - wastage
* where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
*
* For example, for size class of 3/8 * PAGE_SIZE, we should
@@ -467,35 +793,50 @@ static struct page *get_next_page(struct page *page)
/*
* Encode <page, obj_idx> as a single handle value.
- * On hardware platforms with physical memory starting at 0x0 the pfn
- * could be 0 so we ensure that the handle will never be 0 by adjusting the
- * encoded obj_idx value before encoding.
+ * We use the least bit of handle for tagging.
*/
-static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
+static void *location_to_obj(struct page *page, unsigned long obj_idx)
{
- unsigned long handle;
+ unsigned long obj;
if (!page) {
BUG_ON(obj_idx);
return NULL;
}
- handle = page_to_pfn(page) << OBJ_INDEX_BITS;
- handle |= ((obj_idx + 1) & OBJ_INDEX_MASK);
+ obj = page_to_pfn(page) << OBJ_INDEX_BITS;
+ obj |= ((obj_idx) & OBJ_INDEX_MASK);
+ obj <<= OBJ_TAG_BITS;
- return (void *)handle;
+ return (void *)obj;
}
/*
* Decode <page, obj_idx> pair from the given object handle. We adjust the
* decoded obj_idx back to its original value since it was adjusted in
- * obj_location_to_handle().
+ * location_to_obj().
*/
-static void obj_handle_to_location(unsigned long handle, struct page **page,
+static void obj_to_location(unsigned long obj, struct page **page,
unsigned long *obj_idx)
{
- *page = pfn_to_page(handle >> OBJ_INDEX_BITS);
- *obj_idx = (handle & OBJ_INDEX_MASK) - 1;
+ obj >>= OBJ_TAG_BITS;
+ *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
+ *obj_idx = (obj & OBJ_INDEX_MASK);
+}
+
+static unsigned long handle_to_obj(unsigned long handle)
+{
+ return *(unsigned long *)handle;
+}
+
+static unsigned long obj_to_head(struct size_class *class, struct page *page,
+ void *obj)
+{
+ if (class->huge) {
+ VM_BUG_ON(!is_first_page(page));
+ return *(unsigned long *)page_private(page);
+ } else
+ return *(unsigned long *)obj;
}
static unsigned long obj_idx_to_offset(struct page *page,
@@ -509,6 +850,25 @@ static unsigned long obj_idx_to_offset(struct page *page,
return off + obj_idx * class_size;
}
+static inline int trypin_tag(unsigned long handle)
+{
+ unsigned long *ptr = (unsigned long *)handle;
+
+ return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
+}
+
+static void pin_tag(unsigned long handle)
+{
+ while (!trypin_tag(handle));
+}
+
+static void unpin_tag(unsigned long handle)
+{
+ unsigned long *ptr = (unsigned long *)handle;
+
+ clear_bit_unlock(HANDLE_PIN_BIT, ptr);
+}
+
static void reset_page(struct page *page)
{
clear_bit(PG_private, &page->flags);
@@ -554,7 +914,8 @@ static void init_zspage(struct page *first_page, struct size_class *class)
while (page) {
struct page *next_page;
struct link_free *link;
- unsigned int i, objs_on_page;
+ unsigned int i = 1;
+ void *vaddr;
/*
* page->index stores offset of first object starting
@@ -565,16 +926,12 @@ static void init_zspage(struct page *first_page, struct size_class *class)
if (page != first_page)
page->index = off;
- link = (struct link_free *)kmap_atomic(page) +
- off / sizeof(*link);
- objs_on_page = (PAGE_SIZE - off) / class->size;
+ vaddr = kmap_atomic(page);
+ link = (struct link_free *)vaddr + off / sizeof(*link);
- for (i = 1; i <= objs_on_page; i++) {
- off += class->size;
- if (off < PAGE_SIZE) {
- link->next = obj_location_to_handle(page, i);
- link += class->size / sizeof(*link);
- }
+ while ((off += class->size) < PAGE_SIZE) {
+ link->next = location_to_obj(page, i++);
+ link += class->size / sizeof(*link);
}
/*
@@ -583,10 +940,10 @@ static void init_zspage(struct page *first_page, struct size_class *class)
* page (if present)
*/
next_page = get_next_page(page);
- link->next = obj_location_to_handle(next_page, 0);
- kunmap_atomic(link);
+ link->next = location_to_obj(next_page, 0);
+ kunmap_atomic(vaddr);
page = next_page;
- off = (off + class->size) % PAGE_SIZE;
+ off %= PAGE_SIZE;
}
}
@@ -637,7 +994,7 @@ static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
init_zspage(first_page, class);
- first_page->freelist = obj_location_to_handle(first_page, 0);
+ first_page->freelist = location_to_obj(first_page, 0);
/* Maximum number of objects we can store in this zspage */
first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
@@ -714,7 +1071,7 @@ static inline int __zs_cpu_up(struct mapping_area *area)
*/
if (area->vm_buf)
return 0;
- area->vm_buf = (char *)__get_free_page(GFP_KERNEL);
+ area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
if (!area->vm_buf)
return -ENOMEM;
return 0;
@@ -722,8 +1079,7 @@ static inline int __zs_cpu_up(struct mapping_area *area)
static inline void __zs_cpu_down(struct mapping_area *area)
{
- if (area->vm_buf)
- free_page((unsigned long)area->vm_buf);
+ kfree(area->vm_buf);
area->vm_buf = NULL;
}
@@ -760,12 +1116,19 @@ static void __zs_unmap_object(struct mapping_area *area,
{
int sizes[2];
void *addr;
- char *buf = area->vm_buf;
+ char *buf;
/* no write fastpath */
if (area->vm_mm == ZS_MM_RO)
goto out;
+ buf = area->vm_buf;
+ if (!area->huge) {
+ buf = buf + ZS_HANDLE_SIZE;
+ size -= ZS_HANDLE_SIZE;
+ off += ZS_HANDLE_SIZE;
+ }
+
sizes[0] = PAGE_SIZE - off;
sizes[1] = size - sizes[0];
@@ -811,91 +1174,206 @@ static struct notifier_block zs_cpu_nb = {
.notifier_call = zs_cpu_notifier
};
-static void zs_exit(void)
+static int zs_register_cpu_notifier(void)
+{
+ int cpu, uninitialized_var(ret);
+
+ cpu_notifier_register_begin();
+
+ __register_cpu_notifier(&zs_cpu_nb);
+ for_each_online_cpu(cpu) {
+ ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
+ if (notifier_to_errno(ret))
+ break;
+ }
+
+ cpu_notifier_register_done();
+ return notifier_to_errno(ret);
+}
+
+static void zs_unregister_cpu_notifier(void)
{
int cpu;
+ cpu_notifier_register_begin();
+
for_each_online_cpu(cpu)
zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
- unregister_cpu_notifier(&zs_cpu_nb);
+ __unregister_cpu_notifier(&zs_cpu_nb);
+
+ cpu_notifier_register_done();
}
-static int zs_init(void)
+static void init_zs_size_classes(void)
{
- int cpu, ret;
+ int nr;
- register_cpu_notifier(&zs_cpu_nb);
- for_each_online_cpu(cpu) {
- ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
- if (notifier_to_errno(ret))
- goto fail;
- }
- return 0;
-fail:
- zs_exit();
- return notifier_to_errno(ret);
+ nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
+ if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
+ nr += 1;
+
+ zs_size_classes = nr;
}
+static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
+{
+ if (prev->pages_per_zspage != pages_per_zspage)
+ return false;
+
+ if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
+ != get_maxobj_per_zspage(size, pages_per_zspage))
+ return false;
+
+ return true;
+}
+
+static bool zspage_full(struct page *page)
+{
+ BUG_ON(!is_first_page(page));
+
+ return page->inuse == page->objects;
+}
+
+unsigned long zs_get_total_pages(struct zs_pool *pool)
+{
+ return atomic_long_read(&pool->pages_allocated);
+}
+EXPORT_SYMBOL_GPL(zs_get_total_pages);
+
/**
- * zs_create_pool - Creates an allocation pool to work from.
- * @flags: allocation flags used to allocate pool metadata
+ * zs_map_object - get address of allocated object from handle.
+ * @pool: pool from which the object was allocated
+ * @handle: handle returned from zs_malloc
*
- * This function must be called before anything when using
- * the zsmalloc allocator.
+ * Before using an object allocated from zs_malloc, it must be mapped using
+ * this function. When done with the object, it must be unmapped using
+ * zs_unmap_object.
*
- * On success, a pointer to the newly created pool is returned,
- * otherwise NULL.
+ * Only one object can be mapped per cpu at a time. There is no protection
+ * against nested mappings.
+ *
+ * This function returns with preemption and page faults disabled.
*/
-struct zs_pool *zs_create_pool(gfp_t flags)
+void *zs_map_object(struct zs_pool *pool, unsigned long handle,
+ enum zs_mapmode mm)
{
- int i, ovhd_size;
- struct zs_pool *pool;
+ struct page *page;
+ unsigned long obj, obj_idx, off;
- ovhd_size = roundup(sizeof(*pool), PAGE_SIZE);
- pool = kzalloc(ovhd_size, GFP_KERNEL);
- if (!pool)
- return NULL;
+ unsigned int class_idx;
+ enum fullness_group fg;
+ struct size_class *class;
+ struct mapping_area *area;
+ struct page *pages[2];
+ void *ret;
- for (i = 0; i < ZS_SIZE_CLASSES; i++) {
- int size;
- struct size_class *class;
+ BUG_ON(!handle);
- size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
- if (size > ZS_MAX_ALLOC_SIZE)
- size = ZS_MAX_ALLOC_SIZE;
+ /*
+ * Because we use per-cpu mapping areas shared among the
+ * pools/users, we can't allow mapping in interrupt context
+ * because it can corrupt another users mappings.
+ */
+ BUG_ON(in_interrupt());
- class = &pool->size_class[i];
- class->size = size;
- class->index = i;
- spin_lock_init(&class->lock);
- class->pages_per_zspage = get_pages_per_zspage(size);
+ /* From now on, migration cannot move the object */
+ pin_tag(handle);
+ obj = handle_to_obj(handle);
+ obj_to_location(obj, &page, &obj_idx);
+ get_zspage_mapping(get_first_page(page), &class_idx, &fg);
+ class = pool->size_class[class_idx];
+ off = obj_idx_to_offset(page, obj_idx, class->size);
+
+ area = &get_cpu_var(zs_map_area);
+ area->vm_mm = mm;
+ if (off + class->size <= PAGE_SIZE) {
+ /* this object is contained entirely within a page */
+ area->vm_addr = kmap_atomic(page);
+ ret = area->vm_addr + off;
+ goto out;
}
- pool->flags = flags;
+ /* this object spans two pages */
+ pages[0] = page;
+ pages[1] = get_next_page(page);
+ BUG_ON(!pages[1]);
- return pool;
+ ret = __zs_map_object(area, pages, off, class->size);
+out:
+ if (!class->huge)
+ ret += ZS_HANDLE_SIZE;
+
+ return ret;
}
-EXPORT_SYMBOL_GPL(zs_create_pool);
+EXPORT_SYMBOL_GPL(zs_map_object);
-void zs_destroy_pool(struct zs_pool *pool)
+void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
{
- int i;
+ struct page *page;
+ unsigned long obj, obj_idx, off;
- for (i = 0; i < ZS_SIZE_CLASSES; i++) {
- int fg;
- struct size_class *class = &pool->size_class[i];
+ unsigned int class_idx;
+ enum fullness_group fg;
+ struct size_class *class;
+ struct mapping_area *area;
- for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
- if (class->fullness_list[fg]) {
- pr_info("Freeing non-empty class with size %db, fullness group %d\n",
- class->size, fg);
- }
- }
+ BUG_ON(!handle);
+
+ obj = handle_to_obj(handle);
+ obj_to_location(obj, &page, &obj_idx);
+ get_zspage_mapping(get_first_page(page), &class_idx, &fg);
+ class = pool->size_class[class_idx];
+ off = obj_idx_to_offset(page, obj_idx, class->size);
+
+ area = this_cpu_ptr(&zs_map_area);
+ if (off + class->size <= PAGE_SIZE)
+ kunmap_atomic(area->vm_addr);
+ else {
+ struct page *pages[2];
+
+ pages[0] = page;
+ pages[1] = get_next_page(page);
+ BUG_ON(!pages[1]);
+
+ __zs_unmap_object(area, pages, off, class->size);
}
- kfree(pool);
+ put_cpu_var(zs_map_area);
+ unpin_tag(handle);
+}
+EXPORT_SYMBOL_GPL(zs_unmap_object);
+
+static unsigned long obj_malloc(struct page *first_page,
+ struct size_class *class, unsigned long handle)
+{
+ unsigned long obj;
+ struct link_free *link;
+
+ struct page *m_page;
+ unsigned long m_objidx, m_offset;
+ void *vaddr;
+
+ handle |= OBJ_ALLOCATED_TAG;
+ obj = (unsigned long)first_page->freelist;
+ obj_to_location(obj, &m_page, &m_objidx);
+ m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
+
+ vaddr = kmap_atomic(m_page);
+ link = (struct link_free *)vaddr + m_offset / sizeof(*link);
+ first_page->freelist = link->next;
+ if (!class->huge)
+ /* record handle in the header of allocated chunk */
+ link->handle = handle;
+ else
+ /* record handle in first_page->private */
+ set_page_private(first_page, handle);
+ kunmap_atomic(vaddr);
+ first_page->inuse++;
+ zs_stat_inc(class, OBJ_USED, 1);
+
+ return obj;
}
-EXPORT_SYMBOL_GPL(zs_destroy_pool);
+
/**
* zs_malloc - Allocate block of given size from pool.
@@ -908,20 +1386,20 @@ EXPORT_SYMBOL_GPL(zs_destroy_pool);
*/
unsigned long zs_malloc(struct zs_pool *pool, size_t size)
{
- unsigned long obj;
- struct link_free *link;
- int class_idx;
+ unsigned long handle, obj;
struct size_class *class;
-
- struct page *first_page, *m_page;
- unsigned long m_objidx, m_offset;
+ struct page *first_page;
if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
return 0;
- class_idx = get_size_class_index(size);
- class = &pool->size_class[class_idx];
- BUG_ON(class_idx != class->index);
+ handle = alloc_handle(pool);
+ if (!handle)
+ return 0;
+
+ /* extra space in chunk to keep the handle */
+ size += ZS_HANDLE_SIZE;
+ class = pool->size_class[get_size_class_index(size)];
spin_lock(&class->lock);
first_page = find_get_zspage(class);
@@ -929,176 +1407,539 @@ unsigned long zs_malloc(struct zs_pool *pool, size_t size)
if (!first_page) {
spin_unlock(&class->lock);
first_page = alloc_zspage(class, pool->flags);
- if (unlikely(!first_page))
+ if (unlikely(!first_page)) {
+ free_handle(pool, handle);
return 0;
+ }
set_zspage_mapping(first_page, class->index, ZS_EMPTY);
+ atomic_long_add(class->pages_per_zspage,
+ &pool->pages_allocated);
+
spin_lock(&class->lock);
- class->pages_allocated += class->pages_per_zspage;
+ zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
+ class->size, class->pages_per_zspage));
}
- obj = (unsigned long)first_page->freelist;
- obj_handle_to_location(obj, &m_page, &m_objidx);
- m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
-
- link = (struct link_free *)kmap_atomic(m_page) +
- m_offset / sizeof(*link);
- first_page->freelist = link->next;
- memset(link, POISON_INUSE, sizeof(*link));
- kunmap_atomic(link);
-
- first_page->inuse++;
+ obj = obj_malloc(first_page, class, handle);
/* Now move the zspage to another fullness group, if required */
- fix_fullness_group(pool, first_page);
+ fix_fullness_group(class, first_page);
+ record_obj(handle, obj);
spin_unlock(&class->lock);
- return obj;
+ return handle;
}
EXPORT_SYMBOL_GPL(zs_malloc);
-void zs_free(struct zs_pool *pool, unsigned long obj)
+static void obj_free(struct zs_pool *pool, struct size_class *class,
+ unsigned long obj)
{
struct link_free *link;
struct page *first_page, *f_page;
unsigned long f_objidx, f_offset;
-
+ void *vaddr;
int class_idx;
- struct size_class *class;
enum fullness_group fullness;
- if (unlikely(!obj))
- return;
+ BUG_ON(!obj);
- obj_handle_to_location(obj, &f_page, &f_objidx);
+ obj &= ~OBJ_ALLOCATED_TAG;
+ obj_to_location(obj, &f_page, &f_objidx);
first_page = get_first_page(f_page);
get_zspage_mapping(first_page, &class_idx, &fullness);
- class = &pool->size_class[class_idx];
f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
- spin_lock(&class->lock);
+ vaddr = kmap_atomic(f_page);
/* Insert this object in containing zspage's freelist */
- link = (struct link_free *)((unsigned char *)kmap_atomic(f_page)
- + f_offset);
+ link = (struct link_free *)(vaddr + f_offset);
link->next = first_page->freelist;
- kunmap_atomic(link);
+ if (class->huge)
+ set_page_private(first_page, 0);
+ kunmap_atomic(vaddr);
first_page->freelist = (void *)obj;
-
first_page->inuse--;
- fullness = fix_fullness_group(pool, first_page);
+ zs_stat_dec(class, OBJ_USED, 1);
+}
- if (fullness == ZS_EMPTY)
- class->pages_allocated -= class->pages_per_zspage;
+void zs_free(struct zs_pool *pool, unsigned long handle)
+{
+ struct page *first_page, *f_page;
+ unsigned long obj, f_objidx;
+ int class_idx;
+ struct size_class *class;
+ enum fullness_group fullness;
- spin_unlock(&class->lock);
+ if (unlikely(!handle))
+ return;
+
+ pin_tag(handle);
+ obj = handle_to_obj(handle);
+ obj_to_location(obj, &f_page, &f_objidx);
+ first_page = get_first_page(f_page);
- if (fullness == ZS_EMPTY)
+ get_zspage_mapping(first_page, &class_idx, &fullness);
+ class = pool->size_class[class_idx];
+
+ spin_lock(&class->lock);
+ obj_free(pool, class, obj);
+ fullness = fix_fullness_group(class, first_page);
+ if (fullness == ZS_EMPTY) {
+ zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
+ class->size, class->pages_per_zspage));
+ atomic_long_sub(class->pages_per_zspage,
+ &pool->pages_allocated);
free_zspage(first_page);
+ }
+ spin_unlock(&class->lock);
+ unpin_tag(handle);
+
+ free_handle(pool, handle);
}
EXPORT_SYMBOL_GPL(zs_free);
+static void zs_object_copy(unsigned long src, unsigned long dst,
+ struct size_class *class)
+{
+ struct page *s_page, *d_page;
+ unsigned long s_objidx, d_objidx;
+ unsigned long s_off, d_off;
+ void *s_addr, *d_addr;
+ int s_size, d_size, size;
+ int written = 0;
+
+ s_size = d_size = class->size;
+
+ obj_to_location(src, &s_page, &s_objidx);
+ obj_to_location(dst, &d_page, &d_objidx);
+
+ s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
+ d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
+
+ if (s_off + class->size > PAGE_SIZE)
+ s_size = PAGE_SIZE - s_off;
+
+ if (d_off + class->size > PAGE_SIZE)
+ d_size = PAGE_SIZE - d_off;
+
+ s_addr = kmap_atomic(s_page);
+ d_addr = kmap_atomic(d_page);
+
+ while (1) {
+ size = min(s_size, d_size);
+ memcpy(d_addr + d_off, s_addr + s_off, size);
+ written += size;
+
+ if (written == class->size)
+ break;
+
+ s_off += size;
+ s_size -= size;
+ d_off += size;
+ d_size -= size;
+
+ if (s_off >= PAGE_SIZE) {
+ kunmap_atomic(d_addr);
+ kunmap_atomic(s_addr);
+ s_page = get_next_page(s_page);
+ BUG_ON(!s_page);
+ s_addr = kmap_atomic(s_page);
+ d_addr = kmap_atomic(d_page);
+ s_size = class->size - written;
+ s_off = 0;
+ }
+
+ if (d_off >= PAGE_SIZE) {
+ kunmap_atomic(d_addr);
+ d_page = get_next_page(d_page);
+ BUG_ON(!d_page);
+ d_addr = kmap_atomic(d_page);
+ d_size = class->size - written;
+ d_off = 0;
+ }
+ }
+
+ kunmap_atomic(d_addr);
+ kunmap_atomic(s_addr);
+}
+
+/*
+ * Find alloced object in zspage from index object and
+ * return handle.
+ */
+static unsigned long find_alloced_obj(struct page *page, int index,
+ struct size_class *class)
+{
+ unsigned long head;
+ int offset = 0;
+ unsigned long handle = 0;
+ void *addr = kmap_atomic(page);
+
+ if (!is_first_page(page))
+ offset = page->index;
+ offset += class->size * index;
+
+ while (offset < PAGE_SIZE) {
+ head = obj_to_head(class, page, addr + offset);
+ if (head & OBJ_ALLOCATED_TAG) {
+ handle = head & ~OBJ_ALLOCATED_TAG;
+ if (trypin_tag(handle))
+ break;
+ handle = 0;
+ }
+
+ offset += class->size;
+ index++;
+ }
+
+ kunmap_atomic(addr);
+ return handle;
+}
+
+struct zs_compact_control {
+ /* Source page for migration which could be a subpage of zspage. */
+ struct page *s_page;
+ /* Destination page for migration which should be a first page
+ * of zspage. */
+ struct page *d_page;
+ /* Starting object index within @s_page which used for live object
+ * in the subpage. */
+ int index;
+ /* how many of objects are migrated */
+ int nr_migrated;
+};
+
+static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
+ struct zs_compact_control *cc)
+{
+ unsigned long used_obj, free_obj;
+ unsigned long handle;
+ struct page *s_page = cc->s_page;
+ struct page *d_page = cc->d_page;
+ unsigned long index = cc->index;
+ int nr_migrated = 0;
+ int ret = 0;
+
+ while (1) {
+ handle = find_alloced_obj(s_page, index, class);
+ if (!handle) {
+ s_page = get_next_page(s_page);
+ if (!s_page)
+ break;
+ index = 0;
+ continue;
+ }
+
+ /* Stop if there is no more space */
+ if (zspage_full(d_page)) {
+ unpin_tag(handle);
+ ret = -ENOMEM;
+ break;
+ }
+
+ used_obj = handle_to_obj(handle);
+ free_obj = obj_malloc(d_page, class, handle);
+ zs_object_copy(used_obj, free_obj, class);
+ index++;
+ record_obj(handle, free_obj);
+ unpin_tag(handle);
+ obj_free(pool, class, used_obj);
+ nr_migrated++;
+ }
+
+ /* Remember last position in this iteration */
+ cc->s_page = s_page;
+ cc->index = index;
+ cc->nr_migrated = nr_migrated;
+
+ return ret;
+}
+
+static struct page *alloc_target_page(struct size_class *class)
+{
+ int i;
+ struct page *page;
+
+ for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
+ page = class->fullness_list[i];
+ if (page) {
+ remove_zspage(page, class, i);
+ break;
+ }
+ }
+
+ return page;
+}
+
+static void putback_zspage(struct zs_pool *pool, struct size_class *class,
+ struct page *first_page)
+{
+ enum fullness_group fullness;
+
+ BUG_ON(!is_first_page(first_page));
+
+ fullness = get_fullness_group(first_page);
+ insert_zspage(first_page, class, fullness);
+ set_zspage_mapping(first_page, class->index, fullness);
+
+ if (fullness == ZS_EMPTY) {
+ zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
+ class->size, class->pages_per_zspage));
+ atomic_long_sub(class->pages_per_zspage,
+ &pool->pages_allocated);
+
+ free_zspage(first_page);
+ }
+}
+
+static struct page *isolate_source_page(struct size_class *class)
+{
+ struct page *page;
+
+ page = class->fullness_list[ZS_ALMOST_EMPTY];
+ if (page)
+ remove_zspage(page, class, ZS_ALMOST_EMPTY);
+
+ return page;
+}
+
+static unsigned long __zs_compact(struct zs_pool *pool,
+ struct size_class *class)
+{
+ int nr_to_migrate;
+ struct zs_compact_control cc;
+ struct page *src_page;
+ struct page *dst_page = NULL;
+ unsigned long nr_total_migrated = 0;
+
+ spin_lock(&class->lock);
+ while ((src_page = isolate_source_page(class))) {
+
+ BUG_ON(!is_first_page(src_page));
+
+ /* The goal is to migrate all live objects in source page */
+ nr_to_migrate = src_page->inuse;
+ cc.index = 0;
+ cc.s_page = src_page;
+
+ while ((dst_page = alloc_target_page(class))) {
+ cc.d_page = dst_page;
+ /*
+ * If there is no more space in dst_page, try to
+ * allocate another zspage.
+ */
+ if (!migrate_zspage(pool, class, &cc))
+ break;
+
+ putback_zspage(pool, class, dst_page);
+ nr_total_migrated += cc.nr_migrated;
+ nr_to_migrate -= cc.nr_migrated;
+ }
+
+ /* Stop if we couldn't find slot */
+ if (dst_page == NULL)
+ break;
+
+ putback_zspage(pool, class, dst_page);
+ putback_zspage(pool, class, src_page);
+ spin_unlock(&class->lock);
+ nr_total_migrated += cc.nr_migrated;
+ cond_resched();
+ spin_lock(&class->lock);
+ }
+
+ if (src_page)
+ putback_zspage(pool, class, src_page);
+
+ spin_unlock(&class->lock);
+
+ return nr_total_migrated;
+}
+
+unsigned long zs_compact(struct zs_pool *pool)
+{
+ int i;
+ unsigned long nr_migrated = 0;
+ struct size_class *class;
+
+ for (i = zs_size_classes - 1; i >= 0; i--) {
+ class = pool->size_class[i];
+ if (!class)
+ continue;
+ if (class->index != i)
+ continue;
+ nr_migrated += __zs_compact(pool, class);
+ }
+
+ return nr_migrated;
+}
+EXPORT_SYMBOL_GPL(zs_compact);
+
/**
- * zs_map_object - get address of allocated object from handle.
- * @pool: pool from which the object was allocated
- * @handle: handle returned from zs_malloc
- *
- * Before using an object allocated from zs_malloc, it must be mapped using
- * this function. When done with the object, it must be unmapped using
- * zs_unmap_object.
+ * zs_create_pool - Creates an allocation pool to work from.
+ * @flags: allocation flags used to allocate pool metadata
*
- * Only one object can be mapped per cpu at a time. There is no protection
- * against nested mappings.
+ * This function must be called before anything when using
+ * the zsmalloc allocator.
*
- * This function returns with preemption and page faults disabled.
+ * On success, a pointer to the newly created pool is returned,
+ * otherwise NULL.
*/
-void *zs_map_object(struct zs_pool *pool, unsigned long handle,
- enum zs_mapmode mm)
+struct zs_pool *zs_create_pool(char *name, gfp_t flags)
{
- struct page *page;
- unsigned long obj_idx, off;
+ int i;
+ struct zs_pool *pool;
+ struct size_class *prev_class = NULL;
- unsigned int class_idx;
- enum fullness_group fg;
- struct size_class *class;
- struct mapping_area *area;
- struct page *pages[2];
+ pool = kzalloc(sizeof(*pool), GFP_KERNEL);
+ if (!pool)
+ return NULL;
- BUG_ON(!handle);
+ pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
+ GFP_KERNEL);
+ if (!pool->size_class) {
+ kfree(pool);
+ return NULL;
+ }
+
+ pool->name = kstrdup(name, GFP_KERNEL);
+ if (!pool->name)
+ goto err;
+
+ if (create_handle_cache(pool))
+ goto err;
/*
- * Because we use per-cpu mapping areas shared among the
- * pools/users, we can't allow mapping in interrupt context
- * because it can corrupt another users mappings.
+ * Iterate reversly, because, size of size_class that we want to use
+ * for merging should be larger or equal to current size.
*/
- BUG_ON(in_interrupt());
+ for (i = zs_size_classes - 1; i >= 0; i--) {
+ int size;
+ int pages_per_zspage;
+ struct size_class *class;
- obj_handle_to_location(handle, &page, &obj_idx);
- get_zspage_mapping(get_first_page(page), &class_idx, &fg);
- class = &pool->size_class[class_idx];
- off = obj_idx_to_offset(page, obj_idx, class->size);
+ size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
+ if (size > ZS_MAX_ALLOC_SIZE)
+ size = ZS_MAX_ALLOC_SIZE;
+ pages_per_zspage = get_pages_per_zspage(size);
- area = &get_cpu_var(zs_map_area);
- area->vm_mm = mm;
- if (off + class->size <= PAGE_SIZE) {
- /* this object is contained entirely within a page */
- area->vm_addr = kmap_atomic(page);
- return area->vm_addr + off;
+ /*
+ * size_class is used for normal zsmalloc operation such
+ * as alloc/free for that size. Although it is natural that we
+ * have one size_class for each size, there is a chance that we
+ * can get more memory utilization if we use one size_class for
+ * many different sizes whose size_class have same
+ * characteristics. So, we makes size_class point to
+ * previous size_class if possible.
+ */
+ if (prev_class) {
+ if (can_merge(prev_class, size, pages_per_zspage)) {
+ pool->size_class[i] = prev_class;
+ continue;
+ }
+ }
+
+ class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
+ if (!class)
+ goto err;
+
+ class->size = size;
+ class->index = i;
+ class->pages_per_zspage = pages_per_zspage;
+ if (pages_per_zspage == 1 &&
+ get_maxobj_per_zspage(size, pages_per_zspage) == 1)
+ class->huge = true;
+ spin_lock_init(&class->lock);
+ pool->size_class[i] = class;
+
+ prev_class = class;
}
- /* this object spans two pages */
- pages[0] = page;
- pages[1] = get_next_page(page);
- BUG_ON(!pages[1]);
+ pool->flags = flags;
- return __zs_map_object(area, pages, off, class->size);
+ if (zs_pool_stat_create(name, pool))
+ goto err;
+
+ return pool;
+
+err:
+ zs_destroy_pool(pool);
+ return NULL;
}
-EXPORT_SYMBOL_GPL(zs_map_object);
+EXPORT_SYMBOL_GPL(zs_create_pool);
-void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
+void zs_destroy_pool(struct zs_pool *pool)
{
- struct page *page;
- unsigned long obj_idx, off;
-
- unsigned int class_idx;
- enum fullness_group fg;
- struct size_class *class;
- struct mapping_area *area;
+ int i;
- BUG_ON(!handle);
+ zs_pool_stat_destroy(pool);
- obj_handle_to_location(handle, &page, &obj_idx);
- get_zspage_mapping(get_first_page(page), &class_idx, &fg);
- class = &pool->size_class[class_idx];
- off = obj_idx_to_offset(page, obj_idx, class->size);
+ for (i = 0; i < zs_size_classes; i++) {
+ int fg;
+ struct size_class *class = pool->size_class[i];
- area = &__get_cpu_var(zs_map_area);
- if (off + class->size <= PAGE_SIZE)
- kunmap_atomic(area->vm_addr);
- else {
- struct page *pages[2];
+ if (!class)
+ continue;
- pages[0] = page;
- pages[1] = get_next_page(page);
- BUG_ON(!pages[1]);
+ if (class->index != i)
+ continue;
- __zs_unmap_object(area, pages, off, class->size);
+ for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
+ if (class->fullness_list[fg]) {
+ pr_info("Freeing non-empty class with size %db, fullness group %d\n",
+ class->size, fg);
+ }
+ }
+ kfree(class);
}
- put_cpu_var(zs_map_area);
+
+ destroy_handle_cache(pool);
+ kfree(pool->size_class);
+ kfree(pool->name);
+ kfree(pool);
}
-EXPORT_SYMBOL_GPL(zs_unmap_object);
+EXPORT_SYMBOL_GPL(zs_destroy_pool);
-u64 zs_get_total_size_bytes(struct zs_pool *pool)
+static int __init zs_init(void)
{
- int i;
- u64 npages = 0;
+ int ret = zs_register_cpu_notifier();
+
+ if (ret)
+ goto notifier_fail;
+
+ init_zs_size_classes();
+
+#ifdef CONFIG_ZPOOL
+ zpool_register_driver(&zs_zpool_driver);
+#endif
- for (i = 0; i < ZS_SIZE_CLASSES; i++)
- npages += pool->size_class[i].pages_allocated;
+ ret = zs_stat_init();
+ if (ret) {
+ pr_err("zs stat initialization failed\n");
+ goto stat_fail;
+ }
+ return 0;
+
+stat_fail:
+#ifdef CONFIG_ZPOOL
+ zpool_unregister_driver(&zs_zpool_driver);
+#endif
+notifier_fail:
+ zs_unregister_cpu_notifier();
+
+ return ret;
+}
+
+static void __exit zs_exit(void)
+{
+#ifdef CONFIG_ZPOOL
+ zpool_unregister_driver(&zs_zpool_driver);
+#endif
+ zs_unregister_cpu_notifier();
- return npages << PAGE_SHIFT;
+ zs_stat_exit();
}
-EXPORT_SYMBOL_GPL(zs_get_total_size_bytes);
module_init(zs_init);
module_exit(zs_exit);