aboutsummaryrefslogtreecommitdiff
path: root/drivers/cpufreq/cpufreq_smartmax_eps.c
blob: 7894d2f1077d8b6b10938f8040776be8f556cbfd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
/*
 * drivers/cpufreq/cpufreq_smartmax.c
 *
 * Copyright (C) 2013 maxwen
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * Author: maxwen
 *
 * Based on the ondemand and smartassV2 governor
 *
 * ondemand:
 *  Copyright (C)  2001 Russell King
 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *                      Jun Nakajima <jun.nakajima@intel.com>
 *
 * smartassV2:
 * Author: Erasmux
 *
 * For a general overview of CPU governors see the relavent part in
 * Documentation/cpu-freq/governors.txt
 *
 */

#include <linux/module.h>
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpufreq.h>
#include <linux/sched.h>
#include <linux/tick.h>
#include <linux/timer.h>
#include <linux/workqueue.h>
#include <linux/moduleparam.h>
#include <linux/jiffies.h>
#include <linux/input.h>
#include <linux/kthread.h>
#include <linux/slab.h>
#include <linux/kernel_stat.h>

#ifdef CONFIG_CPU_FREQ_GOV_SMARTMAX_TEGRA
extern int tegra_input_boost (struct cpufreq_policy *policy,
		       unsigned int target_freq,
		       unsigned int relation);
#endif

/******************** Tunable parameters: ********************/

/*
 * The "ideal" frequency to use. The governor will ramp up faster
 * towards the ideal frequency and slower after it has passed it. Similarly,
 * lowering the frequency towards the ideal frequency is faster than below it.
 */


#ifdef CONFIG_CPU_FREQ_GOV_SMARTMAX_ENRC2B
#define DEFAULT_SUSPEND_IDEAL_FREQ 475000
#define DEFAULT_AWAKE_IDEAL_FREQ 475000
#define DEFAULT_RAMP_UP_STEP 300000
#define DEFAULT_RAMP_DOWN_STEP 150000
#define DEFAULT_MAX_CPU_LOAD 80
#define DEFAULT_MIN_CPU_LOAD 50
#define DEFAULT_UP_RATE 30000
#define DEFAULT_DOWN_RATE 60000
#define DEFAULT_SAMPLING_RATE 30000
// default to 3 * sampling_rate
#define DEFAULT_INPUT_BOOST_DURATION 90000
#define DEFAULT_TOUCH_POKE_FREQ 910000
#define DEFAULT_BOOST_FREQ 910000
/*
 * from cpufreq_wheatley.c
 * Not all CPUs want IO time to be accounted as busy; this dependson how
 * efficient idling at a higher frequency/voltage is.
 * Pavel Machek says this is not so for various generations of AMD and old
 * Intel systems.
 * Mike Chan (androidlcom) calis this is also not true for ARM.
 */
#define DEFAULT_IO_IS_BUSY 0
#define DEFAULT_IGNORE_NICE 1
#endif

// msm8974 platform
#ifdef CONFIG_CPU_FREQ_GOV_SMARTMAX_EPS
#define DEFAULT_SUSPEND_IDEAL_FREQ 300000
#define DEFAULT_AWAKE_IDEAL_FREQ 652800
#define DEFAULT_RAMP_UP_STEP 200000
#define DEFAULT_RAMP_DOWN_STEP 200000
#define DEFAULT_MAX_CPU_LOAD 70
#define DEFAULT_MIN_CPU_LOAD 40
#define DEFAULT_UP_RATE 30000
#define DEFAULT_DOWN_RATE 60000
#define DEFAULT_SAMPLING_RATE 30000
#define DEFAULT_INPUT_BOOST_DURATION 90000
#define DEFAULT_TOUCH_POKE_FREQ 1036800
#define DEFAULT_BOOST_FREQ 1497600
#define DEFAULT_IO_IS_BUSY 0
#define DEFAULT_IGNORE_NICE 1
#endif

#ifdef CONFIG_CPU_FREQ_GOV_SMARTMAX_PRIMOU
#define DEFAULT_SUSPEND_IDEAL_FREQ 368000
#define DEFAULT_AWAKE_IDEAL_FREQ 806000
#define DEFAULT_RAMP_UP_STEP 200000
#define DEFAULT_RAMP_DOWN_STEP 200000
#define DEFAULT_MAX_CPU_LOAD 60
#define DEFAULT_MIN_CPU_LOAD 30
#define DEFAULT_UP_RATE 30000
#define DEFAULT_DOWN_RATE 60000
#define DEFAULT_SAMPLING_RATE 30000
#define DEFAULT_INPUT_BOOST_DURATION 90000
#define DEFAULT_TOUCH_POKE_FREQ 1200000
#define DEFAULT_BOOST_FREQ 1200000
#define DEFAULT_IO_IS_BUSY 0
#define DEFAULT_IGNORE_NICE 1
#endif

#ifdef CONFIG_CPU_FREQ_GOV_SMARTMAX_M7
#define DEFAULT_SUSPEND_IDEAL_FREQ 384000
#define DEFAULT_AWAKE_IDEAL_FREQ 594000
#define DEFAULT_RAMP_UP_STEP 200000
#define DEFAULT_RAMP_DOWN_STEP 200000
#define DEFAULT_MAX_CPU_LOAD 70
#define DEFAULT_MIN_CPU_LOAD 40
#define DEFAULT_UP_RATE 30000
#define DEFAULT_DOWN_RATE 60000
#define DEFAULT_SAMPLING_RATE 30000
#define DEFAULT_INPUT_BOOST_DURATION 90000
#define DEFAULT_TOUCH_POKE_FREQ 1134000
#define DEFAULT_BOOST_FREQ 1134000
#define DEFAULT_IO_IS_BUSY 0
#define DEFAULT_IGNORE_NICE 1
#endif

#ifdef CONFIG_CPU_FREQ_GOV_SMARTMAX_FIND5
#define DEFAULT_SUSPEND_IDEAL_FREQ 384000
#define DEFAULT_AWAKE_IDEAL_FREQ 594000
#define DEFAULT_RAMP_UP_STEP 200000
#define DEFAULT_RAMP_DOWN_STEP 200000
#define DEFAULT_MAX_CPU_LOAD 90
#define DEFAULT_MIN_CPU_LOAD 60
#define DEFAULT_UP_RATE 30000
#define DEFAULT_DOWN_RATE 60000
#define DEFAULT_SAMPLING_RATE 30000
#define DEFAULT_INPUT_BOOST_DURATION 900000
#define DEFAULT_TOUCH_POKE_FREQ 1134000
#define DEFAULT_BOOST_FREQ 1134000
#define DEFAULT_IO_IS_BUSY 0
#define DEFAULT_IGNORE_NICE 1
#endif

static unsigned int suspend_ideal_freq;
static unsigned int awake_ideal_freq;
/*
 * Freqeuncy delta when ramping up above the ideal freqeuncy.
 * Zero disables and causes to always jump straight to max frequency.
 * When below the ideal freqeuncy we always ramp up to the ideal freq.
 */
static unsigned int ramp_up_step;

/*
 * Freqeuncy delta when ramping down below the ideal freqeuncy.
 * Zero disables and will calculate ramp down according to load heuristic.
 * When above the ideal freqeuncy we always ramp down to the ideal freq.
 */
static unsigned int ramp_down_step;

/*
 * CPU freq will be increased if measured load > max_cpu_load;
 */
static unsigned int max_cpu_load;

/*
 * CPU freq will be decreased if measured load < min_cpu_load;
 */
static unsigned int min_cpu_load;

/*
 * The minimum amount of time in usecs to spend at a frequency before we can ramp up.
 * Notice we ignore this when we are below the ideal frequency.
 */
static unsigned int up_rate;

/*
 * The minimum amount of time in usecs to spend at a frequency before we can ramp down.
 * Notice we ignore this when we are above the ideal frequency.
 */
static unsigned int down_rate;

/* in usecs */
static unsigned int sampling_rate;

/* in usecs */
static unsigned int input_boost_duration;

static unsigned int touch_poke_freq;
static bool touch_poke = true;

/*
 * should ramp_up steps during boost be possible
 */
static bool ramp_up_during_boost = true;

/*
 * external boost interface - boost if duration is written
 * to sysfs for boost_duration
 */
static unsigned int boost_freq;
static bool boost = true;

/* in usecs */
static unsigned int boost_duration = 0;

/* Consider IO as busy */
static unsigned int io_is_busy;

static unsigned int ignore_nice;

/*************** End of tunables ***************/

static unsigned int dbs_enable; /* number of CPUs using this policy */

static void do_dbs_timer(struct work_struct *work);

struct smartmax_info_s {
	struct cpufreq_policy *cur_policy;
	struct cpufreq_frequency_table *freq_table;
	struct delayed_work work;
	u64 prev_cpu_idle;
	u64 prev_cpu_iowait;
	u64 prev_cpu_wall;
	u64 prev_cpu_nice;
	u64 freq_change_time;
	unsigned int cur_cpu_load;
	unsigned int old_freq;
	int ramp_dir;
	unsigned int ideal_speed;
	unsigned int cpu;
	struct mutex timer_mutex;
};
static DEFINE_PER_CPU(struct smartmax_info_s, smartmax_info);

#define dprintk(flag,msg...) do { \
	if (debug_mask & flag) pr_info("[smartmax]" ":" msg); \
	} while (0)

enum {
	SMARTMAX_DEBUG_JUMPS = 1,
	SMARTMAX_DEBUG_LOAD = 2,
	SMARTMAX_DEBUG_ALG = 4,
	SMARTMAX_DEBUG_BOOST = 8,
	SMARTMAX_DEBUG_INPUT = 16,
	SMARTMAX_DEBUG_SUSPEND = 32
};

/*
 * Combination of the above debug flags.
 */
//static unsigned long debug_mask = SMARTMAX_DEBUG_LOAD|SMARTMAX_DEBUG_JUMPS|SMARTMAX_DEBUG_ALG|SMARTMAX_DEBUG_BOOST|SMARTMAX_DEBUG_INPUT|SMARTMAX_DEBUG_SUSPEND;
static unsigned long debug_mask;

#define SMARTMAX_STAT 0
#if SMARTMAX_STAT
static u64 timer_stat[4] = {0, 0, 0, 0};
#endif

/*
 * dbs_mutex protects dbs_enable in governor start/stop.
 */
static DEFINE_MUTEX(dbs_mutex);
static struct workqueue_struct *smartmax_wq;

static bool boost_task_alive = false;
static struct task_struct *boost_task;
static u64 boost_end_time = 0ULL;
static unsigned int cur_boost_freq = 0;
static unsigned int cur_boost_duration = 0;
static bool boost_running = false;
static unsigned int ideal_freq;
static bool is_suspended = false;
static unsigned int min_sampling_rate;

#define LATENCY_MULTIPLIER			(1000)
#define MIN_LATENCY_MULTIPLIER			(100)
#define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)

/*
 * The polling frequency of this governor depends on the capability of
 * the processor. Default polling frequency is 1000 times the transition
 * latency of the processor. The governor will work on any processor with
 * transition latency <= 10mS, using appropriate sampling
 * rate.
 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
 * this governor will not work.
 * All times here are in uS.
 */
#define MIN_SAMPLING_RATE_RATIO			(2)
#define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000)

static int cpufreq_governor_smartmax_eps(struct cpufreq_policy *policy,
		unsigned int event);

#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_SMARTMAX_EPS
static
#endif
struct cpufreq_governor cpufreq_gov_smartmax_eps = { 
    .name = "smartmax_eps", 
    .governor = cpufreq_governor_smartmax_eps, 
    .max_transition_latency = TRANSITION_LATENCY_LIMIT, 
    .owner = THIS_MODULE,
    };

static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) {

	u64 idle_time;
	u64 cur_wall_time;
	u64 busy_time;

	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());

#ifdef CONFIG_CPU_FREQ_GOV_SMARTMAX_30
	busy_time  = kstat_cpu(cpu).cpustat.user;
	busy_time += kstat_cpu(cpu).cpustat.system;
	busy_time += kstat_cpu(cpu).cpustat.irq;
	busy_time += kstat_cpu(cpu).cpustat.softirq;
	busy_time += kstat_cpu(cpu).cpustat.steal;
	busy_time += kstat_cpu(cpu).cpustat.nice;
#else
	busy_time  = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
#endif

	idle_time = cur_wall_time - busy_time;
	if (wall)
		*wall = jiffies_to_usecs(cur_wall_time);

	return jiffies_to_usecs(idle_time);
}

/* function has been moved to cpufreq.c
static inline u64 get_cpu_idle_time(unsigned int cpu, u64 *wall)
{
	u64 idle_time = get_cpu_idle_time_us(cpu, NULL);

	if (idle_time == -1ULL)
		return get_cpu_idle_time_jiffy(cpu, wall);
	else
		idle_time += get_cpu_iowait_time_us(cpu, wall);

	return idle_time;
}
*/

static inline u64 get_cpu_iowait_time(unsigned int cpu, u64 *wall) {
	u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);

	if (iowait_time == -1ULL)
		return 0;

	return iowait_time;
}

inline static void smartmax_update_min_max(
		struct smartmax_info_s *this_smartmax, struct cpufreq_policy *policy) {
	this_smartmax->ideal_speed = // ideal_freq; but make sure it obeys the policy min/max
			policy->min < ideal_freq ?
					(ideal_freq < policy->max ? ideal_freq : policy->max) :
					policy->min;

}

inline static void smartmax_update_min_max_allcpus(void) {
	unsigned int cpu;

	for_each_online_cpu(cpu)
	{
		struct smartmax_info_s *this_smartmax = &per_cpu(smartmax_info, cpu);
		if (this_smartmax->cur_policy){
			if (lock_policy_rwsem_write(cpu) < 0)
				continue;

			smartmax_update_min_max(this_smartmax, this_smartmax->cur_policy);
			
			unlock_policy_rwsem_write(cpu);
		}
	}
}

inline static unsigned int validate_freq(struct cpufreq_policy *policy,
		int freq) {
	if (freq > (int) policy->max)
		return policy->max;
	if (freq < (int) policy->min)
		return policy->min;
	return freq;
}

/* We want all CPUs to do sampling nearly on same jiffy */
static inline unsigned int get_timer_delay(void) {
	unsigned int delay = usecs_to_jiffies(sampling_rate);

	if (num_online_cpus() > 1)
		delay -= jiffies % delay;
	return delay;
}

static inline void dbs_timer_init(struct smartmax_info_s *this_smartmax) {
	int delay = get_timer_delay();

	INIT_DELAYED_WORK_DEFERRABLE(&this_smartmax->work, do_dbs_timer);
	schedule_delayed_work_on(this_smartmax->cpu, &this_smartmax->work, delay);
}

static inline void dbs_timer_exit(struct smartmax_info_s *this_smartmax) {
	cancel_delayed_work_sync(&this_smartmax->work);
}

inline static void target_freq(struct cpufreq_policy *policy,
		struct smartmax_info_s *this_smartmax, int new_freq, int old_freq,
		int prefered_relation) {
	int index, target;
	struct cpufreq_frequency_table *table = this_smartmax->freq_table;
	unsigned int cpu = this_smartmax->cpu;

	dprintk(SMARTMAX_DEBUG_ALG, "%d: %s\n", old_freq, __func__);

	// apply policy limits - just to be sure
	new_freq = validate_freq(policy, new_freq);

	if (!cpufreq_frequency_table_target(policy, table, new_freq,
					prefered_relation, &index)) {
		target = table[index].frequency;
		if (target == old_freq) {
			// if for example we are ramping up to *at most* current + ramp_up_step
			// but there is no such frequency higher than the current, try also
			// to ramp up to *at least* current + ramp_up_step.
			if (new_freq > old_freq && prefered_relation == CPUFREQ_RELATION_H
					&& !cpufreq_frequency_table_target(policy, table, new_freq,
							CPUFREQ_RELATION_L, &index))
				target = table[index].frequency;
			// simlarly for ramping down:
			else if (new_freq < old_freq
					&& prefered_relation == CPUFREQ_RELATION_L
					&& !cpufreq_frequency_table_target(policy, table, new_freq,
							CPUFREQ_RELATION_H, &index))
				target = table[index].frequency;
		}

		// no change
		if (target == old_freq)
			return;
	} else {
		dprintk(SMARTMAX_DEBUG_ALG, "frequency change failed\n");
		return;
	}

	dprintk(SMARTMAX_DEBUG_JUMPS, "%d: jumping to %d (%d) cpu %d\n", old_freq, new_freq, target, cpu);

	__cpufreq_driver_target(policy, target, prefered_relation);

	// remember last time we changed frequency
	this_smartmax->freq_change_time = ktime_to_us(ktime_get());
}

/* We use the same work function to sale up and down */
static void cpufreq_smartmax_freq_change(struct smartmax_info_s *this_smartmax) {
	unsigned int cpu;
	unsigned int new_freq = 0;
	unsigned int old_freq;
	int ramp_dir;
	struct cpufreq_policy *policy;
	unsigned int relation = CPUFREQ_RELATION_L;

	ramp_dir = this_smartmax->ramp_dir;
	old_freq = this_smartmax->old_freq;
	policy = this_smartmax->cur_policy;
	cpu = this_smartmax->cpu;

	dprintk(SMARTMAX_DEBUG_ALG, "%d: %s\n", old_freq, __func__);
	
	if (old_freq != policy->cur) {
		// frequency was changed by someone else?
		dprintk(SMARTMAX_DEBUG_ALG, "%d: frequency changed by 3rd party to %d\n",
				old_freq, policy->cur);
		new_freq = old_freq;
	} else if (ramp_dir > 0 && nr_running() > 1) {
		// ramp up logic:
		if (old_freq < this_smartmax->ideal_speed)
			new_freq = this_smartmax->ideal_speed;
		else if (ramp_up_step) {
			new_freq = old_freq + ramp_up_step;
			relation = CPUFREQ_RELATION_H;
		} else {
			new_freq = policy->max;
			relation = CPUFREQ_RELATION_H;
		}
	} else if (ramp_dir < 0) {
		// ramp down logic:
		if (old_freq > this_smartmax->ideal_speed) {
			new_freq = this_smartmax->ideal_speed;
			relation = CPUFREQ_RELATION_H;
		} else if (ramp_down_step)
			new_freq = old_freq - ramp_down_step;
		else {
			// Load heuristics: Adjust new_freq such that, assuming a linear
			// scaling of load vs. frequency, the load in the new frequency
			// will be max_cpu_load:
			new_freq = old_freq * this_smartmax->cur_cpu_load / max_cpu_load;
			if (new_freq > old_freq) // min_cpu_load > max_cpu_load ?!
				new_freq = old_freq - 1;
		}
	}

	if (new_freq!=0){
		target_freq(policy, this_smartmax, new_freq, old_freq, relation);
	}
	
	this_smartmax->ramp_dir = 0;
}

static inline void cpufreq_smartmax_get_ramp_direction(struct smartmax_info_s *this_smartmax, u64 now)
{
	unsigned int cur_load = this_smartmax->cur_cpu_load;
	unsigned int cur = this_smartmax->old_freq;
	struct cpufreq_policy *policy = this_smartmax->cur_policy;
	
	// Scale up if load is above max or if there where no idle cycles since coming out of idle,
	// additionally, if we are at or above the ideal_speed, verify we have been at this frequency
	// for at least up_rate:
	if (cur_load > max_cpu_load && cur < policy->max
			&& (cur < this_smartmax->ideal_speed
				|| (now - this_smartmax->freq_change_time) >= up_rate)) {
		dprintk(SMARTMAX_DEBUG_ALG,
				"%d: ramp up: load %d\n", cur, cur_load);
		this_smartmax->ramp_dir = 1;
	}
	// Similarly for scale down: load should be below min and if we are at or below ideal
	// frequency we require that we have been at this frequency for at least down_rate:
	else if (cur_load < min_cpu_load && cur > policy->min
			&& (cur > this_smartmax->ideal_speed
				|| (now - this_smartmax->freq_change_time) >= down_rate)) {
		dprintk(SMARTMAX_DEBUG_ALG,
				"%d: ramp down: load %d\n", cur, cur_load);
		this_smartmax->ramp_dir = -1;
	}
}

static void inline cpufreq_smartmax_calc_load(int j)
{
	struct smartmax_info_s *j_this_smartmax;
	u64 cur_wall_time, cur_idle_time, cur_iowait_time;
	unsigned int idle_time, wall_time, iowait_time;
	unsigned int cur_load;
		
	j_this_smartmax = &per_cpu(smartmax_info, j);

	cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_is_busy);
	cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);

	wall_time = cur_wall_time - j_this_smartmax->prev_cpu_wall;
	j_this_smartmax->prev_cpu_wall = cur_wall_time;

	idle_time = cur_idle_time - j_this_smartmax->prev_cpu_idle;
	j_this_smartmax->prev_cpu_idle = cur_idle_time;

	iowait_time = cur_iowait_time - j_this_smartmax->prev_cpu_iowait;
	j_this_smartmax->prev_cpu_iowait = cur_iowait_time;

	if (ignore_nice) {
		u64 cur_nice;
		unsigned long cur_nice_jiffies;

#ifdef CONFIG_CPU_FREQ_GOV_SMARTMAX_30
		cur_nice = kstat_cpu(j).cpustat.nice - j_this_smartmax->prev_cpu_nice;
		cur_nice_jiffies = (unsigned long) cputime64_to_jiffies64(cur_nice);

		j_this_smartmax->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
#else
		cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] - j_this_smartmax->prev_cpu_nice;
		cur_nice_jiffies = (unsigned long) cputime64_to_jiffies64(cur_nice);

		j_this_smartmax->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];

#endif

		idle_time += jiffies_to_usecs(cur_nice_jiffies);
	}

	/*
	 * For the purpose of ondemand, waiting for disk IO is an
	 * indication that you're performance critical, and not that
	 * the system is actually idle. So subtract the iowait time
	 * from the cpu idle time.
	 */
	if (io_is_busy && idle_time >= iowait_time)
		idle_time -= iowait_time;

	if (unlikely(!wall_time || wall_time < idle_time))
		return;

	cur_load = 100 * (wall_time - idle_time) / wall_time;
	j_this_smartmax->cur_cpu_load = cur_load;
}

static void cpufreq_smartmax_timer(struct smartmax_info_s *this_smartmax) {
	unsigned int cur;
	struct cpufreq_policy *policy = this_smartmax->cur_policy;
	u64 now = ktime_to_us(ktime_get());
	/* Extrapolated load of this CPU */
	//unsigned int load_at_max_freq = 0;
	unsigned int cpu = this_smartmax->cpu;

#if SMARTMAX_STAT 
	u64 diff = 0;

	if (timer_stat[cpu])
		diff = now - timer_stat[cpu];

	timer_stat[cpu] = now;
	printk(KERN_DEBUG "[smartmax]:cpu %d %lld\n", cpu, diff);
#endif

	cur = policy->cur;

	dprintk(SMARTMAX_DEBUG_ALG, "%d: %s cpu %d %lld\n", cur, __func__, cpu, now);

	cpufreq_smartmax_calc_load(cpu);

	/* calculate the scaled load across CPU */
	//load_at_max_freq = (this_smartmax->cur_cpu_load * policy->cur)/policy->cpuinfo.max_freq;

	//cpufreq_notify_utilization(policy, load_at_max_freq);

	dprintk(SMARTMAX_DEBUG_LOAD, "%d: load %d\n", cpu, this_smartmax->cur_cpu_load);

	this_smartmax->old_freq = cur;
	this_smartmax->ramp_dir = 0;

	cpufreq_smartmax_get_ramp_direction(this_smartmax, now);

	// no changes
	if (this_smartmax->ramp_dir == 0)		
		return;

	// boost - but not block ramp up steps based on load if requested
	if (boost_running){
		if (now < boost_end_time) {
			dprintk(SMARTMAX_DEBUG_BOOST, "%d: cpu %d boost running %llu %llu\n", cur, cpu, now, boost_end_time);
		
			if (this_smartmax->ramp_dir == -1)
				return;
			else {
				if (ramp_up_during_boost)
					dprintk(SMARTMAX_DEBUG_BOOST, "%d: cpu %d boost running but ramp_up above boost freq requested\n", cur, cpu);
				else
					return;
			}
		} else
			boost_running = false;
	}

	cpufreq_smartmax_freq_change(this_smartmax);
}

static void do_dbs_timer(struct work_struct *work) {
	struct smartmax_info_s *this_smartmax =
			container_of(work, struct smartmax_info_s, work.work);
	unsigned int cpu = this_smartmax->cpu;
	int delay = get_timer_delay();

	mutex_lock(&this_smartmax->timer_mutex);

	cpufreq_smartmax_timer(this_smartmax);

	queue_delayed_work_on(cpu, smartmax_wq, &this_smartmax->work, delay);
	mutex_unlock(&this_smartmax->timer_mutex);
}

static void update_idle_time(bool online) {
	int j = 0;

	for_each_possible_cpu(j)
	{
		struct smartmax_info_s *j_this_smartmax;

		if (online && !cpu_online(j)) {
			continue;
		}
		j_this_smartmax = &per_cpu(smartmax_info, j);

		j_this_smartmax->prev_cpu_idle = get_cpu_idle_time(j,
				&j_this_smartmax->prev_cpu_wall, io_is_busy);
				
		if (ignore_nice)
#ifdef CONFIG_CPU_FREQ_GOV_SMARTMAX_30
			j_this_smartmax->prev_cpu_nice = kstat_cpu(j) .cpustat.nice;
#else
			j_this_smartmax->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
#endif
	}
}

static ssize_t show_debug_mask(struct kobject *kobj, struct attribute *attr,
		char *buf) {
	return sprintf(buf, "%lu\n", debug_mask);
}

static ssize_t store_debug_mask(struct kobject *kobj, struct attribute *attr,
		const char *buf, size_t count) {
	ssize_t res;
	unsigned long input;
	res = strict_strtoul(buf, 0, &input);
	if (res >= 0)
		debug_mask = input;
	else
		return -EINVAL;
	return count;
}

static ssize_t show_up_rate(struct kobject *kobj, struct attribute *attr,
		char *buf) {
	return sprintf(buf, "%u\n", up_rate);
}

static ssize_t store_up_rate(struct kobject *kobj, struct attribute *attr,
		const char *buf, size_t count) {
	ssize_t res;
	unsigned long input;
	res = strict_strtoul(buf, 0, &input);
	if (res >= 0 && input >= 0 && input <= 100000000)
		up_rate = input;
	else
		return -EINVAL;
	return count;
}

static ssize_t show_down_rate(struct kobject *kobj, struct attribute *attr,
		char *buf) {
	return sprintf(buf, "%u\n", down_rate);
}

static ssize_t store_down_rate(struct kobject *kobj, struct attribute *attr,
		const char *buf, size_t count) {
	ssize_t res;
	unsigned long input;
	res = strict_strtoul(buf, 0, &input);
	if (res >= 0 && input >= 0 && input <= 100000000)
		down_rate = input;
	else
		return -EINVAL;
	return count;
}

static ssize_t show_awake_ideal_freq(struct kobject *kobj, struct attribute *attr,
		char *buf) {
	return sprintf(buf, "%u\n", awake_ideal_freq);
}

static ssize_t store_awake_ideal_freq(struct kobject *kobj, struct attribute *attr,
		const char *buf, size_t count) {
	ssize_t res;
	unsigned long input;
	res = strict_strtoul(buf, 0, &input);
	if (res >= 0 && input >= 0) {
		awake_ideal_freq = input;
		if (!is_suspended){
			ideal_freq = awake_ideal_freq;
			smartmax_update_min_max_allcpus();
		}
	} else
		return -EINVAL;
	return count;
}

static ssize_t show_suspend_ideal_freq(struct kobject *kobj, struct attribute *attr,
		char *buf) {
	return sprintf(buf, "%u\n", suspend_ideal_freq);
}

static ssize_t store_suspend_ideal_freq(struct kobject *kobj, struct attribute *attr,
		const char *buf, size_t count) {
	ssize_t res;
	unsigned long input;
	res = strict_strtoul(buf, 0, &input);
	if (res >= 0 && input >= 0) {
		suspend_ideal_freq = input;
		if (is_suspended){
			ideal_freq = suspend_ideal_freq;
			smartmax_update_min_max_allcpus();
		}
	} else
		return -EINVAL;
	return count;
}

static ssize_t show_ramp_up_step(struct kobject *kobj, struct attribute *attr,
		char *buf) {
	return sprintf(buf, "%u\n", ramp_up_step);
}

static ssize_t store_ramp_up_step(struct kobject *kobj, struct attribute *attr,
		const char *buf, size_t count) {
	ssize_t res;
	unsigned long input;
	res = strict_strtoul(buf, 0, &input);
	if (res >= 0 && input >= 0)
		ramp_up_step = input;
	else
		return -EINVAL;
	return count;
}

static ssize_t show_ramp_down_step(struct kobject *kobj, struct attribute *attr,
		char *buf) {
	return sprintf(buf, "%u\n", ramp_down_step);
}

static ssize_t store_ramp_down_step(struct kobject *kobj,
		struct attribute *attr, const char *buf, size_t count) {
	ssize_t res;
	unsigned long input;
	res = strict_strtoul(buf, 0, &input);
	if (res >= 0 && input >= 0)
		ramp_down_step = input;
	else
		return -EINVAL;
	return count;
}

static ssize_t show_max_cpu_load(struct kobject *kobj, struct attribute *attr,
		char *buf) {
	return sprintf(buf, "%u\n", max_cpu_load);
}

static ssize_t store_max_cpu_load(struct kobject *kobj, struct attribute *attr,
		const char *buf, size_t count) {
	ssize_t res;
	unsigned long input;
	res = strict_strtoul(buf, 0, &input);
	if (res >= 0 && input > 0 && input <= 100)
		max_cpu_load = input;
	else
		return -EINVAL;
	return count;
}

static ssize_t show_min_cpu_load(struct kobject *kobj, struct attribute *attr,
		char *buf) {
	return sprintf(buf, "%u\n", min_cpu_load);
}

static ssize_t store_min_cpu_load(struct kobject *kobj, struct attribute *attr,
		const char *buf, size_t count) {
	ssize_t res;
	unsigned long input;
	res = strict_strtoul(buf, 0, &input);
	if (res >= 0 && input > 0 && input < 100)
		min_cpu_load = input;
	else
		return -EINVAL;
	return count;
}

static ssize_t show_sampling_rate(struct kobject *kobj, struct attribute *attr,
		char *buf) {
	return sprintf(buf, "%u\n", sampling_rate);
}

static ssize_t store_sampling_rate(struct kobject *kobj, struct attribute *attr,
		const char *buf, size_t count) {
	ssize_t res;
	unsigned long input;
	res = strict_strtoul(buf, 0, &input);
	if (res >= 0 && input >= min_sampling_rate)
		sampling_rate = input;
	else
		return -EINVAL;
	return count;
}

static ssize_t show_touch_poke_freq(struct kobject *kobj,
		struct attribute *attr, char *buf) {
	return sprintf(buf, "%u\n", touch_poke_freq);
}

static ssize_t store_touch_poke_freq(struct kobject *a, struct attribute *b,
		const char *buf, size_t count) {
	ssize_t res;
	unsigned long input;
	res = strict_strtoul(buf, 0, &input);
	if (res >= 0){
		touch_poke_freq = input;
	
		if (touch_poke_freq == 0)
			touch_poke = false;
		else
			touch_poke = true;
	} else
		return -EINVAL;	
	return count;
}

static ssize_t show_input_boost_duration(struct kobject *kobj,
		struct attribute *attr, char *buf) {
	return sprintf(buf, "%u\n", input_boost_duration);
}

static ssize_t store_input_boost_duration(struct kobject *a,
		struct attribute *b, const char *buf, size_t count) {
	ssize_t res;
	unsigned long input;
	res = strict_strtoul(buf, 0, &input);
	if (res >= 0 && input > 10000)
		input_boost_duration = input;
	else
		return -EINVAL;
	return count;
}

static ssize_t show_ramp_up_during_boost(struct kobject *kobj,
		struct attribute *attr, char *buf) {
	return sprintf(buf, "%d\n", ramp_up_during_boost);
}

static ssize_t store_ramp_up_during_boost(struct kobject *a, struct attribute *b,
		const char *buf, size_t count) {
	ssize_t res;
	unsigned long input;
	res = strict_strtoul(buf, 0, &input);
	if (res >= 0) {
		if (input == 0)
			ramp_up_during_boost = false;
		else if (input == 1)
			ramp_up_during_boost = true;
		else
			return -EINVAL;
	} else
		return -EINVAL;
	return count;
}

static ssize_t show_boost_freq(struct kobject *kobj, struct attribute *attr,
		char *buf) {
	return sprintf(buf, "%u\n", boost_freq);
}

static ssize_t store_boost_freq(struct kobject *a, struct attribute *b,
		const char *buf, size_t count) {
	ssize_t res;
	unsigned long input;
	res = strict_strtoul(buf, 0, &input);
	if (res >= 0) {
		boost_freq = input;
		if (boost_freq == 0)
			boost = false;
		else
			boost = true;
	} else
		return -EINVAL;	
	return count;
}

static ssize_t show_boost_duration(struct kobject *kobj, struct attribute *attr,
		char *buf) {
	return sprintf(buf, "%d\n", boost_running);
}

static ssize_t store_boost_duration(struct kobject *a, struct attribute *b,
		const char *buf, size_t count) {
	ssize_t res;
	unsigned long input;
	res = strict_strtoul(buf, 0, &input);
	if (res >= 0 && input > 10000){
		boost_duration = input;
		if (boost) {
			// no need to bother if currently a boost is running anyway
			if (boost_task_alive && boost_running)
				return count;

			if (boost_task_alive) {
				cur_boost_freq = boost_freq;
				cur_boost_duration = boost_duration;
				wake_up_process(boost_task);
			}
		}
	} else
		return -EINVAL;
	return count;
}

static ssize_t show_io_is_busy(struct kobject *kobj, struct attribute *attr,
		char *buf) {
	return sprintf(buf, "%d\n", io_is_busy);
}

static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
		const char *buf, size_t count) {
	ssize_t res;
	unsigned long input;

	res = strict_strtoul(buf, 0, &input);
	if (res >= 0) {
		if (input > 1)
			input = 1;
		if (input == io_is_busy) { /* nothing to do */
			return count;
		}
		io_is_busy = input;
	} else
		return -EINVAL;	
	return count;
}

static ssize_t show_ignore_nice(struct kobject *kobj, struct attribute *attr,
		char *buf) {
	return sprintf(buf, "%d\n", ignore_nice);
}

static ssize_t store_ignore_nice(struct kobject *a, struct attribute *b,
		const char *buf, size_t count) {
	ssize_t res;
	unsigned long input;

	res = strict_strtoul(buf, 0, &input);
	if (res >= 0) {
		if (input > 1)
			input = 1;
		if (input == ignore_nice) { /* nothing to do */
			return count;
		}
		ignore_nice = input;
		/* we need to re-evaluate prev_cpu_idle */
		update_idle_time(true);
	} else
		return -EINVAL;	
	return count;
}

static ssize_t show_min_sampling_rate(struct kobject *kobj, struct attribute *attr,
		char *buf) {
	return sprintf(buf, "%d\n", min_sampling_rate);
}

static ssize_t store_min_sampling_rate(struct kobject *a, struct attribute *b,
		const char *buf, size_t count) {
	return -EINVAL;	
}

#define define_global_rw_attr(_name)		\
static struct global_attr _name##_attr =	\
	__ATTR(_name, 0644, show_##_name, store_##_name)

#define define_global_ro_attr(_name)		\
static struct global_attr _name##_attr =	\
	__ATTR(_name, 0444, show_##_name, store_##_name)

define_global_rw_attr(debug_mask);
define_global_rw_attr(up_rate);
define_global_rw_attr(down_rate);
define_global_rw_attr(ramp_up_step);
define_global_rw_attr(ramp_down_step);
define_global_rw_attr(max_cpu_load);
define_global_rw_attr(min_cpu_load);
define_global_rw_attr(sampling_rate);
define_global_rw_attr(touch_poke_freq);
define_global_rw_attr(input_boost_duration);
define_global_rw_attr(boost_freq);
define_global_rw_attr(boost_duration);
define_global_rw_attr(io_is_busy);
define_global_rw_attr(ignore_nice);
define_global_rw_attr(ramp_up_during_boost);
define_global_rw_attr(awake_ideal_freq);
define_global_rw_attr(suspend_ideal_freq);
define_global_ro_attr(min_sampling_rate);

static struct attribute * smartmax_attributes[] = { 
	&debug_mask_attr.attr,
	&up_rate_attr.attr, 
	&down_rate_attr.attr, 
	&ramp_up_step_attr.attr, 
	&ramp_down_step_attr.attr,
	&max_cpu_load_attr.attr, 
	&min_cpu_load_attr.attr,
	&sampling_rate_attr.attr, 
	&touch_poke_freq_attr.attr,
	&input_boost_duration_attr.attr, 
	&boost_freq_attr.attr, 
	&boost_duration_attr.attr, 
	&io_is_busy_attr.attr,
	&ignore_nice_attr.attr, 
	&ramp_up_during_boost_attr.attr, 
	&awake_ideal_freq_attr.attr,
	&suspend_ideal_freq_attr.attr,		
	&min_sampling_rate_attr.attr,
	NULL , };

static struct attribute_group smartmax_attr_group = { 
	.attrs = smartmax_attributes, 
	.name = "smartmax_eps", 
	};

static int cpufreq_smartmax_boost_task(void *data) {
	struct smartmax_info_s *this_smartmax;
	u64 now;
	struct cpufreq_policy *policy;
#ifndef CONFIG_CPU_FREQ_GOV_SMARTMAX_TEGRA
	unsigned int cpu;
	bool start_boost = false;
#endif
	while (1) {
		set_current_state(TASK_INTERRUPTIBLE);
		schedule();

		if (kthread_should_stop())
			break;

		set_current_state(TASK_RUNNING);

		if (boost_running)
			continue;

#ifdef CONFIG_CPU_FREQ_GOV_SMARTMAX_TEGRA
		/* on tegra there is only one cpu clock so we only need to boost cpu 0 
		   all others will run at the same speed */
		this_smartmax = &per_cpu(smartmax_info, 0);
		if (!this_smartmax)
			continue;

		policy = this_smartmax->cur_policy;
		if (!policy)
			continue;

        if (lock_policy_rwsem_write(0) < 0)
        	continue;
		
		tegra_input_boost(policy, cur_boost_freq, CPUFREQ_RELATION_H);
	
        this_smartmax->prev_cpu_idle = get_cpu_idle_time(0,
						&this_smartmax->prev_cpu_wall, io_is_busy);

        unlock_policy_rwsem_write(0);
#else		
		for_each_online_cpu(cpu){
			this_smartmax = &per_cpu(smartmax_info, cpu);
			if (!this_smartmax)
				continue;

			if (lock_policy_rwsem_write(cpu) < 0)
				continue;

			policy = this_smartmax->cur_policy;
			if (!policy){
				unlock_policy_rwsem_write(cpu);
				continue;
			}

			mutex_lock(&this_smartmax->timer_mutex);

			if (policy->cur < cur_boost_freq) {
				start_boost = true;
				dprintk(SMARTMAX_DEBUG_BOOST, "input boost cpu %d to %d\n", cpu, cur_boost_freq);
				target_freq(policy, this_smartmax, cur_boost_freq, this_smartmax->old_freq, CPUFREQ_RELATION_H);
				this_smartmax->prev_cpu_idle = get_cpu_idle_time(cpu, &this_smartmax->prev_cpu_wall, io_is_busy);
			}
			mutex_unlock(&this_smartmax->timer_mutex);

			unlock_policy_rwsem_write(cpu);
		}
#endif

#ifndef CONFIG_CPU_FREQ_GOV_SMARTMAX_TEGRA
		if (start_boost) {
#endif

		boost_running = true;
		now = ktime_to_us(ktime_get());
		boost_end_time = now + (cur_boost_duration * num_online_cpus());
		dprintk(SMARTMAX_DEBUG_BOOST, "%s %llu %llu\n", __func__, now, boost_end_time);
		
#ifndef CONFIG_CPU_FREQ_GOV_SMARTMAX_TEGRA
		}
#endif
	}

	pr_info("[smartmax]:" "%s boost_thread stopped\n", __func__);
	return 0;
}

static void smartmax_input_event(struct input_handle *handle, unsigned int type,
		unsigned int code, int value) {
	if (!is_suspended && touch_poke && type == EV_SYN && code == SYN_REPORT) {
		// no need to bother if currently a boost is running anyway
		if (boost_task_alive && boost_running)
			return;

		if (boost_task_alive) {
			cur_boost_freq = touch_poke_freq;
			cur_boost_duration = input_boost_duration;
			wake_up_process(boost_task);
		}
	}
}

#ifdef CONFIG_INPUT_MEDIATOR

static struct input_mediator_handler smartmax_input_mediator_handler = {
	.event = smartmax_input_event,
	};

#else

static int dbs_input_connect(struct input_handler *handler,
		struct input_dev *dev, const struct input_device_id *id) {
	struct input_handle *handle;
	int error;

	pr_info("[smartmax]:" "%s input connect to %s\n", __func__, dev->name);

	handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
	if (!handle)
		return -ENOMEM;

	handle->dev = dev;
	handle->handler = handler;
	handle->name = "cpufreq";

	error = input_register_handle(handle);
	if (error)
		goto err2;

	error = input_open_device(handle);
	if (error)
		goto err1;

	return 0;
	err1: input_unregister_handle(handle);
	err2: kfree(handle);
	pr_err("[smartmax]:" "%s faild to connect input handler %d\n", __func__, error);
	return error;
}

static void dbs_input_disconnect(struct input_handle *handle) {
	input_close_device(handle);
	input_unregister_handle(handle);
	kfree(handle);
}

static const struct input_device_id dbs_ids[] = {
{
		.flags = INPUT_DEVICE_ID_MATCH_EVBIT |
			 INPUT_DEVICE_ID_MATCH_ABSBIT,
		.evbit = { BIT_MASK(EV_ABS) },
		.absbit = { [BIT_WORD(ABS_MT_POSITION_X)] =
			    BIT_MASK(ABS_MT_POSITION_X) |
			    BIT_MASK(ABS_MT_POSITION_Y) },
	}, /* multi-touch touchscreen */
	{
		.flags = INPUT_DEVICE_ID_MATCH_KEYBIT |
			 INPUT_DEVICE_ID_MATCH_ABSBIT,
		.keybit = { [BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH) },
		.absbit = { [BIT_WORD(ABS_X)] =
			    BIT_MASK(ABS_X) | BIT_MASK(ABS_Y) },
	}, /* touchpad */
	{ },
};

static struct input_handler dbs_input_handler = { 
	.event = smartmax_input_event,
	.connect = dbs_input_connect, 
	.disconnect = dbs_input_disconnect,
	.name = "cpufreq_smartmax_eps", 
	.id_table = dbs_ids, 
	};
#endif

static int cpufreq_governor_smartmax_eps(struct cpufreq_policy *new_policy,
		unsigned int event) {
	unsigned int cpu = new_policy->cpu;
	int rc;
	struct smartmax_info_s *this_smartmax = &per_cpu(smartmax_info, cpu);
	struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
    unsigned int latency;

	switch (event) {
	case CPUFREQ_GOV_START:
		if ((!cpu_online(cpu)) || (!new_policy->cur))
			return -EINVAL;

		mutex_lock(&dbs_mutex);

		this_smartmax->cur_policy = new_policy;
		this_smartmax->cpu = cpu;

		smartmax_update_min_max(this_smartmax,new_policy);

		this_smartmax->freq_table = cpufreq_frequency_get_table(cpu);
		if (!this_smartmax->freq_table){
			mutex_unlock(&dbs_mutex);
			return -EINVAL;
		}

		update_idle_time(false);

		dbs_enable++;
		
		if (dbs_enable == 1) {
			if (!boost_task_alive) {
				boost_task = kthread_create (
						cpufreq_smartmax_boost_task,
						NULL,
						"smartmax_input_boost_task"
				);

				if (IS_ERR(boost_task)) {
					dbs_enable--;
					mutex_unlock(&dbs_mutex);
					return PTR_ERR(boost_task);
				}

				pr_info("[smartmax]:" "%s input boost task created\n", __func__);
				sched_setscheduler_nocheck(boost_task, SCHED_FIFO, &param);
				get_task_struct(boost_task);
				boost_task_alive = true;
			}
#ifdef CONFIG_INPUT_MEDIATOR
			input_register_mediator_secondary(&smartmax_input_mediator_handler);
#else
			rc = input_register_handler(&dbs_input_handler);
			if (rc) {
				dbs_enable--;
				mutex_unlock(&dbs_mutex);
				return rc;
			}
#endif
			rc = sysfs_create_group(cpufreq_global_kobject,
					&smartmax_attr_group);
			if (rc) {
				dbs_enable--;
				mutex_unlock(&dbs_mutex);
				return rc;
			}
			/* policy latency is in nS. Convert it to uS first */
			latency = new_policy->cpuinfo.transition_latency / 1000;
			if (latency == 0)
				latency = 1;

			/* Bring kernel and HW constraints together */
			min_sampling_rate = max(min_sampling_rate, MIN_LATENCY_MULTIPLIER * latency);
			sampling_rate = max(min_sampling_rate, sampling_rate);
		}

		mutex_unlock(&dbs_mutex);
		dbs_timer_init(this_smartmax);

		break;
	case CPUFREQ_GOV_LIMITS:
		mutex_lock(&this_smartmax->timer_mutex);
		smartmax_update_min_max(this_smartmax,new_policy);

		if (this_smartmax->cur_policy->cur > new_policy->max) {
			dprintk(SMARTMAX_DEBUG_JUMPS,"CPUFREQ_GOV_LIMITS jumping to new max freq: %d\n",new_policy->max);
			__cpufreq_driver_target(this_smartmax->cur_policy,
					new_policy->max, CPUFREQ_RELATION_H);
		}
		else if (this_smartmax->cur_policy->cur < new_policy->min) {
			dprintk(SMARTMAX_DEBUG_JUMPS,"CPUFREQ_GOV_LIMITS jumping to new min freq: %d\n",new_policy->min);
			__cpufreq_driver_target(this_smartmax->cur_policy,
					new_policy->min, CPUFREQ_RELATION_L);
		}
		mutex_unlock(&this_smartmax->timer_mutex);
		break;

	case CPUFREQ_GOV_STOP:
		dbs_timer_exit(this_smartmax);

		mutex_lock(&dbs_mutex);
		this_smartmax->cur_policy = NULL;
		dbs_enable--;

		if (!dbs_enable){
			if (boost_task_alive)
				kthread_stop(boost_task);

			sysfs_remove_group(cpufreq_global_kobject, &smartmax_attr_group);
#ifdef CONFIG_INPUT_MEDIATOR
			input_unregister_mediator_secondary(&smartmax_input_mediator_handler);
#else
			input_unregister_handler(&dbs_input_handler);
#endif
		}
		
		mutex_unlock(&dbs_mutex);
		break;
	}

	return 0;
}

static int __init cpufreq_smartmax_init(void) {
	unsigned int i;
	struct smartmax_info_s *this_smartmax;
	u64 wall;
	u64 idle_time;
	int cpu = get_cpu();

	idle_time = get_cpu_idle_time_us(cpu, &wall);
	put_cpu();
	if (idle_time != -1ULL) {
		/*
		 * In no_hz/micro accounting case we set the minimum frequency
		 * not depending on HZ, but fixed (very low). The deferred
		 * timer might skip some samples if idle/sleeping as needed.
		*/
		min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
	} else {
		/* For correct statistics, we need 10 ticks for each measure */
		min_sampling_rate = MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
	}

	smartmax_wq = alloc_workqueue("smartmax_wq", WQ_HIGHPRI, 0);
	if (!smartmax_wq) {
		printk(KERN_ERR "Failed to create smartmax_wq workqueue\n");
		return -EFAULT;
	}

	up_rate = DEFAULT_UP_RATE;
	down_rate = DEFAULT_DOWN_RATE;
	suspend_ideal_freq = DEFAULT_SUSPEND_IDEAL_FREQ;
	awake_ideal_freq = DEFAULT_AWAKE_IDEAL_FREQ;
	ideal_freq = awake_ideal_freq;
	ramp_up_step = DEFAULT_RAMP_UP_STEP;
	ramp_down_step = DEFAULT_RAMP_DOWN_STEP;
	max_cpu_load = DEFAULT_MAX_CPU_LOAD;
	min_cpu_load = DEFAULT_MIN_CPU_LOAD;
	sampling_rate = DEFAULT_SAMPLING_RATE;
	input_boost_duration = DEFAULT_INPUT_BOOST_DURATION;
	io_is_busy = DEFAULT_IO_IS_BUSY;
	ignore_nice = DEFAULT_IGNORE_NICE;
	touch_poke_freq = DEFAULT_TOUCH_POKE_FREQ;
	boost_freq = DEFAULT_BOOST_FREQ;

	/* Initalize per-cpu data: */
	for_each_possible_cpu(i)
	{
		this_smartmax = &per_cpu(smartmax_info, i);
		this_smartmax->cur_policy = NULL;
		this_smartmax->ramp_dir = 0;
		this_smartmax->freq_change_time = 0;
		this_smartmax->cur_cpu_load = 0;
		mutex_init(&this_smartmax->timer_mutex);
	}

	return cpufreq_register_governor(&cpufreq_gov_smartmax_eps);
}

#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SMARTMAX_EPS
fs_initcall(cpufreq_smartmax_init);
#else
module_init(cpufreq_smartmax_init);
#endif

static void __exit cpufreq_smartmax_exit(void) {
	unsigned int i;
	struct smartmax_info_s *this_smartmax;

	cpufreq_unregister_governor(&cpufreq_gov_smartmax_eps);

	for_each_possible_cpu(i)
	{
		this_smartmax = &per_cpu(smartmax_info, i);
		mutex_destroy(&this_smartmax->timer_mutex);
	}
	destroy_workqueue(smartmax_wq);
}

module_exit(cpufreq_smartmax_exit);

MODULE_AUTHOR("maxwen");
MODULE_DESCRIPTION("'cpufreq_smartmax' - A smart cpufreq governor");
MODULE_LICENSE("GPL");