aboutsummaryrefslogtreecommitdiff
path: root/system/embdrv/encoder_for_aptx/src/Qmf.h
blob: 0d7fa7f8d06542f21fc3bd8ea5e70de8c0eb9600 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
/**
 * Copyright (C) 2022 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/*------------------------------------------------------------------------------
 *
 *  This file includes the coefficient tables or the two convolution function
 *  It also includes the definition of Qmf_storage and the prototype of all
 *  necessary functions required to implement the QMF filtering.
 *
 *----------------------------------------------------------------------------*/

#ifndef QMF_H
#define QMF_H

#include "AptxParameters.h"

typedef struct {
  int16_t QmfL_buf[32];
  int16_t QmfH_buf[32];
  int32_t QmfLH_buf[32];
  int32_t QmfHL_buf[32];
  int32_t QmfLL_buf[32];
  int32_t QmfHH_buf[32];
  int32_t QmfI_pt;
  int32_t QmfO_pt;
} Qmf_storage;

/* Outer QMF filter for Enhanced aptX is a symmetrical 32-tap filter (16
 * different coefficients). The table in defined in QmfConv.c */
#ifndef _STDQMFOUTERCOEFF
static const int32_t Qmf_outerCoeffs[12] = {
    /* (C(1/30)C(3/28)), C(5/26), C(7/24) */
    0xFE6302DA,
    0xFFFFDA75,
    0x0000AA6A,
    /*  C(9/22), C(11/20), C(13/18), C(15/16) */
    0xFFFE273E,
    0x00041E95,
    0xFFF710B5,
    0x002AC12E,
    /*  C(17/14), C(19/12), (C(21/10)C(23/8)) */
    0x000AA328,
    0xFFFD8D1F,
    0x211E6BDB,
    /* (C(25/6)C(27/4)), (C(29/2)C(31/0)) */
    0x0DB7D8C5,
    0xFC7F02B0,
};
#else
static const int32_t Qmf_outerCoeffs[16] = {
    730,    -413,    -9611, 43626, -121026, 269973, -585547, 2801966,
    697128, -160481, 27611, 8478,  -10043,  3511,   688,     -897,
};
#endif

/* Each inner QMF filter for Enhanced aptX is a symmetrical 32-tap filter (16
 * different coefficients) */
static const int32_t Qmf_innerCoeffs[16] = {
    1033,   -584,    -13592, 61697, -171156, 381799, -828088, 3962579,
    985888, -226954, 39048,  11990, -14203,  4966,   973,     -1268,
};

void AsmQmfConvI(const int32_t* p1dl_buffPtr, const int32_t* p2dl_buffPtr,
                 const int32_t* coeffPtr, int32_t* filterOutputs);
void AsmQmfConvO(const int16_t* p1dl_buffPtr, const int16_t* p2dl_buffPtr,
                 const int32_t* coeffPtr, int32_t* convSumDiff);

XBT_INLINE_ void QmfAnalysisFilter(const int32_t pcm[4], Qmf_storage* Qmf_St,
                                   const int32_t predVals[4],
                                   int32_t* aqmfOutputs) {
  int32_t convSumDiff[4];
  int32_t filterOutputs[4];

  int32_t lc_QmfO_pt = (Qmf_St->QmfO_pt);
  int32_t lc_QmfI_pt = (Qmf_St->QmfI_pt);

  /* Symbolic constants to represent the first and second set out outer filter
   * outputs. */
  enum { FirstOuterOutputs = 0, SecondOuterOutputs = 1 };

  /* Load outer filter phase1 and phase2 delay lines with the first 2 PCM
   * samples. Convolve the filter and get the 2 convolution results. */
  Qmf_St->QmfL_buf[lc_QmfO_pt + 16] = (int16_t)pcm[FirstPcm];
  Qmf_St->QmfL_buf[lc_QmfO_pt] = (int16_t)pcm[FirstPcm];
  Qmf_St->QmfH_buf[lc_QmfO_pt + 16] = (int16_t)pcm[SecondPcm];
  Qmf_St->QmfH_buf[lc_QmfO_pt++] = (int16_t)pcm[SecondPcm];
  lc_QmfO_pt &= 0xF;

  AsmQmfConvO(&Qmf_St->QmfL_buf[lc_QmfO_pt + 15], &Qmf_St->QmfH_buf[lc_QmfO_pt],
              Qmf_outerCoeffs, &convSumDiff[0]);

  /* Load outer filter phase1 and phase2 delay lines with the second 2 PCM
   * samples. Convolve the filter and get the 2 convolution results. */
  Qmf_St->QmfL_buf[lc_QmfO_pt + 16] = (int16_t)pcm[ThirdPcm];
  Qmf_St->QmfL_buf[lc_QmfO_pt] = (int16_t)pcm[ThirdPcm];
  Qmf_St->QmfH_buf[lc_QmfO_pt + 16] = (int16_t)pcm[FourthPcm];
  Qmf_St->QmfH_buf[lc_QmfO_pt++] = (int16_t)pcm[FourthPcm];
  lc_QmfO_pt &= 0xF;

  AsmQmfConvO(&Qmf_St->QmfL_buf[lc_QmfO_pt + 15], &Qmf_St->QmfH_buf[lc_QmfO_pt],
              Qmf_outerCoeffs, &convSumDiff[1]);

  /* Load the first inner filter phase1 and phase2 delay lines with the 2
   * convolution sum (low-pass) outer filter outputs. Convolve the filter and
   * get the 2 convolution results. The first 2 analysis filter outputs are
   * the sum and difference values for the first inner filter convolutions. */
  Qmf_St->QmfLL_buf[lc_QmfI_pt + 16] = convSumDiff[0];
  Qmf_St->QmfLL_buf[lc_QmfI_pt] = convSumDiff[0];
  Qmf_St->QmfLH_buf[lc_QmfI_pt + 16] = convSumDiff[1];
  Qmf_St->QmfLH_buf[lc_QmfI_pt] = convSumDiff[1];

  AsmQmfConvI(&Qmf_St->QmfLL_buf[lc_QmfI_pt + 16],
              &Qmf_St->QmfLH_buf[lc_QmfI_pt + 1], &Qmf_innerCoeffs[0],
              &filterOutputs[LL]);

  /* Load the second inner filter phase1 and phase2 delay lines with the 2
   * convolution difference (high-pass) outer filter outputs. Convolve the
   * filter and get the 2 convolution results. The second 2 analysis filter
   * outputs are the sum and difference values for the second inner filter
   * convolutions. */
  Qmf_St->QmfHL_buf[lc_QmfI_pt + 16] = convSumDiff[2];
  Qmf_St->QmfHL_buf[lc_QmfI_pt] = convSumDiff[2];
  Qmf_St->QmfHH_buf[lc_QmfI_pt + 16] = convSumDiff[3];
  Qmf_St->QmfHH_buf[lc_QmfI_pt++] = convSumDiff[3];
  lc_QmfI_pt &= 0xF;

  AsmQmfConvI(&Qmf_St->QmfHL_buf[lc_QmfI_pt + 15],
              &Qmf_St->QmfHH_buf[lc_QmfI_pt], &Qmf_innerCoeffs[0],
              &filterOutputs[HL]);

  /* Subtracted the previous predicted value from the filter output on a
   * per-subband basis. Ensure these values are saturated, if necessary.
   * Manual unrolling */
  aqmfOutputs[LL] = filterOutputs[LL] - predVals[LL];
  aqmfOutputs[LL] = ssat24(aqmfOutputs[LL]);

  aqmfOutputs[LH] = filterOutputs[LH] - predVals[LH];
  aqmfOutputs[LH] = ssat24(aqmfOutputs[LH]);

  aqmfOutputs[HL] = filterOutputs[HL] - predVals[HL];
  aqmfOutputs[HL] = ssat24(aqmfOutputs[HL]);

  aqmfOutputs[HH] = filterOutputs[HH] - predVals[HH];
  aqmfOutputs[HH] = ssat24(aqmfOutputs[HH]);

  (Qmf_St->QmfO_pt) = lc_QmfO_pt;
  (Qmf_St->QmfI_pt) = lc_QmfI_pt;
}

#endif  // QMF_H