aboutsummaryrefslogtreecommitdiff
path: root/system/embdrv/encoder_for_aptx/src/SubbandFunctionsCommon.h
blob: cfd16e2447eed32e74331074acf0641a8083da3e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
/**
 * Copyright (C) 2022 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/*------------------------------------------------------------------------------
 *
 *  Subband processing consists of:
 *  inverse quantisation (defined in a separate file),
 *  predictor coefficient update (Pole and Zero Coeff update),
 *  predictor filtering.
 *
 *----------------------------------------------------------------------------*/

#ifndef SUBBANDFUNCTIONSCOMMON_H
#define SUBBANDFUNCTIONSCOMMON_H

enum reg64_reg { reg64_H = 1, reg64_L = 0 };

void processSubband(const int32_t qCode, const int32_t ditherVal,
                    Subband_data* SubbandDataPt, IQuantiser_data* iqDataPt);
void processSubbandLL(const int32_t qCode, const int32_t ditherVal,
                      Subband_data* SubbandDataPt, IQuantiser_data* iqDataPt);
void processSubbandHL(const int32_t qCode, const int32_t ditherVal,
                      Subband_data* SubbandDataPt, IQuantiser_data* iqDataPt);

/* Function to carry out inverse quantisation for LL, LH and HH subband types */
XBT_INLINE_ void invertQuantisation(const int32_t qCode,
                                    const int32_t ditherVal,
                                    IQuantiser_data* iqdata_pt) {
  int32_t invQ;
  int32_t index;
  int32_t acc;
  reg64_t tmp_r64;
  int64_t tmp_acc;
  int32_t tmp_accL;
  int32_t tmp_accH;
  uint32_t tmp_round0;
  uint32_t tmp_round1;

  unsigned u16t;
  /* log delta leak value (Q23) */
  const uint32_t logDeltaLeakVal = 0x7F6CL;

  /* Turn the quantised code back into an index into the threshold table. This
   * involves bitwise inversion of the code (if -ve) and adding 1 (phantom
   * element at table base). Then set invQ to be +/- the threshold value,
   * depending on the code sign. */
  index = qCode;
  if (qCode < 0) {
    index = (~index);
  }
  index = index + 1;
  invQ = iqdata_pt->thresholdTablePtr_sl1[index];
  if (qCode < 0) {
    invQ = -invQ;
  }

  /* Load invQ into the accumulator. Add the product of the dither value times
   * the indexed dither table value. Then get the result back from the
   * accumulator as an updated invQ. */
  tmp_r64.s64 = ((int64_t)ditherVal * iqdata_pt->ditherTablePtr_sf1[index]);
  tmp_r64.s32.h += invQ >> 1;

  acc = tmp_r64.s32.h;

  tmp_round1 = tmp_r64.s32.h & 0x00000001L;
  if (tmp_r64.u32.l >= 0x80000000) {
    acc++;
  }
  if (tmp_round1 == 0 && tmp_r64.s32.l == (int32_t)0x80000000L) {
    acc--;
  }
  acc = ssat24(acc);

  invQ = acc;

  /* Scale invQ by the current delta value. Left-shift the result (in the
   * accumulator) by 4 positions for the delta scaling. Get the updated invQ
   * back from the accumulator. */

  u16t = iqdata_pt->logDelta;
  tmp_acc = ((int64_t)invQ * iqdata_pt->delta);
  tmp_accL = u16t * logDeltaLeakVal;
  tmp_accH = iqdata_pt->incrTablePtr[index];
  acc = (int32_t)(tmp_acc >> (23 - deltaScale));
  invQ = ssat24(acc);

  /* Now update the value of logDelta. Load the accumulator with the index
   * value of the logDelta increment table. Add the product of the current
   * logDelta scaled by a leaky coefficient (16310 in Q14). Get the value back
   * from the accumulator. */
  tmp_accH += tmp_accL >> (32 - 17);

  acc = tmp_accH;

  tmp_r64.u32.l = ((uint32_t)tmp_accL << 17);
  tmp_r64.s32.h = tmp_accH;

  tmp_round0 = tmp_r64.u32.l;
  tmp_round1 = (int32_t)(tmp_r64.u64 >> 1);
  if (tmp_round0 >= 0x80000000L) {
    acc++;
  }
  if (tmp_round1 == 0x40000000L) {
    acc--;
  }

  /* Limit the updated logDelta between 0 and its subband-specific maximum. */
  if (acc < 0) {
    acc = 0;
  }
  if (acc > iqdata_pt->maxLogDelta) {
    acc = iqdata_pt->maxLogDelta;
  }

  iqdata_pt->logDelta = (uint16_t)acc;

  /* The updated value of delta is the logTable output (indexed by 5 bits from
   * the updated logDelta) shifted by a value involving the logDelta minimum
   * and the updated logDelta itself. */
  iqdata_pt->delta = iqdata_pt->iquantTableLogPtr[(acc >> 3) & 0x1f] >>
                     (22 - 25 - iqdata_pt->minLogDelta - (acc >> 8));

  iqdata_pt->invQ = invQ;
}

/* Function to carry out inverse quantisation for a HL subband type */
XBT_INLINE_ void invertQuantisationHL(const int32_t qCode,
                                      const int32_t ditherVal,
                                      IQuantiser_data* iqdata_pt) {
  int32_t invQ;
  int32_t index;
  int32_t acc;
  reg64_t tmp_r64;
  int64_t tmp_acc;
  int32_t tmp_accL;
  int32_t tmp_accH;
  uint32_t tmp_round0;
  uint32_t tmp_round1;

  unsigned u16t;
  /* log delta leak value (Q23) */
  const uint32_t logDeltaLeakVal = 0x7F6CL;

  /* Turn the quantised code back into an index into the threshold table. This
   * involves bitwise inversion of the code (if -ve) and adding 1 (phantom
   * element at table base). Then set invQ to be +/- the threshold value,
   * depending on the code sign. */
  index = qCode;
  if (qCode < 0) {
    index = (~index);
  }
  index = index + 1;
  invQ = iqdata_pt->thresholdTablePtr_sl1[index];
  if (qCode < 0) {
    invQ = -invQ;
  }

  /* Load invQ into the accumulator. Add the product of the dither value times
   * the indexed dither table value. Then get the result back from the
   * accumulator as an updated invQ. */
  tmp_r64.s64 = ((int64_t)ditherVal * iqdata_pt->ditherTablePtr_sf1[index]);
  tmp_r64.s32.h += invQ >> 1;

  acc = tmp_r64.s32.h;

  tmp_round1 = tmp_r64.s32.h & 0x00000001L;
  if (tmp_r64.u32.l >= 0x80000000) {
    acc++;
  }
  if (tmp_round1 == 0 && tmp_r64.u32.l == 0x80000000L) {
    acc--;
  }
  acc = ssat24(acc);

  invQ = acc;

  /* Scale invQ by the current delta value. Left-shift the result (in the
   * accumulator) by 4 positions for the delta scaling. Get the updated invQ
   * back from the accumulator. */
  u16t = iqdata_pt->logDelta;
  tmp_acc = ((int64_t)invQ * iqdata_pt->delta);
  tmp_accL = u16t * logDeltaLeakVal;
  tmp_accH = iqdata_pt->incrTablePtr[index];
  acc = (int32_t)(tmp_acc >> (23 - deltaScale));
  invQ = acc;

  /* Now update the value of logDelta. Load the accumulator with the index
   * value of the logDelta increment table. Add the product of the current
   * logDelta scaled by a leaky coefficient (16310 in Q14). Get the value back
   * from the accumulator. */
  tmp_accH += tmp_accL >> (32 - 17);

  acc = tmp_accH;

  tmp_r64.u32.l = ((uint32_t)tmp_accL << 17);
  tmp_r64.s32.h = tmp_accH;

  tmp_round0 = tmp_r64.u32.l;
  tmp_round1 = (int32_t)(tmp_r64.u64 >> 1);
  if (tmp_round0 >= 0x80000000L) {
    acc++;
  }
  if (tmp_round1 == 0x40000000L) {
    acc--;
  }

  /* Limit the updated logDelta between 0 and its subband-specific maximum. */
  if (acc < 0) {
    acc = 0;
  }
  if (acc > iqdata_pt->maxLogDelta) {
    acc = iqdata_pt->maxLogDelta;
  }

  iqdata_pt->logDelta = (uint16_t)acc;

  /* The updated value of delta is the logTable output (indexed by 5 bits from
   * the updated logDelta) shifted by a value involving the logDelta minimum
   * and the updated logDelta itself. */
  iqdata_pt->delta = iqdata_pt->iquantTableLogPtr[(acc >> 3) & 0x1f] >>
                     (22 - 25 - iqdata_pt->minLogDelta - (acc >> 8));

  iqdata_pt->invQ = invQ;
}

/* Function to carry out prediction ARMA filtering for the current subband
 * performPredictionFiltering should only be used for HH and LH subband! */
XBT_INLINE_ void performPredictionFiltering(const int32_t invQ,
                                            Subband_data* SubbandDataPt) {
  int32_t poleVal;
  int32_t acc;
  int64_t accL;
  uint32_t pointer;
  int32_t poleDelayLine;
  int32_t predVal;
  int32_t* zeroCoeffPt = SubbandDataPt->m_ZeroCoeffData.m_zeroCoeff;
  int32_t* poleCoeff = SubbandDataPt->m_PoleCoeffData.m_poleCoeff;
  int32_t zData0;
  int32_t* cbuf_pt;
  int32_t invQincr_pos;
  int32_t invQincr_neg;
  int32_t k;
  int32_t oldZData;
  /* Pole coefficient and data indices */
  enum { a1 = 0, a2 = 1 };

  /* Write the newest pole input sample to the pole delay line.
   * Ensure the sum of the current dequantised error and the previous
   * predictor output is saturated if necessary. */
  poleDelayLine = invQ + SubbandDataPt->m_predData.m_predVal;

  poleDelayLine = ssat24(poleDelayLine);

  /* Pole filter convolution. Shift convolution result 1 place to the left
   * before retrieving it, since the pole coefficients are Q22 (data is Q23)
   * and we want a Q23 result */
  accL = ((int64_t)poleCoeff[a2] *
          (int64_t)SubbandDataPt->m_predData.m_poleDelayLine[a2]);
  /* Update the pole delay line for the next pass by writing the new input
   * sample into the 2nd element */
  SubbandDataPt->m_predData.m_poleDelayLine[a2] = poleDelayLine;
  accL += ((int64_t)poleCoeff[a1] * (int64_t)poleDelayLine);
  poleVal = (int32_t)(accL >> 22);
  poleVal = ssat24(poleVal);

  /* Create (2^(-7)) * sgn(invQ) in Q22 format. */
  if (invQ == 0) {
    invQincr_pos = 0L;
  } else {
    invQincr_pos = 0x800000;
  }
  if (invQ < 0L) {
    invQincr_pos = -invQincr_pos;
  }

  invQincr_neg = 0x0080 - invQincr_pos;
  invQincr_pos += 0x0080;

  pointer = (SubbandDataPt->m_predData.m_zeroDelayLine.pointer++) + 12;
  cbuf_pt = &SubbandDataPt->m_predData.m_zeroDelayLine.buffer[pointer];
  /* partial manual unrolling to improve performance */
  if (SubbandDataPt->m_predData.m_zeroDelayLine.pointer >= 12) {
    SubbandDataPt->m_predData.m_zeroDelayLine.pointer = 0;
  }

  SubbandDataPt->m_predData.m_zeroDelayLine.modulo = invQ;

  /* Iterate over the number of coefficients for this subband */
  oldZData = invQ;
  accL = 0;
  for (k = 0; k < 12; k++) {
    uint32_t tmp_round0;
    int32_t coeffValue;

    zData0 = (*(cbuf_pt--));
    coeffValue = *(zeroCoeffPt + k);
    if (zData0 < 0L) {
      acc = invQincr_neg - coeffValue;
    } else {
      acc = invQincr_pos - coeffValue;
    }
    tmp_round0 = acc;
    acc = (acc >> 8) + coeffValue;
    if (((tmp_round0 << 23) ^ 0x80000000) == 0) {
      acc--;
    }
    accL += (int64_t)acc * (int64_t)(oldZData);
    oldZData = zData0;
    *(zeroCoeffPt + k) = acc;
  }

  acc = (int32_t)(accL >> 22);
  acc = ssat24(acc);
  /* Predictor output is the sum of the pole and zero filter outputs. Ensure
   * this is saturated, if necessary. */
  predVal = acc + poleVal;
  predVal = ssat24(predVal);
  SubbandDataPt->m_predData.m_zeroVal = acc;
  SubbandDataPt->m_predData.m_predVal = predVal;

  /* Update the zero filter delay line by writing the new input sample to the
   * circular buffer. */
  SubbandDataPt->m_predData.m_zeroDelayLine
      .buffer[SubbandDataPt->m_predData.m_zeroDelayLine.pointer] =
      SubbandDataPt->m_predData.m_zeroDelayLine.modulo;
  SubbandDataPt->m_predData.m_zeroDelayLine
      .buffer[SubbandDataPt->m_predData.m_zeroDelayLine.pointer + 12] =
      SubbandDataPt->m_predData.m_zeroDelayLine.modulo;
}

XBT_INLINE_ void performPredictionFilteringLL(const int32_t invQ,
                                              Subband_data* SubbandDataPt) {
  int32_t poleVal;
  int32_t acc;
  int64_t accL;
  uint32_t pointer;
  int32_t poleDelayLine;
  int32_t predVal;
  int32_t* zeroCoeffPt = SubbandDataPt->m_ZeroCoeffData.m_zeroCoeff;
  int32_t* poleCoeff = SubbandDataPt->m_PoleCoeffData.m_poleCoeff;
  int32_t* cbuf_pt;
  int32_t invQincr_pos;
  int32_t invQincr_neg;
  int32_t k;
  int32_t oldZData;
  /* Pole coefficient and data indices */
  enum { a1 = 0, a2 = 1 };

  /* Write the newest pole input sample to the pole delay line.
   * Ensure the sum of the current dequantised error and the previous
   * predictor output is saturated if necessary. */
  poleDelayLine = invQ + SubbandDataPt->m_predData.m_predVal;

  poleDelayLine = ssat24(poleDelayLine);

  /* Pole filter convolution. Shift convolution result 1 place to the left
   * before retrieving it, since the pole coefficients are Q22 (data is Q23)
   * and we want a Q23 result */
  accL = ((int64_t)poleCoeff[a2] *
          (int64_t)SubbandDataPt->m_predData.m_poleDelayLine[a2]);
  /* Update the pole delay line for the next pass by writing the new input
   * sample into the 2nd element */
  SubbandDataPt->m_predData.m_poleDelayLine[a2] = poleDelayLine;
  accL += ((int64_t)poleCoeff[a1] * (int64_t)poleDelayLine);
  poleVal = (int32_t)(accL >> 22);
  poleVal = ssat24(poleVal);
  // store poleVal to free one register.
  SubbandDataPt->m_predData.m_predVal = poleVal;

  /* Create (2^(-7)) * sgn(invQ) in Q22 format. */
  if (invQ == 0) {
    invQincr_pos = 0L;
  } else {
    invQincr_pos = 0x800000;
  }
  if (invQ < 0L) {
    invQincr_pos = -invQincr_pos;
  }

  invQincr_neg = 0x0080 - invQincr_pos;
  invQincr_pos += 0x0080;

  pointer = (SubbandDataPt->m_predData.m_zeroDelayLine.pointer++) + 24;
  cbuf_pt = &SubbandDataPt->m_predData.m_zeroDelayLine.buffer[pointer];
  /* partial manual unrolling to improve performance */
  if (SubbandDataPt->m_predData.m_zeroDelayLine.pointer >= 24) {
    SubbandDataPt->m_predData.m_zeroDelayLine.pointer = 0;
  }

  SubbandDataPt->m_predData.m_zeroDelayLine.modulo = invQ;

  /* Iterate over the number of coefficients for this subband */

  oldZData = invQ;
  accL = 0;
  for (k = 0; k < 24; k++) {
    int32_t zData0;
    int32_t coeffValue;

    zData0 = (*(cbuf_pt--));
    coeffValue = *(zeroCoeffPt + k);
    if (zData0 < 0L) {
      acc = invQincr_neg - coeffValue;
    } else {
      acc = invQincr_pos - coeffValue;
    }
    if (((acc << 23) ^ 0x80000000) == 0) {
      coeffValue--;
    }
    acc = (acc >> 8) + coeffValue;
    accL += (int64_t)acc * (int64_t)(oldZData);
    oldZData = zData0;
    *(zeroCoeffPt + k) = acc;
  }

  acc = (int32_t)(accL >> 22);
  acc = ssat24(acc);
  /* Predictor output is the sum of the pole and zero filter outputs. Ensure
   * this is saturated, if necessary. */
  // recover value of PoleVal stored at beginning of routine...
  predVal = acc + SubbandDataPt->m_predData.m_predVal;
  predVal = ssat24(predVal);
  SubbandDataPt->m_predData.m_zeroVal = acc;
  SubbandDataPt->m_predData.m_predVal = predVal;

  /* Update the zero filter delay line by writing the new input sample to the
   * circular buffer. */
  SubbandDataPt->m_predData.m_zeroDelayLine
      .buffer[SubbandDataPt->m_predData.m_zeroDelayLine.pointer] =
      SubbandDataPt->m_predData.m_zeroDelayLine.modulo;
  SubbandDataPt->m_predData.m_zeroDelayLine
      .buffer[SubbandDataPt->m_predData.m_zeroDelayLine.pointer + 24] =
      SubbandDataPt->m_predData.m_zeroDelayLine.modulo;
}

XBT_INLINE_ void performPredictionFilteringHL(const int32_t invQ,
                                              Subband_data* SubbandDataPt) {
  int32_t poleVal;
  int32_t acc;
  int64_t accL;
  uint32_t pointer;
  int32_t poleDelayLine;
  int32_t predVal;
  int32_t* zeroCoeffPt = SubbandDataPt->m_ZeroCoeffData.m_zeroCoeff;
  int32_t* poleCoeff = SubbandDataPt->m_PoleCoeffData.m_poleCoeff;
  int32_t zData0;
  int32_t* cbuf_pt;
  int32_t invQincr_pos;
  int32_t invQincr_neg;
  int32_t k;
  int32_t oldZData;
  const int32_t roundCte = 0x80000000;
  /* Pole coefficient and data indices */
  enum { a1 = 0, a2 = 1 };

  /* Write the newest pole input sample to the pole delay line.
   * Ensure the sum of the current dequantised error and the previous
   * predictor output is saturated if necessary. */
  poleDelayLine = invQ + SubbandDataPt->m_predData.m_predVal;

  poleDelayLine = ssat24(poleDelayLine);

  /* Pole filter convolution. Shift convolution result 1 place to the left
   * before retrieving it, since the pole coefficients are Q22 (data is Q23)
   * and we want a Q23 result */
  accL = ((int64_t)poleCoeff[a2] *
          (int64_t)SubbandDataPt->m_predData.m_poleDelayLine[a2]);
  /* Update the pole delay line for the next pass by writing the new input
   * sample into the 2nd element */
  SubbandDataPt->m_predData.m_poleDelayLine[a2] = poleDelayLine;
  accL += ((int64_t)poleCoeff[a1] * (int64_t)poleDelayLine);
  poleVal = (int32_t)(accL >> 22);
  poleVal = ssat24(poleVal);

  /* Create (2^(-7)) * sgn(invQ) in Q22 format. */
  invQincr_pos = 0L;
  if (invQ != 0) {
    invQincr_pos = 0x800000;
  }
  if (invQ < 0L) {
    invQincr_pos = -invQincr_pos;
  }

  invQincr_neg = 0x0080 - invQincr_pos;
  invQincr_pos += 0x0080;

  pointer = (SubbandDataPt->m_predData.m_zeroDelayLine.pointer++) + 6;
  cbuf_pt = &SubbandDataPt->m_predData.m_zeroDelayLine.buffer[pointer];
  /* partial manual unrolling to improve performance */
  if (SubbandDataPt->m_predData.m_zeroDelayLine.pointer >= 6) {
    SubbandDataPt->m_predData.m_zeroDelayLine.pointer = 0;
  }

  SubbandDataPt->m_predData.m_zeroDelayLine.modulo = invQ;

  /* Iterate over the number of coefficients for this subband */
  oldZData = invQ;
  accL = 0;

  for (k = 0; k < 6; k++) {
    uint32_t tmp_round0;
    int32_t coeffValue;

    zData0 = (*(cbuf_pt--));
    coeffValue = *(zeroCoeffPt + k);
    if (zData0 < 0L) {
      acc = invQincr_neg - coeffValue;
    } else {
      acc = invQincr_pos - coeffValue;
    }
    tmp_round0 = acc;
    acc = (acc >> 8) + coeffValue;
    if (((tmp_round0 << 23) ^ roundCte) == 0) {
      acc--;
    }
    accL += (int64_t)acc * (int64_t)(oldZData);
    oldZData = zData0;
    *(zeroCoeffPt + k) = acc;
  }

  acc = (int32_t)(accL >> 22);
  acc = ssat24(acc);
  /* Predictor output is the sum of the pole and zero filter outputs. Ensure
   * this is saturated, if necessary. */
  predVal = acc + poleVal;
  predVal = ssat24(predVal);
  SubbandDataPt->m_predData.m_zeroVal = acc;
  SubbandDataPt->m_predData.m_predVal = predVal;

  /* Update the zero filter delay line by writing the new input sample to the
   * circular buffer. */
  SubbandDataPt->m_predData.m_zeroDelayLine
      .buffer[SubbandDataPt->m_predData.m_zeroDelayLine.pointer] =
      SubbandDataPt->m_predData.m_zeroDelayLine.modulo;
  SubbandDataPt->m_predData.m_zeroDelayLine
      .buffer[SubbandDataPt->m_predData.m_zeroDelayLine.pointer + 6] =
      SubbandDataPt->m_predData.m_zeroDelayLine.modulo;
}

#endif  // SUBBANDFUNCTIONSCOMMON_H