diff options
| author | Ralf Luther <luther.ralf@gmail.com> | 2019-03-27 20:23:17 +0000 |
|---|---|---|
| committer | Gerrit Code Review <gerrit2@aicp-server-3> | 2019-03-27 20:23:17 +0000 |
| commit | 1ce3a9d272e564b22a1333a1e36a3d3ab7cfab01 (patch) | |
| tree | 391382eadd4fec5bb480f2e8934fa352770221d1 /clang-r353983/include/llvm/CodeGen/MachineInstr.h | |
| parent | d1d48b140bafaa8a50107292f5fce95562575765 (diff) | |
| parent | 4f56932d3416ac03f646bc1a611b3135fec2fe08 (diff) | |
Merge "Update prebuilt Clang to r353983." into p9.0HEADp9.0-backupp9.0
Diffstat (limited to 'clang-r353983/include/llvm/CodeGen/MachineInstr.h')
| -rw-r--r-- | clang-r353983/include/llvm/CodeGen/MachineInstr.h | 1629 |
1 files changed, 1629 insertions, 0 deletions
diff --git a/clang-r353983/include/llvm/CodeGen/MachineInstr.h b/clang-r353983/include/llvm/CodeGen/MachineInstr.h new file mode 100644 index 00000000..4cb39c5f --- /dev/null +++ b/clang-r353983/include/llvm/CodeGen/MachineInstr.h @@ -0,0 +1,1629 @@ +//===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file contains the declaration of the MachineInstr class, which is the +// basic representation for all target dependent machine instructions used by +// the back end. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_CODEGEN_MACHINEINSTR_H +#define LLVM_CODEGEN_MACHINEINSTR_H + +#include "llvm/ADT/DenseMapInfo.h" +#include "llvm/ADT/PointerSumType.h" +#include "llvm/ADT/ilist.h" +#include "llvm/ADT/ilist_node.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/TargetOpcodes.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/MC/MCInstrDesc.h" +#include "llvm/MC/MCSymbol.h" +#include "llvm/Support/ArrayRecycler.h" +#include "llvm/Support/TrailingObjects.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <utility> + +namespace llvm { + +template <typename T> class ArrayRef; +class DIExpression; +class DILocalVariable; +class MachineBasicBlock; +class MachineFunction; +class MachineMemOperand; +class MachineRegisterInfo; +class ModuleSlotTracker; +class raw_ostream; +template <typename T> class SmallVectorImpl; +class SmallBitVector; +class StringRef; +class TargetInstrInfo; +class TargetRegisterClass; +class TargetRegisterInfo; + +//===----------------------------------------------------------------------===// +/// Representation of each machine instruction. +/// +/// This class isn't a POD type, but it must have a trivial destructor. When a +/// MachineFunction is deleted, all the contained MachineInstrs are deallocated +/// without having their destructor called. +/// +class MachineInstr + : public ilist_node_with_parent<MachineInstr, MachineBasicBlock, + ilist_sentinel_tracking<true>> { +public: + using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator; + + /// Flags to specify different kinds of comments to output in + /// assembly code. These flags carry semantic information not + /// otherwise easily derivable from the IR text. + /// + enum CommentFlag { + ReloadReuse = 0x1, // higher bits are reserved for target dep comments. + NoSchedComment = 0x2, + TAsmComments = 0x4 // Target Asm comments should start from this value. + }; + + enum MIFlag { + NoFlags = 0, + FrameSetup = 1 << 0, // Instruction is used as a part of + // function frame setup code. + FrameDestroy = 1 << 1, // Instruction is used as a part of + // function frame destruction code. + BundledPred = 1 << 2, // Instruction has bundled predecessors. + BundledSucc = 1 << 3, // Instruction has bundled successors. + FmNoNans = 1 << 4, // Instruction does not support Fast + // math nan values. + FmNoInfs = 1 << 5, // Instruction does not support Fast + // math infinity values. + FmNsz = 1 << 6, // Instruction is not required to retain + // signed zero values. + FmArcp = 1 << 7, // Instruction supports Fast math + // reciprocal approximations. + FmContract = 1 << 8, // Instruction supports Fast math + // contraction operations like fma. + FmAfn = 1 << 9, // Instruction may map to Fast math + // instrinsic approximation. + FmReassoc = 1 << 10, // Instruction supports Fast math + // reassociation of operand order. + NoUWrap = 1 << 11, // Instruction supports binary operator + // no unsigned wrap. + NoSWrap = 1 << 12, // Instruction supports binary operator + // no signed wrap. + IsExact = 1 << 13 // Instruction supports division is + // known to be exact. + }; + +private: + const MCInstrDesc *MCID; // Instruction descriptor. + MachineBasicBlock *Parent = nullptr; // Pointer to the owning basic block. + + // Operands are allocated by an ArrayRecycler. + MachineOperand *Operands = nullptr; // Pointer to the first operand. + unsigned NumOperands = 0; // Number of operands on instruction. + using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity; + OperandCapacity CapOperands; // Capacity of the Operands array. + + uint16_t Flags = 0; // Various bits of additional + // information about machine + // instruction. + + uint8_t AsmPrinterFlags = 0; // Various bits of information used by + // the AsmPrinter to emit helpful + // comments. This is *not* semantic + // information. Do not use this for + // anything other than to convey comment + // information to AsmPrinter. + + /// Internal implementation detail class that provides out-of-line storage for + /// extra info used by the machine instruction when this info cannot be stored + /// in-line within the instruction itself. + /// + /// This has to be defined eagerly due to the implementation constraints of + /// `PointerSumType` where it is used. + class ExtraInfo final + : TrailingObjects<ExtraInfo, MachineMemOperand *, MCSymbol *> { + public: + static ExtraInfo *create(BumpPtrAllocator &Allocator, + ArrayRef<MachineMemOperand *> MMOs, + MCSymbol *PreInstrSymbol = nullptr, + MCSymbol *PostInstrSymbol = nullptr) { + bool HasPreInstrSymbol = PreInstrSymbol != nullptr; + bool HasPostInstrSymbol = PostInstrSymbol != nullptr; + auto *Result = new (Allocator.Allocate( + totalSizeToAlloc<MachineMemOperand *, MCSymbol *>( + MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol), + alignof(ExtraInfo))) + ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol); + + // Copy the actual data into the trailing objects. + std::copy(MMOs.begin(), MMOs.end(), + Result->getTrailingObjects<MachineMemOperand *>()); + + if (HasPreInstrSymbol) + Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol; + if (HasPostInstrSymbol) + Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] = + PostInstrSymbol; + + return Result; + } + + ArrayRef<MachineMemOperand *> getMMOs() const { + return makeArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs); + } + + MCSymbol *getPreInstrSymbol() const { + return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr; + } + + MCSymbol *getPostInstrSymbol() const { + return HasPostInstrSymbol + ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] + : nullptr; + } + + private: + friend TrailingObjects; + + // Description of the extra info, used to interpret the actual optional + // data appended. + // + // Note that this is not terribly space optimized. This leaves a great deal + // of flexibility to fit more in here later. + const int NumMMOs; + const bool HasPreInstrSymbol; + const bool HasPostInstrSymbol; + + // Implement the `TrailingObjects` internal API. + size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const { + return NumMMOs; + } + size_t numTrailingObjects(OverloadToken<MCSymbol *>) const { + return HasPreInstrSymbol + HasPostInstrSymbol; + } + + // Just a boring constructor to allow us to initialize the sizes. Always use + // the `create` routine above. + ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol) + : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol), + HasPostInstrSymbol(HasPostInstrSymbol) {} + }; + + /// Enumeration of the kinds of inline extra info available. It is important + /// that the `MachineMemOperand` inline kind has a tag value of zero to make + /// it accessible as an `ArrayRef`. + enum ExtraInfoInlineKinds { + EIIK_MMO = 0, + EIIK_PreInstrSymbol, + EIIK_PostInstrSymbol, + EIIK_OutOfLine + }; + + // We store extra information about the instruction here. The common case is + // expected to be nothing or a single pointer (typically a MMO or a symbol). + // We work to optimize this common case by storing it inline here rather than + // requiring a separate allocation, but we fall back to an allocation when + // multiple pointers are needed. + PointerSumType<ExtraInfoInlineKinds, + PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>, + PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>, + PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>, + PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>> + Info; + + DebugLoc debugLoc; // Source line information. + + // Intrusive list support + friend struct ilist_traits<MachineInstr>; + friend struct ilist_callback_traits<MachineBasicBlock>; + void setParent(MachineBasicBlock *P) { Parent = P; } + + /// This constructor creates a copy of the given + /// MachineInstr in the given MachineFunction. + MachineInstr(MachineFunction &, const MachineInstr &); + + /// This constructor create a MachineInstr and add the implicit operands. + /// It reserves space for number of operands specified by + /// MCInstrDesc. An explicit DebugLoc is supplied. + MachineInstr(MachineFunction &, const MCInstrDesc &tid, DebugLoc dl, + bool NoImp = false); + + // MachineInstrs are pool-allocated and owned by MachineFunction. + friend class MachineFunction; + +public: + MachineInstr(const MachineInstr &) = delete; + MachineInstr &operator=(const MachineInstr &) = delete; + // Use MachineFunction::DeleteMachineInstr() instead. + ~MachineInstr() = delete; + + const MachineBasicBlock* getParent() const { return Parent; } + MachineBasicBlock* getParent() { return Parent; } + + /// Return the function that contains the basic block that this instruction + /// belongs to. + /// + /// Note: this is undefined behaviour if the instruction does not have a + /// parent. + const MachineFunction *getMF() const; + MachineFunction *getMF() { + return const_cast<MachineFunction *>( + static_cast<const MachineInstr *>(this)->getMF()); + } + + /// Return the asm printer flags bitvector. + uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; } + + /// Clear the AsmPrinter bitvector. + void clearAsmPrinterFlags() { AsmPrinterFlags = 0; } + + /// Return whether an AsmPrinter flag is set. + bool getAsmPrinterFlag(CommentFlag Flag) const { + return AsmPrinterFlags & Flag; + } + + /// Set a flag for the AsmPrinter. + void setAsmPrinterFlag(uint8_t Flag) { + AsmPrinterFlags |= Flag; + } + + /// Clear specific AsmPrinter flags. + void clearAsmPrinterFlag(CommentFlag Flag) { + AsmPrinterFlags &= ~Flag; + } + + /// Return the MI flags bitvector. + uint16_t getFlags() const { + return Flags; + } + + /// Return whether an MI flag is set. + bool getFlag(MIFlag Flag) const { + return Flags & Flag; + } + + /// Set a MI flag. + void setFlag(MIFlag Flag) { + Flags |= (uint16_t)Flag; + } + + void setFlags(unsigned flags) { + // Filter out the automatically maintained flags. + unsigned Mask = BundledPred | BundledSucc; + Flags = (Flags & Mask) | (flags & ~Mask); + } + + /// clearFlag - Clear a MI flag. + void clearFlag(MIFlag Flag) { + Flags &= ~((uint16_t)Flag); + } + + /// Return true if MI is in a bundle (but not the first MI in a bundle). + /// + /// A bundle looks like this before it's finalized: + /// ---------------- + /// | MI | + /// ---------------- + /// | + /// ---------------- + /// | MI * | + /// ---------------- + /// | + /// ---------------- + /// | MI * | + /// ---------------- + /// In this case, the first MI starts a bundle but is not inside a bundle, the + /// next 2 MIs are considered "inside" the bundle. + /// + /// After a bundle is finalized, it looks like this: + /// ---------------- + /// | Bundle | + /// ---------------- + /// | + /// ---------------- + /// | MI * | + /// ---------------- + /// | + /// ---------------- + /// | MI * | + /// ---------------- + /// | + /// ---------------- + /// | MI * | + /// ---------------- + /// The first instruction has the special opcode "BUNDLE". It's not "inside" + /// a bundle, but the next three MIs are. + bool isInsideBundle() const { + return getFlag(BundledPred); + } + + /// Return true if this instruction part of a bundle. This is true + /// if either itself or its following instruction is marked "InsideBundle". + bool isBundled() const { + return isBundledWithPred() || isBundledWithSucc(); + } + + /// Return true if this instruction is part of a bundle, and it is not the + /// first instruction in the bundle. + bool isBundledWithPred() const { return getFlag(BundledPred); } + + /// Return true if this instruction is part of a bundle, and it is not the + /// last instruction in the bundle. + bool isBundledWithSucc() const { return getFlag(BundledSucc); } + + /// Bundle this instruction with its predecessor. This can be an unbundled + /// instruction, or it can be the first instruction in a bundle. + void bundleWithPred(); + + /// Bundle this instruction with its successor. This can be an unbundled + /// instruction, or it can be the last instruction in a bundle. + void bundleWithSucc(); + + /// Break bundle above this instruction. + void unbundleFromPred(); + + /// Break bundle below this instruction. + void unbundleFromSucc(); + + /// Returns the debug location id of this MachineInstr. + const DebugLoc &getDebugLoc() const { return debugLoc; } + + /// Return the debug variable referenced by + /// this DBG_VALUE instruction. + const DILocalVariable *getDebugVariable() const; + + /// Return the complex address expression referenced by + /// this DBG_VALUE instruction. + const DIExpression *getDebugExpression() const; + + /// Return the debug label referenced by + /// this DBG_LABEL instruction. + const DILabel *getDebugLabel() const; + + /// Emit an error referring to the source location of this instruction. + /// This should only be used for inline assembly that is somehow + /// impossible to compile. Other errors should have been handled much + /// earlier. + /// + /// If this method returns, the caller should try to recover from the error. + void emitError(StringRef Msg) const; + + /// Returns the target instruction descriptor of this MachineInstr. + const MCInstrDesc &getDesc() const { return *MCID; } + + /// Returns the opcode of this MachineInstr. + unsigned getOpcode() const { return MCID->Opcode; } + + /// Retuns the total number of operands. + unsigned getNumOperands() const { return NumOperands; } + + const MachineOperand& getOperand(unsigned i) const { + assert(i < getNumOperands() && "getOperand() out of range!"); + return Operands[i]; + } + MachineOperand& getOperand(unsigned i) { + assert(i < getNumOperands() && "getOperand() out of range!"); + return Operands[i]; + } + + /// Returns the total number of definitions. + unsigned getNumDefs() const { + return getNumExplicitDefs() + MCID->getNumImplicitDefs(); + } + + /// Return true if operand \p OpIdx is a subregister index. + bool isOperandSubregIdx(unsigned OpIdx) const { + assert(getOperand(OpIdx).getType() == MachineOperand::MO_Immediate && + "Expected MO_Immediate operand type."); + if (isExtractSubreg() && OpIdx == 2) + return true; + if (isInsertSubreg() && OpIdx == 3) + return true; + if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0) + return true; + if (isSubregToReg() && OpIdx == 3) + return true; + return false; + } + + /// Returns the number of non-implicit operands. + unsigned getNumExplicitOperands() const; + + /// Returns the number of non-implicit definitions. + unsigned getNumExplicitDefs() const; + + /// iterator/begin/end - Iterate over all operands of a machine instruction. + using mop_iterator = MachineOperand *; + using const_mop_iterator = const MachineOperand *; + + mop_iterator operands_begin() { return Operands; } + mop_iterator operands_end() { return Operands + NumOperands; } + + const_mop_iterator operands_begin() const { return Operands; } + const_mop_iterator operands_end() const { return Operands + NumOperands; } + + iterator_range<mop_iterator> operands() { + return make_range(operands_begin(), operands_end()); + } + iterator_range<const_mop_iterator> operands() const { + return make_range(operands_begin(), operands_end()); + } + iterator_range<mop_iterator> explicit_operands() { + return make_range(operands_begin(), + operands_begin() + getNumExplicitOperands()); + } + iterator_range<const_mop_iterator> explicit_operands() const { + return make_range(operands_begin(), + operands_begin() + getNumExplicitOperands()); + } + iterator_range<mop_iterator> implicit_operands() { + return make_range(explicit_operands().end(), operands_end()); + } + iterator_range<const_mop_iterator> implicit_operands() const { + return make_range(explicit_operands().end(), operands_end()); + } + /// Returns a range over all explicit operands that are register definitions. + /// Implicit definition are not included! + iterator_range<mop_iterator> defs() { + return make_range(operands_begin(), + operands_begin() + getNumExplicitDefs()); + } + /// \copydoc defs() + iterator_range<const_mop_iterator> defs() const { + return make_range(operands_begin(), + operands_begin() + getNumExplicitDefs()); + } + /// Returns a range that includes all operands that are register uses. + /// This may include unrelated operands which are not register uses. + iterator_range<mop_iterator> uses() { + return make_range(operands_begin() + getNumExplicitDefs(), operands_end()); + } + /// \copydoc uses() + iterator_range<const_mop_iterator> uses() const { + return make_range(operands_begin() + getNumExplicitDefs(), operands_end()); + } + iterator_range<mop_iterator> explicit_uses() { + return make_range(operands_begin() + getNumExplicitDefs(), + operands_begin() + getNumExplicitOperands()); + } + iterator_range<const_mop_iterator> explicit_uses() const { + return make_range(operands_begin() + getNumExplicitDefs(), + operands_begin() + getNumExplicitOperands()); + } + + /// Returns the number of the operand iterator \p I points to. + unsigned getOperandNo(const_mop_iterator I) const { + return I - operands_begin(); + } + + /// Access to memory operands of the instruction. If there are none, that does + /// not imply anything about whether the function accesses memory. Instead, + /// the caller must behave conservatively. + ArrayRef<MachineMemOperand *> memoperands() const { + if (!Info) + return {}; + + if (Info.is<EIIK_MMO>()) + return makeArrayRef(Info.getAddrOfZeroTagPointer(), 1); + + if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) + return EI->getMMOs(); + + return {}; + } + + /// Access to memory operands of the instruction. + /// + /// If `memoperands_begin() == memoperands_end()`, that does not imply + /// anything about whether the function accesses memory. Instead, the caller + /// must behave conservatively. + mmo_iterator memoperands_begin() const { return memoperands().begin(); } + + /// Access to memory operands of the instruction. + /// + /// If `memoperands_begin() == memoperands_end()`, that does not imply + /// anything about whether the function accesses memory. Instead, the caller + /// must behave conservatively. + mmo_iterator memoperands_end() const { return memoperands().end(); } + + /// Return true if we don't have any memory operands which described the + /// memory access done by this instruction. If this is true, calling code + /// must be conservative. + bool memoperands_empty() const { return memoperands().empty(); } + + /// Return true if this instruction has exactly one MachineMemOperand. + bool hasOneMemOperand() const { return memoperands().size() == 1; } + + /// Return the number of memory operands. + unsigned getNumMemOperands() const { return memoperands().size(); } + + /// Helper to extract a pre-instruction symbol if one has been added. + MCSymbol *getPreInstrSymbol() const { + if (!Info) + return nullptr; + if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>()) + return S; + if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) + return EI->getPreInstrSymbol(); + + return nullptr; + } + + /// Helper to extract a post-instruction symbol if one has been added. + MCSymbol *getPostInstrSymbol() const { + if (!Info) + return nullptr; + if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>()) + return S; + if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) + return EI->getPostInstrSymbol(); + + return nullptr; + } + + /// API for querying MachineInstr properties. They are the same as MCInstrDesc + /// queries but they are bundle aware. + + enum QueryType { + IgnoreBundle, // Ignore bundles + AnyInBundle, // Return true if any instruction in bundle has property + AllInBundle // Return true if all instructions in bundle have property + }; + + /// Return true if the instruction (or in the case of a bundle, + /// the instructions inside the bundle) has the specified property. + /// The first argument is the property being queried. + /// The second argument indicates whether the query should look inside + /// instruction bundles. + bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const { + assert(MCFlag < 64 && + "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle."); + // Inline the fast path for unbundled or bundle-internal instructions. + if (Type == IgnoreBundle || !isBundled() || isBundledWithPred()) + return getDesc().getFlags() & (1ULL << MCFlag); + + // If this is the first instruction in a bundle, take the slow path. + return hasPropertyInBundle(1ULL << MCFlag, Type); + } + + /// Return true if this instruction can have a variable number of operands. + /// In this case, the variable operands will be after the normal + /// operands but before the implicit definitions and uses (if any are + /// present). + bool isVariadic(QueryType Type = IgnoreBundle) const { + return hasProperty(MCID::Variadic, Type); + } + + /// Set if this instruction has an optional definition, e.g. + /// ARM instructions which can set condition code if 's' bit is set. + bool hasOptionalDef(QueryType Type = IgnoreBundle) const { + return hasProperty(MCID::HasOptionalDef, Type); + } + + /// Return true if this is a pseudo instruction that doesn't + /// correspond to a real machine instruction. + bool isPseudo(QueryType Type = IgnoreBundle) const { + return hasProperty(MCID::Pseudo, Type); + } + + bool isReturn(QueryType Type = AnyInBundle) const { + return hasProperty(MCID::Return, Type); + } + + /// Return true if this is an instruction that marks the end of an EH scope, + /// i.e., a catchpad or a cleanuppad instruction. + bool isEHScopeReturn(QueryType Type = AnyInBundle) const { + return hasProperty(MCID::EHScopeReturn, Type); + } + + bool isCall(QueryType Type = AnyInBundle) const { + return hasProperty(MCID::Call, Type); + } + + /// Returns true if the specified instruction stops control flow + /// from executing the instruction immediately following it. Examples include + /// unconditional branches and return instructions. + bool isBarrier(QueryType Type = AnyInBundle) const { + return hasProperty(MCID::Barrier, Type); + } + + /// Returns true if this instruction part of the terminator for a basic block. + /// Typically this is things like return and branch instructions. + /// + /// Various passes use this to insert code into the bottom of a basic block, + /// but before control flow occurs. + bool isTerminator(QueryType Type = AnyInBundle) const { + return hasProperty(MCID::Terminator, Type); + } + + /// Returns true if this is a conditional, unconditional, or indirect branch. + /// Predicates below can be used to discriminate between + /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to + /// get more information. + bool isBranch(QueryType Type = AnyInBundle) const { + return hasProperty(MCID::Branch, Type); + } + + /// Return true if this is an indirect branch, such as a + /// branch through a register. + bool isIndirectBranch(QueryType Type = AnyInBundle) const { + return hasProperty(MCID::IndirectBranch, Type); + } + + /// Return true if this is a branch which may fall + /// through to the next instruction or may transfer control flow to some other + /// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more + /// information about this branch. + bool isConditionalBranch(QueryType Type = AnyInBundle) const { + return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type); + } + + /// Return true if this is a branch which always + /// transfers control flow to some other block. The + /// TargetInstrInfo::AnalyzeBranch method can be used to get more information + /// about this branch. + bool isUnconditionalBranch(QueryType Type = AnyInBundle) const { + return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type); + } + + /// Return true if this instruction has a predicate operand that + /// controls execution. It may be set to 'always', or may be set to other + /// values. There are various methods in TargetInstrInfo that can be used to + /// control and modify the predicate in this instruction. + bool isPredicable(QueryType Type = AllInBundle) const { + // If it's a bundle than all bundled instructions must be predicable for this + // to return true. + return hasProperty(MCID::Predicable, Type); + } + + /// Return true if this instruction is a comparison. + bool isCompare(QueryType Type = IgnoreBundle) const { + return hasProperty(MCID::Compare, Type); + } + + /// Return true if this instruction is a move immediate + /// (including conditional moves) instruction. + bool isMoveImmediate(QueryType Type = IgnoreBundle) const { + return hasProperty(MCID::MoveImm, Type); + } + + /// Return true if this instruction is a register move. + /// (including moving values from subreg to reg) + bool isMoveReg(QueryType Type = IgnoreBundle) const { + return hasProperty(MCID::MoveReg, Type); + } + + /// Return true if this instruction is a bitcast instruction. + bool isBitcast(QueryType Type = IgnoreBundle) const { + return hasProperty(MCID::Bitcast, Type); + } + + /// Return true if this instruction is a select instruction. + bool isSelect(QueryType Type = IgnoreBundle) const { + return hasProperty(MCID::Select, Type); + } + + /// Return true if this instruction cannot be safely duplicated. + /// For example, if the instruction has a unique labels attached + /// to it, duplicating it would cause multiple definition errors. + bool isNotDuplicable(QueryType Type = AnyInBundle) const { + return hasProperty(MCID::NotDuplicable, Type); + } + + /// Return true if this instruction is convergent. + /// Convergent instructions can not be made control-dependent on any + /// additional values. + bool isConvergent(QueryType Type = AnyInBundle) const { + if (isInlineAsm()) { + unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); + if (ExtraInfo & InlineAsm::Extra_IsConvergent) + return true; + } + return hasProperty(MCID::Convergent, Type); + } + + /// Returns true if the specified instruction has a delay slot + /// which must be filled by the code generator. + bool hasDelaySlot(QueryType Type = AnyInBundle) const { + return hasProperty(MCID::DelaySlot, Type); + } + + /// Return true for instructions that can be folded as + /// memory operands in other instructions. The most common use for this + /// is instructions that are simple loads from memory that don't modify + /// the loaded value in any way, but it can also be used for instructions + /// that can be expressed as constant-pool loads, such as V_SETALLONES + /// on x86, to allow them to be folded when it is beneficial. + /// This should only be set on instructions that return a value in their + /// only virtual register definition. + bool canFoldAsLoad(QueryType Type = IgnoreBundle) const { + return hasProperty(MCID::FoldableAsLoad, Type); + } + + /// Return true if this instruction behaves + /// the same way as the generic REG_SEQUENCE instructions. + /// E.g., on ARM, + /// dX VMOVDRR rY, rZ + /// is equivalent to + /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1. + /// + /// Note that for the optimizers to be able to take advantage of + /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be + /// override accordingly. + bool isRegSequenceLike(QueryType Type = IgnoreBundle) const { + return hasProperty(MCID::RegSequence, Type); + } + + /// Return true if this instruction behaves + /// the same way as the generic EXTRACT_SUBREG instructions. + /// E.g., on ARM, + /// rX, rY VMOVRRD dZ + /// is equivalent to two EXTRACT_SUBREG: + /// rX = EXTRACT_SUBREG dZ, ssub_0 + /// rY = EXTRACT_SUBREG dZ, ssub_1 + /// + /// Note that for the optimizers to be able to take advantage of + /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be + /// override accordingly. + bool isExtractSubregLike(QueryType Type = IgnoreBundle) const { + return hasProperty(MCID::ExtractSubreg, Type); + } + + /// Return true if this instruction behaves + /// the same way as the generic INSERT_SUBREG instructions. + /// E.g., on ARM, + /// dX = VSETLNi32 dY, rZ, Imm + /// is equivalent to a INSERT_SUBREG: + /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm) + /// + /// Note that for the optimizers to be able to take advantage of + /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be + /// override accordingly. + bool isInsertSubregLike(QueryType Type = IgnoreBundle) const { + return hasProperty(MCID::InsertSubreg, Type); + } + + //===--------------------------------------------------------------------===// + // Side Effect Analysis + //===--------------------------------------------------------------------===// + + /// Return true if this instruction could possibly read memory. + /// Instructions with this flag set are not necessarily simple load + /// instructions, they may load a value and modify it, for example. + bool mayLoad(QueryType Type = AnyInBundle) const { + if (isInlineAsm()) { + unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); + if (ExtraInfo & InlineAsm::Extra_MayLoad) + return true; + } + return hasProperty(MCID::MayLoad, Type); + } + + /// Return true if this instruction could possibly modify memory. + /// Instructions with this flag set are not necessarily simple store + /// instructions, they may store a modified value based on their operands, or + /// may not actually modify anything, for example. + bool mayStore(QueryType Type = AnyInBundle) const { + if (isInlineAsm()) { + unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); + if (ExtraInfo & InlineAsm::Extra_MayStore) + return true; + } + return hasProperty(MCID::MayStore, Type); + } + + /// Return true if this instruction could possibly read or modify memory. + bool mayLoadOrStore(QueryType Type = AnyInBundle) const { + return mayLoad(Type) || mayStore(Type); + } + + //===--------------------------------------------------------------------===// + // Flags that indicate whether an instruction can be modified by a method. + //===--------------------------------------------------------------------===// + + /// Return true if this may be a 2- or 3-address + /// instruction (of the form "X = op Y, Z, ..."), which produces the same + /// result if Y and Z are exchanged. If this flag is set, then the + /// TargetInstrInfo::commuteInstruction method may be used to hack on the + /// instruction. + /// + /// Note that this flag may be set on instructions that are only commutable + /// sometimes. In these cases, the call to commuteInstruction will fail. + /// Also note that some instructions require non-trivial modification to + /// commute them. + bool isCommutable(QueryType Type = IgnoreBundle) const { + return hasProperty(MCID::Commutable, Type); + } + + /// Return true if this is a 2-address instruction + /// which can be changed into a 3-address instruction if needed. Doing this + /// transformation can be profitable in the register allocator, because it + /// means that the instruction can use a 2-address form if possible, but + /// degrade into a less efficient form if the source and dest register cannot + /// be assigned to the same register. For example, this allows the x86 + /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which + /// is the same speed as the shift but has bigger code size. + /// + /// If this returns true, then the target must implement the + /// TargetInstrInfo::convertToThreeAddress method for this instruction, which + /// is allowed to fail if the transformation isn't valid for this specific + /// instruction (e.g. shl reg, 4 on x86). + /// + bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const { + return hasProperty(MCID::ConvertibleTo3Addr, Type); + } + + /// Return true if this instruction requires + /// custom insertion support when the DAG scheduler is inserting it into a + /// machine basic block. If this is true for the instruction, it basically + /// means that it is a pseudo instruction used at SelectionDAG time that is + /// expanded out into magic code by the target when MachineInstrs are formed. + /// + /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method + /// is used to insert this into the MachineBasicBlock. + bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const { + return hasProperty(MCID::UsesCustomInserter, Type); + } + + /// Return true if this instruction requires *adjustment* + /// after instruction selection by calling a target hook. For example, this + /// can be used to fill in ARM 's' optional operand depending on whether + /// the conditional flag register is used. + bool hasPostISelHook(QueryType Type = IgnoreBundle) const { + return hasProperty(MCID::HasPostISelHook, Type); + } + + /// Returns true if this instruction is a candidate for remat. + /// This flag is deprecated, please don't use it anymore. If this + /// flag is set, the isReallyTriviallyReMaterializable() method is called to + /// verify the instruction is really rematable. + bool isRematerializable(QueryType Type = AllInBundle) const { + // It's only possible to re-mat a bundle if all bundled instructions are + // re-materializable. + return hasProperty(MCID::Rematerializable, Type); + } + + /// Returns true if this instruction has the same cost (or less) than a move + /// instruction. This is useful during certain types of optimizations + /// (e.g., remat during two-address conversion or machine licm) + /// where we would like to remat or hoist the instruction, but not if it costs + /// more than moving the instruction into the appropriate register. Note, we + /// are not marking copies from and to the same register class with this flag. + bool isAsCheapAsAMove(QueryType Type = AllInBundle) const { + // Only returns true for a bundle if all bundled instructions are cheap. + return hasProperty(MCID::CheapAsAMove, Type); + } + + /// Returns true if this instruction source operands + /// have special register allocation requirements that are not captured by the + /// operand register classes. e.g. ARM::STRD's two source registers must be an + /// even / odd pair, ARM::STM registers have to be in ascending order. + /// Post-register allocation passes should not attempt to change allocations + /// for sources of instructions with this flag. + bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const { + return hasProperty(MCID::ExtraSrcRegAllocReq, Type); + } + + /// Returns true if this instruction def operands + /// have special register allocation requirements that are not captured by the + /// operand register classes. e.g. ARM::LDRD's two def registers must be an + /// even / odd pair, ARM::LDM registers have to be in ascending order. + /// Post-register allocation passes should not attempt to change allocations + /// for definitions of instructions with this flag. + bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const { + return hasProperty(MCID::ExtraDefRegAllocReq, Type); + } + + enum MICheckType { + CheckDefs, // Check all operands for equality + CheckKillDead, // Check all operands including kill / dead markers + IgnoreDefs, // Ignore all definitions + IgnoreVRegDefs // Ignore virtual register definitions + }; + + /// Return true if this instruction is identical to \p Other. + /// Two instructions are identical if they have the same opcode and all their + /// operands are identical (with respect to MachineOperand::isIdenticalTo()). + /// Note that this means liveness related flags (dead, undef, kill) do not + /// affect the notion of identical. + bool isIdenticalTo(const MachineInstr &Other, + MICheckType Check = CheckDefs) const; + + /// Unlink 'this' from the containing basic block, and return it without + /// deleting it. + /// + /// This function can not be used on bundled instructions, use + /// removeFromBundle() to remove individual instructions from a bundle. + MachineInstr *removeFromParent(); + + /// Unlink this instruction from its basic block and return it without + /// deleting it. + /// + /// If the instruction is part of a bundle, the other instructions in the + /// bundle remain bundled. + MachineInstr *removeFromBundle(); + + /// Unlink 'this' from the containing basic block and delete it. + /// + /// If this instruction is the header of a bundle, the whole bundle is erased. + /// This function can not be used for instructions inside a bundle, use + /// eraseFromBundle() to erase individual bundled instructions. + void eraseFromParent(); + + /// Unlink 'this' from the containing basic block and delete it. + /// + /// For all definitions mark their uses in DBG_VALUE nodes + /// as undefined. Otherwise like eraseFromParent(). + void eraseFromParentAndMarkDBGValuesForRemoval(); + + /// Unlink 'this' form its basic block and delete it. + /// + /// If the instruction is part of a bundle, the other instructions in the + /// bundle remain bundled. + void eraseFromBundle(); + + bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; } + bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; } + bool isAnnotationLabel() const { + return getOpcode() == TargetOpcode::ANNOTATION_LABEL; + } + + /// Returns true if the MachineInstr represents a label. + bool isLabel() const { + return isEHLabel() || isGCLabel() || isAnnotationLabel(); + } + + bool isCFIInstruction() const { + return getOpcode() == TargetOpcode::CFI_INSTRUCTION; + } + + // True if the instruction represents a position in the function. + bool isPosition() const { return isLabel() || isCFIInstruction(); } + + bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; } + bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; } + bool isDebugInstr() const { return isDebugValue() || isDebugLabel(); } + + /// A DBG_VALUE is indirect iff the first operand is a register and + /// the second operand is an immediate. + bool isIndirectDebugValue() const { + return isDebugValue() + && getOperand(0).isReg() + && getOperand(1).isImm(); + } + + bool isPHI() const { + return getOpcode() == TargetOpcode::PHI || + getOpcode() == TargetOpcode::G_PHI; + } + bool isKill() const { return getOpcode() == TargetOpcode::KILL; } + bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; } + bool isInlineAsm() const { + return getOpcode() == TargetOpcode::INLINEASM || + getOpcode() == TargetOpcode::INLINEASM_BR; + } + + bool isMSInlineAsm() const { + return isInlineAsm() && getInlineAsmDialect() == InlineAsm::AD_Intel; + } + + bool isStackAligningInlineAsm() const; + InlineAsm::AsmDialect getInlineAsmDialect() const; + + bool isInsertSubreg() const { + return getOpcode() == TargetOpcode::INSERT_SUBREG; + } + + bool isSubregToReg() const { + return getOpcode() == TargetOpcode::SUBREG_TO_REG; + } + + bool isRegSequence() const { + return getOpcode() == TargetOpcode::REG_SEQUENCE; + } + + bool isBundle() const { + return getOpcode() == TargetOpcode::BUNDLE; + } + + bool isCopy() const { + return getOpcode() == TargetOpcode::COPY; + } + + bool isFullCopy() const { + return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg(); + } + + bool isExtractSubreg() const { + return getOpcode() == TargetOpcode::EXTRACT_SUBREG; + } + + /// Return true if the instruction behaves like a copy. + /// This does not include native copy instructions. + bool isCopyLike() const { + return isCopy() || isSubregToReg(); + } + + /// Return true is the instruction is an identity copy. + bool isIdentityCopy() const { + return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() && + getOperand(0).getSubReg() == getOperand(1).getSubReg(); + } + + /// Return true if this instruction doesn't produce any output in the form of + /// executable instructions. + bool isMetaInstruction() const { + switch (getOpcode()) { + default: + return false; + case TargetOpcode::IMPLICIT_DEF: + case TargetOpcode::KILL: + case TargetOpcode::CFI_INSTRUCTION: + case TargetOpcode::EH_LABEL: + case TargetOpcode::GC_LABEL: + case TargetOpcode::DBG_VALUE: + case TargetOpcode::DBG_LABEL: + case TargetOpcode::LIFETIME_START: + case TargetOpcode::LIFETIME_END: + return true; + } + } + + /// Return true if this is a transient instruction that is either very likely + /// to be eliminated during register allocation (such as copy-like + /// instructions), or if this instruction doesn't have an execution-time cost. + bool isTransient() const { + switch (getOpcode()) { + default: + return isMetaInstruction(); + // Copy-like instructions are usually eliminated during register allocation. + case TargetOpcode::PHI: + case TargetOpcode::G_PHI: + case TargetOpcode::COPY: + case TargetOpcode::INSERT_SUBREG: + case TargetOpcode::SUBREG_TO_REG: + case TargetOpcode::REG_SEQUENCE: + return true; + } + } + + /// Return the number of instructions inside the MI bundle, excluding the + /// bundle header. + /// + /// This is the number of instructions that MachineBasicBlock::iterator + /// skips, 0 for unbundled instructions. + unsigned getBundleSize() const; + + /// Return true if the MachineInstr reads the specified register. + /// If TargetRegisterInfo is passed, then it also checks if there + /// is a read of a super-register. + /// This does not count partial redefines of virtual registers as reads: + /// %reg1024:6 = OP. + bool readsRegister(unsigned Reg, + const TargetRegisterInfo *TRI = nullptr) const { + return findRegisterUseOperandIdx(Reg, false, TRI) != -1; + } + + /// Return true if the MachineInstr reads the specified virtual register. + /// Take into account that a partial define is a + /// read-modify-write operation. + bool readsVirtualRegister(unsigned Reg) const { + return readsWritesVirtualRegister(Reg).first; + } + + /// Return a pair of bools (reads, writes) indicating if this instruction + /// reads or writes Reg. This also considers partial defines. + /// If Ops is not null, all operand indices for Reg are added. + std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg, + SmallVectorImpl<unsigned> *Ops = nullptr) const; + + /// Return true if the MachineInstr kills the specified register. + /// If TargetRegisterInfo is passed, then it also checks if there is + /// a kill of a super-register. + bool killsRegister(unsigned Reg, + const TargetRegisterInfo *TRI = nullptr) const { + return findRegisterUseOperandIdx(Reg, true, TRI) != -1; + } + + /// Return true if the MachineInstr fully defines the specified register. + /// If TargetRegisterInfo is passed, then it also checks + /// if there is a def of a super-register. + /// NOTE: It's ignoring subreg indices on virtual registers. + bool definesRegister(unsigned Reg, + const TargetRegisterInfo *TRI = nullptr) const { + return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1; + } + + /// Return true if the MachineInstr modifies (fully define or partially + /// define) the specified register. + /// NOTE: It's ignoring subreg indices on virtual registers. + bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const { + return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1; + } + + /// Returns true if the register is dead in this machine instruction. + /// If TargetRegisterInfo is passed, then it also checks + /// if there is a dead def of a super-register. + bool registerDefIsDead(unsigned Reg, + const TargetRegisterInfo *TRI = nullptr) const { + return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1; + } + + /// Returns true if the MachineInstr has an implicit-use operand of exactly + /// the given register (not considering sub/super-registers). + bool hasRegisterImplicitUseOperand(unsigned Reg) const; + + /// Returns the operand index that is a use of the specific register or -1 + /// if it is not found. It further tightens the search criteria to a use + /// that kills the register if isKill is true. + int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false, + const TargetRegisterInfo *TRI = nullptr) const; + + /// Wrapper for findRegisterUseOperandIdx, it returns + /// a pointer to the MachineOperand rather than an index. + MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false, + const TargetRegisterInfo *TRI = nullptr) { + int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI); + return (Idx == -1) ? nullptr : &getOperand(Idx); + } + + const MachineOperand *findRegisterUseOperand( + unsigned Reg, bool isKill = false, + const TargetRegisterInfo *TRI = nullptr) const { + return const_cast<MachineInstr *>(this)-> + findRegisterUseOperand(Reg, isKill, TRI); + } + + /// Returns the operand index that is a def of the specified register or + /// -1 if it is not found. If isDead is true, defs that are not dead are + /// skipped. If Overlap is true, then it also looks for defs that merely + /// overlap the specified register. If TargetRegisterInfo is non-null, + /// then it also checks if there is a def of a super-register. + /// This may also return a register mask operand when Overlap is true. + int findRegisterDefOperandIdx(unsigned Reg, + bool isDead = false, bool Overlap = false, + const TargetRegisterInfo *TRI = nullptr) const; + + /// Wrapper for findRegisterDefOperandIdx, it returns + /// a pointer to the MachineOperand rather than an index. + MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false, + const TargetRegisterInfo *TRI = nullptr) { + int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI); + return (Idx == -1) ? nullptr : &getOperand(Idx); + } + + /// Find the index of the first operand in the + /// operand list that is used to represent the predicate. It returns -1 if + /// none is found. + int findFirstPredOperandIdx() const; + + /// Find the index of the flag word operand that + /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if + /// getOperand(OpIdx) does not belong to an inline asm operand group. + /// + /// If GroupNo is not NULL, it will receive the number of the operand group + /// containing OpIdx. + /// + /// The flag operand is an immediate that can be decoded with methods like + /// InlineAsm::hasRegClassConstraint(). + int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const; + + /// Compute the static register class constraint for operand OpIdx. + /// For normal instructions, this is derived from the MCInstrDesc. + /// For inline assembly it is derived from the flag words. + /// + /// Returns NULL if the static register class constraint cannot be + /// determined. + const TargetRegisterClass* + getRegClassConstraint(unsigned OpIdx, + const TargetInstrInfo *TII, + const TargetRegisterInfo *TRI) const; + + /// Applies the constraints (def/use) implied by this MI on \p Reg to + /// the given \p CurRC. + /// If \p ExploreBundle is set and MI is part of a bundle, all the + /// instructions inside the bundle will be taken into account. In other words, + /// this method accumulates all the constraints of the operand of this MI and + /// the related bundle if MI is a bundle or inside a bundle. + /// + /// Returns the register class that satisfies both \p CurRC and the + /// constraints set by MI. Returns NULL if such a register class does not + /// exist. + /// + /// \pre CurRC must not be NULL. + const TargetRegisterClass *getRegClassConstraintEffectForVReg( + unsigned Reg, const TargetRegisterClass *CurRC, + const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, + bool ExploreBundle = false) const; + + /// Applies the constraints (def/use) implied by the \p OpIdx operand + /// to the given \p CurRC. + /// + /// Returns the register class that satisfies both \p CurRC and the + /// constraints set by \p OpIdx MI. Returns NULL if such a register class + /// does not exist. + /// + /// \pre CurRC must not be NULL. + /// \pre The operand at \p OpIdx must be a register. + const TargetRegisterClass * + getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC, + const TargetInstrInfo *TII, + const TargetRegisterInfo *TRI) const; + + /// Add a tie between the register operands at DefIdx and UseIdx. + /// The tie will cause the register allocator to ensure that the two + /// operands are assigned the same physical register. + /// + /// Tied operands are managed automatically for explicit operands in the + /// MCInstrDesc. This method is for exceptional cases like inline asm. + void tieOperands(unsigned DefIdx, unsigned UseIdx); + + /// Given the index of a tied register operand, find the + /// operand it is tied to. Defs are tied to uses and vice versa. Returns the + /// index of the tied operand which must exist. + unsigned findTiedOperandIdx(unsigned OpIdx) const; + + /// Given the index of a register def operand, + /// check if the register def is tied to a source operand, due to either + /// two-address elimination or inline assembly constraints. Returns the + /// first tied use operand index by reference if UseOpIdx is not null. + bool isRegTiedToUseOperand(unsigned DefOpIdx, + unsigned *UseOpIdx = nullptr) const { + const MachineOperand &MO = getOperand(DefOpIdx); + if (!MO.isReg() || !MO.isDef() || !MO.isTied()) + return false; + if (UseOpIdx) + *UseOpIdx = findTiedOperandIdx(DefOpIdx); + return true; + } + + /// Return true if the use operand of the specified index is tied to a def + /// operand. It also returns the def operand index by reference if DefOpIdx + /// is not null. + bool isRegTiedToDefOperand(unsigned UseOpIdx, + unsigned *DefOpIdx = nullptr) const { + const MachineOperand &MO = getOperand(UseOpIdx); + if (!MO.isReg() || !MO.isUse() || !MO.isTied()) + return false; + if (DefOpIdx) + *DefOpIdx = findTiedOperandIdx(UseOpIdx); + return true; + } + + /// Clears kill flags on all operands. + void clearKillInfo(); + + /// Replace all occurrences of FromReg with ToReg:SubIdx, + /// properly composing subreg indices where necessary. + void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx, + const TargetRegisterInfo &RegInfo); + + /// We have determined MI kills a register. Look for the + /// operand that uses it and mark it as IsKill. If AddIfNotFound is true, + /// add a implicit operand if it's not found. Returns true if the operand + /// exists / is added. + bool addRegisterKilled(unsigned IncomingReg, + const TargetRegisterInfo *RegInfo, + bool AddIfNotFound = false); + + /// Clear all kill flags affecting Reg. If RegInfo is provided, this includes + /// all aliasing registers. + void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo); + + /// We have determined MI defined a register without a use. + /// Look for the operand that defines it and mark it as IsDead. If + /// AddIfNotFound is true, add a implicit operand if it's not found. Returns + /// true if the operand exists / is added. + bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo, + bool AddIfNotFound = false); + + /// Clear all dead flags on operands defining register @p Reg. + void clearRegisterDeads(unsigned Reg); + + /// Mark all subregister defs of register @p Reg with the undef flag. + /// This function is used when we determined to have a subregister def in an + /// otherwise undefined super register. + void setRegisterDefReadUndef(unsigned Reg, bool IsUndef = true); + + /// We have determined MI defines a register. Make sure there is an operand + /// defining Reg. + void addRegisterDefined(unsigned Reg, + const TargetRegisterInfo *RegInfo = nullptr); + + /// Mark every physreg used by this instruction as + /// dead except those in the UsedRegs list. + /// + /// On instructions with register mask operands, also add implicit-def + /// operands for all registers in UsedRegs. + void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, + const TargetRegisterInfo &TRI); + + /// Return true if it is safe to move this instruction. If + /// SawStore is set to true, it means that there is a store (or call) between + /// the instruction's location and its intended destination. + bool isSafeToMove(AliasAnalysis *AA, bool &SawStore) const; + + /// Returns true if this instruction's memory access aliases the memory + /// access of Other. + // + /// Assumes any physical registers used to compute addresses + /// have the same value for both instructions. Returns false if neither + /// instruction writes to memory. + /// + /// @param AA Optional alias analysis, used to compare memory operands. + /// @param Other MachineInstr to check aliasing against. + /// @param UseTBAA Whether to pass TBAA information to alias analysis. + bool mayAlias(AliasAnalysis *AA, MachineInstr &Other, bool UseTBAA); + + /// Return true if this instruction may have an ordered + /// or volatile memory reference, or if the information describing the memory + /// reference is not available. Return false if it is known to have no + /// ordered or volatile memory references. + bool hasOrderedMemoryRef() const; + + /// Return true if this load instruction never traps and points to a memory + /// location whose value doesn't change during the execution of this function. + /// + /// Examples include loading a value from the constant pool or from the + /// argument area of a function (if it does not change). If the instruction + /// does multiple loads, this returns true only if all of the loads are + /// dereferenceable and invariant. + bool isDereferenceableInvariantLoad(AliasAnalysis *AA) const; + + /// If the specified instruction is a PHI that always merges together the + /// same virtual register, return the register, otherwise return 0. + unsigned isConstantValuePHI() const; + + /// Return true if this instruction has side effects that are not modeled + /// by mayLoad / mayStore, etc. + /// For all instructions, the property is encoded in MCInstrDesc::Flags + /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is + /// INLINEASM instruction, in which case the side effect property is encoded + /// in one of its operands (see InlineAsm::Extra_HasSideEffect). + /// + bool hasUnmodeledSideEffects() const; + + /// Returns true if it is illegal to fold a load across this instruction. + bool isLoadFoldBarrier() const; + + /// Return true if all the defs of this instruction are dead. + bool allDefsAreDead() const; + + /// Return a valid size if the instruction is a spill instruction. + Optional<unsigned> getSpillSize(const TargetInstrInfo *TII) const; + + /// Return a valid size if the instruction is a folded spill instruction. + Optional<unsigned> getFoldedSpillSize(const TargetInstrInfo *TII) const; + + /// Return a valid size if the instruction is a restore instruction. + Optional<unsigned> getRestoreSize(const TargetInstrInfo *TII) const; + + /// Return a valid size if the instruction is a folded restore instruction. + Optional<unsigned> + getFoldedRestoreSize(const TargetInstrInfo *TII) const; + + /// Copy implicit register operands from specified + /// instruction to this instruction. + void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI); + + /// Debugging support + /// @{ + /// Determine the generic type to be printed (if needed) on uses and defs. + LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, + const MachineRegisterInfo &MRI) const; + + /// Return true when an instruction has tied register that can't be determined + /// by the instruction's descriptor. This is useful for MIR printing, to + /// determine whether we need to print the ties or not. + bool hasComplexRegisterTies() const; + + /// Print this MI to \p OS. + /// Don't print information that can be inferred from other instructions if + /// \p IsStandalone is false. It is usually true when only a fragment of the + /// function is printed. + /// Only print the defs and the opcode if \p SkipOpers is true. + /// Otherwise, also print operands if \p SkipDebugLoc is true. + /// Otherwise, also print the debug loc, with a terminating newline. + /// \p TII is used to print the opcode name. If it's not present, but the + /// MI is in a function, the opcode will be printed using the function's TII. + void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false, + bool SkipDebugLoc = false, bool AddNewLine = true, + const TargetInstrInfo *TII = nullptr) const; + void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true, + bool SkipOpers = false, bool SkipDebugLoc = false, + bool AddNewLine = true, + const TargetInstrInfo *TII = nullptr) const; + void dump() const; + /// @} + + //===--------------------------------------------------------------------===// + // Accessors used to build up machine instructions. + + /// Add the specified operand to the instruction. If it is an implicit + /// operand, it is added to the end of the operand list. If it is an + /// explicit operand it is added at the end of the explicit operand list + /// (before the first implicit operand). + /// + /// MF must be the machine function that was used to allocate this + /// instruction. + /// + /// MachineInstrBuilder provides a more convenient interface for creating + /// instructions and adding operands. + void addOperand(MachineFunction &MF, const MachineOperand &Op); + + /// Add an operand without providing an MF reference. This only works for + /// instructions that are inserted in a basic block. + /// + /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be + /// preferred. + void addOperand(const MachineOperand &Op); + + /// Replace the instruction descriptor (thus opcode) of + /// the current instruction with a new one. + void setDesc(const MCInstrDesc &tid) { MCID = &tid; } + + /// Replace current source information with new such. + /// Avoid using this, the constructor argument is preferable. + void setDebugLoc(DebugLoc dl) { + debugLoc = std::move(dl); + assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); + } + + /// Erase an operand from an instruction, leaving it with one + /// fewer operand than it started with. + void RemoveOperand(unsigned OpNo); + + /// Clear this MachineInstr's memory reference descriptor list. This resets + /// the memrefs to their most conservative state. This should be used only + /// as a last resort since it greatly pessimizes our knowledge of the memory + /// access performed by the instruction. + void dropMemRefs(MachineFunction &MF); + + /// Assign this MachineInstr's memory reference descriptor list. + /// + /// Unlike other methods, this *will* allocate them into a new array + /// associated with the provided `MachineFunction`. + void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs); + + /// Add a MachineMemOperand to the machine instruction. + /// This function should be used only occasionally. The setMemRefs function + /// is the primary method for setting up a MachineInstr's MemRefs list. + void addMemOperand(MachineFunction &MF, MachineMemOperand *MO); + + /// Clone another MachineInstr's memory reference descriptor list and replace + /// ours with it. + /// + /// Note that `*this` may be the incoming MI! + /// + /// Prefer this API whenever possible as it can avoid allocations in common + /// cases. + void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI); + + /// Clone the merge of multiple MachineInstrs' memory reference descriptors + /// list and replace ours with it. + /// + /// Note that `*this` may be one of the incoming MIs! + /// + /// Prefer this API whenever possible as it can avoid allocations in common + /// cases. + void cloneMergedMemRefs(MachineFunction &MF, + ArrayRef<const MachineInstr *> MIs); + + /// Set a symbol that will be emitted just prior to the instruction itself. + /// + /// Setting this to a null pointer will remove any such symbol. + /// + /// FIXME: This is not fully implemented yet. + void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol); + + /// Set a symbol that will be emitted just after the instruction itself. + /// + /// Setting this to a null pointer will remove any such symbol. + /// + /// FIXME: This is not fully implemented yet. + void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol); + + /// Return the MIFlags which represent both MachineInstrs. This + /// should be used when merging two MachineInstrs into one. This routine does + /// not modify the MIFlags of this MachineInstr. + uint16_t mergeFlagsWith(const MachineInstr& Other) const; + + static uint16_t copyFlagsFromInstruction(const Instruction &I); + + /// Copy all flags to MachineInst MIFlags + void copyIRFlags(const Instruction &I); + + /// Break any tie involving OpIdx. + void untieRegOperand(unsigned OpIdx) { + MachineOperand &MO = getOperand(OpIdx); + if (MO.isReg() && MO.isTied()) { + getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0; + MO.TiedTo = 0; + } + } + + /// Add all implicit def and use operands to this instruction. + void addImplicitDefUseOperands(MachineFunction &MF); + + /// Scan instructions following MI and collect any matching DBG_VALUEs. + void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues); + + /// Find all DBG_VALUEs immediately following this instruction that point + /// to a register def in this instruction and point them to \p Reg instead. + void changeDebugValuesDefReg(unsigned Reg); + +private: + /// If this instruction is embedded into a MachineFunction, return the + /// MachineRegisterInfo object for the current function, otherwise + /// return null. + MachineRegisterInfo *getRegInfo(); + + /// Unlink all of the register operands in this instruction from their + /// respective use lists. This requires that the operands already be on their + /// use lists. + void RemoveRegOperandsFromUseLists(MachineRegisterInfo&); + + /// Add all of the register operands in this instruction from their + /// respective use lists. This requires that the operands not be on their + /// use lists yet. + void AddRegOperandsToUseLists(MachineRegisterInfo&); + + /// Slow path for hasProperty when we're dealing with a bundle. + bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const; + + /// Implements the logic of getRegClassConstraintEffectForVReg for the + /// this MI and the given operand index \p OpIdx. + /// If the related operand does not constrained Reg, this returns CurRC. + const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl( + unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, + const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const; +}; + +/// Special DenseMapInfo traits to compare MachineInstr* by *value* of the +/// instruction rather than by pointer value. +/// The hashing and equality testing functions ignore definitions so this is +/// useful for CSE, etc. +struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> { + static inline MachineInstr *getEmptyKey() { + return nullptr; + } + + static inline MachineInstr *getTombstoneKey() { + return reinterpret_cast<MachineInstr*>(-1); + } + + static unsigned getHashValue(const MachineInstr* const &MI); + + static bool isEqual(const MachineInstr* const &LHS, + const MachineInstr* const &RHS) { + if (RHS == getEmptyKey() || RHS == getTombstoneKey() || + LHS == getEmptyKey() || LHS == getTombstoneKey()) + return LHS == RHS; + return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs); + } +}; + +//===----------------------------------------------------------------------===// +// Debugging Support + +inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) { + MI.print(OS); + return OS; +} + +} // end namespace llvm + +#endif // LLVM_CODEGEN_MACHINEINSTR_H |
