summaryrefslogtreecommitdiff
path: root/clang-r353983/include/llvm/IR/DerivedTypes.h
diff options
context:
space:
mode:
authorRalf Luther <luther.ralf@gmail.com>2019-03-27 20:23:17 +0000
committerGerrit Code Review <gerrit2@aicp-server-3>2019-03-27 20:23:17 +0000
commit1ce3a9d272e564b22a1333a1e36a3d3ab7cfab01 (patch)
tree391382eadd4fec5bb480f2e8934fa352770221d1 /clang-r353983/include/llvm/IR/DerivedTypes.h
parentd1d48b140bafaa8a50107292f5fce95562575765 (diff)
parent4f56932d3416ac03f646bc1a611b3135fec2fe08 (diff)
Merge "Update prebuilt Clang to r353983." into p9.0HEADp9.0-backupp9.0
Diffstat (limited to 'clang-r353983/include/llvm/IR/DerivedTypes.h')
-rw-r--r--clang-r353983/include/llvm/IR/DerivedTypes.h540
1 files changed, 540 insertions, 0 deletions
diff --git a/clang-r353983/include/llvm/IR/DerivedTypes.h b/clang-r353983/include/llvm/IR/DerivedTypes.h
new file mode 100644
index 00000000..5bf37294
--- /dev/null
+++ b/clang-r353983/include/llvm/IR/DerivedTypes.h
@@ -0,0 +1,540 @@
+//===- llvm/DerivedTypes.h - Classes for handling data types ----*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declarations of classes that represent "derived
+// types". These are things like "arrays of x" or "structure of x, y, z" or
+// "function returning x taking (y,z) as parameters", etc...
+//
+// The implementations of these classes live in the Type.cpp file.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_IR_DERIVEDTYPES_H
+#define LLVM_IR_DERIVEDTYPES_H
+
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Compiler.h"
+#include <cassert>
+#include <cstdint>
+
+namespace llvm {
+
+class Value;
+class APInt;
+class LLVMContext;
+
+/// Class to represent integer types. Note that this class is also used to
+/// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
+/// Int64Ty.
+/// Integer representation type
+class IntegerType : public Type {
+ friend class LLVMContextImpl;
+
+protected:
+ explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){
+ setSubclassData(NumBits);
+ }
+
+public:
+ /// This enum is just used to hold constants we need for IntegerType.
+ enum {
+ MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified
+ MAX_INT_BITS = (1<<24)-1 ///< Maximum number of bits that can be specified
+ ///< Note that bit width is stored in the Type classes SubclassData field
+ ///< which has 24 bits. This yields a maximum bit width of 16,777,215
+ ///< bits.
+ };
+
+ /// This static method is the primary way of constructing an IntegerType.
+ /// If an IntegerType with the same NumBits value was previously instantiated,
+ /// that instance will be returned. Otherwise a new one will be created. Only
+ /// one instance with a given NumBits value is ever created.
+ /// Get or create an IntegerType instance.
+ static IntegerType *get(LLVMContext &C, unsigned NumBits);
+
+ /// Get the number of bits in this IntegerType
+ unsigned getBitWidth() const { return getSubclassData(); }
+
+ /// Return a bitmask with ones set for all of the bits that can be set by an
+ /// unsigned version of this type. This is 0xFF for i8, 0xFFFF for i16, etc.
+ uint64_t getBitMask() const {
+ return ~uint64_t(0UL) >> (64-getBitWidth());
+ }
+
+ /// Return a uint64_t with just the most significant bit set (the sign bit, if
+ /// the value is treated as a signed number).
+ uint64_t getSignBit() const {
+ return 1ULL << (getBitWidth()-1);
+ }
+
+ /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
+ /// @returns a bit mask with ones set for all the bits of this type.
+ /// Get a bit mask for this type.
+ APInt getMask() const;
+
+ /// This method determines if the width of this IntegerType is a power-of-2
+ /// in terms of 8 bit bytes.
+ /// @returns true if this is a power-of-2 byte width.
+ /// Is this a power-of-2 byte-width IntegerType ?
+ bool isPowerOf2ByteWidth() const;
+
+ /// Methods for support type inquiry through isa, cast, and dyn_cast.
+ static bool classof(const Type *T) {
+ return T->getTypeID() == IntegerTyID;
+ }
+};
+
+unsigned Type::getIntegerBitWidth() const {
+ return cast<IntegerType>(this)->getBitWidth();
+}
+
+/// Class to represent function types
+///
+class FunctionType : public Type {
+ FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs);
+
+public:
+ FunctionType(const FunctionType &) = delete;
+ FunctionType &operator=(const FunctionType &) = delete;
+
+ /// This static method is the primary way of constructing a FunctionType.
+ static FunctionType *get(Type *Result,
+ ArrayRef<Type*> Params, bool isVarArg);
+
+ /// Create a FunctionType taking no parameters.
+ static FunctionType *get(Type *Result, bool isVarArg);
+
+ /// Return true if the specified type is valid as a return type.
+ static bool isValidReturnType(Type *RetTy);
+
+ /// Return true if the specified type is valid as an argument type.
+ static bool isValidArgumentType(Type *ArgTy);
+
+ bool isVarArg() const { return getSubclassData()!=0; }
+ Type *getReturnType() const { return ContainedTys[0]; }
+
+ using param_iterator = Type::subtype_iterator;
+
+ param_iterator param_begin() const { return ContainedTys + 1; }
+ param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
+ ArrayRef<Type *> params() const {
+ return makeArrayRef(param_begin(), param_end());
+ }
+
+ /// Parameter type accessors.
+ Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
+
+ /// Return the number of fixed parameters this function type requires.
+ /// This does not consider varargs.
+ unsigned getNumParams() const { return NumContainedTys - 1; }
+
+ /// Methods for support type inquiry through isa, cast, and dyn_cast.
+ static bool classof(const Type *T) {
+ return T->getTypeID() == FunctionTyID;
+ }
+};
+static_assert(alignof(FunctionType) >= alignof(Type *),
+ "Alignment sufficient for objects appended to FunctionType");
+
+bool Type::isFunctionVarArg() const {
+ return cast<FunctionType>(this)->isVarArg();
+}
+
+Type *Type::getFunctionParamType(unsigned i) const {
+ return cast<FunctionType>(this)->getParamType(i);
+}
+
+unsigned Type::getFunctionNumParams() const {
+ return cast<FunctionType>(this)->getNumParams();
+}
+
+/// A handy container for a FunctionType+Callee-pointer pair, which can be
+/// passed around as a single entity. This assists in replacing the use of
+/// PointerType::getElementType() to access the function's type, since that's
+/// slated for removal as part of the [opaque pointer types] project.
+class FunctionCallee {
+public:
+ // Allow implicit conversion from types which have a getFunctionType member
+ // (e.g. Function and InlineAsm).
+ template <typename T, typename U = decltype(&T::getFunctionType)>
+ FunctionCallee(T *Fn)
+ : FnTy(Fn ? Fn->getFunctionType() : nullptr), Callee(Fn) {}
+
+ FunctionCallee(FunctionType *FnTy, Value *Callee)
+ : FnTy(FnTy), Callee(Callee) {
+ assert((FnTy == nullptr) == (Callee == nullptr));
+ }
+
+ FunctionCallee(std::nullptr_t) {}
+
+ FunctionCallee() = default;
+
+ FunctionType *getFunctionType() { return FnTy; }
+
+ Value *getCallee() { return Callee; }
+
+ explicit operator bool() { return Callee; }
+
+private:
+ FunctionType *FnTy = nullptr;
+ Value *Callee = nullptr;
+};
+
+/// Common super class of ArrayType, StructType and VectorType.
+class CompositeType : public Type {
+protected:
+ explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) {}
+
+public:
+ /// Given an index value into the type, return the type of the element.
+ Type *getTypeAtIndex(const Value *V) const;
+ Type *getTypeAtIndex(unsigned Idx) const;
+ bool indexValid(const Value *V) const;
+ bool indexValid(unsigned Idx) const;
+
+ /// Methods for support type inquiry through isa, cast, and dyn_cast.
+ static bool classof(const Type *T) {
+ return T->getTypeID() == ArrayTyID ||
+ T->getTypeID() == StructTyID ||
+ T->getTypeID() == VectorTyID;
+ }
+};
+
+/// Class to represent struct types. There are two different kinds of struct
+/// types: Literal structs and Identified structs.
+///
+/// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
+/// always have a body when created. You can get one of these by using one of
+/// the StructType::get() forms.
+///
+/// Identified structs (e.g. %foo or %42) may optionally have a name and are not
+/// uniqued. The names for identified structs are managed at the LLVMContext
+/// level, so there can only be a single identified struct with a given name in
+/// a particular LLVMContext. Identified structs may also optionally be opaque
+/// (have no body specified). You get one of these by using one of the
+/// StructType::create() forms.
+///
+/// Independent of what kind of struct you have, the body of a struct type are
+/// laid out in memory consecutively with the elements directly one after the
+/// other (if the struct is packed) or (if not packed) with padding between the
+/// elements as defined by DataLayout (which is required to match what the code
+/// generator for a target expects).
+///
+class StructType : public CompositeType {
+ StructType(LLVMContext &C) : CompositeType(C, StructTyID) {}
+
+ enum {
+ /// This is the contents of the SubClassData field.
+ SCDB_HasBody = 1,
+ SCDB_Packed = 2,
+ SCDB_IsLiteral = 4,
+ SCDB_IsSized = 8
+ };
+
+ /// For a named struct that actually has a name, this is a pointer to the
+ /// symbol table entry (maintained by LLVMContext) for the struct.
+ /// This is null if the type is an literal struct or if it is a identified
+ /// type that has an empty name.
+ void *SymbolTableEntry = nullptr;
+
+public:
+ StructType(const StructType &) = delete;
+ StructType &operator=(const StructType &) = delete;
+
+ /// This creates an identified struct.
+ static StructType *create(LLVMContext &Context, StringRef Name);
+ static StructType *create(LLVMContext &Context);
+
+ static StructType *create(ArrayRef<Type *> Elements, StringRef Name,
+ bool isPacked = false);
+ static StructType *create(ArrayRef<Type *> Elements);
+ static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements,
+ StringRef Name, bool isPacked = false);
+ static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements);
+ template <class... Tys>
+ static typename std::enable_if<are_base_of<Type, Tys...>::value,
+ StructType *>::type
+ create(StringRef Name, Type *elt1, Tys *... elts) {
+ assert(elt1 && "Cannot create a struct type with no elements with this");
+ SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
+ return create(StructFields, Name);
+ }
+
+ /// This static method is the primary way to create a literal StructType.
+ static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements,
+ bool isPacked = false);
+
+ /// Create an empty structure type.
+ static StructType *get(LLVMContext &Context, bool isPacked = false);
+
+ /// This static method is a convenience method for creating structure types by
+ /// specifying the elements as arguments. Note that this method always returns
+ /// a non-packed struct, and requires at least one element type.
+ template <class... Tys>
+ static typename std::enable_if<are_base_of<Type, Tys...>::value,
+ StructType *>::type
+ get(Type *elt1, Tys *... elts) {
+ assert(elt1 && "Cannot create a struct type with no elements with this");
+ LLVMContext &Ctx = elt1->getContext();
+ SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
+ return llvm::StructType::get(Ctx, StructFields);
+ }
+
+ bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; }
+
+ /// Return true if this type is uniqued by structural equivalence, false if it
+ /// is a struct definition.
+ bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; }
+
+ /// Return true if this is a type with an identity that has no body specified
+ /// yet. These prints as 'opaque' in .ll files.
+ bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; }
+
+ /// isSized - Return true if this is a sized type.
+ bool isSized(SmallPtrSetImpl<Type *> *Visited = nullptr) const;
+
+ /// Return true if this is a named struct that has a non-empty name.
+ bool hasName() const { return SymbolTableEntry != nullptr; }
+
+ /// Return the name for this struct type if it has an identity.
+ /// This may return an empty string for an unnamed struct type. Do not call
+ /// this on an literal type.
+ StringRef getName() const;
+
+ /// Change the name of this type to the specified name, or to a name with a
+ /// suffix if there is a collision. Do not call this on an literal type.
+ void setName(StringRef Name);
+
+ /// Specify a body for an opaque identified type.
+ void setBody(ArrayRef<Type*> Elements, bool isPacked = false);
+
+ template <typename... Tys>
+ typename std::enable_if<are_base_of<Type, Tys...>::value, void>::type
+ setBody(Type *elt1, Tys *... elts) {
+ assert(elt1 && "Cannot create a struct type with no elements with this");
+ SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
+ setBody(StructFields);
+ }
+
+ /// Return true if the specified type is valid as a element type.
+ static bool isValidElementType(Type *ElemTy);
+
+ // Iterator access to the elements.
+ using element_iterator = Type::subtype_iterator;
+
+ element_iterator element_begin() const { return ContainedTys; }
+ element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
+ ArrayRef<Type *> const elements() const {
+ return makeArrayRef(element_begin(), element_end());
+ }
+
+ /// Return true if this is layout identical to the specified struct.
+ bool isLayoutIdentical(StructType *Other) const;
+
+ /// Random access to the elements
+ unsigned getNumElements() const { return NumContainedTys; }
+ Type *getElementType(unsigned N) const {
+ assert(N < NumContainedTys && "Element number out of range!");
+ return ContainedTys[N];
+ }
+
+ /// Methods for support type inquiry through isa, cast, and dyn_cast.
+ static bool classof(const Type *T) {
+ return T->getTypeID() == StructTyID;
+ }
+};
+
+StringRef Type::getStructName() const {
+ return cast<StructType>(this)->getName();
+}
+
+unsigned Type::getStructNumElements() const {
+ return cast<StructType>(this)->getNumElements();
+}
+
+Type *Type::getStructElementType(unsigned N) const {
+ return cast<StructType>(this)->getElementType(N);
+}
+
+/// This is the superclass of the array and vector type classes. Both of these
+/// represent "arrays" in memory. The array type represents a specifically sized
+/// array, and the vector type represents a specifically sized array that allows
+/// for use of SIMD instructions. SequentialType holds the common features of
+/// both, which stem from the fact that both lay their components out in memory
+/// identically.
+class SequentialType : public CompositeType {
+ Type *ContainedType; ///< Storage for the single contained type.
+ uint64_t NumElements;
+
+protected:
+ SequentialType(TypeID TID, Type *ElType, uint64_t NumElements)
+ : CompositeType(ElType->getContext(), TID), ContainedType(ElType),
+ NumElements(NumElements) {
+ ContainedTys = &ContainedType;
+ NumContainedTys = 1;
+ }
+
+public:
+ SequentialType(const SequentialType &) = delete;
+ SequentialType &operator=(const SequentialType &) = delete;
+
+ uint64_t getNumElements() const { return NumElements; }
+ Type *getElementType() const { return ContainedType; }
+
+ /// Methods for support type inquiry through isa, cast, and dyn_cast.
+ static bool classof(const Type *T) {
+ return T->getTypeID() == ArrayTyID || T->getTypeID() == VectorTyID;
+ }
+};
+
+/// Class to represent array types.
+class ArrayType : public SequentialType {
+ ArrayType(Type *ElType, uint64_t NumEl);
+
+public:
+ ArrayType(const ArrayType &) = delete;
+ ArrayType &operator=(const ArrayType &) = delete;
+
+ /// This static method is the primary way to construct an ArrayType
+ static ArrayType *get(Type *ElementType, uint64_t NumElements);
+
+ /// Return true if the specified type is valid as a element type.
+ static bool isValidElementType(Type *ElemTy);
+
+ /// Methods for support type inquiry through isa, cast, and dyn_cast.
+ static bool classof(const Type *T) {
+ return T->getTypeID() == ArrayTyID;
+ }
+};
+
+uint64_t Type::getArrayNumElements() const {
+ return cast<ArrayType>(this)->getNumElements();
+}
+
+/// Class to represent vector types.
+class VectorType : public SequentialType {
+ VectorType(Type *ElType, unsigned NumEl);
+
+public:
+ VectorType(const VectorType &) = delete;
+ VectorType &operator=(const VectorType &) = delete;
+
+ /// This static method is the primary way to construct an VectorType.
+ static VectorType *get(Type *ElementType, unsigned NumElements);
+
+ /// This static method gets a VectorType with the same number of elements as
+ /// the input type, and the element type is an integer type of the same width
+ /// as the input element type.
+ static VectorType *getInteger(VectorType *VTy) {
+ unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
+ assert(EltBits && "Element size must be of a non-zero size");
+ Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
+ return VectorType::get(EltTy, VTy->getNumElements());
+ }
+
+ /// This static method is like getInteger except that the element types are
+ /// twice as wide as the elements in the input type.
+ static VectorType *getExtendedElementVectorType(VectorType *VTy) {
+ unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
+ Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2);
+ return VectorType::get(EltTy, VTy->getNumElements());
+ }
+
+ /// This static method is like getInteger except that the element types are
+ /// half as wide as the elements in the input type.
+ static VectorType *getTruncatedElementVectorType(VectorType *VTy) {
+ unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
+ assert((EltBits & 1) == 0 &&
+ "Cannot truncate vector element with odd bit-width");
+ Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
+ return VectorType::get(EltTy, VTy->getNumElements());
+ }
+
+ /// This static method returns a VectorType with half as many elements as the
+ /// input type and the same element type.
+ static VectorType *getHalfElementsVectorType(VectorType *VTy) {
+ unsigned NumElts = VTy->getNumElements();
+ assert ((NumElts & 1) == 0 &&
+ "Cannot halve vector with odd number of elements.");
+ return VectorType::get(VTy->getElementType(), NumElts/2);
+ }
+
+ /// This static method returns a VectorType with twice as many elements as the
+ /// input type and the same element type.
+ static VectorType *getDoubleElementsVectorType(VectorType *VTy) {
+ unsigned NumElts = VTy->getNumElements();
+ return VectorType::get(VTy->getElementType(), NumElts*2);
+ }
+
+ /// Return true if the specified type is valid as a element type.
+ static bool isValidElementType(Type *ElemTy);
+
+ /// Return the number of bits in the Vector type.
+ /// Returns zero when the vector is a vector of pointers.
+ unsigned getBitWidth() const {
+ return getNumElements() * getElementType()->getPrimitiveSizeInBits();
+ }
+
+ /// Methods for support type inquiry through isa, cast, and dyn_cast.
+ static bool classof(const Type *T) {
+ return T->getTypeID() == VectorTyID;
+ }
+};
+
+unsigned Type::getVectorNumElements() const {
+ return cast<VectorType>(this)->getNumElements();
+}
+
+/// Class to represent pointers.
+class PointerType : public Type {
+ explicit PointerType(Type *ElType, unsigned AddrSpace);
+
+ Type *PointeeTy;
+
+public:
+ PointerType(const PointerType &) = delete;
+ PointerType &operator=(const PointerType &) = delete;
+
+ /// This constructs a pointer to an object of the specified type in a numbered
+ /// address space.
+ static PointerType *get(Type *ElementType, unsigned AddressSpace);
+
+ /// This constructs a pointer to an object of the specified type in the
+ /// generic address space (address space zero).
+ static PointerType *getUnqual(Type *ElementType) {
+ return PointerType::get(ElementType, 0);
+ }
+
+ Type *getElementType() const { return PointeeTy; }
+
+ /// Return true if the specified type is valid as a element type.
+ static bool isValidElementType(Type *ElemTy);
+
+ /// Return true if we can load or store from a pointer to this type.
+ static bool isLoadableOrStorableType(Type *ElemTy);
+
+ /// Return the address space of the Pointer type.
+ inline unsigned getAddressSpace() const { return getSubclassData(); }
+
+ /// Implement support type inquiry through isa, cast, and dyn_cast.
+ static bool classof(const Type *T) {
+ return T->getTypeID() == PointerTyID;
+ }
+};
+
+unsigned Type::getPointerAddressSpace() const {
+ return cast<PointerType>(getScalarType())->getAddressSpace();
+}
+
+} // end namespace llvm
+
+#endif // LLVM_IR_DERIVEDTYPES_H