diff options
| author | Ralf Luther <luther.ralf@gmail.com> | 2019-03-27 20:23:17 +0000 |
|---|---|---|
| committer | Gerrit Code Review <gerrit2@aicp-server-3> | 2019-03-27 20:23:17 +0000 |
| commit | 1ce3a9d272e564b22a1333a1e36a3d3ab7cfab01 (patch) | |
| tree | 391382eadd4fec5bb480f2e8934fa352770221d1 /clang-r353983/include/llvm/Transforms/Utils/FunctionComparator.h | |
| parent | d1d48b140bafaa8a50107292f5fce95562575765 (diff) | |
| parent | 4f56932d3416ac03f646bc1a611b3135fec2fe08 (diff) | |
Merge "Update prebuilt Clang to r353983." into p9.0HEADp9.0-backupp9.0
Diffstat (limited to 'clang-r353983/include/llvm/Transforms/Utils/FunctionComparator.h')
| -rw-r--r-- | clang-r353983/include/llvm/Transforms/Utils/FunctionComparator.h | 392 |
1 files changed, 392 insertions, 0 deletions
diff --git a/clang-r353983/include/llvm/Transforms/Utils/FunctionComparator.h b/clang-r353983/include/llvm/Transforms/Utils/FunctionComparator.h new file mode 100644 index 00000000..4e2571b1 --- /dev/null +++ b/clang-r353983/include/llvm/Transforms/Utils/FunctionComparator.h @@ -0,0 +1,392 @@ +//===- FunctionComparator.h - Function Comparator ---------------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines the FunctionComparator and GlobalNumberState classes which +// are used by the MergeFunctions pass for comparing functions. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_TRANSFORMS_UTILS_FUNCTIONCOMPARATOR_H +#define LLVM_TRANSFORMS_UTILS_FUNCTIONCOMPARATOR_H + +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/ValueMap.h" +#include "llvm/Support/AtomicOrdering.h" +#include "llvm/Support/Casting.h" +#include <cstdint> +#include <tuple> + +namespace llvm { + +class APFloat; +class APInt; +class BasicBlock; +class Constant; +class Function; +class GlobalValue; +class InlineAsm; +class Instruction; +class MDNode; +class Type; +class Value; + +/// GlobalNumberState assigns an integer to each global value in the program, +/// which is used by the comparison routine to order references to globals. This +/// state must be preserved throughout the pass, because Functions and other +/// globals need to maintain their relative order. Globals are assigned a number +/// when they are first visited. This order is deterministic, and so the +/// assigned numbers are as well. When two functions are merged, neither number +/// is updated. If the symbols are weak, this would be incorrect. If they are +/// strong, then one will be replaced at all references to the other, and so +/// direct callsites will now see one or the other symbol, and no update is +/// necessary. Note that if we were guaranteed unique names, we could just +/// compare those, but this would not work for stripped bitcodes or for those +/// few symbols without a name. +class GlobalNumberState { + struct Config : ValueMapConfig<GlobalValue *> { + enum { FollowRAUW = false }; + }; + + // Each GlobalValue is mapped to an identifier. The Config ensures when RAUW + // occurs, the mapping does not change. Tracking changes is unnecessary, and + // also problematic for weak symbols (which may be overwritten). + using ValueNumberMap = ValueMap<GlobalValue *, uint64_t, Config>; + ValueNumberMap GlobalNumbers; + + // The next unused serial number to assign to a global. + uint64_t NextNumber = 0; + +public: + GlobalNumberState() = default; + + uint64_t getNumber(GlobalValue* Global) { + ValueNumberMap::iterator MapIter; + bool Inserted; + std::tie(MapIter, Inserted) = GlobalNumbers.insert({Global, NextNumber}); + if (Inserted) + NextNumber++; + return MapIter->second; + } + + void erase(GlobalValue *Global) { + GlobalNumbers.erase(Global); + } + + void clear() { + GlobalNumbers.clear(); + } +}; + +/// FunctionComparator - Compares two functions to determine whether or not +/// they will generate machine code with the same behaviour. DataLayout is +/// used if available. The comparator always fails conservatively (erring on the +/// side of claiming that two functions are different). +class FunctionComparator { +public: + FunctionComparator(const Function *F1, const Function *F2, + GlobalNumberState* GN) + : FnL(F1), FnR(F2), GlobalNumbers(GN) {} + + /// Test whether the two functions have equivalent behaviour. + int compare(); + + /// Hash a function. Equivalent functions will have the same hash, and unequal + /// functions will have different hashes with high probability. + using FunctionHash = uint64_t; + static FunctionHash functionHash(Function &); + +protected: + /// Start the comparison. + void beginCompare() { + sn_mapL.clear(); + sn_mapR.clear(); + } + + /// Compares the signature and other general attributes of the two functions. + int compareSignature() const; + + /// Test whether two basic blocks have equivalent behaviour. + int cmpBasicBlocks(const BasicBlock *BBL, const BasicBlock *BBR) const; + + /// Constants comparison. + /// Its analog to lexicographical comparison between hypothetical numbers + /// of next format: + /// <bitcastability-trait><raw-bit-contents> + /// + /// 1. Bitcastability. + /// Check whether L's type could be losslessly bitcasted to R's type. + /// On this stage method, in case when lossless bitcast is not possible + /// method returns -1 or 1, thus also defining which type is greater in + /// context of bitcastability. + /// Stage 0: If types are equal in terms of cmpTypes, then we can go straight + /// to the contents comparison. + /// If types differ, remember types comparison result and check + /// whether we still can bitcast types. + /// Stage 1: Types that satisfies isFirstClassType conditions are always + /// greater then others. + /// Stage 2: Vector is greater then non-vector. + /// If both types are vectors, then vector with greater bitwidth is + /// greater. + /// If both types are vectors with the same bitwidth, then types + /// are bitcastable, and we can skip other stages, and go to contents + /// comparison. + /// Stage 3: Pointer types are greater than non-pointers. If both types are + /// pointers of the same address space - go to contents comparison. + /// Different address spaces: pointer with greater address space is + /// greater. + /// Stage 4: Types are neither vectors, nor pointers. And they differ. + /// We don't know how to bitcast them. So, we better don't do it, + /// and return types comparison result (so it determines the + /// relationship among constants we don't know how to bitcast). + /// + /// Just for clearance, let's see how the set of constants could look + /// on single dimension axis: + /// + /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors] + /// Where: NFCT - Not a FirstClassType + /// FCT - FirstClassTyp: + /// + /// 2. Compare raw contents. + /// It ignores types on this stage and only compares bits from L and R. + /// Returns 0, if L and R has equivalent contents. + /// -1 or 1 if values are different. + /// Pretty trivial: + /// 2.1. If contents are numbers, compare numbers. + /// Ints with greater bitwidth are greater. Ints with same bitwidths + /// compared by their contents. + /// 2.2. "And so on". Just to avoid discrepancies with comments + /// perhaps it would be better to read the implementation itself. + /// 3. And again about overall picture. Let's look back at how the ordered set + /// of constants will look like: + /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors] + /// + /// Now look, what could be inside [FCT, "others"], for example: + /// [FCT, "others"] = + /// [ + /// [double 0.1], [double 1.23], + /// [i32 1], [i32 2], + /// { double 1.0 }, ; StructTyID, NumElements = 1 + /// { i32 1 }, ; StructTyID, NumElements = 1 + /// { double 1, i32 1 }, ; StructTyID, NumElements = 2 + /// { i32 1, double 1 } ; StructTyID, NumElements = 2 + /// ] + /// + /// Let's explain the order. Float numbers will be less than integers, just + /// because of cmpType terms: FloatTyID < IntegerTyID. + /// Floats (with same fltSemantics) are sorted according to their value. + /// Then you can see integers, and they are, like a floats, + /// could be easy sorted among each others. + /// The structures. Structures are grouped at the tail, again because of their + /// TypeID: StructTyID > IntegerTyID > FloatTyID. + /// Structures with greater number of elements are greater. Structures with + /// greater elements going first are greater. + /// The same logic with vectors, arrays and other possible complex types. + /// + /// Bitcastable constants. + /// Let's assume, that some constant, belongs to some group of + /// "so-called-equal" values with different types, and at the same time + /// belongs to another group of constants with equal types + /// and "really" equal values. + /// + /// Now, prove that this is impossible: + /// + /// If constant A with type TyA is bitcastable to B with type TyB, then: + /// 1. All constants with equal types to TyA, are bitcastable to B. Since + /// those should be vectors (if TyA is vector), pointers + /// (if TyA is pointer), or else (if TyA equal to TyB), those types should + /// be equal to TyB. + /// 2. All constants with non-equal, but bitcastable types to TyA, are + /// bitcastable to B. + /// Once again, just because we allow it to vectors and pointers only. + /// This statement could be expanded as below: + /// 2.1. All vectors with equal bitwidth to vector A, has equal bitwidth to + /// vector B, and thus bitcastable to B as well. + /// 2.2. All pointers of the same address space, no matter what they point to, + /// bitcastable. So if C is pointer, it could be bitcasted to A and to B. + /// So any constant equal or bitcastable to A is equal or bitcastable to B. + /// QED. + /// + /// In another words, for pointers and vectors, we ignore top-level type and + /// look at their particular properties (bit-width for vectors, and + /// address space for pointers). + /// If these properties are equal - compare their contents. + int cmpConstants(const Constant *L, const Constant *R) const; + + /// Compares two global values by number. Uses the GlobalNumbersState to + /// identify the same gobals across function calls. + int cmpGlobalValues(GlobalValue *L, GlobalValue *R) const; + + /// Assign or look up previously assigned numbers for the two values, and + /// return whether the numbers are equal. Numbers are assigned in the order + /// visited. + /// Comparison order: + /// Stage 0: Value that is function itself is always greater then others. + /// If left and right values are references to their functions, then + /// they are equal. + /// Stage 1: Constants are greater than non-constants. + /// If both left and right are constants, then the result of + /// cmpConstants is used as cmpValues result. + /// Stage 2: InlineAsm instances are greater than others. If both left and + /// right are InlineAsm instances, InlineAsm* pointers casted to + /// integers and compared as numbers. + /// Stage 3: For all other cases we compare order we meet these values in + /// their functions. If right value was met first during scanning, + /// then left value is greater. + /// In another words, we compare serial numbers, for more details + /// see comments for sn_mapL and sn_mapR. + int cmpValues(const Value *L, const Value *R) const; + + /// Compare two Instructions for equivalence, similar to + /// Instruction::isSameOperationAs. + /// + /// Stages are listed in "most significant stage first" order: + /// On each stage below, we do comparison between some left and right + /// operation parts. If parts are non-equal, we assign parts comparison + /// result to the operation comparison result and exit from method. + /// Otherwise we proceed to the next stage. + /// Stages: + /// 1. Operations opcodes. Compared as numbers. + /// 2. Number of operands. + /// 3. Operation types. Compared with cmpType method. + /// 4. Compare operation subclass optional data as stream of bytes: + /// just convert it to integers and call cmpNumbers. + /// 5. Compare in operation operand types with cmpType in + /// most significant operand first order. + /// 6. Last stage. Check operations for some specific attributes. + /// For example, for Load it would be: + /// 6.1.Load: volatile (as boolean flag) + /// 6.2.Load: alignment (as integer numbers) + /// 6.3.Load: ordering (as underlying enum class value) + /// 6.4.Load: synch-scope (as integer numbers) + /// 6.5.Load: range metadata (as integer ranges) + /// On this stage its better to see the code, since its not more than 10-15 + /// strings for particular instruction, and could change sometimes. + /// + /// Sets \p needToCmpOperands to true if the operands of the instructions + /// still must be compared afterwards. In this case it's already guaranteed + /// that both instructions have the same number of operands. + int cmpOperations(const Instruction *L, const Instruction *R, + bool &needToCmpOperands) const; + + /// cmpType - compares two types, + /// defines total ordering among the types set. + /// + /// Return values: + /// 0 if types are equal, + /// -1 if Left is less than Right, + /// +1 if Left is greater than Right. + /// + /// Description: + /// Comparison is broken onto stages. Like in lexicographical comparison + /// stage coming first has higher priority. + /// On each explanation stage keep in mind total ordering properties. + /// + /// 0. Before comparison we coerce pointer types of 0 address space to + /// integer. + /// We also don't bother with same type at left and right, so + /// just return 0 in this case. + /// + /// 1. If types are of different kind (different type IDs). + /// Return result of type IDs comparison, treating them as numbers. + /// 2. If types are integers, check that they have the same width. If they + /// are vectors, check that they have the same count and subtype. + /// 3. Types have the same ID, so check whether they are one of: + /// * Void + /// * Float + /// * Double + /// * X86_FP80 + /// * FP128 + /// * PPC_FP128 + /// * Label + /// * Metadata + /// We can treat these types as equal whenever their IDs are same. + /// 4. If Left and Right are pointers, return result of address space + /// comparison (numbers comparison). We can treat pointer types of same + /// address space as equal. + /// 5. If types are complex. + /// Then both Left and Right are to be expanded and their element types will + /// be checked with the same way. If we get Res != 0 on some stage, return it. + /// Otherwise return 0. + /// 6. For all other cases put llvm_unreachable. + int cmpTypes(Type *TyL, Type *TyR) const; + + int cmpNumbers(uint64_t L, uint64_t R) const; + int cmpAPInts(const APInt &L, const APInt &R) const; + int cmpAPFloats(const APFloat &L, const APFloat &R) const; + int cmpMem(StringRef L, StringRef R) const; + + // The two functions undergoing comparison. + const Function *FnL, *FnR; + +private: + int cmpOrderings(AtomicOrdering L, AtomicOrdering R) const; + int cmpInlineAsm(const InlineAsm *L, const InlineAsm *R) const; + int cmpAttrs(const AttributeList L, const AttributeList R) const; + int cmpRangeMetadata(const MDNode *L, const MDNode *R) const; + int cmpOperandBundlesSchema(const Instruction *L, const Instruction *R) const; + + /// Compare two GEPs for equivalent pointer arithmetic. + /// Parts to be compared for each comparison stage, + /// most significant stage first: + /// 1. Address space. As numbers. + /// 2. Constant offset, (using GEPOperator::accumulateConstantOffset method). + /// 3. Pointer operand type (using cmpType method). + /// 4. Number of operands. + /// 5. Compare operands, using cmpValues method. + int cmpGEPs(const GEPOperator *GEPL, const GEPOperator *GEPR) const; + int cmpGEPs(const GetElementPtrInst *GEPL, + const GetElementPtrInst *GEPR) const { + return cmpGEPs(cast<GEPOperator>(GEPL), cast<GEPOperator>(GEPR)); + } + + /// Assign serial numbers to values from left function, and values from + /// right function. + /// Explanation: + /// Being comparing functions we need to compare values we meet at left and + /// right sides. + /// Its easy to sort things out for external values. It just should be + /// the same value at left and right. + /// But for local values (those were introduced inside function body) + /// we have to ensure they were introduced at exactly the same place, + /// and plays the same role. + /// Let's assign serial number to each value when we meet it first time. + /// Values that were met at same place will be with same serial numbers. + /// In this case it would be good to explain few points about values assigned + /// to BBs and other ways of implementation (see below). + /// + /// 1. Safety of BB reordering. + /// It's safe to change the order of BasicBlocks in function. + /// Relationship with other functions and serial numbering will not be + /// changed in this case. + /// As follows from FunctionComparator::compare(), we do CFG walk: we start + /// from the entry, and then take each terminator. So it doesn't matter how in + /// fact BBs are ordered in function. And since cmpValues are called during + /// this walk, the numbering depends only on how BBs located inside the CFG. + /// So the answer is - yes. We will get the same numbering. + /// + /// 2. Impossibility to use dominance properties of values. + /// If we compare two instruction operands: first is usage of local + /// variable AL from function FL, and second is usage of local variable AR + /// from FR, we could compare their origins and check whether they are + /// defined at the same place. + /// But, we are still not able to compare operands of PHI nodes, since those + /// could be operands from further BBs we didn't scan yet. + /// So it's impossible to use dominance properties in general. + mutable DenseMap<const Value*, int> sn_mapL, sn_mapR; + + // The global state we will use + GlobalNumberState* GlobalNumbers; +}; + +} // end namespace llvm + +#endif // LLVM_TRANSFORMS_UTILS_FUNCTIONCOMPARATOR_H |
