summaryrefslogtreecommitdiff
path: root/clang-r353983/include/clang/AST/Decl.h
diff options
context:
space:
mode:
Diffstat (limited to 'clang-r353983/include/clang/AST/Decl.h')
-rw-r--r--clang-r353983/include/clang/AST/Decl.h4340
1 files changed, 4340 insertions, 0 deletions
diff --git a/clang-r353983/include/clang/AST/Decl.h b/clang-r353983/include/clang/AST/Decl.h
new file mode 100644
index 00000000..526e2107
--- /dev/null
+++ b/clang-r353983/include/clang/AST/Decl.h
@@ -0,0 +1,4340 @@
+//===- Decl.h - Classes for representing declarations -----------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the Decl subclasses.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_AST_DECL_H
+#define LLVM_CLANG_AST_DECL_H
+
+#include "clang/AST/APValue.h"
+#include "clang/AST/ASTContextAllocate.h"
+#include "clang/AST/DeclBase.h"
+#include "clang/AST/DeclarationName.h"
+#include "clang/AST/ExternalASTSource.h"
+#include "clang/AST/NestedNameSpecifier.h"
+#include "clang/AST/Redeclarable.h"
+#include "clang/AST/Type.h"
+#include "clang/Basic/AddressSpaces.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/IdentifierTable.h"
+#include "clang/Basic/LLVM.h"
+#include "clang/Basic/Linkage.h"
+#include "clang/Basic/OperatorKinds.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "clang/Basic/PragmaKinds.h"
+#include "clang/Basic/SourceLocation.h"
+#include "clang/Basic/Specifiers.h"
+#include "clang/Basic/Visibility.h"
+#include "llvm/ADT/APSInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/PointerIntPair.h"
+#include "llvm/ADT/PointerUnion.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/TrailingObjects.h"
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <string>
+#include <utility>
+
+namespace clang {
+
+class ASTContext;
+struct ASTTemplateArgumentListInfo;
+class Attr;
+class CompoundStmt;
+class DependentFunctionTemplateSpecializationInfo;
+class EnumDecl;
+class Expr;
+class FunctionTemplateDecl;
+class FunctionTemplateSpecializationInfo;
+class LabelStmt;
+class MemberSpecializationInfo;
+class Module;
+class NamespaceDecl;
+class ParmVarDecl;
+class RecordDecl;
+class Stmt;
+class StringLiteral;
+class TagDecl;
+class TemplateArgumentList;
+class TemplateArgumentListInfo;
+class TemplateParameterList;
+class TypeAliasTemplateDecl;
+class TypeLoc;
+class UnresolvedSetImpl;
+class VarTemplateDecl;
+
+/// A container of type source information.
+///
+/// A client can read the relevant info using TypeLoc wrappers, e.g:
+/// @code
+/// TypeLoc TL = TypeSourceInfo->getTypeLoc();
+/// TL.getBeginLoc().print(OS, SrcMgr);
+/// @endcode
+class alignas(8) TypeSourceInfo {
+ // Contains a memory block after the class, used for type source information,
+ // allocated by ASTContext.
+ friend class ASTContext;
+
+ QualType Ty;
+
+ TypeSourceInfo(QualType ty) : Ty(ty) {}
+
+public:
+ /// Return the type wrapped by this type source info.
+ QualType getType() const { return Ty; }
+
+ /// Return the TypeLoc wrapper for the type source info.
+ TypeLoc getTypeLoc() const; // implemented in TypeLoc.h
+
+ /// Override the type stored in this TypeSourceInfo. Use with caution!
+ void overrideType(QualType T) { Ty = T; }
+};
+
+/// The top declaration context.
+class TranslationUnitDecl : public Decl, public DeclContext {
+ ASTContext &Ctx;
+
+ /// The (most recently entered) anonymous namespace for this
+ /// translation unit, if one has been created.
+ NamespaceDecl *AnonymousNamespace = nullptr;
+
+ explicit TranslationUnitDecl(ASTContext &ctx);
+
+ virtual void anchor();
+
+public:
+ ASTContext &getASTContext() const { return Ctx; }
+
+ NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; }
+ void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; }
+
+ static TranslationUnitDecl *Create(ASTContext &C);
+
+ // Implement isa/cast/dyncast/etc.
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) { return K == TranslationUnit; }
+ static DeclContext *castToDeclContext(const TranslationUnitDecl *D) {
+ return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D));
+ }
+ static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) {
+ return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC));
+ }
+};
+
+/// Represents a `#pragma comment` line. Always a child of
+/// TranslationUnitDecl.
+class PragmaCommentDecl final
+ : public Decl,
+ private llvm::TrailingObjects<PragmaCommentDecl, char> {
+ friend class ASTDeclReader;
+ friend class ASTDeclWriter;
+ friend TrailingObjects;
+
+ PragmaMSCommentKind CommentKind;
+
+ PragmaCommentDecl(TranslationUnitDecl *TU, SourceLocation CommentLoc,
+ PragmaMSCommentKind CommentKind)
+ : Decl(PragmaComment, TU, CommentLoc), CommentKind(CommentKind) {}
+
+ virtual void anchor();
+
+public:
+ static PragmaCommentDecl *Create(const ASTContext &C, TranslationUnitDecl *DC,
+ SourceLocation CommentLoc,
+ PragmaMSCommentKind CommentKind,
+ StringRef Arg);
+ static PragmaCommentDecl *CreateDeserialized(ASTContext &C, unsigned ID,
+ unsigned ArgSize);
+
+ PragmaMSCommentKind getCommentKind() const { return CommentKind; }
+
+ StringRef getArg() const { return getTrailingObjects<char>(); }
+
+ // Implement isa/cast/dyncast/etc.
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) { return K == PragmaComment; }
+};
+
+/// Represents a `#pragma detect_mismatch` line. Always a child of
+/// TranslationUnitDecl.
+class PragmaDetectMismatchDecl final
+ : public Decl,
+ private llvm::TrailingObjects<PragmaDetectMismatchDecl, char> {
+ friend class ASTDeclReader;
+ friend class ASTDeclWriter;
+ friend TrailingObjects;
+
+ size_t ValueStart;
+
+ PragmaDetectMismatchDecl(TranslationUnitDecl *TU, SourceLocation Loc,
+ size_t ValueStart)
+ : Decl(PragmaDetectMismatch, TU, Loc), ValueStart(ValueStart) {}
+
+ virtual void anchor();
+
+public:
+ static PragmaDetectMismatchDecl *Create(const ASTContext &C,
+ TranslationUnitDecl *DC,
+ SourceLocation Loc, StringRef Name,
+ StringRef Value);
+ static PragmaDetectMismatchDecl *
+ CreateDeserialized(ASTContext &C, unsigned ID, unsigned NameValueSize);
+
+ StringRef getName() const { return getTrailingObjects<char>(); }
+ StringRef getValue() const { return getTrailingObjects<char>() + ValueStart; }
+
+ // Implement isa/cast/dyncast/etc.
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) { return K == PragmaDetectMismatch; }
+};
+
+/// Declaration context for names declared as extern "C" in C++. This
+/// is neither the semantic nor lexical context for such declarations, but is
+/// used to check for conflicts with other extern "C" declarations. Example:
+///
+/// \code
+/// namespace N { extern "C" void f(); } // #1
+/// void N::f() {} // #2
+/// namespace M { extern "C" void f(); } // #3
+/// \endcode
+///
+/// The semantic context of #1 is namespace N and its lexical context is the
+/// LinkageSpecDecl; the semantic context of #2 is namespace N and its lexical
+/// context is the TU. However, both declarations are also visible in the
+/// extern "C" context.
+///
+/// The declaration at #3 finds it is a redeclaration of \c N::f through
+/// lookup in the extern "C" context.
+class ExternCContextDecl : public Decl, public DeclContext {
+ explicit ExternCContextDecl(TranslationUnitDecl *TU)
+ : Decl(ExternCContext, TU, SourceLocation()),
+ DeclContext(ExternCContext) {}
+
+ virtual void anchor();
+
+public:
+ static ExternCContextDecl *Create(const ASTContext &C,
+ TranslationUnitDecl *TU);
+
+ // Implement isa/cast/dyncast/etc.
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) { return K == ExternCContext; }
+ static DeclContext *castToDeclContext(const ExternCContextDecl *D) {
+ return static_cast<DeclContext *>(const_cast<ExternCContextDecl*>(D));
+ }
+ static ExternCContextDecl *castFromDeclContext(const DeclContext *DC) {
+ return static_cast<ExternCContextDecl *>(const_cast<DeclContext*>(DC));
+ }
+};
+
+/// This represents a decl that may have a name. Many decls have names such
+/// as ObjCMethodDecl, but not \@class, etc.
+///
+/// Note that not every NamedDecl is actually named (e.g., a struct might
+/// be anonymous), and not every name is an identifier.
+class NamedDecl : public Decl {
+ /// The name of this declaration, which is typically a normal
+ /// identifier but may also be a special kind of name (C++
+ /// constructor, Objective-C selector, etc.)
+ DeclarationName Name;
+
+ virtual void anchor();
+
+private:
+ NamedDecl *getUnderlyingDeclImpl() LLVM_READONLY;
+
+protected:
+ NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
+ : Decl(DK, DC, L), Name(N) {}
+
+public:
+ /// Get the identifier that names this declaration, if there is one.
+ ///
+ /// This will return NULL if this declaration has no name (e.g., for
+ /// an unnamed class) or if the name is a special name (C++ constructor,
+ /// Objective-C selector, etc.).
+ IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); }
+
+ /// Get the name of identifier for this declaration as a StringRef.
+ ///
+ /// This requires that the declaration have a name and that it be a simple
+ /// identifier.
+ StringRef getName() const {
+ assert(Name.isIdentifier() && "Name is not a simple identifier");
+ return getIdentifier() ? getIdentifier()->getName() : "";
+ }
+
+ /// Get a human-readable name for the declaration, even if it is one of the
+ /// special kinds of names (C++ constructor, Objective-C selector, etc).
+ ///
+ /// Creating this name requires expensive string manipulation, so it should
+ /// be called only when performance doesn't matter. For simple declarations,
+ /// getNameAsCString() should suffice.
+ //
+ // FIXME: This function should be renamed to indicate that it is not just an
+ // alternate form of getName(), and clients should move as appropriate.
+ //
+ // FIXME: Deprecated, move clients to getName().
+ std::string getNameAsString() const { return Name.getAsString(); }
+
+ virtual void printName(raw_ostream &os) const;
+
+ /// Get the actual, stored name of the declaration, which may be a special
+ /// name.
+ DeclarationName getDeclName() const { return Name; }
+
+ /// Set the name of this declaration.
+ void setDeclName(DeclarationName N) { Name = N; }
+
+ /// Returns a human-readable qualified name for this declaration, like
+ /// A::B::i, for i being member of namespace A::B.
+ ///
+ /// If the declaration is not a member of context which can be named (record,
+ /// namespace), it will return the same result as printName().
+ ///
+ /// Creating this name is expensive, so it should be called only when
+ /// performance doesn't matter.
+ void printQualifiedName(raw_ostream &OS) const;
+ void printQualifiedName(raw_ostream &OS, const PrintingPolicy &Policy) const;
+
+ // FIXME: Remove string version.
+ std::string getQualifiedNameAsString() const;
+
+ /// Appends a human-readable name for this declaration into the given stream.
+ ///
+ /// This is the method invoked by Sema when displaying a NamedDecl
+ /// in a diagnostic. It does not necessarily produce the same
+ /// result as printName(); for example, class template
+ /// specializations are printed with their template arguments.
+ virtual void getNameForDiagnostic(raw_ostream &OS,
+ const PrintingPolicy &Policy,
+ bool Qualified) const;
+
+ /// Determine whether this declaration, if known to be well-formed within
+ /// its context, will replace the declaration OldD if introduced into scope.
+ ///
+ /// A declaration will replace another declaration if, for example, it is
+ /// a redeclaration of the same variable or function, but not if it is a
+ /// declaration of a different kind (function vs. class) or an overloaded
+ /// function.
+ ///
+ /// \param IsKnownNewer \c true if this declaration is known to be newer
+ /// than \p OldD (for instance, if this declaration is newly-created).
+ bool declarationReplaces(NamedDecl *OldD, bool IsKnownNewer = true) const;
+
+ /// Determine whether this declaration has linkage.
+ bool hasLinkage() const;
+
+ using Decl::isModulePrivate;
+ using Decl::setModulePrivate;
+
+ /// Determine whether this declaration is a C++ class member.
+ bool isCXXClassMember() const {
+ const DeclContext *DC = getDeclContext();
+
+ // C++0x [class.mem]p1:
+ // The enumerators of an unscoped enumeration defined in
+ // the class are members of the class.
+ if (isa<EnumDecl>(DC))
+ DC = DC->getRedeclContext();
+
+ return DC->isRecord();
+ }
+
+ /// Determine whether the given declaration is an instance member of
+ /// a C++ class.
+ bool isCXXInstanceMember() const;
+
+ /// Determine what kind of linkage this entity has.
+ ///
+ /// This is not the linkage as defined by the standard or the codegen notion
+ /// of linkage. It is just an implementation detail that is used to compute
+ /// those.
+ Linkage getLinkageInternal() const;
+
+ /// Get the linkage from a semantic point of view. Entities in
+ /// anonymous namespaces are external (in c++98).
+ Linkage getFormalLinkage() const {
+ return clang::getFormalLinkage(getLinkageInternal());
+ }
+
+ /// True if this decl has external linkage.
+ bool hasExternalFormalLinkage() const {
+ return isExternalFormalLinkage(getLinkageInternal());
+ }
+
+ bool isExternallyVisible() const {
+ return clang::isExternallyVisible(getLinkageInternal());
+ }
+
+ /// Determine whether this declaration can be redeclared in a
+ /// different translation unit.
+ bool isExternallyDeclarable() const {
+ return isExternallyVisible() && !getOwningModuleForLinkage();
+ }
+
+ /// Determines the visibility of this entity.
+ Visibility getVisibility() const {
+ return getLinkageAndVisibility().getVisibility();
+ }
+
+ /// Determines the linkage and visibility of this entity.
+ LinkageInfo getLinkageAndVisibility() const;
+
+ /// Kinds of explicit visibility.
+ enum ExplicitVisibilityKind {
+ /// Do an LV computation for, ultimately, a type.
+ /// Visibility may be restricted by type visibility settings and
+ /// the visibility of template arguments.
+ VisibilityForType,
+
+ /// Do an LV computation for, ultimately, a non-type declaration.
+ /// Visibility may be restricted by value visibility settings and
+ /// the visibility of template arguments.
+ VisibilityForValue
+ };
+
+ /// If visibility was explicitly specified for this
+ /// declaration, return that visibility.
+ Optional<Visibility>
+ getExplicitVisibility(ExplicitVisibilityKind kind) const;
+
+ /// True if the computed linkage is valid. Used for consistency
+ /// checking. Should always return true.
+ bool isLinkageValid() const;
+
+ /// True if something has required us to compute the linkage
+ /// of this declaration.
+ ///
+ /// Language features which can retroactively change linkage (like a
+ /// typedef name for linkage purposes) may need to consider this,
+ /// but hopefully only in transitory ways during parsing.
+ bool hasLinkageBeenComputed() const {
+ return hasCachedLinkage();
+ }
+
+ /// Looks through UsingDecls and ObjCCompatibleAliasDecls for
+ /// the underlying named decl.
+ NamedDecl *getUnderlyingDecl() {
+ // Fast-path the common case.
+ if (this->getKind() != UsingShadow &&
+ this->getKind() != ConstructorUsingShadow &&
+ this->getKind() != ObjCCompatibleAlias &&
+ this->getKind() != NamespaceAlias)
+ return this;
+
+ return getUnderlyingDeclImpl();
+ }
+ const NamedDecl *getUnderlyingDecl() const {
+ return const_cast<NamedDecl*>(this)->getUnderlyingDecl();
+ }
+
+ NamedDecl *getMostRecentDecl() {
+ return cast<NamedDecl>(static_cast<Decl *>(this)->getMostRecentDecl());
+ }
+ const NamedDecl *getMostRecentDecl() const {
+ return const_cast<NamedDecl*>(this)->getMostRecentDecl();
+ }
+
+ ObjCStringFormatFamily getObjCFStringFormattingFamily() const;
+
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) { return K >= firstNamed && K <= lastNamed; }
+};
+
+inline raw_ostream &operator<<(raw_ostream &OS, const NamedDecl &ND) {
+ ND.printName(OS);
+ return OS;
+}
+
+/// Represents the declaration of a label. Labels also have a
+/// corresponding LabelStmt, which indicates the position that the label was
+/// defined at. For normal labels, the location of the decl is the same as the
+/// location of the statement. For GNU local labels (__label__), the decl
+/// location is where the __label__ is.
+class LabelDecl : public NamedDecl {
+ LabelStmt *TheStmt;
+ StringRef MSAsmName;
+ bool MSAsmNameResolved = false;
+
+ /// For normal labels, this is the same as the main declaration
+ /// label, i.e., the location of the identifier; for GNU local labels,
+ /// this is the location of the __label__ keyword.
+ SourceLocation LocStart;
+
+ LabelDecl(DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II,
+ LabelStmt *S, SourceLocation StartL)
+ : NamedDecl(Label, DC, IdentL, II), TheStmt(S), LocStart(StartL) {}
+
+ void anchor() override;
+
+public:
+ static LabelDecl *Create(ASTContext &C, DeclContext *DC,
+ SourceLocation IdentL, IdentifierInfo *II);
+ static LabelDecl *Create(ASTContext &C, DeclContext *DC,
+ SourceLocation IdentL, IdentifierInfo *II,
+ SourceLocation GnuLabelL);
+ static LabelDecl *CreateDeserialized(ASTContext &C, unsigned ID);
+
+ LabelStmt *getStmt() const { return TheStmt; }
+ void setStmt(LabelStmt *T) { TheStmt = T; }
+
+ bool isGnuLocal() const { return LocStart != getLocation(); }
+ void setLocStart(SourceLocation L) { LocStart = L; }
+
+ SourceRange getSourceRange() const override LLVM_READONLY {
+ return SourceRange(LocStart, getLocation());
+ }
+
+ bool isMSAsmLabel() const { return !MSAsmName.empty(); }
+ bool isResolvedMSAsmLabel() const { return isMSAsmLabel() && MSAsmNameResolved; }
+ void setMSAsmLabel(StringRef Name);
+ StringRef getMSAsmLabel() const { return MSAsmName; }
+ void setMSAsmLabelResolved() { MSAsmNameResolved = true; }
+
+ // Implement isa/cast/dyncast/etc.
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) { return K == Label; }
+};
+
+/// Represent a C++ namespace.
+class NamespaceDecl : public NamedDecl, public DeclContext,
+ public Redeclarable<NamespaceDecl>
+{
+ /// The starting location of the source range, pointing
+ /// to either the namespace or the inline keyword.
+ SourceLocation LocStart;
+
+ /// The ending location of the source range.
+ SourceLocation RBraceLoc;
+
+ /// A pointer to either the anonymous namespace that lives just inside
+ /// this namespace or to the first namespace in the chain (the latter case
+ /// only when this is not the first in the chain), along with a
+ /// boolean value indicating whether this is an inline namespace.
+ llvm::PointerIntPair<NamespaceDecl *, 1, bool> AnonOrFirstNamespaceAndInline;
+
+ NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
+ SourceLocation StartLoc, SourceLocation IdLoc,
+ IdentifierInfo *Id, NamespaceDecl *PrevDecl);
+
+ using redeclarable_base = Redeclarable<NamespaceDecl>;
+
+ NamespaceDecl *getNextRedeclarationImpl() override;
+ NamespaceDecl *getPreviousDeclImpl() override;
+ NamespaceDecl *getMostRecentDeclImpl() override;
+
+public:
+ friend class ASTDeclReader;
+ friend class ASTDeclWriter;
+
+ static NamespaceDecl *Create(ASTContext &C, DeclContext *DC,
+ bool Inline, SourceLocation StartLoc,
+ SourceLocation IdLoc, IdentifierInfo *Id,
+ NamespaceDecl *PrevDecl);
+
+ static NamespaceDecl *CreateDeserialized(ASTContext &C, unsigned ID);
+
+ using redecl_range = redeclarable_base::redecl_range;
+ using redecl_iterator = redeclarable_base::redecl_iterator;
+
+ using redeclarable_base::redecls_begin;
+ using redeclarable_base::redecls_end;
+ using redeclarable_base::redecls;
+ using redeclarable_base::getPreviousDecl;
+ using redeclarable_base::getMostRecentDecl;
+ using redeclarable_base::isFirstDecl;
+
+ /// Returns true if this is an anonymous namespace declaration.
+ ///
+ /// For example:
+ /// \code
+ /// namespace {
+ /// ...
+ /// };
+ /// \endcode
+ /// q.v. C++ [namespace.unnamed]
+ bool isAnonymousNamespace() const {
+ return !getIdentifier();
+ }
+
+ /// Returns true if this is an inline namespace declaration.
+ bool isInline() const {
+ return AnonOrFirstNamespaceAndInline.getInt();
+ }
+
+ /// Set whether this is an inline namespace declaration.
+ void setInline(bool Inline) {
+ AnonOrFirstNamespaceAndInline.setInt(Inline);
+ }
+
+ /// Get the original (first) namespace declaration.
+ NamespaceDecl *getOriginalNamespace();
+
+ /// Get the original (first) namespace declaration.
+ const NamespaceDecl *getOriginalNamespace() const;
+
+ /// Return true if this declaration is an original (first) declaration
+ /// of the namespace. This is false for non-original (subsequent) namespace
+ /// declarations and anonymous namespaces.
+ bool isOriginalNamespace() const;
+
+ /// Retrieve the anonymous namespace nested inside this namespace,
+ /// if any.
+ NamespaceDecl *getAnonymousNamespace() const {
+ return getOriginalNamespace()->AnonOrFirstNamespaceAndInline.getPointer();
+ }
+
+ void setAnonymousNamespace(NamespaceDecl *D) {
+ getOriginalNamespace()->AnonOrFirstNamespaceAndInline.setPointer(D);
+ }
+
+ /// Retrieves the canonical declaration of this namespace.
+ NamespaceDecl *getCanonicalDecl() override {
+ return getOriginalNamespace();
+ }
+ const NamespaceDecl *getCanonicalDecl() const {
+ return getOriginalNamespace();
+ }
+
+ SourceRange getSourceRange() const override LLVM_READONLY {
+ return SourceRange(LocStart, RBraceLoc);
+ }
+
+ SourceLocation getBeginLoc() const LLVM_READONLY { return LocStart; }
+ SourceLocation getRBraceLoc() const { return RBraceLoc; }
+ void setLocStart(SourceLocation L) { LocStart = L; }
+ void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
+
+ // Implement isa/cast/dyncast/etc.
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) { return K == Namespace; }
+ static DeclContext *castToDeclContext(const NamespaceDecl *D) {
+ return static_cast<DeclContext *>(const_cast<NamespaceDecl*>(D));
+ }
+ static NamespaceDecl *castFromDeclContext(const DeclContext *DC) {
+ return static_cast<NamespaceDecl *>(const_cast<DeclContext*>(DC));
+ }
+};
+
+/// Represent the declaration of a variable (in which case it is
+/// an lvalue) a function (in which case it is a function designator) or
+/// an enum constant.
+class ValueDecl : public NamedDecl {
+ QualType DeclType;
+
+ void anchor() override;
+
+protected:
+ ValueDecl(Kind DK, DeclContext *DC, SourceLocation L,
+ DeclarationName N, QualType T)
+ : NamedDecl(DK, DC, L, N), DeclType(T) {}
+
+public:
+ QualType getType() const { return DeclType; }
+ void setType(QualType newType) { DeclType = newType; }
+
+ /// Determine whether this symbol is weakly-imported,
+ /// or declared with the weak or weak-ref attr.
+ bool isWeak() const;
+
+ // Implement isa/cast/dyncast/etc.
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) { return K >= firstValue && K <= lastValue; }
+};
+
+/// A struct with extended info about a syntactic
+/// name qualifier, to be used for the case of out-of-line declarations.
+struct QualifierInfo {
+ NestedNameSpecifierLoc QualifierLoc;
+
+ /// The number of "outer" template parameter lists.
+ /// The count includes all of the template parameter lists that were matched
+ /// against the template-ids occurring into the NNS and possibly (in the
+ /// case of an explicit specialization) a final "template <>".
+ unsigned NumTemplParamLists = 0;
+
+ /// A new-allocated array of size NumTemplParamLists,
+ /// containing pointers to the "outer" template parameter lists.
+ /// It includes all of the template parameter lists that were matched
+ /// against the template-ids occurring into the NNS and possibly (in the
+ /// case of an explicit specialization) a final "template <>".
+ TemplateParameterList** TemplParamLists = nullptr;
+
+ QualifierInfo() = default;
+ QualifierInfo(const QualifierInfo &) = delete;
+ QualifierInfo& operator=(const QualifierInfo &) = delete;
+
+ /// Sets info about "outer" template parameter lists.
+ void setTemplateParameterListsInfo(ASTContext &Context,
+ ArrayRef<TemplateParameterList *> TPLists);
+};
+
+/// Represents a ValueDecl that came out of a declarator.
+/// Contains type source information through TypeSourceInfo.
+class DeclaratorDecl : public ValueDecl {
+ // A struct representing both a TInfo and a syntactic qualifier,
+ // to be used for the (uncommon) case of out-of-line declarations.
+ struct ExtInfo : public QualifierInfo {
+ TypeSourceInfo *TInfo;
+ };
+
+ llvm::PointerUnion<TypeSourceInfo *, ExtInfo *> DeclInfo;
+
+ /// The start of the source range for this declaration,
+ /// ignoring outer template declarations.
+ SourceLocation InnerLocStart;
+
+ bool hasExtInfo() const { return DeclInfo.is<ExtInfo*>(); }
+ ExtInfo *getExtInfo() { return DeclInfo.get<ExtInfo*>(); }
+ const ExtInfo *getExtInfo() const { return DeclInfo.get<ExtInfo*>(); }
+
+protected:
+ DeclaratorDecl(Kind DK, DeclContext *DC, SourceLocation L,
+ DeclarationName N, QualType T, TypeSourceInfo *TInfo,
+ SourceLocation StartL)
+ : ValueDecl(DK, DC, L, N, T), DeclInfo(TInfo), InnerLocStart(StartL) {}
+
+public:
+ friend class ASTDeclReader;
+ friend class ASTDeclWriter;
+
+ TypeSourceInfo *getTypeSourceInfo() const {
+ return hasExtInfo()
+ ? getExtInfo()->TInfo
+ : DeclInfo.get<TypeSourceInfo*>();
+ }
+
+ void setTypeSourceInfo(TypeSourceInfo *TI) {
+ if (hasExtInfo())
+ getExtInfo()->TInfo = TI;
+ else
+ DeclInfo = TI;
+ }
+
+ /// Return start of source range ignoring outer template declarations.
+ SourceLocation getInnerLocStart() const { return InnerLocStart; }
+ void setInnerLocStart(SourceLocation L) { InnerLocStart = L; }
+
+ /// Return start of source range taking into account any outer template
+ /// declarations.
+ SourceLocation getOuterLocStart() const;
+
+ SourceRange getSourceRange() const override LLVM_READONLY;
+
+ SourceLocation getBeginLoc() const LLVM_READONLY {
+ return getOuterLocStart();
+ }
+
+ /// Retrieve the nested-name-specifier that qualifies the name of this
+ /// declaration, if it was present in the source.
+ NestedNameSpecifier *getQualifier() const {
+ return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
+ : nullptr;
+ }
+
+ /// Retrieve the nested-name-specifier (with source-location
+ /// information) that qualifies the name of this declaration, if it was
+ /// present in the source.
+ NestedNameSpecifierLoc getQualifierLoc() const {
+ return hasExtInfo() ? getExtInfo()->QualifierLoc
+ : NestedNameSpecifierLoc();
+ }
+
+ void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
+
+ unsigned getNumTemplateParameterLists() const {
+ return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
+ }
+
+ TemplateParameterList *getTemplateParameterList(unsigned index) const {
+ assert(index < getNumTemplateParameterLists());
+ return getExtInfo()->TemplParamLists[index];
+ }
+
+ void setTemplateParameterListsInfo(ASTContext &Context,
+ ArrayRef<TemplateParameterList *> TPLists);
+
+ SourceLocation getTypeSpecStartLoc() const;
+
+ // Implement isa/cast/dyncast/etc.
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) {
+ return K >= firstDeclarator && K <= lastDeclarator;
+ }
+};
+
+/// Structure used to store a statement, the constant value to
+/// which it was evaluated (if any), and whether or not the statement
+/// is an integral constant expression (if known).
+struct EvaluatedStmt {
+ /// Whether this statement was already evaluated.
+ bool WasEvaluated : 1;
+
+ /// Whether this statement is being evaluated.
+ bool IsEvaluating : 1;
+
+ /// Whether we already checked whether this statement was an
+ /// integral constant expression.
+ bool CheckedICE : 1;
+
+ /// Whether we are checking whether this statement is an
+ /// integral constant expression.
+ bool CheckingICE : 1;
+
+ /// Whether this statement is an integral constant expression,
+ /// or in C++11, whether the statement is a constant expression. Only
+ /// valid if CheckedICE is true.
+ bool IsICE : 1;
+
+ Stmt *Value;
+ APValue Evaluated;
+
+ EvaluatedStmt() : WasEvaluated(false), IsEvaluating(false), CheckedICE(false),
+ CheckingICE(false), IsICE(false) {}
+
+};
+
+/// Represents a variable declaration or definition.
+class VarDecl : public DeclaratorDecl, public Redeclarable<VarDecl> {
+public:
+ /// Initialization styles.
+ enum InitializationStyle {
+ /// C-style initialization with assignment
+ CInit,
+
+ /// Call-style initialization (C++98)
+ CallInit,
+
+ /// Direct list-initialization (C++11)
+ ListInit
+ };
+
+ /// Kinds of thread-local storage.
+ enum TLSKind {
+ /// Not a TLS variable.
+ TLS_None,
+
+ /// TLS with a known-constant initializer.
+ TLS_Static,
+
+ /// TLS with a dynamic initializer.
+ TLS_Dynamic
+ };
+
+ /// Return the string used to specify the storage class \p SC.
+ ///
+ /// It is illegal to call this function with SC == None.
+ static const char *getStorageClassSpecifierString(StorageClass SC);
+
+protected:
+ // A pointer union of Stmt * and EvaluatedStmt *. When an EvaluatedStmt, we
+ // have allocated the auxiliary struct of information there.
+ //
+ // TODO: It is a bit unfortunate to use a PointerUnion inside the VarDecl for
+ // this as *many* VarDecls are ParmVarDecls that don't have default
+ // arguments. We could save some space by moving this pointer union to be
+ // allocated in trailing space when necessary.
+ using InitType = llvm::PointerUnion<Stmt *, EvaluatedStmt *>;
+
+ /// The initializer for this variable or, for a ParmVarDecl, the
+ /// C++ default argument.
+ mutable InitType Init;
+
+private:
+ friend class ASTDeclReader;
+ friend class ASTNodeImporter;
+ friend class StmtIteratorBase;
+
+ class VarDeclBitfields {
+ friend class ASTDeclReader;
+ friend class VarDecl;
+
+ unsigned SClass : 3;
+ unsigned TSCSpec : 2;
+ unsigned InitStyle : 2;
+
+ /// Whether this variable is an ARC pseudo-__strong variable; see
+ /// isARCPseudoStrong() for details.
+ unsigned ARCPseudoStrong : 1;
+ };
+ enum { NumVarDeclBits = 8 };
+
+protected:
+ enum { NumParameterIndexBits = 8 };
+
+ enum DefaultArgKind {
+ DAK_None,
+ DAK_Unparsed,
+ DAK_Uninstantiated,
+ DAK_Normal
+ };
+
+ class ParmVarDeclBitfields {
+ friend class ASTDeclReader;
+ friend class ParmVarDecl;
+
+ unsigned : NumVarDeclBits;
+
+ /// Whether this parameter inherits a default argument from a
+ /// prior declaration.
+ unsigned HasInheritedDefaultArg : 1;
+
+ /// Describes the kind of default argument for this parameter. By default
+ /// this is none. If this is normal, then the default argument is stored in
+ /// the \c VarDecl initializer expression unless we were unable to parse
+ /// (even an invalid) expression for the default argument.
+ unsigned DefaultArgKind : 2;
+
+ /// Whether this parameter undergoes K&R argument promotion.
+ unsigned IsKNRPromoted : 1;
+
+ /// Whether this parameter is an ObjC method parameter or not.
+ unsigned IsObjCMethodParam : 1;
+
+ /// If IsObjCMethodParam, a Decl::ObjCDeclQualifier.
+ /// Otherwise, the number of function parameter scopes enclosing
+ /// the function parameter scope in which this parameter was
+ /// declared.
+ unsigned ScopeDepthOrObjCQuals : 7;
+
+ /// The number of parameters preceding this parameter in the
+ /// function parameter scope in which it was declared.
+ unsigned ParameterIndex : NumParameterIndexBits;
+ };
+
+ class NonParmVarDeclBitfields {
+ friend class ASTDeclReader;
+ friend class ImplicitParamDecl;
+ friend class VarDecl;
+
+ unsigned : NumVarDeclBits;
+
+ // FIXME: We need something similar to CXXRecordDecl::DefinitionData.
+ /// Whether this variable is a definition which was demoted due to
+ /// module merge.
+ unsigned IsThisDeclarationADemotedDefinition : 1;
+
+ /// Whether this variable is the exception variable in a C++ catch
+ /// or an Objective-C @catch statement.
+ unsigned ExceptionVar : 1;
+
+ /// Whether this local variable could be allocated in the return
+ /// slot of its function, enabling the named return value optimization
+ /// (NRVO).
+ unsigned NRVOVariable : 1;
+
+ /// Whether this variable is the for-range-declaration in a C++0x
+ /// for-range statement.
+ unsigned CXXForRangeDecl : 1;
+
+ /// Whether this variable is the for-in loop declaration in Objective-C.
+ unsigned ObjCForDecl : 1;
+
+ /// Whether this variable is (C++1z) inline.
+ unsigned IsInline : 1;
+
+ /// Whether this variable has (C++1z) inline explicitly specified.
+ unsigned IsInlineSpecified : 1;
+
+ /// Whether this variable is (C++0x) constexpr.
+ unsigned IsConstexpr : 1;
+
+ /// Whether this variable is the implicit variable for a lambda
+ /// init-capture.
+ unsigned IsInitCapture : 1;
+
+ /// Whether this local extern variable's previous declaration was
+ /// declared in the same block scope. This controls whether we should merge
+ /// the type of this declaration with its previous declaration.
+ unsigned PreviousDeclInSameBlockScope : 1;
+
+ /// Defines kind of the ImplicitParamDecl: 'this', 'self', 'vtt', '_cmd' or
+ /// something else.
+ unsigned ImplicitParamKind : 3;
+
+ unsigned EscapingByref : 1;
+ };
+
+ union {
+ unsigned AllBits;
+ VarDeclBitfields VarDeclBits;
+ ParmVarDeclBitfields ParmVarDeclBits;
+ NonParmVarDeclBitfields NonParmVarDeclBits;
+ };
+
+ VarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
+ SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
+ TypeSourceInfo *TInfo, StorageClass SC);
+
+ using redeclarable_base = Redeclarable<VarDecl>;
+
+ VarDecl *getNextRedeclarationImpl() override {
+ return getNextRedeclaration();
+ }
+
+ VarDecl *getPreviousDeclImpl() override {
+ return getPreviousDecl();
+ }
+
+ VarDecl *getMostRecentDeclImpl() override {
+ return getMostRecentDecl();
+ }
+
+public:
+ using redecl_range = redeclarable_base::redecl_range;
+ using redecl_iterator = redeclarable_base::redecl_iterator;
+
+ using redeclarable_base::redecls_begin;
+ using redeclarable_base::redecls_end;
+ using redeclarable_base::redecls;
+ using redeclarable_base::getPreviousDecl;
+ using redeclarable_base::getMostRecentDecl;
+ using redeclarable_base::isFirstDecl;
+
+ static VarDecl *Create(ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc, SourceLocation IdLoc,
+ IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
+ StorageClass S);
+
+ static VarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
+
+ SourceRange getSourceRange() const override LLVM_READONLY;
+
+ /// Returns the storage class as written in the source. For the
+ /// computed linkage of symbol, see getLinkage.
+ StorageClass getStorageClass() const {
+ return (StorageClass) VarDeclBits.SClass;
+ }
+ void setStorageClass(StorageClass SC);
+
+ void setTSCSpec(ThreadStorageClassSpecifier TSC) {
+ VarDeclBits.TSCSpec = TSC;
+ assert(VarDeclBits.TSCSpec == TSC && "truncation");
+ }
+ ThreadStorageClassSpecifier getTSCSpec() const {
+ return static_cast<ThreadStorageClassSpecifier>(VarDeclBits.TSCSpec);
+ }
+ TLSKind getTLSKind() const;
+
+ /// Returns true if a variable with function scope is a non-static local
+ /// variable.
+ bool hasLocalStorage() const {
+ if (getStorageClass() == SC_None) {
+ // OpenCL v1.2 s6.5.3: The __constant or constant address space name is
+ // used to describe variables allocated in global memory and which are
+ // accessed inside a kernel(s) as read-only variables. As such, variables
+ // in constant address space cannot have local storage.
+ if (getType().getAddressSpace() == LangAS::opencl_constant)
+ return false;
+ // Second check is for C++11 [dcl.stc]p4.
+ return !isFileVarDecl() && getTSCSpec() == TSCS_unspecified;
+ }
+
+ // Global Named Register (GNU extension)
+ if (getStorageClass() == SC_Register && !isLocalVarDeclOrParm())
+ return false;
+
+ // Return true for: Auto, Register.
+ // Return false for: Extern, Static, PrivateExtern, OpenCLWorkGroupLocal.
+
+ return getStorageClass() >= SC_Auto;
+ }
+
+ /// Returns true if a variable with function scope is a static local
+ /// variable.
+ bool isStaticLocal() const {
+ return (getStorageClass() == SC_Static ||
+ // C++11 [dcl.stc]p4
+ (getStorageClass() == SC_None && getTSCSpec() == TSCS_thread_local))
+ && !isFileVarDecl();
+ }
+
+ /// Returns true if a variable has extern or __private_extern__
+ /// storage.
+ bool hasExternalStorage() const {
+ return getStorageClass() == SC_Extern ||
+ getStorageClass() == SC_PrivateExtern;
+ }
+
+ /// Returns true for all variables that do not have local storage.
+ ///
+ /// This includes all global variables as well as static variables declared
+ /// within a function.
+ bool hasGlobalStorage() const { return !hasLocalStorage(); }
+
+ /// Get the storage duration of this variable, per C++ [basic.stc].
+ StorageDuration getStorageDuration() const {
+ return hasLocalStorage() ? SD_Automatic :
+ getTSCSpec() ? SD_Thread : SD_Static;
+ }
+
+ /// Compute the language linkage.
+ LanguageLinkage getLanguageLinkage() const;
+
+ /// Determines whether this variable is a variable with external, C linkage.
+ bool isExternC() const;
+
+ /// Determines whether this variable's context is, or is nested within,
+ /// a C++ extern "C" linkage spec.
+ bool isInExternCContext() const;
+
+ /// Determines whether this variable's context is, or is nested within,
+ /// a C++ extern "C++" linkage spec.
+ bool isInExternCXXContext() const;
+
+ /// Returns true for local variable declarations other than parameters.
+ /// Note that this includes static variables inside of functions. It also
+ /// includes variables inside blocks.
+ ///
+ /// void foo() { int x; static int y; extern int z; }
+ bool isLocalVarDecl() const {
+ if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
+ return false;
+ if (const DeclContext *DC = getLexicalDeclContext())
+ return DC->getRedeclContext()->isFunctionOrMethod();
+ return false;
+ }
+
+ /// Similar to isLocalVarDecl but also includes parameters.
+ bool isLocalVarDeclOrParm() const {
+ return isLocalVarDecl() || getKind() == Decl::ParmVar;
+ }
+
+ /// Similar to isLocalVarDecl, but excludes variables declared in blocks.
+ bool isFunctionOrMethodVarDecl() const {
+ if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
+ return false;
+ const DeclContext *DC = getLexicalDeclContext()->getRedeclContext();
+ return DC->isFunctionOrMethod() && DC->getDeclKind() != Decl::Block;
+ }
+
+ /// Determines whether this is a static data member.
+ ///
+ /// This will only be true in C++, and applies to, e.g., the
+ /// variable 'x' in:
+ /// \code
+ /// struct S {
+ /// static int x;
+ /// };
+ /// \endcode
+ bool isStaticDataMember() const {
+ // If it wasn't static, it would be a FieldDecl.
+ return getKind() != Decl::ParmVar && getDeclContext()->isRecord();
+ }
+
+ VarDecl *getCanonicalDecl() override;
+ const VarDecl *getCanonicalDecl() const {
+ return const_cast<VarDecl*>(this)->getCanonicalDecl();
+ }
+
+ enum DefinitionKind {
+ /// This declaration is only a declaration.
+ DeclarationOnly,
+
+ /// This declaration is a tentative definition.
+ TentativeDefinition,
+
+ /// This declaration is definitely a definition.
+ Definition
+ };
+
+ /// Check whether this declaration is a definition. If this could be
+ /// a tentative definition (in C), don't check whether there's an overriding
+ /// definition.
+ DefinitionKind isThisDeclarationADefinition(ASTContext &) const;
+ DefinitionKind isThisDeclarationADefinition() const {
+ return isThisDeclarationADefinition(getASTContext());
+ }
+
+ /// Check whether this variable is defined in this translation unit.
+ DefinitionKind hasDefinition(ASTContext &) const;
+ DefinitionKind hasDefinition() const {
+ return hasDefinition(getASTContext());
+ }
+
+ /// Get the tentative definition that acts as the real definition in a TU.
+ /// Returns null if there is a proper definition available.
+ VarDecl *getActingDefinition();
+ const VarDecl *getActingDefinition() const {
+ return const_cast<VarDecl*>(this)->getActingDefinition();
+ }
+
+ /// Get the real (not just tentative) definition for this declaration.
+ VarDecl *getDefinition(ASTContext &);
+ const VarDecl *getDefinition(ASTContext &C) const {
+ return const_cast<VarDecl*>(this)->getDefinition(C);
+ }
+ VarDecl *getDefinition() {
+ return getDefinition(getASTContext());
+ }
+ const VarDecl *getDefinition() const {
+ return const_cast<VarDecl*>(this)->getDefinition();
+ }
+
+ /// Determine whether this is or was instantiated from an out-of-line
+ /// definition of a static data member.
+ bool isOutOfLine() const override;
+
+ /// Returns true for file scoped variable declaration.
+ bool isFileVarDecl() const {
+ Kind K = getKind();
+ if (K == ParmVar || K == ImplicitParam)
+ return false;
+
+ if (getLexicalDeclContext()->getRedeclContext()->isFileContext())
+ return true;
+
+ if (isStaticDataMember())
+ return true;
+
+ return false;
+ }
+
+ /// Get the initializer for this variable, no matter which
+ /// declaration it is attached to.
+ const Expr *getAnyInitializer() const {
+ const VarDecl *D;
+ return getAnyInitializer(D);
+ }
+
+ /// Get the initializer for this variable, no matter which
+ /// declaration it is attached to. Also get that declaration.
+ const Expr *getAnyInitializer(const VarDecl *&D) const;
+
+ bool hasInit() const;
+ const Expr *getInit() const {
+ return const_cast<VarDecl *>(this)->getInit();
+ }
+ Expr *getInit();
+
+ /// Retrieve the address of the initializer expression.
+ Stmt **getInitAddress();
+
+ void setInit(Expr *I);
+
+ /// Determine whether this variable's value can be used in a
+ /// constant expression, according to the relevant language standard.
+ /// This only checks properties of the declaration, and does not check
+ /// whether the initializer is in fact a constant expression.
+ bool isUsableInConstantExpressions(ASTContext &C) const;
+
+ EvaluatedStmt *ensureEvaluatedStmt() const;
+
+ /// Attempt to evaluate the value of the initializer attached to this
+ /// declaration, and produce notes explaining why it cannot be evaluated or is
+ /// not a constant expression. Returns a pointer to the value if evaluation
+ /// succeeded, 0 otherwise.
+ APValue *evaluateValue() const;
+ APValue *evaluateValue(SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
+
+ /// Return the already-evaluated value of this variable's
+ /// initializer, or NULL if the value is not yet known. Returns pointer
+ /// to untyped APValue if the value could not be evaluated.
+ APValue *getEvaluatedValue() const;
+
+ /// Determines whether it is already known whether the
+ /// initializer is an integral constant expression or not.
+ bool isInitKnownICE() const;
+
+ /// Determines whether the initializer is an integral constant
+ /// expression, or in C++11, whether the initializer is a constant
+ /// expression.
+ ///
+ /// \pre isInitKnownICE()
+ bool isInitICE() const;
+
+ /// Determine whether the value of the initializer attached to this
+ /// declaration is an integral constant expression.
+ bool checkInitIsICE() const;
+
+ void setInitStyle(InitializationStyle Style) {
+ VarDeclBits.InitStyle = Style;
+ }
+
+ /// The style of initialization for this declaration.
+ ///
+ /// C-style initialization is "int x = 1;". Call-style initialization is
+ /// a C++98 direct-initializer, e.g. "int x(1);". The Init expression will be
+ /// the expression inside the parens or a "ClassType(a,b,c)" class constructor
+ /// expression for class types. List-style initialization is C++11 syntax,
+ /// e.g. "int x{1};". Clients can distinguish between different forms of
+ /// initialization by checking this value. In particular, "int x = {1};" is
+ /// C-style, "int x({1})" is call-style, and "int x{1};" is list-style; the
+ /// Init expression in all three cases is an InitListExpr.
+ InitializationStyle getInitStyle() const {
+ return static_cast<InitializationStyle>(VarDeclBits.InitStyle);
+ }
+
+ /// Whether the initializer is a direct-initializer (list or call).
+ bool isDirectInit() const {
+ return getInitStyle() != CInit;
+ }
+
+ /// If this definition should pretend to be a declaration.
+ bool isThisDeclarationADemotedDefinition() const {
+ return isa<ParmVarDecl>(this) ? false :
+ NonParmVarDeclBits.IsThisDeclarationADemotedDefinition;
+ }
+
+ /// This is a definition which should be demoted to a declaration.
+ ///
+ /// In some cases (mostly module merging) we can end up with two visible
+ /// definitions one of which needs to be demoted to a declaration to keep
+ /// the AST invariants.
+ void demoteThisDefinitionToDeclaration() {
+ assert(isThisDeclarationADefinition() && "Not a definition!");
+ assert(!isa<ParmVarDecl>(this) && "Cannot demote ParmVarDecls!");
+ NonParmVarDeclBits.IsThisDeclarationADemotedDefinition = 1;
+ }
+
+ /// Determine whether this variable is the exception variable in a
+ /// C++ catch statememt or an Objective-C \@catch statement.
+ bool isExceptionVariable() const {
+ return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.ExceptionVar;
+ }
+ void setExceptionVariable(bool EV) {
+ assert(!isa<ParmVarDecl>(this));
+ NonParmVarDeclBits.ExceptionVar = EV;
+ }
+
+ /// Determine whether this local variable can be used with the named
+ /// return value optimization (NRVO).
+ ///
+ /// The named return value optimization (NRVO) works by marking certain
+ /// non-volatile local variables of class type as NRVO objects. These
+ /// locals can be allocated within the return slot of their containing
+ /// function, in which case there is no need to copy the object to the
+ /// return slot when returning from the function. Within the function body,
+ /// each return that returns the NRVO object will have this variable as its
+ /// NRVO candidate.
+ bool isNRVOVariable() const {
+ return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.NRVOVariable;
+ }
+ void setNRVOVariable(bool NRVO) {
+ assert(!isa<ParmVarDecl>(this));
+ NonParmVarDeclBits.NRVOVariable = NRVO;
+ }
+
+ /// Determine whether this variable is the for-range-declaration in
+ /// a C++0x for-range statement.
+ bool isCXXForRangeDecl() const {
+ return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.CXXForRangeDecl;
+ }
+ void setCXXForRangeDecl(bool FRD) {
+ assert(!isa<ParmVarDecl>(this));
+ NonParmVarDeclBits.CXXForRangeDecl = FRD;
+ }
+
+ /// Determine whether this variable is a for-loop declaration for a
+ /// for-in statement in Objective-C.
+ bool isObjCForDecl() const {
+ return NonParmVarDeclBits.ObjCForDecl;
+ }
+
+ void setObjCForDecl(bool FRD) {
+ NonParmVarDeclBits.ObjCForDecl = FRD;
+ }
+
+ /// Determine whether this variable is an ARC pseudo-__strong variable. A
+ /// pseudo-__strong variable has a __strong-qualified type but does not
+ /// actually retain the object written into it. Generally such variables are
+ /// also 'const' for safety. There are 3 cases where this will be set, 1) if
+ /// the variable is annotated with the objc_externally_retained attribute, 2)
+ /// if its 'self' in a non-init method, or 3) if its the variable in an for-in
+ /// loop.
+ bool isARCPseudoStrong() const { return VarDeclBits.ARCPseudoStrong; }
+ void setARCPseudoStrong(bool PS) { VarDeclBits.ARCPseudoStrong = PS; }
+
+ /// Whether this variable is (C++1z) inline.
+ bool isInline() const {
+ return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInline;
+ }
+ bool isInlineSpecified() const {
+ return isa<ParmVarDecl>(this) ? false
+ : NonParmVarDeclBits.IsInlineSpecified;
+ }
+ void setInlineSpecified() {
+ assert(!isa<ParmVarDecl>(this));
+ NonParmVarDeclBits.IsInline = true;
+ NonParmVarDeclBits.IsInlineSpecified = true;
+ }
+ void setImplicitlyInline() {
+ assert(!isa<ParmVarDecl>(this));
+ NonParmVarDeclBits.IsInline = true;
+ }
+
+ /// Whether this variable is (C++11) constexpr.
+ bool isConstexpr() const {
+ return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsConstexpr;
+ }
+ void setConstexpr(bool IC) {
+ assert(!isa<ParmVarDecl>(this));
+ NonParmVarDeclBits.IsConstexpr = IC;
+ }
+
+ /// Whether this variable is the implicit variable for a lambda init-capture.
+ bool isInitCapture() const {
+ return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInitCapture;
+ }
+ void setInitCapture(bool IC) {
+ assert(!isa<ParmVarDecl>(this));
+ NonParmVarDeclBits.IsInitCapture = IC;
+ }
+
+ /// Whether this local extern variable declaration's previous declaration
+ /// was declared in the same block scope. Only correct in C++.
+ bool isPreviousDeclInSameBlockScope() const {
+ return isa<ParmVarDecl>(this)
+ ? false
+ : NonParmVarDeclBits.PreviousDeclInSameBlockScope;
+ }
+ void setPreviousDeclInSameBlockScope(bool Same) {
+ assert(!isa<ParmVarDecl>(this));
+ NonParmVarDeclBits.PreviousDeclInSameBlockScope = Same;
+ }
+
+ /// Indicates the capture is a __block variable that is captured by a block
+ /// that can potentially escape (a block for which BlockDecl::doesNotEscape
+ /// returns false).
+ bool isEscapingByref() const;
+
+ /// Indicates the capture is a __block variable that is never captured by an
+ /// escaping block.
+ bool isNonEscapingByref() const;
+
+ void setEscapingByref() {
+ NonParmVarDeclBits.EscapingByref = true;
+ }
+
+ /// Retrieve the variable declaration from which this variable could
+ /// be instantiated, if it is an instantiation (rather than a non-template).
+ VarDecl *getTemplateInstantiationPattern() const;
+
+ /// If this variable is an instantiated static data member of a
+ /// class template specialization, returns the templated static data member
+ /// from which it was instantiated.
+ VarDecl *getInstantiatedFromStaticDataMember() const;
+
+ /// If this variable is an instantiation of a variable template or a
+ /// static data member of a class template, determine what kind of
+ /// template specialization or instantiation this is.
+ TemplateSpecializationKind getTemplateSpecializationKind() const;
+
+ /// If this variable is an instantiation of a variable template or a
+ /// static data member of a class template, determine its point of
+ /// instantiation.
+ SourceLocation getPointOfInstantiation() const;
+
+ /// If this variable is an instantiation of a static data member of a
+ /// class template specialization, retrieves the member specialization
+ /// information.
+ MemberSpecializationInfo *getMemberSpecializationInfo() const;
+
+ /// For a static data member that was instantiated from a static
+ /// data member of a class template, set the template specialiation kind.
+ void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
+ SourceLocation PointOfInstantiation = SourceLocation());
+
+ /// Specify that this variable is an instantiation of the
+ /// static data member VD.
+ void setInstantiationOfStaticDataMember(VarDecl *VD,
+ TemplateSpecializationKind TSK);
+
+ /// Retrieves the variable template that is described by this
+ /// variable declaration.
+ ///
+ /// Every variable template is represented as a VarTemplateDecl and a
+ /// VarDecl. The former contains template properties (such as
+ /// the template parameter lists) while the latter contains the
+ /// actual description of the template's
+ /// contents. VarTemplateDecl::getTemplatedDecl() retrieves the
+ /// VarDecl that from a VarTemplateDecl, while
+ /// getDescribedVarTemplate() retrieves the VarTemplateDecl from
+ /// a VarDecl.
+ VarTemplateDecl *getDescribedVarTemplate() const;
+
+ void setDescribedVarTemplate(VarTemplateDecl *Template);
+
+ // Is this variable known to have a definition somewhere in the complete
+ // program? This may be true even if the declaration has internal linkage and
+ // has no definition within this source file.
+ bool isKnownToBeDefined() const;
+
+ /// Do we need to emit an exit-time destructor for this variable?
+ bool isNoDestroy(const ASTContext &) const;
+
+ // Implement isa/cast/dyncast/etc.
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) { return K >= firstVar && K <= lastVar; }
+};
+
+class ImplicitParamDecl : public VarDecl {
+ void anchor() override;
+
+public:
+ /// Defines the kind of the implicit parameter: is this an implicit parameter
+ /// with pointer to 'this', 'self', '_cmd', virtual table pointers, captured
+ /// context or something else.
+ enum ImplicitParamKind : unsigned {
+ /// Parameter for Objective-C 'self' argument
+ ObjCSelf,
+
+ /// Parameter for Objective-C '_cmd' argument
+ ObjCCmd,
+
+ /// Parameter for C++ 'this' argument
+ CXXThis,
+
+ /// Parameter for C++ virtual table pointers
+ CXXVTT,
+
+ /// Parameter for captured context
+ CapturedContext,
+
+ /// Other implicit parameter
+ Other,
+ };
+
+ /// Create implicit parameter.
+ static ImplicitParamDecl *Create(ASTContext &C, DeclContext *DC,
+ SourceLocation IdLoc, IdentifierInfo *Id,
+ QualType T, ImplicitParamKind ParamKind);
+ static ImplicitParamDecl *Create(ASTContext &C, QualType T,
+ ImplicitParamKind ParamKind);
+
+ static ImplicitParamDecl *CreateDeserialized(ASTContext &C, unsigned ID);
+
+ ImplicitParamDecl(ASTContext &C, DeclContext *DC, SourceLocation IdLoc,
+ IdentifierInfo *Id, QualType Type,
+ ImplicitParamKind ParamKind)
+ : VarDecl(ImplicitParam, C, DC, IdLoc, IdLoc, Id, Type,
+ /*TInfo=*/nullptr, SC_None) {
+ NonParmVarDeclBits.ImplicitParamKind = ParamKind;
+ setImplicit();
+ }
+
+ ImplicitParamDecl(ASTContext &C, QualType Type, ImplicitParamKind ParamKind)
+ : VarDecl(ImplicitParam, C, /*DC=*/nullptr, SourceLocation(),
+ SourceLocation(), /*Id=*/nullptr, Type,
+ /*TInfo=*/nullptr, SC_None) {
+ NonParmVarDeclBits.ImplicitParamKind = ParamKind;
+ setImplicit();
+ }
+
+ /// Returns the implicit parameter kind.
+ ImplicitParamKind getParameterKind() const {
+ return static_cast<ImplicitParamKind>(NonParmVarDeclBits.ImplicitParamKind);
+ }
+
+ // Implement isa/cast/dyncast/etc.
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) { return K == ImplicitParam; }
+};
+
+/// Represents a parameter to a function.
+class ParmVarDecl : public VarDecl {
+public:
+ enum { MaxFunctionScopeDepth = 255 };
+ enum { MaxFunctionScopeIndex = 255 };
+
+protected:
+ ParmVarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
+ SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
+ TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
+ : VarDecl(DK, C, DC, StartLoc, IdLoc, Id, T, TInfo, S) {
+ assert(ParmVarDeclBits.HasInheritedDefaultArg == false);
+ assert(ParmVarDeclBits.DefaultArgKind == DAK_None);
+ assert(ParmVarDeclBits.IsKNRPromoted == false);
+ assert(ParmVarDeclBits.IsObjCMethodParam == false);
+ setDefaultArg(DefArg);
+ }
+
+public:
+ static ParmVarDecl *Create(ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc,
+ SourceLocation IdLoc, IdentifierInfo *Id,
+ QualType T, TypeSourceInfo *TInfo,
+ StorageClass S, Expr *DefArg);
+
+ static ParmVarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
+
+ SourceRange getSourceRange() const override LLVM_READONLY;
+
+ void setObjCMethodScopeInfo(unsigned parameterIndex) {
+ ParmVarDeclBits.IsObjCMethodParam = true;
+ setParameterIndex(parameterIndex);
+ }
+
+ void setScopeInfo(unsigned scopeDepth, unsigned parameterIndex) {
+ assert(!ParmVarDeclBits.IsObjCMethodParam);
+
+ ParmVarDeclBits.ScopeDepthOrObjCQuals = scopeDepth;
+ assert(ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth
+ && "truncation!");
+
+ setParameterIndex(parameterIndex);
+ }
+
+ bool isObjCMethodParameter() const {
+ return ParmVarDeclBits.IsObjCMethodParam;
+ }
+
+ unsigned getFunctionScopeDepth() const {
+ if (ParmVarDeclBits.IsObjCMethodParam) return 0;
+ return ParmVarDeclBits.ScopeDepthOrObjCQuals;
+ }
+
+ /// Returns the index of this parameter in its prototype or method scope.
+ unsigned getFunctionScopeIndex() const {
+ return getParameterIndex();
+ }
+
+ ObjCDeclQualifier getObjCDeclQualifier() const {
+ if (!ParmVarDeclBits.IsObjCMethodParam) return OBJC_TQ_None;
+ return ObjCDeclQualifier(ParmVarDeclBits.ScopeDepthOrObjCQuals);
+ }
+ void setObjCDeclQualifier(ObjCDeclQualifier QTVal) {
+ assert(ParmVarDeclBits.IsObjCMethodParam);
+ ParmVarDeclBits.ScopeDepthOrObjCQuals = QTVal;
+ }
+
+ /// True if the value passed to this parameter must undergo
+ /// K&R-style default argument promotion:
+ ///
+ /// C99 6.5.2.2.
+ /// If the expression that denotes the called function has a type
+ /// that does not include a prototype, the integer promotions are
+ /// performed on each argument, and arguments that have type float
+ /// are promoted to double.
+ bool isKNRPromoted() const {
+ return ParmVarDeclBits.IsKNRPromoted;
+ }
+ void setKNRPromoted(bool promoted) {
+ ParmVarDeclBits.IsKNRPromoted = promoted;
+ }
+
+ Expr *getDefaultArg();
+ const Expr *getDefaultArg() const {
+ return const_cast<ParmVarDecl *>(this)->getDefaultArg();
+ }
+
+ void setDefaultArg(Expr *defarg);
+
+ /// Retrieve the source range that covers the entire default
+ /// argument.
+ SourceRange getDefaultArgRange() const;
+ void setUninstantiatedDefaultArg(Expr *arg);
+ Expr *getUninstantiatedDefaultArg();
+ const Expr *getUninstantiatedDefaultArg() const {
+ return const_cast<ParmVarDecl *>(this)->getUninstantiatedDefaultArg();
+ }
+
+ /// Determines whether this parameter has a default argument,
+ /// either parsed or not.
+ bool hasDefaultArg() const;
+
+ /// Determines whether this parameter has a default argument that has not
+ /// yet been parsed. This will occur during the processing of a C++ class
+ /// whose member functions have default arguments, e.g.,
+ /// @code
+ /// class X {
+ /// public:
+ /// void f(int x = 17); // x has an unparsed default argument now
+ /// }; // x has a regular default argument now
+ /// @endcode
+ bool hasUnparsedDefaultArg() const {
+ return ParmVarDeclBits.DefaultArgKind == DAK_Unparsed;
+ }
+
+ bool hasUninstantiatedDefaultArg() const {
+ return ParmVarDeclBits.DefaultArgKind == DAK_Uninstantiated;
+ }
+
+ /// Specify that this parameter has an unparsed default argument.
+ /// The argument will be replaced with a real default argument via
+ /// setDefaultArg when the class definition enclosing the function
+ /// declaration that owns this default argument is completed.
+ void setUnparsedDefaultArg() {
+ ParmVarDeclBits.DefaultArgKind = DAK_Unparsed;
+ }
+
+ bool hasInheritedDefaultArg() const {
+ return ParmVarDeclBits.HasInheritedDefaultArg;
+ }
+
+ void setHasInheritedDefaultArg(bool I = true) {
+ ParmVarDeclBits.HasInheritedDefaultArg = I;
+ }
+
+ QualType getOriginalType() const;
+
+ /// Determine whether this parameter is actually a function
+ /// parameter pack.
+ bool isParameterPack() const;
+
+ /// Sets the function declaration that owns this
+ /// ParmVarDecl. Since ParmVarDecls are often created before the
+ /// FunctionDecls that own them, this routine is required to update
+ /// the DeclContext appropriately.
+ void setOwningFunction(DeclContext *FD) { setDeclContext(FD); }
+
+ // Implement isa/cast/dyncast/etc.
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) { return K == ParmVar; }
+
+private:
+ enum { ParameterIndexSentinel = (1 << NumParameterIndexBits) - 1 };
+
+ void setParameterIndex(unsigned parameterIndex) {
+ if (parameterIndex >= ParameterIndexSentinel) {
+ setParameterIndexLarge(parameterIndex);
+ return;
+ }
+
+ ParmVarDeclBits.ParameterIndex = parameterIndex;
+ assert(ParmVarDeclBits.ParameterIndex == parameterIndex && "truncation!");
+ }
+ unsigned getParameterIndex() const {
+ unsigned d = ParmVarDeclBits.ParameterIndex;
+ return d == ParameterIndexSentinel ? getParameterIndexLarge() : d;
+ }
+
+ void setParameterIndexLarge(unsigned parameterIndex);
+ unsigned getParameterIndexLarge() const;
+};
+
+enum class MultiVersionKind {
+ None,
+ Target,
+ CPUSpecific,
+ CPUDispatch
+};
+
+/// Represents a function declaration or definition.
+///
+/// Since a given function can be declared several times in a program,
+/// there may be several FunctionDecls that correspond to that
+/// function. Only one of those FunctionDecls will be found when
+/// traversing the list of declarations in the context of the
+/// FunctionDecl (e.g., the translation unit); this FunctionDecl
+/// contains all of the information known about the function. Other,
+/// previous declarations of the function are available via the
+/// getPreviousDecl() chain.
+class FunctionDecl : public DeclaratorDecl,
+ public DeclContext,
+ public Redeclarable<FunctionDecl> {
+ // This class stores some data in DeclContext::FunctionDeclBits
+ // to save some space. Use the provided accessors to access it.
+public:
+ /// The kind of templated function a FunctionDecl can be.
+ enum TemplatedKind {
+ TK_NonTemplate,
+ TK_FunctionTemplate,
+ TK_MemberSpecialization,
+ TK_FunctionTemplateSpecialization,
+ TK_DependentFunctionTemplateSpecialization
+ };
+
+private:
+ /// A new[]'d array of pointers to VarDecls for the formal
+ /// parameters of this function. This is null if a prototype or if there are
+ /// no formals.
+ ParmVarDecl **ParamInfo = nullptr;
+
+ LazyDeclStmtPtr Body;
+
+ unsigned ODRHash;
+
+ /// End part of this FunctionDecl's source range.
+ ///
+ /// We could compute the full range in getSourceRange(). However, when we're
+ /// dealing with a function definition deserialized from a PCH/AST file,
+ /// we can only compute the full range once the function body has been
+ /// de-serialized, so it's far better to have the (sometimes-redundant)
+ /// EndRangeLoc.
+ SourceLocation EndRangeLoc;
+
+ /// The template or declaration that this declaration
+ /// describes or was instantiated from, respectively.
+ ///
+ /// For non-templates, this value will be NULL. For function
+ /// declarations that describe a function template, this will be a
+ /// pointer to a FunctionTemplateDecl. For member functions
+ /// of class template specializations, this will be a MemberSpecializationInfo
+ /// pointer containing information about the specialization.
+ /// For function template specializations, this will be a
+ /// FunctionTemplateSpecializationInfo, which contains information about
+ /// the template being specialized and the template arguments involved in
+ /// that specialization.
+ llvm::PointerUnion4<FunctionTemplateDecl *,
+ MemberSpecializationInfo *,
+ FunctionTemplateSpecializationInfo *,
+ DependentFunctionTemplateSpecializationInfo *>
+ TemplateOrSpecialization;
+
+ /// Provides source/type location info for the declaration name embedded in
+ /// the DeclaratorDecl base class.
+ DeclarationNameLoc DNLoc;
+
+ /// Specify that this function declaration is actually a function
+ /// template specialization.
+ ///
+ /// \param C the ASTContext.
+ ///
+ /// \param Template the function template that this function template
+ /// specialization specializes.
+ ///
+ /// \param TemplateArgs the template arguments that produced this
+ /// function template specialization from the template.
+ ///
+ /// \param InsertPos If non-NULL, the position in the function template
+ /// specialization set where the function template specialization data will
+ /// be inserted.
+ ///
+ /// \param TSK the kind of template specialization this is.
+ ///
+ /// \param TemplateArgsAsWritten location info of template arguments.
+ ///
+ /// \param PointOfInstantiation point at which the function template
+ /// specialization was first instantiated.
+ void setFunctionTemplateSpecialization(ASTContext &C,
+ FunctionTemplateDecl *Template,
+ const TemplateArgumentList *TemplateArgs,
+ void *InsertPos,
+ TemplateSpecializationKind TSK,
+ const TemplateArgumentListInfo *TemplateArgsAsWritten,
+ SourceLocation PointOfInstantiation);
+
+ /// Specify that this record is an instantiation of the
+ /// member function FD.
+ void setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD,
+ TemplateSpecializationKind TSK);
+
+ void setParams(ASTContext &C, ArrayRef<ParmVarDecl *> NewParamInfo);
+
+ // This is unfortunately needed because ASTDeclWriter::VisitFunctionDecl
+ // need to access this bit but we want to avoid making ASTDeclWriter
+ // a friend of FunctionDeclBitfields just for this.
+ bool isDeletedBit() const { return FunctionDeclBits.IsDeleted; }
+
+ /// Whether an ODRHash has been stored.
+ bool hasODRHash() const { return FunctionDeclBits.HasODRHash; }
+
+ /// State that an ODRHash has been stored.
+ void setHasODRHash(bool B = true) { FunctionDeclBits.HasODRHash = B; }
+
+protected:
+ FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
+ const DeclarationNameInfo &NameInfo, QualType T,
+ TypeSourceInfo *TInfo, StorageClass S, bool isInlineSpecified,
+ bool isConstexprSpecified);
+
+ using redeclarable_base = Redeclarable<FunctionDecl>;
+
+ FunctionDecl *getNextRedeclarationImpl() override {
+ return getNextRedeclaration();
+ }
+
+ FunctionDecl *getPreviousDeclImpl() override {
+ return getPreviousDecl();
+ }
+
+ FunctionDecl *getMostRecentDeclImpl() override {
+ return getMostRecentDecl();
+ }
+
+public:
+ friend class ASTDeclReader;
+ friend class ASTDeclWriter;
+
+ using redecl_range = redeclarable_base::redecl_range;
+ using redecl_iterator = redeclarable_base::redecl_iterator;
+
+ using redeclarable_base::redecls_begin;
+ using redeclarable_base::redecls_end;
+ using redeclarable_base::redecls;
+ using redeclarable_base::getPreviousDecl;
+ using redeclarable_base::getMostRecentDecl;
+ using redeclarable_base::isFirstDecl;
+
+ static FunctionDecl *Create(ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc, SourceLocation NLoc,
+ DeclarationName N, QualType T,
+ TypeSourceInfo *TInfo,
+ StorageClass SC,
+ bool isInlineSpecified = false,
+ bool hasWrittenPrototype = true,
+ bool isConstexprSpecified = false) {
+ DeclarationNameInfo NameInfo(N, NLoc);
+ return FunctionDecl::Create(C, DC, StartLoc, NameInfo, T, TInfo,
+ SC,
+ isInlineSpecified, hasWrittenPrototype,
+ isConstexprSpecified);
+ }
+
+ static FunctionDecl *Create(ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc,
+ const DeclarationNameInfo &NameInfo,
+ QualType T, TypeSourceInfo *TInfo,
+ StorageClass SC,
+ bool isInlineSpecified,
+ bool hasWrittenPrototype,
+ bool isConstexprSpecified = false);
+
+ static FunctionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
+
+ DeclarationNameInfo getNameInfo() const {
+ return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
+ }
+
+ void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy,
+ bool Qualified) const override;
+
+ void setRangeEnd(SourceLocation E) { EndRangeLoc = E; }
+
+ SourceRange getSourceRange() const override LLVM_READONLY;
+
+ // Function definitions.
+ //
+ // A function declaration may be:
+ // - a non defining declaration,
+ // - a definition. A function may be defined because:
+ // - it has a body, or will have it in the case of late parsing.
+ // - it has an uninstantiated body. The body does not exist because the
+ // function is not used yet, but the declaration is considered a
+ // definition and does not allow other definition of this function.
+ // - it does not have a user specified body, but it does not allow
+ // redefinition, because it is deleted/defaulted or is defined through
+ // some other mechanism (alias, ifunc).
+
+ /// Returns true if the function has a body.
+ ///
+ /// The function body might be in any of the (re-)declarations of this
+ /// function. The variant that accepts a FunctionDecl pointer will set that
+ /// function declaration to the actual declaration containing the body (if
+ /// there is one).
+ bool hasBody(const FunctionDecl *&Definition) const;
+
+ bool hasBody() const override {
+ const FunctionDecl* Definition;
+ return hasBody(Definition);
+ }
+
+ /// Returns whether the function has a trivial body that does not require any
+ /// specific codegen.
+ bool hasTrivialBody() const;
+
+ /// Returns true if the function has a definition that does not need to be
+ /// instantiated.
+ ///
+ /// The variant that accepts a FunctionDecl pointer will set that function
+ /// declaration to the declaration that is a definition (if there is one).
+ bool isDefined(const FunctionDecl *&Definition) const;
+
+ virtual bool isDefined() const {
+ const FunctionDecl* Definition;
+ return isDefined(Definition);
+ }
+
+ /// Get the definition for this declaration.
+ FunctionDecl *getDefinition() {
+ const FunctionDecl *Definition;
+ if (isDefined(Definition))
+ return const_cast<FunctionDecl *>(Definition);
+ return nullptr;
+ }
+ const FunctionDecl *getDefinition() const {
+ return const_cast<FunctionDecl *>(this)->getDefinition();
+ }
+
+ /// Retrieve the body (definition) of the function. The function body might be
+ /// in any of the (re-)declarations of this function. The variant that accepts
+ /// a FunctionDecl pointer will set that function declaration to the actual
+ /// declaration containing the body (if there is one).
+ /// NOTE: For checking if there is a body, use hasBody() instead, to avoid
+ /// unnecessary AST de-serialization of the body.
+ Stmt *getBody(const FunctionDecl *&Definition) const;
+
+ Stmt *getBody() const override {
+ const FunctionDecl* Definition;
+ return getBody(Definition);
+ }
+
+ /// Returns whether this specific declaration of the function is also a
+ /// definition that does not contain uninstantiated body.
+ ///
+ /// This does not determine whether the function has been defined (e.g., in a
+ /// previous definition); for that information, use isDefined.
+ bool isThisDeclarationADefinition() const {
+ return isDeletedAsWritten() || isDefaulted() || Body || hasSkippedBody() ||
+ isLateTemplateParsed() || willHaveBody() || hasDefiningAttr();
+ }
+
+ /// Returns whether this specific declaration of the function has a body.
+ bool doesThisDeclarationHaveABody() const {
+ return Body || isLateTemplateParsed();
+ }
+
+ void setBody(Stmt *B);
+ void setLazyBody(uint64_t Offset) { Body = Offset; }
+
+ /// Whether this function is variadic.
+ bool isVariadic() const;
+
+ /// Whether this function is marked as virtual explicitly.
+ bool isVirtualAsWritten() const {
+ return FunctionDeclBits.IsVirtualAsWritten;
+ }
+
+ /// State that this function is marked as virtual explicitly.
+ void setVirtualAsWritten(bool V) { FunctionDeclBits.IsVirtualAsWritten = V; }
+
+ /// Whether this virtual function is pure, i.e. makes the containing class
+ /// abstract.
+ bool isPure() const { return FunctionDeclBits.IsPure; }
+ void setPure(bool P = true);
+
+ /// Whether this templated function will be late parsed.
+ bool isLateTemplateParsed() const {
+ return FunctionDeclBits.IsLateTemplateParsed;
+ }
+
+ /// State that this templated function will be late parsed.
+ void setLateTemplateParsed(bool ILT = true) {
+ FunctionDeclBits.IsLateTemplateParsed = ILT;
+ }
+
+ /// Whether this function is "trivial" in some specialized C++ senses.
+ /// Can only be true for default constructors, copy constructors,
+ /// copy assignment operators, and destructors. Not meaningful until
+ /// the class has been fully built by Sema.
+ bool isTrivial() const { return FunctionDeclBits.IsTrivial; }
+ void setTrivial(bool IT) { FunctionDeclBits.IsTrivial = IT; }
+
+ bool isTrivialForCall() const { return FunctionDeclBits.IsTrivialForCall; }
+ void setTrivialForCall(bool IT) { FunctionDeclBits.IsTrivialForCall = IT; }
+
+ /// Whether this function is defaulted per C++0x. Only valid for
+ /// special member functions.
+ bool isDefaulted() const { return FunctionDeclBits.IsDefaulted; }
+ void setDefaulted(bool D = true) { FunctionDeclBits.IsDefaulted = D; }
+
+ /// Whether this function is explicitly defaulted per C++0x. Only valid
+ /// for special member functions.
+ bool isExplicitlyDefaulted() const {
+ return FunctionDeclBits.IsExplicitlyDefaulted;
+ }
+
+ /// State that this function is explicitly defaulted per C++0x. Only valid
+ /// for special member functions.
+ void setExplicitlyDefaulted(bool ED = true) {
+ FunctionDeclBits.IsExplicitlyDefaulted = ED;
+ }
+
+ /// Whether falling off this function implicitly returns null/zero.
+ /// If a more specific implicit return value is required, front-ends
+ /// should synthesize the appropriate return statements.
+ bool hasImplicitReturnZero() const {
+ return FunctionDeclBits.HasImplicitReturnZero;
+ }
+
+ /// State that falling off this function implicitly returns null/zero.
+ /// If a more specific implicit return value is required, front-ends
+ /// should synthesize the appropriate return statements.
+ void setHasImplicitReturnZero(bool IRZ) {
+ FunctionDeclBits.HasImplicitReturnZero = IRZ;
+ }
+
+ /// Whether this function has a prototype, either because one
+ /// was explicitly written or because it was "inherited" by merging
+ /// a declaration without a prototype with a declaration that has a
+ /// prototype.
+ bool hasPrototype() const {
+ return hasWrittenPrototype() || hasInheritedPrototype();
+ }
+
+ /// Whether this function has a written prototype.
+ bool hasWrittenPrototype() const {
+ return FunctionDeclBits.HasWrittenPrototype;
+ }
+
+ /// State that this function has a written prototype.
+ void setHasWrittenPrototype(bool P = true) {
+ FunctionDeclBits.HasWrittenPrototype = P;
+ }
+
+ /// Whether this function inherited its prototype from a
+ /// previous declaration.
+ bool hasInheritedPrototype() const {
+ return FunctionDeclBits.HasInheritedPrototype;
+ }
+
+ /// State that this function inherited its prototype from a
+ /// previous declaration.
+ void setHasInheritedPrototype(bool P = true) {
+ FunctionDeclBits.HasInheritedPrototype = P;
+ }
+
+ /// Whether this is a (C++11) constexpr function or constexpr constructor.
+ bool isConstexpr() const { return FunctionDeclBits.IsConstexpr; }
+ void setConstexpr(bool IC) { FunctionDeclBits.IsConstexpr = IC; }
+
+ /// Whether the instantiation of this function is pending.
+ /// This bit is set when the decision to instantiate this function is made
+ /// and unset if and when the function body is created. That leaves out
+ /// cases where instantiation did not happen because the template definition
+ /// was not seen in this TU. This bit remains set in those cases, under the
+ /// assumption that the instantiation will happen in some other TU.
+ bool instantiationIsPending() const {
+ return FunctionDeclBits.InstantiationIsPending;
+ }
+
+ /// State that the instantiation of this function is pending.
+ /// (see instantiationIsPending)
+ void setInstantiationIsPending(bool IC) {
+ FunctionDeclBits.InstantiationIsPending = IC;
+ }
+
+ /// Indicates the function uses __try.
+ bool usesSEHTry() const { return FunctionDeclBits.UsesSEHTry; }
+ void setUsesSEHTry(bool UST) { FunctionDeclBits.UsesSEHTry = UST; }
+
+ /// Whether this function has been deleted.
+ ///
+ /// A function that is "deleted" (via the C++0x "= delete" syntax)
+ /// acts like a normal function, except that it cannot actually be
+ /// called or have its address taken. Deleted functions are
+ /// typically used in C++ overload resolution to attract arguments
+ /// whose type or lvalue/rvalue-ness would permit the use of a
+ /// different overload that would behave incorrectly. For example,
+ /// one might use deleted functions to ban implicit conversion from
+ /// a floating-point number to an Integer type:
+ ///
+ /// @code
+ /// struct Integer {
+ /// Integer(long); // construct from a long
+ /// Integer(double) = delete; // no construction from float or double
+ /// Integer(long double) = delete; // no construction from long double
+ /// };
+ /// @endcode
+ // If a function is deleted, its first declaration must be.
+ bool isDeleted() const {
+ return getCanonicalDecl()->FunctionDeclBits.IsDeleted;
+ }
+
+ bool isDeletedAsWritten() const {
+ return FunctionDeclBits.IsDeleted && !isDefaulted();
+ }
+
+ void setDeletedAsWritten(bool D = true) { FunctionDeclBits.IsDeleted = D; }
+
+ /// Determines whether this function is "main", which is the
+ /// entry point into an executable program.
+ bool isMain() const;
+
+ /// Determines whether this function is a MSVCRT user defined entry
+ /// point.
+ bool isMSVCRTEntryPoint() const;
+
+ /// Determines whether this operator new or delete is one
+ /// of the reserved global placement operators:
+ /// void *operator new(size_t, void *);
+ /// void *operator new[](size_t, void *);
+ /// void operator delete(void *, void *);
+ /// void operator delete[](void *, void *);
+ /// These functions have special behavior under [new.delete.placement]:
+ /// These functions are reserved, a C++ program may not define
+ /// functions that displace the versions in the Standard C++ library.
+ /// The provisions of [basic.stc.dynamic] do not apply to these
+ /// reserved placement forms of operator new and operator delete.
+ ///
+ /// This function must be an allocation or deallocation function.
+ bool isReservedGlobalPlacementOperator() const;
+
+ /// Determines whether this function is one of the replaceable
+ /// global allocation functions:
+ /// void *operator new(size_t);
+ /// void *operator new(size_t, const std::nothrow_t &) noexcept;
+ /// void *operator new[](size_t);
+ /// void *operator new[](size_t, const std::nothrow_t &) noexcept;
+ /// void operator delete(void *) noexcept;
+ /// void operator delete(void *, std::size_t) noexcept; [C++1y]
+ /// void operator delete(void *, const std::nothrow_t &) noexcept;
+ /// void operator delete[](void *) noexcept;
+ /// void operator delete[](void *, std::size_t) noexcept; [C++1y]
+ /// void operator delete[](void *, const std::nothrow_t &) noexcept;
+ /// These functions have special behavior under C++1y [expr.new]:
+ /// An implementation is allowed to omit a call to a replaceable global
+ /// allocation function. [...]
+ ///
+ /// If this function is an aligned allocation/deallocation function, return
+ /// true through IsAligned.
+ bool isReplaceableGlobalAllocationFunction(bool *IsAligned = nullptr) const;
+
+ /// Determine whether this is a destroying operator delete.
+ bool isDestroyingOperatorDelete() const;
+
+ /// Compute the language linkage.
+ LanguageLinkage getLanguageLinkage() const;
+
+ /// Determines whether this function is a function with
+ /// external, C linkage.
+ bool isExternC() const;
+
+ /// Determines whether this function's context is, or is nested within,
+ /// a C++ extern "C" linkage spec.
+ bool isInExternCContext() const;
+
+ /// Determines whether this function's context is, or is nested within,
+ /// a C++ extern "C++" linkage spec.
+ bool isInExternCXXContext() const;
+
+ /// Determines whether this is a global function.
+ bool isGlobal() const;
+
+ /// Determines whether this function is known to be 'noreturn', through
+ /// an attribute on its declaration or its type.
+ bool isNoReturn() const;
+
+ /// True if the function was a definition but its body was skipped.
+ bool hasSkippedBody() const { return FunctionDeclBits.HasSkippedBody; }
+ void setHasSkippedBody(bool Skipped = true) {
+ FunctionDeclBits.HasSkippedBody = Skipped;
+ }
+
+ /// True if this function will eventually have a body, once it's fully parsed.
+ bool willHaveBody() const { return FunctionDeclBits.WillHaveBody; }
+ void setWillHaveBody(bool V = true) { FunctionDeclBits.WillHaveBody = V; }
+
+ /// True if this function is considered a multiversioned function.
+ bool isMultiVersion() const {
+ return getCanonicalDecl()->FunctionDeclBits.IsMultiVersion;
+ }
+
+ /// Sets the multiversion state for this declaration and all of its
+ /// redeclarations.
+ void setIsMultiVersion(bool V = true) {
+ getCanonicalDecl()->FunctionDeclBits.IsMultiVersion = V;
+ }
+
+ /// Gets the kind of multiversioning attribute this declaration has. Note that
+ /// this can return a value even if the function is not multiversion, such as
+ /// the case of 'target'.
+ MultiVersionKind getMultiVersionKind() const;
+
+
+ /// True if this function is a multiversioned dispatch function as a part of
+ /// the cpu_specific/cpu_dispatch functionality.
+ bool isCPUDispatchMultiVersion() const;
+ /// True if this function is a multiversioned processor specific function as a
+ /// part of the cpu_specific/cpu_dispatch functionality.
+ bool isCPUSpecificMultiVersion() const;
+
+ /// True if this function is a multiversioned dispatch function as a part of
+ /// the target functionality.
+ bool isTargetMultiVersion() const;
+
+ void setPreviousDeclaration(FunctionDecl * PrevDecl);
+
+ FunctionDecl *getCanonicalDecl() override;
+ const FunctionDecl *getCanonicalDecl() const {
+ return const_cast<FunctionDecl*>(this)->getCanonicalDecl();
+ }
+
+ unsigned getBuiltinID() const;
+
+ // ArrayRef interface to parameters.
+ ArrayRef<ParmVarDecl *> parameters() const {
+ return {ParamInfo, getNumParams()};
+ }
+ MutableArrayRef<ParmVarDecl *> parameters() {
+ return {ParamInfo, getNumParams()};
+ }
+
+ // Iterator access to formal parameters.
+ using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
+ using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
+
+ bool param_empty() const { return parameters().empty(); }
+ param_iterator param_begin() { return parameters().begin(); }
+ param_iterator param_end() { return parameters().end(); }
+ param_const_iterator param_begin() const { return parameters().begin(); }
+ param_const_iterator param_end() const { return parameters().end(); }
+ size_t param_size() const { return parameters().size(); }
+
+ /// Return the number of parameters this function must have based on its
+ /// FunctionType. This is the length of the ParamInfo array after it has been
+ /// created.
+ unsigned getNumParams() const;
+
+ const ParmVarDecl *getParamDecl(unsigned i) const {
+ assert(i < getNumParams() && "Illegal param #");
+ return ParamInfo[i];
+ }
+ ParmVarDecl *getParamDecl(unsigned i) {
+ assert(i < getNumParams() && "Illegal param #");
+ return ParamInfo[i];
+ }
+ void setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
+ setParams(getASTContext(), NewParamInfo);
+ }
+
+ /// Returns the minimum number of arguments needed to call this function. This
+ /// may be fewer than the number of function parameters, if some of the
+ /// parameters have default arguments (in C++).
+ unsigned getMinRequiredArguments() const;
+
+ QualType getReturnType() const {
+ return getType()->castAs<FunctionType>()->getReturnType();
+ }
+
+ /// Attempt to compute an informative source range covering the
+ /// function return type. This may omit qualifiers and other information with
+ /// limited representation in the AST.
+ SourceRange getReturnTypeSourceRange() const;
+
+ /// Get the declared return type, which may differ from the actual return
+ /// type if the return type is deduced.
+ QualType getDeclaredReturnType() const {
+ auto *TSI = getTypeSourceInfo();
+ QualType T = TSI ? TSI->getType() : getType();
+ return T->castAs<FunctionType>()->getReturnType();
+ }
+
+ /// Attempt to compute an informative source range covering the
+ /// function exception specification, if any.
+ SourceRange getExceptionSpecSourceRange() const;
+
+ /// Determine the type of an expression that calls this function.
+ QualType getCallResultType() const {
+ return getType()->castAs<FunctionType>()->getCallResultType(
+ getASTContext());
+ }
+
+ /// Returns the storage class as written in the source. For the
+ /// computed linkage of symbol, see getLinkage.
+ StorageClass getStorageClass() const {
+ return static_cast<StorageClass>(FunctionDeclBits.SClass);
+ }
+
+ /// Sets the storage class as written in the source.
+ void setStorageClass(StorageClass SClass) {
+ FunctionDeclBits.SClass = SClass;
+ }
+
+ /// Determine whether the "inline" keyword was specified for this
+ /// function.
+ bool isInlineSpecified() const { return FunctionDeclBits.IsInlineSpecified; }
+
+ /// Set whether the "inline" keyword was specified for this function.
+ void setInlineSpecified(bool I) {
+ FunctionDeclBits.IsInlineSpecified = I;
+ FunctionDeclBits.IsInline = I;
+ }
+
+ /// Flag that this function is implicitly inline.
+ void setImplicitlyInline(bool I = true) { FunctionDeclBits.IsInline = I; }
+
+ /// Determine whether this function should be inlined, because it is
+ /// either marked "inline" or "constexpr" or is a member function of a class
+ /// that was defined in the class body.
+ bool isInlined() const { return FunctionDeclBits.IsInline; }
+
+ /// Whether this function is marked as explicit explicitly.
+ bool isExplicitSpecified() const {
+ return FunctionDeclBits.IsExplicitSpecified;
+ }
+
+ /// State that this function is marked as explicit explicitly.
+ void setExplicitSpecified(bool ExpSpec = true) {
+ FunctionDeclBits.IsExplicitSpecified = ExpSpec;
+ }
+
+ bool isInlineDefinitionExternallyVisible() const;
+
+ bool isMSExternInline() const;
+
+ bool doesDeclarationForceExternallyVisibleDefinition() const;
+
+ /// Whether this function declaration represents an C++ overloaded
+ /// operator, e.g., "operator+".
+ bool isOverloadedOperator() const {
+ return getOverloadedOperator() != OO_None;
+ }
+
+ OverloadedOperatorKind getOverloadedOperator() const;
+
+ const IdentifierInfo *getLiteralIdentifier() const;
+
+ /// If this function is an instantiation of a member function
+ /// of a class template specialization, retrieves the function from
+ /// which it was instantiated.
+ ///
+ /// This routine will return non-NULL for (non-templated) member
+ /// functions of class templates and for instantiations of function
+ /// templates. For example, given:
+ ///
+ /// \code
+ /// template<typename T>
+ /// struct X {
+ /// void f(T);
+ /// };
+ /// \endcode
+ ///
+ /// The declaration for X<int>::f is a (non-templated) FunctionDecl
+ /// whose parent is the class template specialization X<int>. For
+ /// this declaration, getInstantiatedFromFunction() will return
+ /// the FunctionDecl X<T>::A. When a complete definition of
+ /// X<int>::A is required, it will be instantiated from the
+ /// declaration returned by getInstantiatedFromMemberFunction().
+ FunctionDecl *getInstantiatedFromMemberFunction() const;
+
+ /// What kind of templated function this is.
+ TemplatedKind getTemplatedKind() const;
+
+ /// If this function is an instantiation of a member function of a
+ /// class template specialization, retrieves the member specialization
+ /// information.
+ MemberSpecializationInfo *getMemberSpecializationInfo() const;
+
+ /// Specify that this record is an instantiation of the
+ /// member function FD.
+ void setInstantiationOfMemberFunction(FunctionDecl *FD,
+ TemplateSpecializationKind TSK) {
+ setInstantiationOfMemberFunction(getASTContext(), FD, TSK);
+ }
+
+ /// Retrieves the function template that is described by this
+ /// function declaration.
+ ///
+ /// Every function template is represented as a FunctionTemplateDecl
+ /// and a FunctionDecl (or something derived from FunctionDecl). The
+ /// former contains template properties (such as the template
+ /// parameter lists) while the latter contains the actual
+ /// description of the template's
+ /// contents. FunctionTemplateDecl::getTemplatedDecl() retrieves the
+ /// FunctionDecl that describes the function template,
+ /// getDescribedFunctionTemplate() retrieves the
+ /// FunctionTemplateDecl from a FunctionDecl.
+ FunctionTemplateDecl *getDescribedFunctionTemplate() const;
+
+ void setDescribedFunctionTemplate(FunctionTemplateDecl *Template);
+
+ /// Determine whether this function is a function template
+ /// specialization.
+ bool isFunctionTemplateSpecialization() const {
+ return getPrimaryTemplate() != nullptr;
+ }
+
+ /// Retrieve the class scope template pattern that this function
+ /// template specialization is instantiated from.
+ FunctionDecl *getClassScopeSpecializationPattern() const;
+
+ /// If this function is actually a function template specialization,
+ /// retrieve information about this function template specialization.
+ /// Otherwise, returns NULL.
+ FunctionTemplateSpecializationInfo *getTemplateSpecializationInfo() const;
+
+ /// Determines whether this function is a function template
+ /// specialization or a member of a class template specialization that can
+ /// be implicitly instantiated.
+ bool isImplicitlyInstantiable() const;
+
+ /// Determines if the given function was instantiated from a
+ /// function template.
+ bool isTemplateInstantiation() const;
+
+ /// Retrieve the function declaration from which this function could
+ /// be instantiated, if it is an instantiation (rather than a non-template
+ /// or a specialization, for example).
+ FunctionDecl *getTemplateInstantiationPattern() const;
+
+ /// Retrieve the primary template that this function template
+ /// specialization either specializes or was instantiated from.
+ ///
+ /// If this function declaration is not a function template specialization,
+ /// returns NULL.
+ FunctionTemplateDecl *getPrimaryTemplate() const;
+
+ /// Retrieve the template arguments used to produce this function
+ /// template specialization from the primary template.
+ ///
+ /// If this function declaration is not a function template specialization,
+ /// returns NULL.
+ const TemplateArgumentList *getTemplateSpecializationArgs() const;
+
+ /// Retrieve the template argument list as written in the sources,
+ /// if any.
+ ///
+ /// If this function declaration is not a function template specialization
+ /// or if it had no explicit template argument list, returns NULL.
+ /// Note that it an explicit template argument list may be written empty,
+ /// e.g., template<> void foo<>(char* s);
+ const ASTTemplateArgumentListInfo*
+ getTemplateSpecializationArgsAsWritten() const;
+
+ /// Specify that this function declaration is actually a function
+ /// template specialization.
+ ///
+ /// \param Template the function template that this function template
+ /// specialization specializes.
+ ///
+ /// \param TemplateArgs the template arguments that produced this
+ /// function template specialization from the template.
+ ///
+ /// \param InsertPos If non-NULL, the position in the function template
+ /// specialization set where the function template specialization data will
+ /// be inserted.
+ ///
+ /// \param TSK the kind of template specialization this is.
+ ///
+ /// \param TemplateArgsAsWritten location info of template arguments.
+ ///
+ /// \param PointOfInstantiation point at which the function template
+ /// specialization was first instantiated.
+ void setFunctionTemplateSpecialization(FunctionTemplateDecl *Template,
+ const TemplateArgumentList *TemplateArgs,
+ void *InsertPos,
+ TemplateSpecializationKind TSK = TSK_ImplicitInstantiation,
+ const TemplateArgumentListInfo *TemplateArgsAsWritten = nullptr,
+ SourceLocation PointOfInstantiation = SourceLocation()) {
+ setFunctionTemplateSpecialization(getASTContext(), Template, TemplateArgs,
+ InsertPos, TSK, TemplateArgsAsWritten,
+ PointOfInstantiation);
+ }
+
+ /// Specifies that this function declaration is actually a
+ /// dependent function template specialization.
+ void setDependentTemplateSpecialization(ASTContext &Context,
+ const UnresolvedSetImpl &Templates,
+ const TemplateArgumentListInfo &TemplateArgs);
+
+ DependentFunctionTemplateSpecializationInfo *
+ getDependentSpecializationInfo() const;
+
+ /// Determine what kind of template instantiation this function
+ /// represents.
+ TemplateSpecializationKind getTemplateSpecializationKind() const;
+
+ /// Determine what kind of template instantiation this function
+ /// represents.
+ void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
+ SourceLocation PointOfInstantiation = SourceLocation());
+
+ /// Retrieve the (first) point of instantiation of a function template
+ /// specialization or a member of a class template specialization.
+ ///
+ /// \returns the first point of instantiation, if this function was
+ /// instantiated from a template; otherwise, returns an invalid source
+ /// location.
+ SourceLocation getPointOfInstantiation() const;
+
+ /// Determine whether this is or was instantiated from an out-of-line
+ /// definition of a member function.
+ bool isOutOfLine() const override;
+
+ /// Identify a memory copying or setting function.
+ /// If the given function is a memory copy or setting function, returns
+ /// the corresponding Builtin ID. If the function is not a memory function,
+ /// returns 0.
+ unsigned getMemoryFunctionKind() const;
+
+ /// Returns ODRHash of the function. This value is calculated and
+ /// stored on first call, then the stored value returned on the other calls.
+ unsigned getODRHash();
+
+ /// Returns cached ODRHash of the function. This must have been previously
+ /// computed and stored.
+ unsigned getODRHash() const;
+
+ // Implement isa/cast/dyncast/etc.
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) {
+ return K >= firstFunction && K <= lastFunction;
+ }
+ static DeclContext *castToDeclContext(const FunctionDecl *D) {
+ return static_cast<DeclContext *>(const_cast<FunctionDecl*>(D));
+ }
+ static FunctionDecl *castFromDeclContext(const DeclContext *DC) {
+ return static_cast<FunctionDecl *>(const_cast<DeclContext*>(DC));
+ }
+};
+
+/// Represents a member of a struct/union/class.
+class FieldDecl : public DeclaratorDecl, public Mergeable<FieldDecl> {
+ unsigned BitField : 1;
+ unsigned Mutable : 1;
+ mutable unsigned CachedFieldIndex : 30;
+
+ /// The kinds of value we can store in InitializerOrBitWidth.
+ ///
+ /// Note that this is compatible with InClassInitStyle except for
+ /// ISK_CapturedVLAType.
+ enum InitStorageKind {
+ /// If the pointer is null, there's nothing special. Otherwise,
+ /// this is a bitfield and the pointer is the Expr* storing the
+ /// bit-width.
+ ISK_NoInit = (unsigned) ICIS_NoInit,
+
+ /// The pointer is an (optional due to delayed parsing) Expr*
+ /// holding the copy-initializer.
+ ISK_InClassCopyInit = (unsigned) ICIS_CopyInit,
+
+ /// The pointer is an (optional due to delayed parsing) Expr*
+ /// holding the list-initializer.
+ ISK_InClassListInit = (unsigned) ICIS_ListInit,
+
+ /// The pointer is a VariableArrayType* that's been captured;
+ /// the enclosing context is a lambda or captured statement.
+ ISK_CapturedVLAType,
+ };
+
+ /// If this is a bitfield with a default member initializer, this
+ /// structure is used to represent the two expressions.
+ struct InitAndBitWidth {
+ Expr *Init;
+ Expr *BitWidth;
+ };
+
+ /// Storage for either the bit-width, the in-class initializer, or
+ /// both (via InitAndBitWidth), or the captured variable length array bound.
+ ///
+ /// If the storage kind is ISK_InClassCopyInit or
+ /// ISK_InClassListInit, but the initializer is null, then this
+ /// field has an in-class initializer that has not yet been parsed
+ /// and attached.
+ // FIXME: Tail-allocate this to reduce the size of FieldDecl in the
+ // overwhelmingly common case that we have none of these things.
+ llvm::PointerIntPair<void *, 2, InitStorageKind> InitStorage;
+
+protected:
+ FieldDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
+ SourceLocation IdLoc, IdentifierInfo *Id,
+ QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
+ InClassInitStyle InitStyle)
+ : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
+ BitField(false), Mutable(Mutable), CachedFieldIndex(0),
+ InitStorage(nullptr, (InitStorageKind) InitStyle) {
+ if (BW)
+ setBitWidth(BW);
+ }
+
+public:
+ friend class ASTDeclReader;
+ friend class ASTDeclWriter;
+
+ static FieldDecl *Create(const ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc, SourceLocation IdLoc,
+ IdentifierInfo *Id, QualType T,
+ TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
+ InClassInitStyle InitStyle);
+
+ static FieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
+
+ /// Returns the index of this field within its record,
+ /// as appropriate for passing to ASTRecordLayout::getFieldOffset.
+ unsigned getFieldIndex() const;
+
+ /// Determines whether this field is mutable (C++ only).
+ bool isMutable() const { return Mutable; }
+
+ /// Determines whether this field is a bitfield.
+ bool isBitField() const { return BitField; }
+
+ /// Determines whether this is an unnamed bitfield.
+ bool isUnnamedBitfield() const { return isBitField() && !getDeclName(); }
+
+ /// Determines whether this field is a
+ /// representative for an anonymous struct or union. Such fields are
+ /// unnamed and are implicitly generated by the implementation to
+ /// store the data for the anonymous union or struct.
+ bool isAnonymousStructOrUnion() const;
+
+ Expr *getBitWidth() const {
+ if (!BitField)
+ return nullptr;
+ void *Ptr = InitStorage.getPointer();
+ if (getInClassInitStyle())
+ return static_cast<InitAndBitWidth*>(Ptr)->BitWidth;
+ return static_cast<Expr*>(Ptr);
+ }
+
+ unsigned getBitWidthValue(const ASTContext &Ctx) const;
+
+ /// Set the bit-field width for this member.
+ // Note: used by some clients (i.e., do not remove it).
+ void setBitWidth(Expr *Width) {
+ assert(!hasCapturedVLAType() && !BitField &&
+ "bit width or captured type already set");
+ assert(Width && "no bit width specified");
+ InitStorage.setPointer(
+ InitStorage.getInt()
+ ? new (getASTContext())
+ InitAndBitWidth{getInClassInitializer(), Width}
+ : static_cast<void*>(Width));
+ BitField = true;
+ }
+
+ /// Remove the bit-field width from this member.
+ // Note: used by some clients (i.e., do not remove it).
+ void removeBitWidth() {
+ assert(isBitField() && "no bitfield width to remove");
+ InitStorage.setPointer(getInClassInitializer());
+ BitField = false;
+ }
+
+ /// Is this a zero-length bit-field? Such bit-fields aren't really bit-fields
+ /// at all and instead act as a separator between contiguous runs of other
+ /// bit-fields.
+ bool isZeroLengthBitField(const ASTContext &Ctx) const;
+
+ /// Get the kind of (C++11) default member initializer that this field has.
+ InClassInitStyle getInClassInitStyle() const {
+ InitStorageKind storageKind = InitStorage.getInt();
+ return (storageKind == ISK_CapturedVLAType
+ ? ICIS_NoInit : (InClassInitStyle) storageKind);
+ }
+
+ /// Determine whether this member has a C++11 default member initializer.
+ bool hasInClassInitializer() const {
+ return getInClassInitStyle() != ICIS_NoInit;
+ }
+
+ /// Get the C++11 default member initializer for this member, or null if one
+ /// has not been set. If a valid declaration has a default member initializer,
+ /// but this returns null, then we have not parsed and attached it yet.
+ Expr *getInClassInitializer() const {
+ if (!hasInClassInitializer())
+ return nullptr;
+ void *Ptr = InitStorage.getPointer();
+ if (BitField)
+ return static_cast<InitAndBitWidth*>(Ptr)->Init;
+ return static_cast<Expr*>(Ptr);
+ }
+
+ /// Set the C++11 in-class initializer for this member.
+ void setInClassInitializer(Expr *Init) {
+ assert(hasInClassInitializer() && !getInClassInitializer());
+ if (BitField)
+ static_cast<InitAndBitWidth*>(InitStorage.getPointer())->Init = Init;
+ else
+ InitStorage.setPointer(Init);
+ }
+
+ /// Remove the C++11 in-class initializer from this member.
+ void removeInClassInitializer() {
+ assert(hasInClassInitializer() && "no initializer to remove");
+ InitStorage.setPointerAndInt(getBitWidth(), ISK_NoInit);
+ }
+
+ /// Determine whether this member captures the variable length array
+ /// type.
+ bool hasCapturedVLAType() const {
+ return InitStorage.getInt() == ISK_CapturedVLAType;
+ }
+
+ /// Get the captured variable length array type.
+ const VariableArrayType *getCapturedVLAType() const {
+ return hasCapturedVLAType() ? static_cast<const VariableArrayType *>(
+ InitStorage.getPointer())
+ : nullptr;
+ }
+
+ /// Set the captured variable length array type for this field.
+ void setCapturedVLAType(const VariableArrayType *VLAType);
+
+ /// Returns the parent of this field declaration, which
+ /// is the struct in which this field is defined.
+ const RecordDecl *getParent() const {
+ return cast<RecordDecl>(getDeclContext());
+ }
+
+ RecordDecl *getParent() {
+ return cast<RecordDecl>(getDeclContext());
+ }
+
+ SourceRange getSourceRange() const override LLVM_READONLY;
+
+ /// Retrieves the canonical declaration of this field.
+ FieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
+ const FieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
+
+ // Implement isa/cast/dyncast/etc.
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) { return K >= firstField && K <= lastField; }
+};
+
+/// An instance of this object exists for each enum constant
+/// that is defined. For example, in "enum X {a,b}", each of a/b are
+/// EnumConstantDecl's, X is an instance of EnumDecl, and the type of a/b is a
+/// TagType for the X EnumDecl.
+class EnumConstantDecl : public ValueDecl, public Mergeable<EnumConstantDecl> {
+ Stmt *Init; // an integer constant expression
+ llvm::APSInt Val; // The value.
+
+protected:
+ EnumConstantDecl(DeclContext *DC, SourceLocation L,
+ IdentifierInfo *Id, QualType T, Expr *E,
+ const llvm::APSInt &V)
+ : ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt*)E), Val(V) {}
+
+public:
+ friend class StmtIteratorBase;
+
+ static EnumConstantDecl *Create(ASTContext &C, EnumDecl *DC,
+ SourceLocation L, IdentifierInfo *Id,
+ QualType T, Expr *E,
+ const llvm::APSInt &V);
+ static EnumConstantDecl *CreateDeserialized(ASTContext &C, unsigned ID);
+
+ const Expr *getInitExpr() const { return (const Expr*) Init; }
+ Expr *getInitExpr() { return (Expr*) Init; }
+ const llvm::APSInt &getInitVal() const { return Val; }
+
+ void setInitExpr(Expr *E) { Init = (Stmt*) E; }
+ void setInitVal(const llvm::APSInt &V) { Val = V; }
+
+ SourceRange getSourceRange() const override LLVM_READONLY;
+
+ /// Retrieves the canonical declaration of this enumerator.
+ EnumConstantDecl *getCanonicalDecl() override { return getFirstDecl(); }
+ const EnumConstantDecl *getCanonicalDecl() const { return getFirstDecl(); }
+
+ // Implement isa/cast/dyncast/etc.
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) { return K == EnumConstant; }
+};
+
+/// Represents a field injected from an anonymous union/struct into the parent
+/// scope. These are always implicit.
+class IndirectFieldDecl : public ValueDecl,
+ public Mergeable<IndirectFieldDecl> {
+ NamedDecl **Chaining;
+ unsigned ChainingSize;
+
+ IndirectFieldDecl(ASTContext &C, DeclContext *DC, SourceLocation L,
+ DeclarationName N, QualType T,
+ MutableArrayRef<NamedDecl *> CH);
+
+ void anchor() override;
+
+public:
+ friend class ASTDeclReader;
+
+ static IndirectFieldDecl *Create(ASTContext &C, DeclContext *DC,
+ SourceLocation L, IdentifierInfo *Id,
+ QualType T, llvm::MutableArrayRef<NamedDecl *> CH);
+
+ static IndirectFieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
+
+ using chain_iterator = ArrayRef<NamedDecl *>::const_iterator;
+
+ ArrayRef<NamedDecl *> chain() const {
+ return llvm::makeArrayRef(Chaining, ChainingSize);
+ }
+ chain_iterator chain_begin() const { return chain().begin(); }
+ chain_iterator chain_end() const { return chain().end(); }
+
+ unsigned getChainingSize() const { return ChainingSize; }
+
+ FieldDecl *getAnonField() const {
+ assert(chain().size() >= 2);
+ return cast<FieldDecl>(chain().back());
+ }
+
+ VarDecl *getVarDecl() const {
+ assert(chain().size() >= 2);
+ return dyn_cast<VarDecl>(chain().front());
+ }
+
+ IndirectFieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
+ const IndirectFieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
+
+ // Implement isa/cast/dyncast/etc.
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) { return K == IndirectField; }
+};
+
+/// Represents a declaration of a type.
+class TypeDecl : public NamedDecl {
+ friend class ASTContext;
+
+ /// This indicates the Type object that represents
+ /// this TypeDecl. It is a cache maintained by
+ /// ASTContext::getTypedefType, ASTContext::getTagDeclType, and
+ /// ASTContext::getTemplateTypeParmType, and TemplateTypeParmDecl.
+ mutable const Type *TypeForDecl = nullptr;
+
+ /// The start of the source range for this declaration.
+ SourceLocation LocStart;
+
+ void anchor() override;
+
+protected:
+ TypeDecl(Kind DK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id,
+ SourceLocation StartL = SourceLocation())
+ : NamedDecl(DK, DC, L, Id), LocStart(StartL) {}
+
+public:
+ // Low-level accessor. If you just want the type defined by this node,
+ // check out ASTContext::getTypeDeclType or one of
+ // ASTContext::getTypedefType, ASTContext::getRecordType, etc. if you
+ // already know the specific kind of node this is.
+ const Type *getTypeForDecl() const { return TypeForDecl; }
+ void setTypeForDecl(const Type *TD) { TypeForDecl = TD; }
+
+ SourceLocation getBeginLoc() const LLVM_READONLY { return LocStart; }
+ void setLocStart(SourceLocation L) { LocStart = L; }
+ SourceRange getSourceRange() const override LLVM_READONLY {
+ if (LocStart.isValid())
+ return SourceRange(LocStart, getLocation());
+ else
+ return SourceRange(getLocation());
+ }
+
+ // Implement isa/cast/dyncast/etc.
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) { return K >= firstType && K <= lastType; }
+};
+
+/// Base class for declarations which introduce a typedef-name.
+class TypedefNameDecl : public TypeDecl, public Redeclarable<TypedefNameDecl> {
+ struct alignas(8) ModedTInfo {
+ TypeSourceInfo *first;
+ QualType second;
+ };
+
+ /// If int part is 0, we have not computed IsTransparentTag.
+ /// Otherwise, IsTransparentTag is (getInt() >> 1).
+ mutable llvm::PointerIntPair<
+ llvm::PointerUnion<TypeSourceInfo *, ModedTInfo *>, 2>
+ MaybeModedTInfo;
+
+ void anchor() override;
+
+protected:
+ TypedefNameDecl(Kind DK, ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc, SourceLocation IdLoc,
+ IdentifierInfo *Id, TypeSourceInfo *TInfo)
+ : TypeDecl(DK, DC, IdLoc, Id, StartLoc), redeclarable_base(C),
+ MaybeModedTInfo(TInfo, 0) {}
+
+ using redeclarable_base = Redeclarable<TypedefNameDecl>;
+
+ TypedefNameDecl *getNextRedeclarationImpl() override {
+ return getNextRedeclaration();
+ }
+
+ TypedefNameDecl *getPreviousDeclImpl() override {
+ return getPreviousDecl();
+ }
+
+ TypedefNameDecl *getMostRecentDeclImpl() override {
+ return getMostRecentDecl();
+ }
+
+public:
+ using redecl_range = redeclarable_base::redecl_range;
+ using redecl_iterator = redeclarable_base::redecl_iterator;
+
+ using redeclarable_base::redecls_begin;
+ using redeclarable_base::redecls_end;
+ using redeclarable_base::redecls;
+ using redeclarable_base::getPreviousDecl;
+ using redeclarable_base::getMostRecentDecl;
+ using redeclarable_base::isFirstDecl;
+
+ bool isModed() const {
+ return MaybeModedTInfo.getPointer().is<ModedTInfo *>();
+ }
+
+ TypeSourceInfo *getTypeSourceInfo() const {
+ return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->first
+ : MaybeModedTInfo.getPointer().get<TypeSourceInfo *>();
+ }
+
+ QualType getUnderlyingType() const {
+ return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->second
+ : MaybeModedTInfo.getPointer()
+ .get<TypeSourceInfo *>()
+ ->getType();
+ }
+
+ void setTypeSourceInfo(TypeSourceInfo *newType) {
+ MaybeModedTInfo.setPointer(newType);
+ }
+
+ void setModedTypeSourceInfo(TypeSourceInfo *unmodedTSI, QualType modedTy) {
+ MaybeModedTInfo.setPointer(new (getASTContext(), 8)
+ ModedTInfo({unmodedTSI, modedTy}));
+ }
+
+ /// Retrieves the canonical declaration of this typedef-name.
+ TypedefNameDecl *getCanonicalDecl() override { return getFirstDecl(); }
+ const TypedefNameDecl *getCanonicalDecl() const { return getFirstDecl(); }
+
+ /// Retrieves the tag declaration for which this is the typedef name for
+ /// linkage purposes, if any.
+ ///
+ /// \param AnyRedecl Look for the tag declaration in any redeclaration of
+ /// this typedef declaration.
+ TagDecl *getAnonDeclWithTypedefName(bool AnyRedecl = false) const;
+
+ /// Determines if this typedef shares a name and spelling location with its
+ /// underlying tag type, as is the case with the NS_ENUM macro.
+ bool isTransparentTag() const {
+ if (MaybeModedTInfo.getInt())
+ return MaybeModedTInfo.getInt() & 0x2;
+ return isTransparentTagSlow();
+ }
+
+ // Implement isa/cast/dyncast/etc.
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) {
+ return K >= firstTypedefName && K <= lastTypedefName;
+ }
+
+private:
+ bool isTransparentTagSlow() const;
+};
+
+/// Represents the declaration of a typedef-name via the 'typedef'
+/// type specifier.
+class TypedefDecl : public TypedefNameDecl {
+ TypedefDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
+ SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
+ : TypedefNameDecl(Typedef, C, DC, StartLoc, IdLoc, Id, TInfo) {}
+
+public:
+ static TypedefDecl *Create(ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc, SourceLocation IdLoc,
+ IdentifierInfo *Id, TypeSourceInfo *TInfo);
+ static TypedefDecl *CreateDeserialized(ASTContext &C, unsigned ID);
+
+ SourceRange getSourceRange() const override LLVM_READONLY;
+
+ // Implement isa/cast/dyncast/etc.
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) { return K == Typedef; }
+};
+
+/// Represents the declaration of a typedef-name via a C++11
+/// alias-declaration.
+class TypeAliasDecl : public TypedefNameDecl {
+ /// The template for which this is the pattern, if any.
+ TypeAliasTemplateDecl *Template;
+
+ TypeAliasDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
+ SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
+ : TypedefNameDecl(TypeAlias, C, DC, StartLoc, IdLoc, Id, TInfo),
+ Template(nullptr) {}
+
+public:
+ static TypeAliasDecl *Create(ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc, SourceLocation IdLoc,
+ IdentifierInfo *Id, TypeSourceInfo *TInfo);
+ static TypeAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
+
+ SourceRange getSourceRange() const override LLVM_READONLY;
+
+ TypeAliasTemplateDecl *getDescribedAliasTemplate() const { return Template; }
+ void setDescribedAliasTemplate(TypeAliasTemplateDecl *TAT) { Template = TAT; }
+
+ // Implement isa/cast/dyncast/etc.
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) { return K == TypeAlias; }
+};
+
+/// Represents the declaration of a struct/union/class/enum.
+class TagDecl : public TypeDecl,
+ public DeclContext,
+ public Redeclarable<TagDecl> {
+ // This class stores some data in DeclContext::TagDeclBits
+ // to save some space. Use the provided accessors to access it.
+public:
+ // This is really ugly.
+ using TagKind = TagTypeKind;
+
+private:
+ SourceRange BraceRange;
+
+ // A struct representing syntactic qualifier info,
+ // to be used for the (uncommon) case of out-of-line declarations.
+ using ExtInfo = QualifierInfo;
+
+ /// If the (out-of-line) tag declaration name
+ /// is qualified, it points to the qualifier info (nns and range);
+ /// otherwise, if the tag declaration is anonymous and it is part of
+ /// a typedef or alias, it points to the TypedefNameDecl (used for mangling);
+ /// otherwise, if the tag declaration is anonymous and it is used as a
+ /// declaration specifier for variables, it points to the first VarDecl (used
+ /// for mangling);
+ /// otherwise, it is a null (TypedefNameDecl) pointer.
+ llvm::PointerUnion<TypedefNameDecl *, ExtInfo *> TypedefNameDeclOrQualifier;
+
+ bool hasExtInfo() const { return TypedefNameDeclOrQualifier.is<ExtInfo *>(); }
+ ExtInfo *getExtInfo() { return TypedefNameDeclOrQualifier.get<ExtInfo *>(); }
+ const ExtInfo *getExtInfo() const {
+ return TypedefNameDeclOrQualifier.get<ExtInfo *>();
+ }
+
+protected:
+ TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
+ SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
+ SourceLocation StartL);
+
+ using redeclarable_base = Redeclarable<TagDecl>;
+
+ TagDecl *getNextRedeclarationImpl() override {
+ return getNextRedeclaration();
+ }
+
+ TagDecl *getPreviousDeclImpl() override {
+ return getPreviousDecl();
+ }
+
+ TagDecl *getMostRecentDeclImpl() override {
+ return getMostRecentDecl();
+ }
+
+ /// Completes the definition of this tag declaration.
+ ///
+ /// This is a helper function for derived classes.
+ void completeDefinition();
+
+ /// True if this decl is currently being defined.
+ void setBeingDefined(bool V = true) { TagDeclBits.IsBeingDefined = V; }
+
+ /// Indicates whether it is possible for declarations of this kind
+ /// to have an out-of-date definition.
+ ///
+ /// This option is only enabled when modules are enabled.
+ void setMayHaveOutOfDateDef(bool V = true) {
+ TagDeclBits.MayHaveOutOfDateDef = V;
+ }
+
+public:
+ friend class ASTDeclReader;
+ friend class ASTDeclWriter;
+
+ using redecl_range = redeclarable_base::redecl_range;
+ using redecl_iterator = redeclarable_base::redecl_iterator;
+
+ using redeclarable_base::redecls_begin;
+ using redeclarable_base::redecls_end;
+ using redeclarable_base::redecls;
+ using redeclarable_base::getPreviousDecl;
+ using redeclarable_base::getMostRecentDecl;
+ using redeclarable_base::isFirstDecl;
+
+ SourceRange getBraceRange() const { return BraceRange; }
+ void setBraceRange(SourceRange R) { BraceRange = R; }
+
+ /// Return SourceLocation representing start of source
+ /// range ignoring outer template declarations.
+ SourceLocation getInnerLocStart() const { return getBeginLoc(); }
+
+ /// Return SourceLocation representing start of source
+ /// range taking into account any outer template declarations.
+ SourceLocation getOuterLocStart() const;
+ SourceRange getSourceRange() const override LLVM_READONLY;
+
+ TagDecl *getCanonicalDecl() override;
+ const TagDecl *getCanonicalDecl() const {
+ return const_cast<TagDecl*>(this)->getCanonicalDecl();
+ }
+
+ /// Return true if this declaration is a completion definition of the type.
+ /// Provided for consistency.
+ bool isThisDeclarationADefinition() const {
+ return isCompleteDefinition();
+ }
+
+ /// Return true if this decl has its body fully specified.
+ bool isCompleteDefinition() const { return TagDeclBits.IsCompleteDefinition; }
+
+ /// True if this decl has its body fully specified.
+ void setCompleteDefinition(bool V = true) {
+ TagDeclBits.IsCompleteDefinition = V;
+ }
+
+ /// Return true if this complete decl is
+ /// required to be complete for some existing use.
+ bool isCompleteDefinitionRequired() const {
+ return TagDeclBits.IsCompleteDefinitionRequired;
+ }
+
+ /// True if this complete decl is
+ /// required to be complete for some existing use.
+ void setCompleteDefinitionRequired(bool V = true) {
+ TagDeclBits.IsCompleteDefinitionRequired = V;
+ }
+
+ /// Return true if this decl is currently being defined.
+ bool isBeingDefined() const { return TagDeclBits.IsBeingDefined; }
+
+ /// True if this tag declaration is "embedded" (i.e., defined or declared
+ /// for the very first time) in the syntax of a declarator.
+ bool isEmbeddedInDeclarator() const {
+ return TagDeclBits.IsEmbeddedInDeclarator;
+ }
+
+ /// True if this tag declaration is "embedded" (i.e., defined or declared
+ /// for the very first time) in the syntax of a declarator.
+ void setEmbeddedInDeclarator(bool isInDeclarator) {
+ TagDeclBits.IsEmbeddedInDeclarator = isInDeclarator;
+ }
+
+ /// True if this tag is free standing, e.g. "struct foo;".
+ bool isFreeStanding() const { return TagDeclBits.IsFreeStanding; }
+
+ /// True if this tag is free standing, e.g. "struct foo;".
+ void setFreeStanding(bool isFreeStanding = true) {
+ TagDeclBits.IsFreeStanding = isFreeStanding;
+ }
+
+ /// Indicates whether it is possible for declarations of this kind
+ /// to have an out-of-date definition.
+ ///
+ /// This option is only enabled when modules are enabled.
+ bool mayHaveOutOfDateDef() const { return TagDeclBits.MayHaveOutOfDateDef; }
+
+ /// Whether this declaration declares a type that is
+ /// dependent, i.e., a type that somehow depends on template
+ /// parameters.
+ bool isDependentType() const { return isDependentContext(); }
+
+ /// Starts the definition of this tag declaration.
+ ///
+ /// This method should be invoked at the beginning of the definition
+ /// of this tag declaration. It will set the tag type into a state
+ /// where it is in the process of being defined.
+ void startDefinition();
+
+ /// Returns the TagDecl that actually defines this
+ /// struct/union/class/enum. When determining whether or not a
+ /// struct/union/class/enum has a definition, one should use this
+ /// method as opposed to 'isDefinition'. 'isDefinition' indicates
+ /// whether or not a specific TagDecl is defining declaration, not
+ /// whether or not the struct/union/class/enum type is defined.
+ /// This method returns NULL if there is no TagDecl that defines
+ /// the struct/union/class/enum.
+ TagDecl *getDefinition() const;
+
+ StringRef getKindName() const {
+ return TypeWithKeyword::getTagTypeKindName(getTagKind());
+ }
+
+ TagKind getTagKind() const {
+ return static_cast<TagKind>(TagDeclBits.TagDeclKind);
+ }
+
+ void setTagKind(TagKind TK) { TagDeclBits.TagDeclKind = TK; }
+
+ bool isStruct() const { return getTagKind() == TTK_Struct; }
+ bool isInterface() const { return getTagKind() == TTK_Interface; }
+ bool isClass() const { return getTagKind() == TTK_Class; }
+ bool isUnion() const { return getTagKind() == TTK_Union; }
+ bool isEnum() const { return getTagKind() == TTK_Enum; }
+
+ /// Is this tag type named, either directly or via being defined in
+ /// a typedef of this type?
+ ///
+ /// C++11 [basic.link]p8:
+ /// A type is said to have linkage if and only if:
+ /// - it is a class or enumeration type that is named (or has a
+ /// name for linkage purposes) and the name has linkage; ...
+ /// C++11 [dcl.typedef]p9:
+ /// If the typedef declaration defines an unnamed class (or enum),
+ /// the first typedef-name declared by the declaration to be that
+ /// class type (or enum type) is used to denote the class type (or
+ /// enum type) for linkage purposes only.
+ ///
+ /// C does not have an analogous rule, but the same concept is
+ /// nonetheless useful in some places.
+ bool hasNameForLinkage() const {
+ return (getDeclName() || getTypedefNameForAnonDecl());
+ }
+
+ TypedefNameDecl *getTypedefNameForAnonDecl() const {
+ return hasExtInfo() ? nullptr
+ : TypedefNameDeclOrQualifier.get<TypedefNameDecl *>();
+ }
+
+ void setTypedefNameForAnonDecl(TypedefNameDecl *TDD);
+
+ /// Retrieve the nested-name-specifier that qualifies the name of this
+ /// declaration, if it was present in the source.
+ NestedNameSpecifier *getQualifier() const {
+ return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
+ : nullptr;
+ }
+
+ /// Retrieve the nested-name-specifier (with source-location
+ /// information) that qualifies the name of this declaration, if it was
+ /// present in the source.
+ NestedNameSpecifierLoc getQualifierLoc() const {
+ return hasExtInfo() ? getExtInfo()->QualifierLoc
+ : NestedNameSpecifierLoc();
+ }
+
+ void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
+
+ unsigned getNumTemplateParameterLists() const {
+ return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
+ }
+
+ TemplateParameterList *getTemplateParameterList(unsigned i) const {
+ assert(i < getNumTemplateParameterLists());
+ return getExtInfo()->TemplParamLists[i];
+ }
+
+ void setTemplateParameterListsInfo(ASTContext &Context,
+ ArrayRef<TemplateParameterList *> TPLists);
+
+ // Implement isa/cast/dyncast/etc.
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) { return K >= firstTag && K <= lastTag; }
+
+ static DeclContext *castToDeclContext(const TagDecl *D) {
+ return static_cast<DeclContext *>(const_cast<TagDecl*>(D));
+ }
+
+ static TagDecl *castFromDeclContext(const DeclContext *DC) {
+ return static_cast<TagDecl *>(const_cast<DeclContext*>(DC));
+ }
+};
+
+/// Represents an enum. In C++11, enums can be forward-declared
+/// with a fixed underlying type, and in C we allow them to be forward-declared
+/// with no underlying type as an extension.
+class EnumDecl : public TagDecl {
+ // This class stores some data in DeclContext::EnumDeclBits
+ // to save some space. Use the provided accessors to access it.
+
+ /// This represent the integer type that the enum corresponds
+ /// to for code generation purposes. Note that the enumerator constants may
+ /// have a different type than this does.
+ ///
+ /// If the underlying integer type was explicitly stated in the source
+ /// code, this is a TypeSourceInfo* for that type. Otherwise this type
+ /// was automatically deduced somehow, and this is a Type*.
+ ///
+ /// Normally if IsFixed(), this would contain a TypeSourceInfo*, but in
+ /// some cases it won't.
+ ///
+ /// The underlying type of an enumeration never has any qualifiers, so
+ /// we can get away with just storing a raw Type*, and thus save an
+ /// extra pointer when TypeSourceInfo is needed.
+ llvm::PointerUnion<const Type *, TypeSourceInfo *> IntegerType;
+
+ /// The integer type that values of this type should
+ /// promote to. In C, enumerators are generally of an integer type
+ /// directly, but gcc-style large enumerators (and all enumerators
+ /// in C++) are of the enum type instead.
+ QualType PromotionType;
+
+ /// If this enumeration is an instantiation of a member enumeration
+ /// of a class template specialization, this is the member specialization
+ /// information.
+ MemberSpecializationInfo *SpecializationInfo = nullptr;
+
+ /// Store the ODRHash after first calculation.
+ /// The corresponding flag HasODRHash is in EnumDeclBits
+ /// and can be accessed with the provided accessors.
+ unsigned ODRHash;
+
+ EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
+ SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
+ bool Scoped, bool ScopedUsingClassTag, bool Fixed);
+
+ void anchor() override;
+
+ void setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
+ TemplateSpecializationKind TSK);
+
+ /// Sets the width in bits required to store all the
+ /// non-negative enumerators of this enum.
+ void setNumPositiveBits(unsigned Num) {
+ EnumDeclBits.NumPositiveBits = Num;
+ assert(EnumDeclBits.NumPositiveBits == Num && "can't store this bitcount");
+ }
+
+ /// Returns the width in bits required to store all the
+ /// negative enumerators of this enum. (see getNumNegativeBits)
+ void setNumNegativeBits(unsigned Num) { EnumDeclBits.NumNegativeBits = Num; }
+
+ /// True if this tag declaration is a scoped enumeration. Only
+ /// possible in C++11 mode.
+ void setScoped(bool Scoped = true) { EnumDeclBits.IsScoped = Scoped; }
+
+ /// If this tag declaration is a scoped enum,
+ /// then this is true if the scoped enum was declared using the class
+ /// tag, false if it was declared with the struct tag. No meaning is
+ /// associated if this tag declaration is not a scoped enum.
+ void setScopedUsingClassTag(bool ScopedUCT = true) {
+ EnumDeclBits.IsScopedUsingClassTag = ScopedUCT;
+ }
+
+ /// True if this is an Objective-C, C++11, or
+ /// Microsoft-style enumeration with a fixed underlying type.
+ void setFixed(bool Fixed = true) { EnumDeclBits.IsFixed = Fixed; }
+
+ /// True if a valid hash is stored in ODRHash.
+ bool hasODRHash() const { return EnumDeclBits.HasODRHash; }
+ void setHasODRHash(bool Hash = true) { EnumDeclBits.HasODRHash = Hash; }
+
+public:
+ friend class ASTDeclReader;
+
+ EnumDecl *getCanonicalDecl() override {
+ return cast<EnumDecl>(TagDecl::getCanonicalDecl());
+ }
+ const EnumDecl *getCanonicalDecl() const {
+ return const_cast<EnumDecl*>(this)->getCanonicalDecl();
+ }
+
+ EnumDecl *getPreviousDecl() {
+ return cast_or_null<EnumDecl>(
+ static_cast<TagDecl *>(this)->getPreviousDecl());
+ }
+ const EnumDecl *getPreviousDecl() const {
+ return const_cast<EnumDecl*>(this)->getPreviousDecl();
+ }
+
+ EnumDecl *getMostRecentDecl() {
+ return cast<EnumDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
+ }
+ const EnumDecl *getMostRecentDecl() const {
+ return const_cast<EnumDecl*>(this)->getMostRecentDecl();
+ }
+
+ EnumDecl *getDefinition() const {
+ return cast_or_null<EnumDecl>(TagDecl::getDefinition());
+ }
+
+ static EnumDecl *Create(ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc, SourceLocation IdLoc,
+ IdentifierInfo *Id, EnumDecl *PrevDecl,
+ bool IsScoped, bool IsScopedUsingClassTag,
+ bool IsFixed);
+ static EnumDecl *CreateDeserialized(ASTContext &C, unsigned ID);
+
+ /// When created, the EnumDecl corresponds to a
+ /// forward-declared enum. This method is used to mark the
+ /// declaration as being defined; its enumerators have already been
+ /// added (via DeclContext::addDecl). NewType is the new underlying
+ /// type of the enumeration type.
+ void completeDefinition(QualType NewType,
+ QualType PromotionType,
+ unsigned NumPositiveBits,
+ unsigned NumNegativeBits);
+
+ // Iterates through the enumerators of this enumeration.
+ using enumerator_iterator = specific_decl_iterator<EnumConstantDecl>;
+ using enumerator_range =
+ llvm::iterator_range<specific_decl_iterator<EnumConstantDecl>>;
+
+ enumerator_range enumerators() const {
+ return enumerator_range(enumerator_begin(), enumerator_end());
+ }
+
+ enumerator_iterator enumerator_begin() const {
+ const EnumDecl *E = getDefinition();
+ if (!E)
+ E = this;
+ return enumerator_iterator(E->decls_begin());
+ }
+
+ enumerator_iterator enumerator_end() const {
+ const EnumDecl *E = getDefinition();
+ if (!E)
+ E = this;
+ return enumerator_iterator(E->decls_end());
+ }
+
+ /// Return the integer type that enumerators should promote to.
+ QualType getPromotionType() const { return PromotionType; }
+
+ /// Set the promotion type.
+ void setPromotionType(QualType T) { PromotionType = T; }
+
+ /// Return the integer type this enum decl corresponds to.
+ /// This returns a null QualType for an enum forward definition with no fixed
+ /// underlying type.
+ QualType getIntegerType() const {
+ if (!IntegerType)
+ return QualType();
+ if (const Type *T = IntegerType.dyn_cast<const Type*>())
+ return QualType(T, 0);
+ return IntegerType.get<TypeSourceInfo*>()->getType().getUnqualifiedType();
+ }
+
+ /// Set the underlying integer type.
+ void setIntegerType(QualType T) { IntegerType = T.getTypePtrOrNull(); }
+
+ /// Set the underlying integer type source info.
+ void setIntegerTypeSourceInfo(TypeSourceInfo *TInfo) { IntegerType = TInfo; }
+
+ /// Return the type source info for the underlying integer type,
+ /// if no type source info exists, return 0.
+ TypeSourceInfo *getIntegerTypeSourceInfo() const {
+ return IntegerType.dyn_cast<TypeSourceInfo*>();
+ }
+
+ /// Retrieve the source range that covers the underlying type if
+ /// specified.
+ SourceRange getIntegerTypeRange() const LLVM_READONLY;
+
+ /// Returns the width in bits required to store all the
+ /// non-negative enumerators of this enum.
+ unsigned getNumPositiveBits() const { return EnumDeclBits.NumPositiveBits; }
+
+ /// Returns the width in bits required to store all the
+ /// negative enumerators of this enum. These widths include
+ /// the rightmost leading 1; that is:
+ ///
+ /// MOST NEGATIVE ENUMERATOR PATTERN NUM NEGATIVE BITS
+ /// ------------------------ ------- -----------------
+ /// -1 1111111 1
+ /// -10 1110110 5
+ /// -101 1001011 8
+ unsigned getNumNegativeBits() const { return EnumDeclBits.NumNegativeBits; }
+
+ /// Returns true if this is a C++11 scoped enumeration.
+ bool isScoped() const { return EnumDeclBits.IsScoped; }
+
+ /// Returns true if this is a C++11 scoped enumeration.
+ bool isScopedUsingClassTag() const {
+ return EnumDeclBits.IsScopedUsingClassTag;
+ }
+
+ /// Returns true if this is an Objective-C, C++11, or
+ /// Microsoft-style enumeration with a fixed underlying type.
+ bool isFixed() const { return EnumDeclBits.IsFixed; }
+
+ unsigned getODRHash();
+
+ /// Returns true if this can be considered a complete type.
+ bool isComplete() const {
+ // IntegerType is set for fixed type enums and non-fixed but implicitly
+ // int-sized Microsoft enums.
+ return isCompleteDefinition() || IntegerType;
+ }
+
+ /// Returns true if this enum is either annotated with
+ /// enum_extensibility(closed) or isn't annotated with enum_extensibility.
+ bool isClosed() const;
+
+ /// Returns true if this enum is annotated with flag_enum and isn't annotated
+ /// with enum_extensibility(open).
+ bool isClosedFlag() const;
+
+ /// Returns true if this enum is annotated with neither flag_enum nor
+ /// enum_extensibility(open).
+ bool isClosedNonFlag() const;
+
+ /// Retrieve the enum definition from which this enumeration could
+ /// be instantiated, if it is an instantiation (rather than a non-template).
+ EnumDecl *getTemplateInstantiationPattern() const;
+
+ /// Returns the enumeration (declared within the template)
+ /// from which this enumeration type was instantiated, or NULL if
+ /// this enumeration was not instantiated from any template.
+ EnumDecl *getInstantiatedFromMemberEnum() const;
+
+ /// If this enumeration is a member of a specialization of a
+ /// templated class, determine what kind of template specialization
+ /// or instantiation this is.
+ TemplateSpecializationKind getTemplateSpecializationKind() const;
+
+ /// For an enumeration member that was instantiated from a member
+ /// enumeration of a templated class, set the template specialiation kind.
+ void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
+ SourceLocation PointOfInstantiation = SourceLocation());
+
+ /// If this enumeration is an instantiation of a member enumeration of
+ /// a class template specialization, retrieves the member specialization
+ /// information.
+ MemberSpecializationInfo *getMemberSpecializationInfo() const {
+ return SpecializationInfo;
+ }
+
+ /// Specify that this enumeration is an instantiation of the
+ /// member enumeration ED.
+ void setInstantiationOfMemberEnum(EnumDecl *ED,
+ TemplateSpecializationKind TSK) {
+ setInstantiationOfMemberEnum(getASTContext(), ED, TSK);
+ }
+
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) { return K == Enum; }
+};
+
+/// Represents a struct/union/class. For example:
+/// struct X; // Forward declaration, no "body".
+/// union Y { int A, B; }; // Has body with members A and B (FieldDecls).
+/// This decl will be marked invalid if *any* members are invalid.
+class RecordDecl : public TagDecl {
+ // This class stores some data in DeclContext::RecordDeclBits
+ // to save some space. Use the provided accessors to access it.
+public:
+ friend class DeclContext;
+ /// Enum that represents the different ways arguments are passed to and
+ /// returned from function calls. This takes into account the target-specific
+ /// and version-specific rules along with the rules determined by the
+ /// language.
+ enum ArgPassingKind : unsigned {
+ /// The argument of this type can be passed directly in registers.
+ APK_CanPassInRegs,
+
+ /// The argument of this type cannot be passed directly in registers.
+ /// Records containing this type as a subobject are not forced to be passed
+ /// indirectly. This value is used only in C++. This value is required by
+ /// C++ because, in uncommon situations, it is possible for a class to have
+ /// only trivial copy/move constructors even when one of its subobjects has
+ /// a non-trivial copy/move constructor (if e.g. the corresponding copy/move
+ /// constructor in the derived class is deleted).
+ APK_CannotPassInRegs,
+
+ /// The argument of this type cannot be passed directly in registers.
+ /// Records containing this type as a subobject are forced to be passed
+ /// indirectly.
+ APK_CanNeverPassInRegs
+ };
+
+protected:
+ RecordDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc, SourceLocation IdLoc,
+ IdentifierInfo *Id, RecordDecl *PrevDecl);
+
+public:
+ static RecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
+ SourceLocation StartLoc, SourceLocation IdLoc,
+ IdentifierInfo *Id, RecordDecl* PrevDecl = nullptr);
+ static RecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
+
+ RecordDecl *getPreviousDecl() {
+ return cast_or_null<RecordDecl>(
+ static_cast<TagDecl *>(this)->getPreviousDecl());
+ }
+ const RecordDecl *getPreviousDecl() const {
+ return const_cast<RecordDecl*>(this)->getPreviousDecl();
+ }
+
+ RecordDecl *getMostRecentDecl() {
+ return cast<RecordDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
+ }
+ const RecordDecl *getMostRecentDecl() const {
+ return const_cast<RecordDecl*>(this)->getMostRecentDecl();
+ }
+
+ bool hasFlexibleArrayMember() const {
+ return RecordDeclBits.HasFlexibleArrayMember;
+ }
+
+ void setHasFlexibleArrayMember(bool V) {
+ RecordDeclBits.HasFlexibleArrayMember = V;
+ }
+
+ /// Whether this is an anonymous struct or union. To be an anonymous
+ /// struct or union, it must have been declared without a name and
+ /// there must be no objects of this type declared, e.g.,
+ /// @code
+ /// union { int i; float f; };
+ /// @endcode
+ /// is an anonymous union but neither of the following are:
+ /// @code
+ /// union X { int i; float f; };
+ /// union { int i; float f; } obj;
+ /// @endcode
+ bool isAnonymousStructOrUnion() const {
+ return RecordDeclBits.AnonymousStructOrUnion;
+ }
+
+ void setAnonymousStructOrUnion(bool Anon) {
+ RecordDeclBits.AnonymousStructOrUnion = Anon;
+ }
+
+ bool hasObjectMember() const { return RecordDeclBits.HasObjectMember; }
+ void setHasObjectMember(bool val) { RecordDeclBits.HasObjectMember = val; }
+
+ bool hasVolatileMember() const { return RecordDeclBits.HasVolatileMember; }
+
+ void setHasVolatileMember(bool val) {
+ RecordDeclBits.HasVolatileMember = val;
+ }
+
+ bool hasLoadedFieldsFromExternalStorage() const {
+ return RecordDeclBits.LoadedFieldsFromExternalStorage;
+ }
+
+ void setHasLoadedFieldsFromExternalStorage(bool val) const {
+ RecordDeclBits.LoadedFieldsFromExternalStorage = val;
+ }
+
+ /// Functions to query basic properties of non-trivial C structs.
+ bool isNonTrivialToPrimitiveDefaultInitialize() const {
+ return RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize;
+ }
+
+ void setNonTrivialToPrimitiveDefaultInitialize(bool V) {
+ RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize = V;
+ }
+
+ bool isNonTrivialToPrimitiveCopy() const {
+ return RecordDeclBits.NonTrivialToPrimitiveCopy;
+ }
+
+ void setNonTrivialToPrimitiveCopy(bool V) {
+ RecordDeclBits.NonTrivialToPrimitiveCopy = V;
+ }
+
+ bool isNonTrivialToPrimitiveDestroy() const {
+ return RecordDeclBits.NonTrivialToPrimitiveDestroy;
+ }
+
+ void setNonTrivialToPrimitiveDestroy(bool V) {
+ RecordDeclBits.NonTrivialToPrimitiveDestroy = V;
+ }
+
+ /// Determine whether this class can be passed in registers. In C++ mode,
+ /// it must have at least one trivial, non-deleted copy or move constructor.
+ /// FIXME: This should be set as part of completeDefinition.
+ bool canPassInRegisters() const {
+ return getArgPassingRestrictions() == APK_CanPassInRegs;
+ }
+
+ ArgPassingKind getArgPassingRestrictions() const {
+ return static_cast<ArgPassingKind>(RecordDeclBits.ArgPassingRestrictions);
+ }
+
+ void setArgPassingRestrictions(ArgPassingKind Kind) {
+ RecordDeclBits.ArgPassingRestrictions = Kind;
+ }
+
+ bool isParamDestroyedInCallee() const {
+ return RecordDeclBits.ParamDestroyedInCallee;
+ }
+
+ void setParamDestroyedInCallee(bool V) {
+ RecordDeclBits.ParamDestroyedInCallee = V;
+ }
+
+ /// Determines whether this declaration represents the
+ /// injected class name.
+ ///
+ /// The injected class name in C++ is the name of the class that
+ /// appears inside the class itself. For example:
+ ///
+ /// \code
+ /// struct C {
+ /// // C is implicitly declared here as a synonym for the class name.
+ /// };
+ ///
+ /// C::C c; // same as "C c;"
+ /// \endcode
+ bool isInjectedClassName() const;
+
+ /// Determine whether this record is a class describing a lambda
+ /// function object.
+ bool isLambda() const;
+
+ /// Determine whether this record is a record for captured variables in
+ /// CapturedStmt construct.
+ bool isCapturedRecord() const;
+
+ /// Mark the record as a record for captured variables in CapturedStmt
+ /// construct.
+ void setCapturedRecord();
+
+ /// Returns the RecordDecl that actually defines
+ /// this struct/union/class. When determining whether or not a
+ /// struct/union/class is completely defined, one should use this
+ /// method as opposed to 'isCompleteDefinition'.
+ /// 'isCompleteDefinition' indicates whether or not a specific
+ /// RecordDecl is a completed definition, not whether or not the
+ /// record type is defined. This method returns NULL if there is
+ /// no RecordDecl that defines the struct/union/tag.
+ RecordDecl *getDefinition() const {
+ return cast_or_null<RecordDecl>(TagDecl::getDefinition());
+ }
+
+ // Iterator access to field members. The field iterator only visits
+ // the non-static data members of this class, ignoring any static
+ // data members, functions, constructors, destructors, etc.
+ using field_iterator = specific_decl_iterator<FieldDecl>;
+ using field_range = llvm::iterator_range<specific_decl_iterator<FieldDecl>>;
+
+ field_range fields() const { return field_range(field_begin(), field_end()); }
+ field_iterator field_begin() const;
+
+ field_iterator field_end() const {
+ return field_iterator(decl_iterator());
+ }
+
+ // Whether there are any fields (non-static data members) in this record.
+ bool field_empty() const {
+ return field_begin() == field_end();
+ }
+
+ /// Note that the definition of this type is now complete.
+ virtual void completeDefinition();
+
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) {
+ return K >= firstRecord && K <= lastRecord;
+ }
+
+ /// Get whether or not this is an ms_struct which can
+ /// be turned on with an attribute, pragma, or -mms-bitfields
+ /// commandline option.
+ bool isMsStruct(const ASTContext &C) const;
+
+ /// Whether we are allowed to insert extra padding between fields.
+ /// These padding are added to help AddressSanitizer detect
+ /// intra-object-overflow bugs.
+ bool mayInsertExtraPadding(bool EmitRemark = false) const;
+
+ /// Finds the first data member which has a name.
+ /// nullptr is returned if no named data member exists.
+ const FieldDecl *findFirstNamedDataMember() const;
+
+private:
+ /// Deserialize just the fields.
+ void LoadFieldsFromExternalStorage() const;
+};
+
+class FileScopeAsmDecl : public Decl {
+ StringLiteral *AsmString;
+ SourceLocation RParenLoc;
+
+ FileScopeAsmDecl(DeclContext *DC, StringLiteral *asmstring,
+ SourceLocation StartL, SourceLocation EndL)
+ : Decl(FileScopeAsm, DC, StartL), AsmString(asmstring), RParenLoc(EndL) {}
+
+ virtual void anchor();
+
+public:
+ static FileScopeAsmDecl *Create(ASTContext &C, DeclContext *DC,
+ StringLiteral *Str, SourceLocation AsmLoc,
+ SourceLocation RParenLoc);
+
+ static FileScopeAsmDecl *CreateDeserialized(ASTContext &C, unsigned ID);
+
+ SourceLocation getAsmLoc() const { return getLocation(); }
+ SourceLocation getRParenLoc() const { return RParenLoc; }
+ void setRParenLoc(SourceLocation L) { RParenLoc = L; }
+ SourceRange getSourceRange() const override LLVM_READONLY {
+ return SourceRange(getAsmLoc(), getRParenLoc());
+ }
+
+ const StringLiteral *getAsmString() const { return AsmString; }
+ StringLiteral *getAsmString() { return AsmString; }
+ void setAsmString(StringLiteral *Asm) { AsmString = Asm; }
+
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) { return K == FileScopeAsm; }
+};
+
+/// Represents a block literal declaration, which is like an
+/// unnamed FunctionDecl. For example:
+/// ^{ statement-body } or ^(int arg1, float arg2){ statement-body }
+class BlockDecl : public Decl, public DeclContext {
+ // This class stores some data in DeclContext::BlockDeclBits
+ // to save some space. Use the provided accessors to access it.
+public:
+ /// A class which contains all the information about a particular
+ /// captured value.
+ class Capture {
+ enum {
+ flag_isByRef = 0x1,
+ flag_isNested = 0x2
+ };
+
+ /// The variable being captured.
+ llvm::PointerIntPair<VarDecl*, 2> VariableAndFlags;
+
+ /// The copy expression, expressed in terms of a DeclRef (or
+ /// BlockDeclRef) to the captured variable. Only required if the
+ /// variable has a C++ class type.
+ Expr *CopyExpr;
+
+ public:
+ Capture(VarDecl *variable, bool byRef, bool nested, Expr *copy)
+ : VariableAndFlags(variable,
+ (byRef ? flag_isByRef : 0) | (nested ? flag_isNested : 0)),
+ CopyExpr(copy) {}
+
+ /// The variable being captured.
+ VarDecl *getVariable() const { return VariableAndFlags.getPointer(); }
+
+ /// Whether this is a "by ref" capture, i.e. a capture of a __block
+ /// variable.
+ bool isByRef() const { return VariableAndFlags.getInt() & flag_isByRef; }
+
+ bool isEscapingByref() const {
+ return getVariable()->isEscapingByref();
+ }
+
+ bool isNonEscapingByref() const {
+ return getVariable()->isNonEscapingByref();
+ }
+
+ /// Whether this is a nested capture, i.e. the variable captured
+ /// is not from outside the immediately enclosing function/block.
+ bool isNested() const { return VariableAndFlags.getInt() & flag_isNested; }
+
+ bool hasCopyExpr() const { return CopyExpr != nullptr; }
+ Expr *getCopyExpr() const { return CopyExpr; }
+ void setCopyExpr(Expr *e) { CopyExpr = e; }
+ };
+
+private:
+ /// A new[]'d array of pointers to ParmVarDecls for the formal
+ /// parameters of this function. This is null if a prototype or if there are
+ /// no formals.
+ ParmVarDecl **ParamInfo = nullptr;
+ unsigned NumParams = 0;
+
+ Stmt *Body = nullptr;
+ TypeSourceInfo *SignatureAsWritten = nullptr;
+
+ const Capture *Captures = nullptr;
+ unsigned NumCaptures = 0;
+
+ unsigned ManglingNumber = 0;
+ Decl *ManglingContextDecl = nullptr;
+
+protected:
+ BlockDecl(DeclContext *DC, SourceLocation CaretLoc);
+
+public:
+ static BlockDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L);
+ static BlockDecl *CreateDeserialized(ASTContext &C, unsigned ID);
+
+ SourceLocation getCaretLocation() const { return getLocation(); }
+
+ bool isVariadic() const { return BlockDeclBits.IsVariadic; }
+ void setIsVariadic(bool value) { BlockDeclBits.IsVariadic = value; }
+
+ CompoundStmt *getCompoundBody() const { return (CompoundStmt*) Body; }
+ Stmt *getBody() const override { return (Stmt*) Body; }
+ void setBody(CompoundStmt *B) { Body = (Stmt*) B; }
+
+ void setSignatureAsWritten(TypeSourceInfo *Sig) { SignatureAsWritten = Sig; }
+ TypeSourceInfo *getSignatureAsWritten() const { return SignatureAsWritten; }
+
+ // ArrayRef access to formal parameters.
+ ArrayRef<ParmVarDecl *> parameters() const {
+ return {ParamInfo, getNumParams()};
+ }
+ MutableArrayRef<ParmVarDecl *> parameters() {
+ return {ParamInfo, getNumParams()};
+ }
+
+ // Iterator access to formal parameters.
+ using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
+ using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
+
+ bool param_empty() const { return parameters().empty(); }
+ param_iterator param_begin() { return parameters().begin(); }
+ param_iterator param_end() { return parameters().end(); }
+ param_const_iterator param_begin() const { return parameters().begin(); }
+ param_const_iterator param_end() const { return parameters().end(); }
+ size_t param_size() const { return parameters().size(); }
+
+ unsigned getNumParams() const { return NumParams; }
+
+ const ParmVarDecl *getParamDecl(unsigned i) const {
+ assert(i < getNumParams() && "Illegal param #");
+ return ParamInfo[i];
+ }
+ ParmVarDecl *getParamDecl(unsigned i) {
+ assert(i < getNumParams() && "Illegal param #");
+ return ParamInfo[i];
+ }
+
+ void setParams(ArrayRef<ParmVarDecl *> NewParamInfo);
+
+ /// True if this block (or its nested blocks) captures
+ /// anything of local storage from its enclosing scopes.
+ bool hasCaptures() const { return NumCaptures || capturesCXXThis(); }
+
+ /// Returns the number of captured variables.
+ /// Does not include an entry for 'this'.
+ unsigned getNumCaptures() const { return NumCaptures; }
+
+ using capture_const_iterator = ArrayRef<Capture>::const_iterator;
+
+ ArrayRef<Capture> captures() const { return {Captures, NumCaptures}; }
+
+ capture_const_iterator capture_begin() const { return captures().begin(); }
+ capture_const_iterator capture_end() const { return captures().end(); }
+
+ bool capturesCXXThis() const { return BlockDeclBits.CapturesCXXThis; }
+ void setCapturesCXXThis(bool B = true) { BlockDeclBits.CapturesCXXThis = B; }
+
+ bool blockMissingReturnType() const {
+ return BlockDeclBits.BlockMissingReturnType;
+ }
+
+ void setBlockMissingReturnType(bool val = true) {
+ BlockDeclBits.BlockMissingReturnType = val;
+ }
+
+ bool isConversionFromLambda() const {
+ return BlockDeclBits.IsConversionFromLambda;
+ }
+
+ void setIsConversionFromLambda(bool val = true) {
+ BlockDeclBits.IsConversionFromLambda = val;
+ }
+
+ bool doesNotEscape() const { return BlockDeclBits.DoesNotEscape; }
+ void setDoesNotEscape(bool B = true) { BlockDeclBits.DoesNotEscape = B; }
+
+ bool capturesVariable(const VarDecl *var) const;
+
+ void setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
+ bool CapturesCXXThis);
+
+ unsigned getBlockManglingNumber() const {
+ return ManglingNumber;
+ }
+
+ Decl *getBlockManglingContextDecl() const {
+ return ManglingContextDecl;
+ }
+
+ void setBlockMangling(unsigned Number, Decl *Ctx) {
+ ManglingNumber = Number;
+ ManglingContextDecl = Ctx;
+ }
+
+ SourceRange getSourceRange() const override LLVM_READONLY;
+
+ // Implement isa/cast/dyncast/etc.
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) { return K == Block; }
+ static DeclContext *castToDeclContext(const BlockDecl *D) {
+ return static_cast<DeclContext *>(const_cast<BlockDecl*>(D));
+ }
+ static BlockDecl *castFromDeclContext(const DeclContext *DC) {
+ return static_cast<BlockDecl *>(const_cast<DeclContext*>(DC));
+ }
+};
+
+/// Represents the body of a CapturedStmt, and serves as its DeclContext.
+class CapturedDecl final
+ : public Decl,
+ public DeclContext,
+ private llvm::TrailingObjects<CapturedDecl, ImplicitParamDecl *> {
+protected:
+ size_t numTrailingObjects(OverloadToken<ImplicitParamDecl>) {
+ return NumParams;
+ }
+
+private:
+ /// The number of parameters to the outlined function.
+ unsigned NumParams;
+
+ /// The position of context parameter in list of parameters.
+ unsigned ContextParam;
+
+ /// The body of the outlined function.
+ llvm::PointerIntPair<Stmt *, 1, bool> BodyAndNothrow;
+
+ explicit CapturedDecl(DeclContext *DC, unsigned NumParams);
+
+ ImplicitParamDecl *const *getParams() const {
+ return getTrailingObjects<ImplicitParamDecl *>();
+ }
+
+ ImplicitParamDecl **getParams() {
+ return getTrailingObjects<ImplicitParamDecl *>();
+ }
+
+public:
+ friend class ASTDeclReader;
+ friend class ASTDeclWriter;
+ friend TrailingObjects;
+
+ static CapturedDecl *Create(ASTContext &C, DeclContext *DC,
+ unsigned NumParams);
+ static CapturedDecl *CreateDeserialized(ASTContext &C, unsigned ID,
+ unsigned NumParams);
+
+ Stmt *getBody() const override;
+ void setBody(Stmt *B);
+
+ bool isNothrow() const;
+ void setNothrow(bool Nothrow = true);
+
+ unsigned getNumParams() const { return NumParams; }
+
+ ImplicitParamDecl *getParam(unsigned i) const {
+ assert(i < NumParams);
+ return getParams()[i];
+ }
+ void setParam(unsigned i, ImplicitParamDecl *P) {
+ assert(i < NumParams);
+ getParams()[i] = P;
+ }
+
+ // ArrayRef interface to parameters.
+ ArrayRef<ImplicitParamDecl *> parameters() const {
+ return {getParams(), getNumParams()};
+ }
+ MutableArrayRef<ImplicitParamDecl *> parameters() {
+ return {getParams(), getNumParams()};
+ }
+
+ /// Retrieve the parameter containing captured variables.
+ ImplicitParamDecl *getContextParam() const {
+ assert(ContextParam < NumParams);
+ return getParam(ContextParam);
+ }
+ void setContextParam(unsigned i, ImplicitParamDecl *P) {
+ assert(i < NumParams);
+ ContextParam = i;
+ setParam(i, P);
+ }
+ unsigned getContextParamPosition() const { return ContextParam; }
+
+ using param_iterator = ImplicitParamDecl *const *;
+ using param_range = llvm::iterator_range<param_iterator>;
+
+ /// Retrieve an iterator pointing to the first parameter decl.
+ param_iterator param_begin() const { return getParams(); }
+ /// Retrieve an iterator one past the last parameter decl.
+ param_iterator param_end() const { return getParams() + NumParams; }
+
+ // Implement isa/cast/dyncast/etc.
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) { return K == Captured; }
+ static DeclContext *castToDeclContext(const CapturedDecl *D) {
+ return static_cast<DeclContext *>(const_cast<CapturedDecl *>(D));
+ }
+ static CapturedDecl *castFromDeclContext(const DeclContext *DC) {
+ return static_cast<CapturedDecl *>(const_cast<DeclContext *>(DC));
+ }
+};
+
+/// Describes a module import declaration, which makes the contents
+/// of the named module visible in the current translation unit.
+///
+/// An import declaration imports the named module (or submodule). For example:
+/// \code
+/// @import std.vector;
+/// \endcode
+///
+/// Import declarations can also be implicitly generated from
+/// \#include/\#import directives.
+class ImportDecl final : public Decl,
+ llvm::TrailingObjects<ImportDecl, SourceLocation> {
+ friend class ASTContext;
+ friend class ASTDeclReader;
+ friend class ASTReader;
+ friend TrailingObjects;
+
+ /// The imported module, along with a bit that indicates whether
+ /// we have source-location information for each identifier in the module
+ /// name.
+ ///
+ /// When the bit is false, we only have a single source location for the
+ /// end of the import declaration.
+ llvm::PointerIntPair<Module *, 1, bool> ImportedAndComplete;
+
+ /// The next import in the list of imports local to the translation
+ /// unit being parsed (not loaded from an AST file).
+ ImportDecl *NextLocalImport = nullptr;
+
+ ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
+ ArrayRef<SourceLocation> IdentifierLocs);
+
+ ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
+ SourceLocation EndLoc);
+
+ ImportDecl(EmptyShell Empty) : Decl(Import, Empty) {}
+
+public:
+ /// Create a new module import declaration.
+ static ImportDecl *Create(ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc, Module *Imported,
+ ArrayRef<SourceLocation> IdentifierLocs);
+
+ /// Create a new module import declaration for an implicitly-generated
+ /// import.
+ static ImportDecl *CreateImplicit(ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc, Module *Imported,
+ SourceLocation EndLoc);
+
+ /// Create a new, deserialized module import declaration.
+ static ImportDecl *CreateDeserialized(ASTContext &C, unsigned ID,
+ unsigned NumLocations);
+
+ /// Retrieve the module that was imported by the import declaration.
+ Module *getImportedModule() const { return ImportedAndComplete.getPointer(); }
+
+ /// Retrieves the locations of each of the identifiers that make up
+ /// the complete module name in the import declaration.
+ ///
+ /// This will return an empty array if the locations of the individual
+ /// identifiers aren't available.
+ ArrayRef<SourceLocation> getIdentifierLocs() const;
+
+ SourceRange getSourceRange() const override LLVM_READONLY;
+
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) { return K == Import; }
+};
+
+/// Represents a C++ Modules TS module export declaration.
+///
+/// For example:
+/// \code
+/// export void foo();
+/// \endcode
+class ExportDecl final : public Decl, public DeclContext {
+ virtual void anchor();
+
+private:
+ friend class ASTDeclReader;
+
+ /// The source location for the right brace (if valid).
+ SourceLocation RBraceLoc;
+
+ ExportDecl(DeclContext *DC, SourceLocation ExportLoc)
+ : Decl(Export, DC, ExportLoc), DeclContext(Export),
+ RBraceLoc(SourceLocation()) {}
+
+public:
+ static ExportDecl *Create(ASTContext &C, DeclContext *DC,
+ SourceLocation ExportLoc);
+ static ExportDecl *CreateDeserialized(ASTContext &C, unsigned ID);
+
+ SourceLocation getExportLoc() const { return getLocation(); }
+ SourceLocation getRBraceLoc() const { return RBraceLoc; }
+ void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
+
+ SourceLocation getEndLoc() const LLVM_READONLY {
+ if (RBraceLoc.isValid())
+ return RBraceLoc;
+ // No braces: get the end location of the (only) declaration in context
+ // (if present).
+ return decls_empty() ? getLocation() : decls_begin()->getEndLoc();
+ }
+
+ SourceRange getSourceRange() const override LLVM_READONLY {
+ return SourceRange(getLocation(), getEndLoc());
+ }
+
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) { return K == Export; }
+ static DeclContext *castToDeclContext(const ExportDecl *D) {
+ return static_cast<DeclContext *>(const_cast<ExportDecl*>(D));
+ }
+ static ExportDecl *castFromDeclContext(const DeclContext *DC) {
+ return static_cast<ExportDecl *>(const_cast<DeclContext*>(DC));
+ }
+};
+
+/// Represents an empty-declaration.
+class EmptyDecl : public Decl {
+ EmptyDecl(DeclContext *DC, SourceLocation L) : Decl(Empty, DC, L) {}
+
+ virtual void anchor();
+
+public:
+ static EmptyDecl *Create(ASTContext &C, DeclContext *DC,
+ SourceLocation L);
+ static EmptyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
+
+ static bool classof(const Decl *D) { return classofKind(D->getKind()); }
+ static bool classofKind(Kind K) { return K == Empty; }
+};
+
+/// Insertion operator for diagnostics. This allows sending NamedDecl's
+/// into a diagnostic with <<.
+inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
+ const NamedDecl* ND) {
+ DB.AddTaggedVal(reinterpret_cast<intptr_t>(ND),
+ DiagnosticsEngine::ak_nameddecl);
+ return DB;
+}
+inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
+ const NamedDecl* ND) {
+ PD.AddTaggedVal(reinterpret_cast<intptr_t>(ND),
+ DiagnosticsEngine::ak_nameddecl);
+ return PD;
+}
+
+template<typename decl_type>
+void Redeclarable<decl_type>::setPreviousDecl(decl_type *PrevDecl) {
+ // Note: This routine is implemented here because we need both NamedDecl
+ // and Redeclarable to be defined.
+ assert(RedeclLink.isFirst() &&
+ "setPreviousDecl on a decl already in a redeclaration chain");
+
+ if (PrevDecl) {
+ // Point to previous. Make sure that this is actually the most recent
+ // redeclaration, or we can build invalid chains. If the most recent
+ // redeclaration is invalid, it won't be PrevDecl, but we want it anyway.
+ First = PrevDecl->getFirstDecl();
+ assert(First->RedeclLink.isFirst() && "Expected first");
+ decl_type *MostRecent = First->getNextRedeclaration();
+ RedeclLink = PreviousDeclLink(cast<decl_type>(MostRecent));
+
+ // If the declaration was previously visible, a redeclaration of it remains
+ // visible even if it wouldn't be visible by itself.
+ static_cast<decl_type*>(this)->IdentifierNamespace |=
+ MostRecent->getIdentifierNamespace() &
+ (Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Type);
+ } else {
+ // Make this first.
+ First = static_cast<decl_type*>(this);
+ }
+
+ // First one will point to this one as latest.
+ First->RedeclLink.setLatest(static_cast<decl_type*>(this));
+
+ assert(!isa<NamedDecl>(static_cast<decl_type*>(this)) ||
+ cast<NamedDecl>(static_cast<decl_type*>(this))->isLinkageValid());
+}
+
+// Inline function definitions.
+
+/// Check if the given decl is complete.
+///
+/// We use this function to break a cycle between the inline definitions in
+/// Type.h and Decl.h.
+inline bool IsEnumDeclComplete(EnumDecl *ED) {
+ return ED->isComplete();
+}
+
+/// Check if the given decl is scoped.
+///
+/// We use this function to break a cycle between the inline definitions in
+/// Type.h and Decl.h.
+inline bool IsEnumDeclScoped(EnumDecl *ED) {
+ return ED->isScoped();
+}
+
+} // namespace clang
+
+#endif // LLVM_CLANG_AST_DECL_H