summaryrefslogtreecommitdiff
path: root/clang-r353983/include/clang/AST/Type.h
diff options
context:
space:
mode:
Diffstat (limited to 'clang-r353983/include/clang/AST/Type.h')
-rw-r--r--clang-r353983/include/clang/AST/Type.h6864
1 files changed, 6864 insertions, 0 deletions
diff --git a/clang-r353983/include/clang/AST/Type.h b/clang-r353983/include/clang/AST/Type.h
new file mode 100644
index 00000000..5e1df2f9
--- /dev/null
+++ b/clang-r353983/include/clang/AST/Type.h
@@ -0,0 +1,6864 @@
+//===- Type.h - C Language Family Type Representation -----------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// C Language Family Type Representation
+///
+/// This file defines the clang::Type interface and subclasses, used to
+/// represent types for languages in the C family.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_AST_TYPE_H
+#define LLVM_CLANG_AST_TYPE_H
+
+#include "clang/AST/NestedNameSpecifier.h"
+#include "clang/AST/TemplateName.h"
+#include "clang/Basic/AddressSpaces.h"
+#include "clang/Basic/AttrKinds.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/ExceptionSpecificationType.h"
+#include "clang/Basic/LLVM.h"
+#include "clang/Basic/Linkage.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "clang/Basic/SourceLocation.h"
+#include "clang/Basic/Specifiers.h"
+#include "clang/Basic/Visibility.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/APSInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/PointerIntPair.h"
+#include "llvm/ADT/PointerUnion.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/PointerLikeTypeTraits.h"
+#include "llvm/Support/type_traits.h"
+#include "llvm/Support/TrailingObjects.h"
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <cstring>
+#include <string>
+#include <type_traits>
+#include <utility>
+
+namespace clang {
+
+class ExtQuals;
+class QualType;
+class TagDecl;
+class Type;
+
+enum {
+ TypeAlignmentInBits = 4,
+ TypeAlignment = 1 << TypeAlignmentInBits
+};
+
+} // namespace clang
+
+namespace llvm {
+
+ template <typename T>
+ struct PointerLikeTypeTraits;
+ template<>
+ struct PointerLikeTypeTraits< ::clang::Type*> {
+ static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
+
+ static inline ::clang::Type *getFromVoidPointer(void *P) {
+ return static_cast< ::clang::Type*>(P);
+ }
+
+ enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
+ };
+
+ template<>
+ struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
+ static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
+
+ static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
+ return static_cast< ::clang::ExtQuals*>(P);
+ }
+
+ enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
+ };
+
+} // namespace llvm
+
+namespace clang {
+
+class ASTContext;
+template <typename> class CanQual;
+class CXXRecordDecl;
+class DeclContext;
+class EnumDecl;
+class Expr;
+class ExtQualsTypeCommonBase;
+class FunctionDecl;
+class IdentifierInfo;
+class NamedDecl;
+class ObjCInterfaceDecl;
+class ObjCProtocolDecl;
+class ObjCTypeParamDecl;
+struct PrintingPolicy;
+class RecordDecl;
+class Stmt;
+class TagDecl;
+class TemplateArgument;
+class TemplateArgumentListInfo;
+class TemplateArgumentLoc;
+class TemplateTypeParmDecl;
+class TypedefNameDecl;
+class UnresolvedUsingTypenameDecl;
+
+using CanQualType = CanQual<Type>;
+
+// Provide forward declarations for all of the *Type classes.
+#define TYPE(Class, Base) class Class##Type;
+#include "clang/AST/TypeNodes.def"
+
+/// The collection of all-type qualifiers we support.
+/// Clang supports five independent qualifiers:
+/// * C99: const, volatile, and restrict
+/// * MS: __unaligned
+/// * Embedded C (TR18037): address spaces
+/// * Objective C: the GC attributes (none, weak, or strong)
+class Qualifiers {
+public:
+ enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
+ Const = 0x1,
+ Restrict = 0x2,
+ Volatile = 0x4,
+ CVRMask = Const | Volatile | Restrict
+ };
+
+ enum GC {
+ GCNone = 0,
+ Weak,
+ Strong
+ };
+
+ enum ObjCLifetime {
+ /// There is no lifetime qualification on this type.
+ OCL_None,
+
+ /// This object can be modified without requiring retains or
+ /// releases.
+ OCL_ExplicitNone,
+
+ /// Assigning into this object requires the old value to be
+ /// released and the new value to be retained. The timing of the
+ /// release of the old value is inexact: it may be moved to
+ /// immediately after the last known point where the value is
+ /// live.
+ OCL_Strong,
+
+ /// Reading or writing from this object requires a barrier call.
+ OCL_Weak,
+
+ /// Assigning into this object requires a lifetime extension.
+ OCL_Autoreleasing
+ };
+
+ enum {
+ /// The maximum supported address space number.
+ /// 23 bits should be enough for anyone.
+ MaxAddressSpace = 0x7fffffu,
+
+ /// The width of the "fast" qualifier mask.
+ FastWidth = 3,
+
+ /// The fast qualifier mask.
+ FastMask = (1 << FastWidth) - 1
+ };
+
+ /// Returns the common set of qualifiers while removing them from
+ /// the given sets.
+ static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
+ // If both are only CVR-qualified, bit operations are sufficient.
+ if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
+ Qualifiers Q;
+ Q.Mask = L.Mask & R.Mask;
+ L.Mask &= ~Q.Mask;
+ R.Mask &= ~Q.Mask;
+ return Q;
+ }
+
+ Qualifiers Q;
+ unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
+ Q.addCVRQualifiers(CommonCRV);
+ L.removeCVRQualifiers(CommonCRV);
+ R.removeCVRQualifiers(CommonCRV);
+
+ if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
+ Q.setObjCGCAttr(L.getObjCGCAttr());
+ L.removeObjCGCAttr();
+ R.removeObjCGCAttr();
+ }
+
+ if (L.getObjCLifetime() == R.getObjCLifetime()) {
+ Q.setObjCLifetime(L.getObjCLifetime());
+ L.removeObjCLifetime();
+ R.removeObjCLifetime();
+ }
+
+ if (L.getAddressSpace() == R.getAddressSpace()) {
+ Q.setAddressSpace(L.getAddressSpace());
+ L.removeAddressSpace();
+ R.removeAddressSpace();
+ }
+ return Q;
+ }
+
+ static Qualifiers fromFastMask(unsigned Mask) {
+ Qualifiers Qs;
+ Qs.addFastQualifiers(Mask);
+ return Qs;
+ }
+
+ static Qualifiers fromCVRMask(unsigned CVR) {
+ Qualifiers Qs;
+ Qs.addCVRQualifiers(CVR);
+ return Qs;
+ }
+
+ static Qualifiers fromCVRUMask(unsigned CVRU) {
+ Qualifiers Qs;
+ Qs.addCVRUQualifiers(CVRU);
+ return Qs;
+ }
+
+ // Deserialize qualifiers from an opaque representation.
+ static Qualifiers fromOpaqueValue(unsigned opaque) {
+ Qualifiers Qs;
+ Qs.Mask = opaque;
+ return Qs;
+ }
+
+ // Serialize these qualifiers into an opaque representation.
+ unsigned getAsOpaqueValue() const {
+ return Mask;
+ }
+
+ bool hasConst() const { return Mask & Const; }
+ bool hasOnlyConst() const { return Mask == Const; }
+ void removeConst() { Mask &= ~Const; }
+ void addConst() { Mask |= Const; }
+
+ bool hasVolatile() const { return Mask & Volatile; }
+ bool hasOnlyVolatile() const { return Mask == Volatile; }
+ void removeVolatile() { Mask &= ~Volatile; }
+ void addVolatile() { Mask |= Volatile; }
+
+ bool hasRestrict() const { return Mask & Restrict; }
+ bool hasOnlyRestrict() const { return Mask == Restrict; }
+ void removeRestrict() { Mask &= ~Restrict; }
+ void addRestrict() { Mask |= Restrict; }
+
+ bool hasCVRQualifiers() const { return getCVRQualifiers(); }
+ unsigned getCVRQualifiers() const { return Mask & CVRMask; }
+ unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); }
+
+ void setCVRQualifiers(unsigned mask) {
+ assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
+ Mask = (Mask & ~CVRMask) | mask;
+ }
+ void removeCVRQualifiers(unsigned mask) {
+ assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
+ Mask &= ~mask;
+ }
+ void removeCVRQualifiers() {
+ removeCVRQualifiers(CVRMask);
+ }
+ void addCVRQualifiers(unsigned mask) {
+ assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
+ Mask |= mask;
+ }
+ void addCVRUQualifiers(unsigned mask) {
+ assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits");
+ Mask |= mask;
+ }
+
+ bool hasUnaligned() const { return Mask & UMask; }
+ void setUnaligned(bool flag) {
+ Mask = (Mask & ~UMask) | (flag ? UMask : 0);
+ }
+ void removeUnaligned() { Mask &= ~UMask; }
+ void addUnaligned() { Mask |= UMask; }
+
+ bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
+ GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
+ void setObjCGCAttr(GC type) {
+ Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
+ }
+ void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
+ void addObjCGCAttr(GC type) {
+ assert(type);
+ setObjCGCAttr(type);
+ }
+ Qualifiers withoutObjCGCAttr() const {
+ Qualifiers qs = *this;
+ qs.removeObjCGCAttr();
+ return qs;
+ }
+ Qualifiers withoutObjCLifetime() const {
+ Qualifiers qs = *this;
+ qs.removeObjCLifetime();
+ return qs;
+ }
+
+ bool hasObjCLifetime() const { return Mask & LifetimeMask; }
+ ObjCLifetime getObjCLifetime() const {
+ return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
+ }
+ void setObjCLifetime(ObjCLifetime type) {
+ Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
+ }
+ void removeObjCLifetime() { setObjCLifetime(OCL_None); }
+ void addObjCLifetime(ObjCLifetime type) {
+ assert(type);
+ assert(!hasObjCLifetime());
+ Mask |= (type << LifetimeShift);
+ }
+
+ /// True if the lifetime is neither None or ExplicitNone.
+ bool hasNonTrivialObjCLifetime() const {
+ ObjCLifetime lifetime = getObjCLifetime();
+ return (lifetime > OCL_ExplicitNone);
+ }
+
+ /// True if the lifetime is either strong or weak.
+ bool hasStrongOrWeakObjCLifetime() const {
+ ObjCLifetime lifetime = getObjCLifetime();
+ return (lifetime == OCL_Strong || lifetime == OCL_Weak);
+ }
+
+ bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
+ LangAS getAddressSpace() const {
+ return static_cast<LangAS>(Mask >> AddressSpaceShift);
+ }
+ bool hasTargetSpecificAddressSpace() const {
+ return isTargetAddressSpace(getAddressSpace());
+ }
+ /// Get the address space attribute value to be printed by diagnostics.
+ unsigned getAddressSpaceAttributePrintValue() const {
+ auto Addr = getAddressSpace();
+ // This function is not supposed to be used with language specific
+ // address spaces. If that happens, the diagnostic message should consider
+ // printing the QualType instead of the address space value.
+ assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace());
+ if (Addr != LangAS::Default)
+ return toTargetAddressSpace(Addr);
+ // TODO: The diagnostic messages where Addr may be 0 should be fixed
+ // since it cannot differentiate the situation where 0 denotes the default
+ // address space or user specified __attribute__((address_space(0))).
+ return 0;
+ }
+ void setAddressSpace(LangAS space) {
+ assert((unsigned)space <= MaxAddressSpace);
+ Mask = (Mask & ~AddressSpaceMask)
+ | (((uint32_t) space) << AddressSpaceShift);
+ }
+ void removeAddressSpace() { setAddressSpace(LangAS::Default); }
+ void addAddressSpace(LangAS space) {
+ assert(space != LangAS::Default);
+ setAddressSpace(space);
+ }
+
+ // Fast qualifiers are those that can be allocated directly
+ // on a QualType object.
+ bool hasFastQualifiers() const { return getFastQualifiers(); }
+ unsigned getFastQualifiers() const { return Mask & FastMask; }
+ void setFastQualifiers(unsigned mask) {
+ assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
+ Mask = (Mask & ~FastMask) | mask;
+ }
+ void removeFastQualifiers(unsigned mask) {
+ assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
+ Mask &= ~mask;
+ }
+ void removeFastQualifiers() {
+ removeFastQualifiers(FastMask);
+ }
+ void addFastQualifiers(unsigned mask) {
+ assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
+ Mask |= mask;
+ }
+
+ /// Return true if the set contains any qualifiers which require an ExtQuals
+ /// node to be allocated.
+ bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
+ Qualifiers getNonFastQualifiers() const {
+ Qualifiers Quals = *this;
+ Quals.setFastQualifiers(0);
+ return Quals;
+ }
+
+ /// Return true if the set contains any qualifiers.
+ bool hasQualifiers() const { return Mask; }
+ bool empty() const { return !Mask; }
+
+ /// Add the qualifiers from the given set to this set.
+ void addQualifiers(Qualifiers Q) {
+ // If the other set doesn't have any non-boolean qualifiers, just
+ // bit-or it in.
+ if (!(Q.Mask & ~CVRMask))
+ Mask |= Q.Mask;
+ else {
+ Mask |= (Q.Mask & CVRMask);
+ if (Q.hasAddressSpace())
+ addAddressSpace(Q.getAddressSpace());
+ if (Q.hasObjCGCAttr())
+ addObjCGCAttr(Q.getObjCGCAttr());
+ if (Q.hasObjCLifetime())
+ addObjCLifetime(Q.getObjCLifetime());
+ }
+ }
+
+ /// Remove the qualifiers from the given set from this set.
+ void removeQualifiers(Qualifiers Q) {
+ // If the other set doesn't have any non-boolean qualifiers, just
+ // bit-and the inverse in.
+ if (!(Q.Mask & ~CVRMask))
+ Mask &= ~Q.Mask;
+ else {
+ Mask &= ~(Q.Mask & CVRMask);
+ if (getObjCGCAttr() == Q.getObjCGCAttr())
+ removeObjCGCAttr();
+ if (getObjCLifetime() == Q.getObjCLifetime())
+ removeObjCLifetime();
+ if (getAddressSpace() == Q.getAddressSpace())
+ removeAddressSpace();
+ }
+ }
+
+ /// Add the qualifiers from the given set to this set, given that
+ /// they don't conflict.
+ void addConsistentQualifiers(Qualifiers qs) {
+ assert(getAddressSpace() == qs.getAddressSpace() ||
+ !hasAddressSpace() || !qs.hasAddressSpace());
+ assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
+ !hasObjCGCAttr() || !qs.hasObjCGCAttr());
+ assert(getObjCLifetime() == qs.getObjCLifetime() ||
+ !hasObjCLifetime() || !qs.hasObjCLifetime());
+ Mask |= qs.Mask;
+ }
+
+ /// Returns true if this address space is a superset of the other one.
+ /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
+ /// overlapping address spaces.
+ /// CL1.1 or CL1.2:
+ /// every address space is a superset of itself.
+ /// CL2.0 adds:
+ /// __generic is a superset of any address space except for __constant.
+ bool isAddressSpaceSupersetOf(Qualifiers other) const {
+ return
+ // Address spaces must match exactly.
+ getAddressSpace() == other.getAddressSpace() ||
+ // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
+ // for __constant can be used as __generic.
+ (getAddressSpace() == LangAS::opencl_generic &&
+ other.getAddressSpace() != LangAS::opencl_constant);
+ }
+
+ /// Determines if these qualifiers compatibly include another set.
+ /// Generally this answers the question of whether an object with the other
+ /// qualifiers can be safely used as an object with these qualifiers.
+ bool compatiblyIncludes(Qualifiers other) const {
+ return isAddressSpaceSupersetOf(other) &&
+ // ObjC GC qualifiers can match, be added, or be removed, but can't
+ // be changed.
+ (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
+ !other.hasObjCGCAttr()) &&
+ // ObjC lifetime qualifiers must match exactly.
+ getObjCLifetime() == other.getObjCLifetime() &&
+ // CVR qualifiers may subset.
+ (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
+ // U qualifier may superset.
+ (!other.hasUnaligned() || hasUnaligned());
+ }
+
+ /// Determines if these qualifiers compatibly include another set of
+ /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
+ ///
+ /// One set of Objective-C lifetime qualifiers compatibly includes the other
+ /// if the lifetime qualifiers match, or if both are non-__weak and the
+ /// including set also contains the 'const' qualifier, or both are non-__weak
+ /// and one is None (which can only happen in non-ARC modes).
+ bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
+ if (getObjCLifetime() == other.getObjCLifetime())
+ return true;
+
+ if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
+ return false;
+
+ if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
+ return true;
+
+ return hasConst();
+ }
+
+ /// Determine whether this set of qualifiers is a strict superset of
+ /// another set of qualifiers, not considering qualifier compatibility.
+ bool isStrictSupersetOf(Qualifiers Other) const;
+
+ bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
+ bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
+
+ explicit operator bool() const { return hasQualifiers(); }
+
+ Qualifiers &operator+=(Qualifiers R) {
+ addQualifiers(R);
+ return *this;
+ }
+
+ // Union two qualifier sets. If an enumerated qualifier appears
+ // in both sets, use the one from the right.
+ friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
+ L += R;
+ return L;
+ }
+
+ Qualifiers &operator-=(Qualifiers R) {
+ removeQualifiers(R);
+ return *this;
+ }
+
+ /// Compute the difference between two qualifier sets.
+ friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
+ L -= R;
+ return L;
+ }
+
+ std::string getAsString() const;
+ std::string getAsString(const PrintingPolicy &Policy) const;
+
+ bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
+ void print(raw_ostream &OS, const PrintingPolicy &Policy,
+ bool appendSpaceIfNonEmpty = false) const;
+
+ void Profile(llvm::FoldingSetNodeID &ID) const {
+ ID.AddInteger(Mask);
+ }
+
+private:
+ // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
+ // |C R V|U|GCAttr|Lifetime|AddressSpace|
+ uint32_t Mask = 0;
+
+ static const uint32_t UMask = 0x8;
+ static const uint32_t UShift = 3;
+ static const uint32_t GCAttrMask = 0x30;
+ static const uint32_t GCAttrShift = 4;
+ static const uint32_t LifetimeMask = 0x1C0;
+ static const uint32_t LifetimeShift = 6;
+ static const uint32_t AddressSpaceMask =
+ ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
+ static const uint32_t AddressSpaceShift = 9;
+};
+
+/// A std::pair-like structure for storing a qualified type split
+/// into its local qualifiers and its locally-unqualified type.
+struct SplitQualType {
+ /// The locally-unqualified type.
+ const Type *Ty = nullptr;
+
+ /// The local qualifiers.
+ Qualifiers Quals;
+
+ SplitQualType() = default;
+ SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
+
+ SplitQualType getSingleStepDesugaredType() const; // end of this file
+
+ // Make std::tie work.
+ std::pair<const Type *,Qualifiers> asPair() const {
+ return std::pair<const Type *, Qualifiers>(Ty, Quals);
+ }
+
+ friend bool operator==(SplitQualType a, SplitQualType b) {
+ return a.Ty == b.Ty && a.Quals == b.Quals;
+ }
+ friend bool operator!=(SplitQualType a, SplitQualType b) {
+ return a.Ty != b.Ty || a.Quals != b.Quals;
+ }
+};
+
+/// The kind of type we are substituting Objective-C type arguments into.
+///
+/// The kind of substitution affects the replacement of type parameters when
+/// no concrete type information is provided, e.g., when dealing with an
+/// unspecialized type.
+enum class ObjCSubstitutionContext {
+ /// An ordinary type.
+ Ordinary,
+
+ /// The result type of a method or function.
+ Result,
+
+ /// The parameter type of a method or function.
+ Parameter,
+
+ /// The type of a property.
+ Property,
+
+ /// The superclass of a type.
+ Superclass,
+};
+
+/// A (possibly-)qualified type.
+///
+/// For efficiency, we don't store CV-qualified types as nodes on their
+/// own: instead each reference to a type stores the qualifiers. This
+/// greatly reduces the number of nodes we need to allocate for types (for
+/// example we only need one for 'int', 'const int', 'volatile int',
+/// 'const volatile int', etc).
+///
+/// As an added efficiency bonus, instead of making this a pair, we
+/// just store the two bits we care about in the low bits of the
+/// pointer. To handle the packing/unpacking, we make QualType be a
+/// simple wrapper class that acts like a smart pointer. A third bit
+/// indicates whether there are extended qualifiers present, in which
+/// case the pointer points to a special structure.
+class QualType {
+ friend class QualifierCollector;
+
+ // Thankfully, these are efficiently composable.
+ llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>,
+ Qualifiers::FastWidth> Value;
+
+ const ExtQuals *getExtQualsUnsafe() const {
+ return Value.getPointer().get<const ExtQuals*>();
+ }
+
+ const Type *getTypePtrUnsafe() const {
+ return Value.getPointer().get<const Type*>();
+ }
+
+ const ExtQualsTypeCommonBase *getCommonPtr() const {
+ assert(!isNull() && "Cannot retrieve a NULL type pointer");
+ auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
+ CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
+ return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
+ }
+
+public:
+ QualType() = default;
+ QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
+ QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
+
+ unsigned getLocalFastQualifiers() const { return Value.getInt(); }
+ void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
+
+ /// Retrieves a pointer to the underlying (unqualified) type.
+ ///
+ /// This function requires that the type not be NULL. If the type might be
+ /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
+ const Type *getTypePtr() const;
+
+ const Type *getTypePtrOrNull() const;
+
+ /// Retrieves a pointer to the name of the base type.
+ const IdentifierInfo *getBaseTypeIdentifier() const;
+
+ /// Divides a QualType into its unqualified type and a set of local
+ /// qualifiers.
+ SplitQualType split() const;
+
+ void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
+
+ static QualType getFromOpaquePtr(const void *Ptr) {
+ QualType T;
+ T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
+ return T;
+ }
+
+ const Type &operator*() const {
+ return *getTypePtr();
+ }
+
+ const Type *operator->() const {
+ return getTypePtr();
+ }
+
+ bool isCanonical() const;
+ bool isCanonicalAsParam() const;
+
+ /// Return true if this QualType doesn't point to a type yet.
+ bool isNull() const {
+ return Value.getPointer().isNull();
+ }
+
+ /// Determine whether this particular QualType instance has the
+ /// "const" qualifier set, without looking through typedefs that may have
+ /// added "const" at a different level.
+ bool isLocalConstQualified() const {
+ return (getLocalFastQualifiers() & Qualifiers::Const);
+ }
+
+ /// Determine whether this type is const-qualified.
+ bool isConstQualified() const;
+
+ /// Determine whether this particular QualType instance has the
+ /// "restrict" qualifier set, without looking through typedefs that may have
+ /// added "restrict" at a different level.
+ bool isLocalRestrictQualified() const {
+ return (getLocalFastQualifiers() & Qualifiers::Restrict);
+ }
+
+ /// Determine whether this type is restrict-qualified.
+ bool isRestrictQualified() const;
+
+ /// Determine whether this particular QualType instance has the
+ /// "volatile" qualifier set, without looking through typedefs that may have
+ /// added "volatile" at a different level.
+ bool isLocalVolatileQualified() const {
+ return (getLocalFastQualifiers() & Qualifiers::Volatile);
+ }
+
+ /// Determine whether this type is volatile-qualified.
+ bool isVolatileQualified() const;
+
+ /// Determine whether this particular QualType instance has any
+ /// qualifiers, without looking through any typedefs that might add
+ /// qualifiers at a different level.
+ bool hasLocalQualifiers() const {
+ return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
+ }
+
+ /// Determine whether this type has any qualifiers.
+ bool hasQualifiers() const;
+
+ /// Determine whether this particular QualType instance has any
+ /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
+ /// instance.
+ bool hasLocalNonFastQualifiers() const {
+ return Value.getPointer().is<const ExtQuals*>();
+ }
+
+ /// Retrieve the set of qualifiers local to this particular QualType
+ /// instance, not including any qualifiers acquired through typedefs or
+ /// other sugar.
+ Qualifiers getLocalQualifiers() const;
+
+ /// Retrieve the set of qualifiers applied to this type.
+ Qualifiers getQualifiers() const;
+
+ /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
+ /// local to this particular QualType instance, not including any qualifiers
+ /// acquired through typedefs or other sugar.
+ unsigned getLocalCVRQualifiers() const {
+ return getLocalFastQualifiers();
+ }
+
+ /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
+ /// applied to this type.
+ unsigned getCVRQualifiers() const;
+
+ bool isConstant(const ASTContext& Ctx) const {
+ return QualType::isConstant(*this, Ctx);
+ }
+
+ /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
+ bool isPODType(const ASTContext &Context) const;
+
+ /// Return true if this is a POD type according to the rules of the C++98
+ /// standard, regardless of the current compilation's language.
+ bool isCXX98PODType(const ASTContext &Context) const;
+
+ /// Return true if this is a POD type according to the more relaxed rules
+ /// of the C++11 standard, regardless of the current compilation's language.
+ /// (C++0x [basic.types]p9). Note that, unlike
+ /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account.
+ bool isCXX11PODType(const ASTContext &Context) const;
+
+ /// Return true if this is a trivial type per (C++0x [basic.types]p9)
+ bool isTrivialType(const ASTContext &Context) const;
+
+ /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
+ bool isTriviallyCopyableType(const ASTContext &Context) const;
+
+
+ /// Returns true if it is a class and it might be dynamic.
+ bool mayBeDynamicClass() const;
+
+ /// Returns true if it is not a class or if the class might not be dynamic.
+ bool mayBeNotDynamicClass() const;
+
+ // Don't promise in the API that anything besides 'const' can be
+ // easily added.
+
+ /// Add the `const` type qualifier to this QualType.
+ void addConst() {
+ addFastQualifiers(Qualifiers::Const);
+ }
+ QualType withConst() const {
+ return withFastQualifiers(Qualifiers::Const);
+ }
+
+ /// Add the `volatile` type qualifier to this QualType.
+ void addVolatile() {
+ addFastQualifiers(Qualifiers::Volatile);
+ }
+ QualType withVolatile() const {
+ return withFastQualifiers(Qualifiers::Volatile);
+ }
+
+ /// Add the `restrict` qualifier to this QualType.
+ void addRestrict() {
+ addFastQualifiers(Qualifiers::Restrict);
+ }
+ QualType withRestrict() const {
+ return withFastQualifiers(Qualifiers::Restrict);
+ }
+
+ QualType withCVRQualifiers(unsigned CVR) const {
+ return withFastQualifiers(CVR);
+ }
+
+ void addFastQualifiers(unsigned TQs) {
+ assert(!(TQs & ~Qualifiers::FastMask)
+ && "non-fast qualifier bits set in mask!");
+ Value.setInt(Value.getInt() | TQs);
+ }
+
+ void removeLocalConst();
+ void removeLocalVolatile();
+ void removeLocalRestrict();
+ void removeLocalCVRQualifiers(unsigned Mask);
+
+ void removeLocalFastQualifiers() { Value.setInt(0); }
+ void removeLocalFastQualifiers(unsigned Mask) {
+ assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
+ Value.setInt(Value.getInt() & ~Mask);
+ }
+
+ // Creates a type with the given qualifiers in addition to any
+ // qualifiers already on this type.
+ QualType withFastQualifiers(unsigned TQs) const {
+ QualType T = *this;
+ T.addFastQualifiers(TQs);
+ return T;
+ }
+
+ // Creates a type with exactly the given fast qualifiers, removing
+ // any existing fast qualifiers.
+ QualType withExactLocalFastQualifiers(unsigned TQs) const {
+ return withoutLocalFastQualifiers().withFastQualifiers(TQs);
+ }
+
+ // Removes fast qualifiers, but leaves any extended qualifiers in place.
+ QualType withoutLocalFastQualifiers() const {
+ QualType T = *this;
+ T.removeLocalFastQualifiers();
+ return T;
+ }
+
+ QualType getCanonicalType() const;
+
+ /// Return this type with all of the instance-specific qualifiers
+ /// removed, but without removing any qualifiers that may have been applied
+ /// through typedefs.
+ QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
+
+ /// Retrieve the unqualified variant of the given type,
+ /// removing as little sugar as possible.
+ ///
+ /// This routine looks through various kinds of sugar to find the
+ /// least-desugared type that is unqualified. For example, given:
+ ///
+ /// \code
+ /// typedef int Integer;
+ /// typedef const Integer CInteger;
+ /// typedef CInteger DifferenceType;
+ /// \endcode
+ ///
+ /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
+ /// desugar until we hit the type \c Integer, which has no qualifiers on it.
+ ///
+ /// The resulting type might still be qualified if it's sugar for an array
+ /// type. To strip qualifiers even from within a sugared array type, use
+ /// ASTContext::getUnqualifiedArrayType.
+ inline QualType getUnqualifiedType() const;
+
+ /// Retrieve the unqualified variant of the given type, removing as little
+ /// sugar as possible.
+ ///
+ /// Like getUnqualifiedType(), but also returns the set of
+ /// qualifiers that were built up.
+ ///
+ /// The resulting type might still be qualified if it's sugar for an array
+ /// type. To strip qualifiers even from within a sugared array type, use
+ /// ASTContext::getUnqualifiedArrayType.
+ inline SplitQualType getSplitUnqualifiedType() const;
+
+ /// Determine whether this type is more qualified than the other
+ /// given type, requiring exact equality for non-CVR qualifiers.
+ bool isMoreQualifiedThan(QualType Other) const;
+
+ /// Determine whether this type is at least as qualified as the other
+ /// given type, requiring exact equality for non-CVR qualifiers.
+ bool isAtLeastAsQualifiedAs(QualType Other) const;
+
+ QualType getNonReferenceType() const;
+
+ /// Determine the type of a (typically non-lvalue) expression with the
+ /// specified result type.
+ ///
+ /// This routine should be used for expressions for which the return type is
+ /// explicitly specified (e.g., in a cast or call) and isn't necessarily
+ /// an lvalue. It removes a top-level reference (since there are no
+ /// expressions of reference type) and deletes top-level cvr-qualifiers
+ /// from non-class types (in C++) or all types (in C).
+ QualType getNonLValueExprType(const ASTContext &Context) const;
+
+ /// Return the specified type with any "sugar" removed from
+ /// the type. This takes off typedefs, typeof's etc. If the outer level of
+ /// the type is already concrete, it returns it unmodified. This is similar
+ /// to getting the canonical type, but it doesn't remove *all* typedefs. For
+ /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
+ /// concrete.
+ ///
+ /// Qualifiers are left in place.
+ QualType getDesugaredType(const ASTContext &Context) const {
+ return getDesugaredType(*this, Context);
+ }
+
+ SplitQualType getSplitDesugaredType() const {
+ return getSplitDesugaredType(*this);
+ }
+
+ /// Return the specified type with one level of "sugar" removed from
+ /// the type.
+ ///
+ /// This routine takes off the first typedef, typeof, etc. If the outer level
+ /// of the type is already concrete, it returns it unmodified.
+ QualType getSingleStepDesugaredType(const ASTContext &Context) const {
+ return getSingleStepDesugaredTypeImpl(*this, Context);
+ }
+
+ /// Returns the specified type after dropping any
+ /// outer-level parentheses.
+ QualType IgnoreParens() const {
+ if (isa<ParenType>(*this))
+ return QualType::IgnoreParens(*this);
+ return *this;
+ }
+
+ /// Indicate whether the specified types and qualifiers are identical.
+ friend bool operator==(const QualType &LHS, const QualType &RHS) {
+ return LHS.Value == RHS.Value;
+ }
+ friend bool operator!=(const QualType &LHS, const QualType &RHS) {
+ return LHS.Value != RHS.Value;
+ }
+
+ static std::string getAsString(SplitQualType split,
+ const PrintingPolicy &Policy) {
+ return getAsString(split.Ty, split.Quals, Policy);
+ }
+ static std::string getAsString(const Type *ty, Qualifiers qs,
+ const PrintingPolicy &Policy);
+
+ std::string getAsString() const;
+ std::string getAsString(const PrintingPolicy &Policy) const;
+
+ void print(raw_ostream &OS, const PrintingPolicy &Policy,
+ const Twine &PlaceHolder = Twine(),
+ unsigned Indentation = 0) const;
+
+ static void print(SplitQualType split, raw_ostream &OS,
+ const PrintingPolicy &policy, const Twine &PlaceHolder,
+ unsigned Indentation = 0) {
+ return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
+ }
+
+ static void print(const Type *ty, Qualifiers qs,
+ raw_ostream &OS, const PrintingPolicy &policy,
+ const Twine &PlaceHolder,
+ unsigned Indentation = 0);
+
+ void getAsStringInternal(std::string &Str,
+ const PrintingPolicy &Policy) const;
+
+ static void getAsStringInternal(SplitQualType split, std::string &out,
+ const PrintingPolicy &policy) {
+ return getAsStringInternal(split.Ty, split.Quals, out, policy);
+ }
+
+ static void getAsStringInternal(const Type *ty, Qualifiers qs,
+ std::string &out,
+ const PrintingPolicy &policy);
+
+ class StreamedQualTypeHelper {
+ const QualType &T;
+ const PrintingPolicy &Policy;
+ const Twine &PlaceHolder;
+ unsigned Indentation;
+
+ public:
+ StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
+ const Twine &PlaceHolder, unsigned Indentation)
+ : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
+ Indentation(Indentation) {}
+
+ friend raw_ostream &operator<<(raw_ostream &OS,
+ const StreamedQualTypeHelper &SQT) {
+ SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
+ return OS;
+ }
+ };
+
+ StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
+ const Twine &PlaceHolder = Twine(),
+ unsigned Indentation = 0) const {
+ return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
+ }
+
+ void dump(const char *s) const;
+ void dump() const;
+ void dump(llvm::raw_ostream &OS) const;
+
+ void Profile(llvm::FoldingSetNodeID &ID) const {
+ ID.AddPointer(getAsOpaquePtr());
+ }
+
+ /// Return the address space of this type.
+ inline LangAS getAddressSpace() const;
+
+ /// Returns gc attribute of this type.
+ inline Qualifiers::GC getObjCGCAttr() const;
+
+ /// true when Type is objc's weak.
+ bool isObjCGCWeak() const {
+ return getObjCGCAttr() == Qualifiers::Weak;
+ }
+
+ /// true when Type is objc's strong.
+ bool isObjCGCStrong() const {
+ return getObjCGCAttr() == Qualifiers::Strong;
+ }
+
+ /// Returns lifetime attribute of this type.
+ Qualifiers::ObjCLifetime getObjCLifetime() const {
+ return getQualifiers().getObjCLifetime();
+ }
+
+ bool hasNonTrivialObjCLifetime() const {
+ return getQualifiers().hasNonTrivialObjCLifetime();
+ }
+
+ bool hasStrongOrWeakObjCLifetime() const {
+ return getQualifiers().hasStrongOrWeakObjCLifetime();
+ }
+
+ // true when Type is objc's weak and weak is enabled but ARC isn't.
+ bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
+
+ enum PrimitiveDefaultInitializeKind {
+ /// The type does not fall into any of the following categories. Note that
+ /// this case is zero-valued so that values of this enum can be used as a
+ /// boolean condition for non-triviality.
+ PDIK_Trivial,
+
+ /// The type is an Objective-C retainable pointer type that is qualified
+ /// with the ARC __strong qualifier.
+ PDIK_ARCStrong,
+
+ /// The type is an Objective-C retainable pointer type that is qualified
+ /// with the ARC __weak qualifier.
+ PDIK_ARCWeak,
+
+ /// The type is a struct containing a field whose type is not PCK_Trivial.
+ PDIK_Struct
+ };
+
+ /// Functions to query basic properties of non-trivial C struct types.
+
+ /// Check if this is a non-trivial type that would cause a C struct
+ /// transitively containing this type to be non-trivial to default initialize
+ /// and return the kind.
+ PrimitiveDefaultInitializeKind
+ isNonTrivialToPrimitiveDefaultInitialize() const;
+
+ enum PrimitiveCopyKind {
+ /// The type does not fall into any of the following categories. Note that
+ /// this case is zero-valued so that values of this enum can be used as a
+ /// boolean condition for non-triviality.
+ PCK_Trivial,
+
+ /// The type would be trivial except that it is volatile-qualified. Types
+ /// that fall into one of the other non-trivial cases may additionally be
+ /// volatile-qualified.
+ PCK_VolatileTrivial,
+
+ /// The type is an Objective-C retainable pointer type that is qualified
+ /// with the ARC __strong qualifier.
+ PCK_ARCStrong,
+
+ /// The type is an Objective-C retainable pointer type that is qualified
+ /// with the ARC __weak qualifier.
+ PCK_ARCWeak,
+
+ /// The type is a struct containing a field whose type is neither
+ /// PCK_Trivial nor PCK_VolatileTrivial.
+ /// Note that a C++ struct type does not necessarily match this; C++ copying
+ /// semantics are too complex to express here, in part because they depend
+ /// on the exact constructor or assignment operator that is chosen by
+ /// overload resolution to do the copy.
+ PCK_Struct
+ };
+
+ /// Check if this is a non-trivial type that would cause a C struct
+ /// transitively containing this type to be non-trivial. This function can be
+ /// used to determine whether a field of this type can be declared inside a C
+ /// union.
+ bool isNonTrivialPrimitiveCType(const ASTContext &Ctx) const;
+
+ /// Check if this is a non-trivial type that would cause a C struct
+ /// transitively containing this type to be non-trivial to copy and return the
+ /// kind.
+ PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const;
+
+ /// Check if this is a non-trivial type that would cause a C struct
+ /// transitively containing this type to be non-trivial to destructively
+ /// move and return the kind. Destructive move in this context is a C++-style
+ /// move in which the source object is placed in a valid but unspecified state
+ /// after it is moved, as opposed to a truly destructive move in which the
+ /// source object is placed in an uninitialized state.
+ PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const;
+
+ enum DestructionKind {
+ DK_none,
+ DK_cxx_destructor,
+ DK_objc_strong_lifetime,
+ DK_objc_weak_lifetime,
+ DK_nontrivial_c_struct
+ };
+
+ /// Returns a nonzero value if objects of this type require
+ /// non-trivial work to clean up after. Non-zero because it's
+ /// conceivable that qualifiers (objc_gc(weak)?) could make
+ /// something require destruction.
+ DestructionKind isDestructedType() const {
+ return isDestructedTypeImpl(*this);
+ }
+
+ /// Determine whether expressions of the given type are forbidden
+ /// from being lvalues in C.
+ ///
+ /// The expression types that are forbidden to be lvalues are:
+ /// - 'void', but not qualified void
+ /// - function types
+ ///
+ /// The exact rule here is C99 6.3.2.1:
+ /// An lvalue is an expression with an object type or an incomplete
+ /// type other than void.
+ bool isCForbiddenLValueType() const;
+
+ /// Substitute type arguments for the Objective-C type parameters used in the
+ /// subject type.
+ ///
+ /// \param ctx ASTContext in which the type exists.
+ ///
+ /// \param typeArgs The type arguments that will be substituted for the
+ /// Objective-C type parameters in the subject type, which are generally
+ /// computed via \c Type::getObjCSubstitutions. If empty, the type
+ /// parameters will be replaced with their bounds or id/Class, as appropriate
+ /// for the context.
+ ///
+ /// \param context The context in which the subject type was written.
+ ///
+ /// \returns the resulting type.
+ QualType substObjCTypeArgs(ASTContext &ctx,
+ ArrayRef<QualType> typeArgs,
+ ObjCSubstitutionContext context) const;
+
+ /// Substitute type arguments from an object type for the Objective-C type
+ /// parameters used in the subject type.
+ ///
+ /// This operation combines the computation of type arguments for
+ /// substitution (\c Type::getObjCSubstitutions) with the actual process of
+ /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
+ /// callers that need to perform a single substitution in isolation.
+ ///
+ /// \param objectType The type of the object whose member type we're
+ /// substituting into. For example, this might be the receiver of a message
+ /// or the base of a property access.
+ ///
+ /// \param dc The declaration context from which the subject type was
+ /// retrieved, which indicates (for example) which type parameters should
+ /// be substituted.
+ ///
+ /// \param context The context in which the subject type was written.
+ ///
+ /// \returns the subject type after replacing all of the Objective-C type
+ /// parameters with their corresponding arguments.
+ QualType substObjCMemberType(QualType objectType,
+ const DeclContext *dc,
+ ObjCSubstitutionContext context) const;
+
+ /// Strip Objective-C "__kindof" types from the given type.
+ QualType stripObjCKindOfType(const ASTContext &ctx) const;
+
+ /// Remove all qualifiers including _Atomic.
+ QualType getAtomicUnqualifiedType() const;
+
+private:
+ // These methods are implemented in a separate translation unit;
+ // "static"-ize them to avoid creating temporary QualTypes in the
+ // caller.
+ static bool isConstant(QualType T, const ASTContext& Ctx);
+ static QualType getDesugaredType(QualType T, const ASTContext &Context);
+ static SplitQualType getSplitDesugaredType(QualType T);
+ static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
+ static QualType getSingleStepDesugaredTypeImpl(QualType type,
+ const ASTContext &C);
+ static QualType IgnoreParens(QualType T);
+ static DestructionKind isDestructedTypeImpl(QualType type);
+};
+
+} // namespace clang
+
+namespace llvm {
+
+/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
+/// to a specific Type class.
+template<> struct simplify_type< ::clang::QualType> {
+ using SimpleType = const ::clang::Type *;
+
+ static SimpleType getSimplifiedValue(::clang::QualType Val) {
+ return Val.getTypePtr();
+ }
+};
+
+// Teach SmallPtrSet that QualType is "basically a pointer".
+template<>
+struct PointerLikeTypeTraits<clang::QualType> {
+ static inline void *getAsVoidPointer(clang::QualType P) {
+ return P.getAsOpaquePtr();
+ }
+
+ static inline clang::QualType getFromVoidPointer(void *P) {
+ return clang::QualType::getFromOpaquePtr(P);
+ }
+
+ // Various qualifiers go in low bits.
+ enum { NumLowBitsAvailable = 0 };
+};
+
+} // namespace llvm
+
+namespace clang {
+
+/// Base class that is common to both the \c ExtQuals and \c Type
+/// classes, which allows \c QualType to access the common fields between the
+/// two.
+class ExtQualsTypeCommonBase {
+ friend class ExtQuals;
+ friend class QualType;
+ friend class Type;
+
+ /// The "base" type of an extended qualifiers type (\c ExtQuals) or
+ /// a self-referential pointer (for \c Type).
+ ///
+ /// This pointer allows an efficient mapping from a QualType to its
+ /// underlying type pointer.
+ const Type *const BaseType;
+
+ /// The canonical type of this type. A QualType.
+ QualType CanonicalType;
+
+ ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
+ : BaseType(baseType), CanonicalType(canon) {}
+};
+
+/// We can encode up to four bits in the low bits of a
+/// type pointer, but there are many more type qualifiers that we want
+/// to be able to apply to an arbitrary type. Therefore we have this
+/// struct, intended to be heap-allocated and used by QualType to
+/// store qualifiers.
+///
+/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
+/// in three low bits on the QualType pointer; a fourth bit records whether
+/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
+/// Objective-C GC attributes) are much more rare.
+class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
+ // NOTE: changing the fast qualifiers should be straightforward as
+ // long as you don't make 'const' non-fast.
+ // 1. Qualifiers:
+ // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
+ // Fast qualifiers must occupy the low-order bits.
+ // b) Update Qualifiers::FastWidth and FastMask.
+ // 2. QualType:
+ // a) Update is{Volatile,Restrict}Qualified(), defined inline.
+ // b) Update remove{Volatile,Restrict}, defined near the end of
+ // this header.
+ // 3. ASTContext:
+ // a) Update get{Volatile,Restrict}Type.
+
+ /// The immutable set of qualifiers applied by this node. Always contains
+ /// extended qualifiers.
+ Qualifiers Quals;
+
+ ExtQuals *this_() { return this; }
+
+public:
+ ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
+ : ExtQualsTypeCommonBase(baseType,
+ canon.isNull() ? QualType(this_(), 0) : canon),
+ Quals(quals) {
+ assert(Quals.hasNonFastQualifiers()
+ && "ExtQuals created with no fast qualifiers");
+ assert(!Quals.hasFastQualifiers()
+ && "ExtQuals created with fast qualifiers");
+ }
+
+ Qualifiers getQualifiers() const { return Quals; }
+
+ bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
+ Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
+
+ bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
+ Qualifiers::ObjCLifetime getObjCLifetime() const {
+ return Quals.getObjCLifetime();
+ }
+
+ bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
+ LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
+
+ const Type *getBaseType() const { return BaseType; }
+
+public:
+ void Profile(llvm::FoldingSetNodeID &ID) const {
+ Profile(ID, getBaseType(), Quals);
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID,
+ const Type *BaseType,
+ Qualifiers Quals) {
+ assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
+ ID.AddPointer(BaseType);
+ Quals.Profile(ID);
+ }
+};
+
+/// The kind of C++11 ref-qualifier associated with a function type.
+/// This determines whether a member function's "this" object can be an
+/// lvalue, rvalue, or neither.
+enum RefQualifierKind {
+ /// No ref-qualifier was provided.
+ RQ_None = 0,
+
+ /// An lvalue ref-qualifier was provided (\c &).
+ RQ_LValue,
+
+ /// An rvalue ref-qualifier was provided (\c &&).
+ RQ_RValue
+};
+
+/// Which keyword(s) were used to create an AutoType.
+enum class AutoTypeKeyword {
+ /// auto
+ Auto,
+
+ /// decltype(auto)
+ DecltypeAuto,
+
+ /// __auto_type (GNU extension)
+ GNUAutoType
+};
+
+/// The base class of the type hierarchy.
+///
+/// A central concept with types is that each type always has a canonical
+/// type. A canonical type is the type with any typedef names stripped out
+/// of it or the types it references. For example, consider:
+///
+/// typedef int foo;
+/// typedef foo* bar;
+/// 'int *' 'foo *' 'bar'
+///
+/// There will be a Type object created for 'int'. Since int is canonical, its
+/// CanonicalType pointer points to itself. There is also a Type for 'foo' (a
+/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
+/// there is a PointerType that represents 'int*', which, like 'int', is
+/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
+/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
+/// is also 'int*'.
+///
+/// Non-canonical types are useful for emitting diagnostics, without losing
+/// information about typedefs being used. Canonical types are useful for type
+/// comparisons (they allow by-pointer equality tests) and useful for reasoning
+/// about whether something has a particular form (e.g. is a function type),
+/// because they implicitly, recursively, strip all typedefs out of a type.
+///
+/// Types, once created, are immutable.
+///
+class Type : public ExtQualsTypeCommonBase {
+public:
+ enum TypeClass {
+#define TYPE(Class, Base) Class,
+#define LAST_TYPE(Class) TypeLast = Class,
+#define ABSTRACT_TYPE(Class, Base)
+#include "clang/AST/TypeNodes.def"
+ TagFirst = Record, TagLast = Enum
+ };
+
+private:
+ /// Bitfields required by the Type class.
+ class TypeBitfields {
+ friend class Type;
+ template <class T> friend class TypePropertyCache;
+
+ /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
+ unsigned TC : 8;
+
+ /// Whether this type is a dependent type (C++ [temp.dep.type]).
+ unsigned Dependent : 1;
+
+ /// Whether this type somehow involves a template parameter, even
+ /// if the resolution of the type does not depend on a template parameter.
+ unsigned InstantiationDependent : 1;
+
+ /// Whether this type is a variably-modified type (C99 6.7.5).
+ unsigned VariablyModified : 1;
+
+ /// Whether this type contains an unexpanded parameter pack
+ /// (for C++11 variadic templates).
+ unsigned ContainsUnexpandedParameterPack : 1;
+
+ /// True if the cache (i.e. the bitfields here starting with
+ /// 'Cache') is valid.
+ mutable unsigned CacheValid : 1;
+
+ /// Linkage of this type.
+ mutable unsigned CachedLinkage : 3;
+
+ /// Whether this type involves and local or unnamed types.
+ mutable unsigned CachedLocalOrUnnamed : 1;
+
+ /// Whether this type comes from an AST file.
+ mutable unsigned FromAST : 1;
+
+ bool isCacheValid() const {
+ return CacheValid;
+ }
+
+ Linkage getLinkage() const {
+ assert(isCacheValid() && "getting linkage from invalid cache");
+ return static_cast<Linkage>(CachedLinkage);
+ }
+
+ bool hasLocalOrUnnamedType() const {
+ assert(isCacheValid() && "getting linkage from invalid cache");
+ return CachedLocalOrUnnamed;
+ }
+ };
+ enum { NumTypeBits = 18 };
+
+protected:
+ // These classes allow subclasses to somewhat cleanly pack bitfields
+ // into Type.
+
+ class ArrayTypeBitfields {
+ friend class ArrayType;
+
+ unsigned : NumTypeBits;
+
+ /// CVR qualifiers from declarations like
+ /// 'int X[static restrict 4]'. For function parameters only.
+ unsigned IndexTypeQuals : 3;
+
+ /// Storage class qualifiers from declarations like
+ /// 'int X[static restrict 4]'. For function parameters only.
+ /// Actually an ArrayType::ArraySizeModifier.
+ unsigned SizeModifier : 3;
+ };
+
+ class BuiltinTypeBitfields {
+ friend class BuiltinType;
+
+ unsigned : NumTypeBits;
+
+ /// The kind (BuiltinType::Kind) of builtin type this is.
+ unsigned Kind : 8;
+ };
+
+ /// FunctionTypeBitfields store various bits belonging to FunctionProtoType.
+ /// Only common bits are stored here. Additional uncommon bits are stored
+ /// in a trailing object after FunctionProtoType.
+ class FunctionTypeBitfields {
+ friend class FunctionProtoType;
+ friend class FunctionType;
+
+ unsigned : NumTypeBits;
+
+ /// Extra information which affects how the function is called, like
+ /// regparm and the calling convention.
+ unsigned ExtInfo : 12;
+
+ /// The ref-qualifier associated with a \c FunctionProtoType.
+ ///
+ /// This is a value of type \c RefQualifierKind.
+ unsigned RefQualifier : 2;
+
+ /// Used only by FunctionProtoType, put here to pack with the
+ /// other bitfields.
+ /// The qualifiers are part of FunctionProtoType because...
+ ///
+ /// C++ 8.3.5p4: The return type, the parameter type list and the
+ /// cv-qualifier-seq, [...], are part of the function type.
+ unsigned FastTypeQuals : Qualifiers::FastWidth;
+ /// Whether this function has extended Qualifiers.
+ unsigned HasExtQuals : 1;
+
+ /// The number of parameters this function has, not counting '...'.
+ /// According to [implimits] 8 bits should be enough here but this is
+ /// somewhat easy to exceed with metaprogramming and so we would like to
+ /// keep NumParams as wide as reasonably possible.
+ unsigned NumParams : 16;
+
+ /// The type of exception specification this function has.
+ unsigned ExceptionSpecType : 4;
+
+ /// Whether this function has extended parameter information.
+ unsigned HasExtParameterInfos : 1;
+
+ /// Whether the function is variadic.
+ unsigned Variadic : 1;
+
+ /// Whether this function has a trailing return type.
+ unsigned HasTrailingReturn : 1;
+ };
+
+ class ObjCObjectTypeBitfields {
+ friend class ObjCObjectType;
+
+ unsigned : NumTypeBits;
+
+ /// The number of type arguments stored directly on this object type.
+ unsigned NumTypeArgs : 7;
+
+ /// The number of protocols stored directly on this object type.
+ unsigned NumProtocols : 6;
+
+ /// Whether this is a "kindof" type.
+ unsigned IsKindOf : 1;
+ };
+
+ class ReferenceTypeBitfields {
+ friend class ReferenceType;
+
+ unsigned : NumTypeBits;
+
+ /// True if the type was originally spelled with an lvalue sigil.
+ /// This is never true of rvalue references but can also be false
+ /// on lvalue references because of C++0x [dcl.typedef]p9,
+ /// as follows:
+ ///
+ /// typedef int &ref; // lvalue, spelled lvalue
+ /// typedef int &&rvref; // rvalue
+ /// ref &a; // lvalue, inner ref, spelled lvalue
+ /// ref &&a; // lvalue, inner ref
+ /// rvref &a; // lvalue, inner ref, spelled lvalue
+ /// rvref &&a; // rvalue, inner ref
+ unsigned SpelledAsLValue : 1;
+
+ /// True if the inner type is a reference type. This only happens
+ /// in non-canonical forms.
+ unsigned InnerRef : 1;
+ };
+
+ class TypeWithKeywordBitfields {
+ friend class TypeWithKeyword;
+
+ unsigned : NumTypeBits;
+
+ /// An ElaboratedTypeKeyword. 8 bits for efficient access.
+ unsigned Keyword : 8;
+ };
+
+ enum { NumTypeWithKeywordBits = 8 };
+
+ class ElaboratedTypeBitfields {
+ friend class ElaboratedType;
+
+ unsigned : NumTypeBits;
+ unsigned : NumTypeWithKeywordBits;
+
+ /// Whether the ElaboratedType has a trailing OwnedTagDecl.
+ unsigned HasOwnedTagDecl : 1;
+ };
+
+ class VectorTypeBitfields {
+ friend class VectorType;
+ friend class DependentVectorType;
+
+ unsigned : NumTypeBits;
+
+ /// The kind of vector, either a generic vector type or some
+ /// target-specific vector type such as for AltiVec or Neon.
+ unsigned VecKind : 3;
+
+ /// The number of elements in the vector.
+ unsigned NumElements : 29 - NumTypeBits;
+
+ enum { MaxNumElements = (1 << (29 - NumTypeBits)) - 1 };
+ };
+
+ class AttributedTypeBitfields {
+ friend class AttributedType;
+
+ unsigned : NumTypeBits;
+
+ /// An AttributedType::Kind
+ unsigned AttrKind : 32 - NumTypeBits;
+ };
+
+ class AutoTypeBitfields {
+ friend class AutoType;
+
+ unsigned : NumTypeBits;
+
+ /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
+ /// or '__auto_type'? AutoTypeKeyword value.
+ unsigned Keyword : 2;
+ };
+
+ class SubstTemplateTypeParmPackTypeBitfields {
+ friend class SubstTemplateTypeParmPackType;
+
+ unsigned : NumTypeBits;
+
+ /// The number of template arguments in \c Arguments, which is
+ /// expected to be able to hold at least 1024 according to [implimits].
+ /// However as this limit is somewhat easy to hit with template
+ /// metaprogramming we'd prefer to keep it as large as possible.
+ /// At the moment it has been left as a non-bitfield since this type
+ /// safely fits in 64 bits as an unsigned, so there is no reason to
+ /// introduce the performance impact of a bitfield.
+ unsigned NumArgs;
+ };
+
+ class TemplateSpecializationTypeBitfields {
+ friend class TemplateSpecializationType;
+
+ unsigned : NumTypeBits;
+
+ /// Whether this template specialization type is a substituted type alias.
+ unsigned TypeAlias : 1;
+
+ /// The number of template arguments named in this class template
+ /// specialization, which is expected to be able to hold at least 1024
+ /// according to [implimits]. However, as this limit is somewhat easy to
+ /// hit with template metaprogramming we'd prefer to keep it as large
+ /// as possible. At the moment it has been left as a non-bitfield since
+ /// this type safely fits in 64 bits as an unsigned, so there is no reason
+ /// to introduce the performance impact of a bitfield.
+ unsigned NumArgs;
+ };
+
+ class DependentTemplateSpecializationTypeBitfields {
+ friend class DependentTemplateSpecializationType;
+
+ unsigned : NumTypeBits;
+ unsigned : NumTypeWithKeywordBits;
+
+ /// The number of template arguments named in this class template
+ /// specialization, which is expected to be able to hold at least 1024
+ /// according to [implimits]. However, as this limit is somewhat easy to
+ /// hit with template metaprogramming we'd prefer to keep it as large
+ /// as possible. At the moment it has been left as a non-bitfield since
+ /// this type safely fits in 64 bits as an unsigned, so there is no reason
+ /// to introduce the performance impact of a bitfield.
+ unsigned NumArgs;
+ };
+
+ class PackExpansionTypeBitfields {
+ friend class PackExpansionType;
+
+ unsigned : NumTypeBits;
+
+ /// The number of expansions that this pack expansion will
+ /// generate when substituted (+1), which is expected to be able to
+ /// hold at least 1024 according to [implimits]. However, as this limit
+ /// is somewhat easy to hit with template metaprogramming we'd prefer to
+ /// keep it as large as possible. At the moment it has been left as a
+ /// non-bitfield since this type safely fits in 64 bits as an unsigned, so
+ /// there is no reason to introduce the performance impact of a bitfield.
+ ///
+ /// This field will only have a non-zero value when some of the parameter
+ /// packs that occur within the pattern have been substituted but others
+ /// have not.
+ unsigned NumExpansions;
+ };
+
+ union {
+ TypeBitfields TypeBits;
+ ArrayTypeBitfields ArrayTypeBits;
+ AttributedTypeBitfields AttributedTypeBits;
+ AutoTypeBitfields AutoTypeBits;
+ BuiltinTypeBitfields BuiltinTypeBits;
+ FunctionTypeBitfields FunctionTypeBits;
+ ObjCObjectTypeBitfields ObjCObjectTypeBits;
+ ReferenceTypeBitfields ReferenceTypeBits;
+ TypeWithKeywordBitfields TypeWithKeywordBits;
+ ElaboratedTypeBitfields ElaboratedTypeBits;
+ VectorTypeBitfields VectorTypeBits;
+ SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits;
+ TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits;
+ DependentTemplateSpecializationTypeBitfields
+ DependentTemplateSpecializationTypeBits;
+ PackExpansionTypeBitfields PackExpansionTypeBits;
+
+ static_assert(sizeof(TypeBitfields) <= 8,
+ "TypeBitfields is larger than 8 bytes!");
+ static_assert(sizeof(ArrayTypeBitfields) <= 8,
+ "ArrayTypeBitfields is larger than 8 bytes!");
+ static_assert(sizeof(AttributedTypeBitfields) <= 8,
+ "AttributedTypeBitfields is larger than 8 bytes!");
+ static_assert(sizeof(AutoTypeBitfields) <= 8,
+ "AutoTypeBitfields is larger than 8 bytes!");
+ static_assert(sizeof(BuiltinTypeBitfields) <= 8,
+ "BuiltinTypeBitfields is larger than 8 bytes!");
+ static_assert(sizeof(FunctionTypeBitfields) <= 8,
+ "FunctionTypeBitfields is larger than 8 bytes!");
+ static_assert(sizeof(ObjCObjectTypeBitfields) <= 8,
+ "ObjCObjectTypeBitfields is larger than 8 bytes!");
+ static_assert(sizeof(ReferenceTypeBitfields) <= 8,
+ "ReferenceTypeBitfields is larger than 8 bytes!");
+ static_assert(sizeof(TypeWithKeywordBitfields) <= 8,
+ "TypeWithKeywordBitfields is larger than 8 bytes!");
+ static_assert(sizeof(ElaboratedTypeBitfields) <= 8,
+ "ElaboratedTypeBitfields is larger than 8 bytes!");
+ static_assert(sizeof(VectorTypeBitfields) <= 8,
+ "VectorTypeBitfields is larger than 8 bytes!");
+ static_assert(sizeof(SubstTemplateTypeParmPackTypeBitfields) <= 8,
+ "SubstTemplateTypeParmPackTypeBitfields is larger"
+ " than 8 bytes!");
+ static_assert(sizeof(TemplateSpecializationTypeBitfields) <= 8,
+ "TemplateSpecializationTypeBitfields is larger"
+ " than 8 bytes!");
+ static_assert(sizeof(DependentTemplateSpecializationTypeBitfields) <= 8,
+ "DependentTemplateSpecializationTypeBitfields is larger"
+ " than 8 bytes!");
+ static_assert(sizeof(PackExpansionTypeBitfields) <= 8,
+ "PackExpansionTypeBitfields is larger than 8 bytes");
+ };
+
+private:
+ template <class T> friend class TypePropertyCache;
+
+ /// Set whether this type comes from an AST file.
+ void setFromAST(bool V = true) const {
+ TypeBits.FromAST = V;
+ }
+
+protected:
+ friend class ASTContext;
+
+ Type(TypeClass tc, QualType canon, bool Dependent,
+ bool InstantiationDependent, bool VariablyModified,
+ bool ContainsUnexpandedParameterPack)
+ : ExtQualsTypeCommonBase(this,
+ canon.isNull() ? QualType(this_(), 0) : canon) {
+ TypeBits.TC = tc;
+ TypeBits.Dependent = Dependent;
+ TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
+ TypeBits.VariablyModified = VariablyModified;
+ TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
+ TypeBits.CacheValid = false;
+ TypeBits.CachedLocalOrUnnamed = false;
+ TypeBits.CachedLinkage = NoLinkage;
+ TypeBits.FromAST = false;
+ }
+
+ // silence VC++ warning C4355: 'this' : used in base member initializer list
+ Type *this_() { return this; }
+
+ void setDependent(bool D = true) {
+ TypeBits.Dependent = D;
+ if (D)
+ TypeBits.InstantiationDependent = true;
+ }
+
+ void setInstantiationDependent(bool D = true) {
+ TypeBits.InstantiationDependent = D; }
+
+ void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM; }
+
+ void setContainsUnexpandedParameterPack(bool PP = true) {
+ TypeBits.ContainsUnexpandedParameterPack = PP;
+ }
+
+public:
+ friend class ASTReader;
+ friend class ASTWriter;
+
+ Type(const Type &) = delete;
+ Type &operator=(const Type &) = delete;
+
+ TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
+
+ /// Whether this type comes from an AST file.
+ bool isFromAST() const { return TypeBits.FromAST; }
+
+ /// Whether this type is or contains an unexpanded parameter
+ /// pack, used to support C++0x variadic templates.
+ ///
+ /// A type that contains a parameter pack shall be expanded by the
+ /// ellipsis operator at some point. For example, the typedef in the
+ /// following example contains an unexpanded parameter pack 'T':
+ ///
+ /// \code
+ /// template<typename ...T>
+ /// struct X {
+ /// typedef T* pointer_types; // ill-formed; T is a parameter pack.
+ /// };
+ /// \endcode
+ ///
+ /// Note that this routine does not specify which
+ bool containsUnexpandedParameterPack() const {
+ return TypeBits.ContainsUnexpandedParameterPack;
+ }
+
+ /// Determines if this type would be canonical if it had no further
+ /// qualification.
+ bool isCanonicalUnqualified() const {
+ return CanonicalType == QualType(this, 0);
+ }
+
+ /// Pull a single level of sugar off of this locally-unqualified type.
+ /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
+ /// or QualType::getSingleStepDesugaredType(const ASTContext&).
+ QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
+
+ /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
+ /// object types, function types, and incomplete types.
+
+ /// Return true if this is an incomplete type.
+ /// A type that can describe objects, but which lacks information needed to
+ /// determine its size (e.g. void, or a fwd declared struct). Clients of this
+ /// routine will need to determine if the size is actually required.
+ ///
+ /// Def If non-null, and the type refers to some kind of declaration
+ /// that can be completed (such as a C struct, C++ class, or Objective-C
+ /// class), will be set to the declaration.
+ bool isIncompleteType(NamedDecl **Def = nullptr) const;
+
+ /// Return true if this is an incomplete or object
+ /// type, in other words, not a function type.
+ bool isIncompleteOrObjectType() const {
+ return !isFunctionType();
+ }
+
+ /// Determine whether this type is an object type.
+ bool isObjectType() const {
+ // C++ [basic.types]p8:
+ // An object type is a (possibly cv-qualified) type that is not a
+ // function type, not a reference type, and not a void type.
+ return !isReferenceType() && !isFunctionType() && !isVoidType();
+ }
+
+ /// Return true if this is a literal type
+ /// (C++11 [basic.types]p10)
+ bool isLiteralType(const ASTContext &Ctx) const;
+
+ /// Test if this type is a standard-layout type.
+ /// (C++0x [basic.type]p9)
+ bool isStandardLayoutType() const;
+
+ /// Helper methods to distinguish type categories. All type predicates
+ /// operate on the canonical type, ignoring typedefs and qualifiers.
+
+ /// Returns true if the type is a builtin type.
+ bool isBuiltinType() const;
+
+ /// Test for a particular builtin type.
+ bool isSpecificBuiltinType(unsigned K) const;
+
+ /// Test for a type which does not represent an actual type-system type but
+ /// is instead used as a placeholder for various convenient purposes within
+ /// Clang. All such types are BuiltinTypes.
+ bool isPlaceholderType() const;
+ const BuiltinType *getAsPlaceholderType() const;
+
+ /// Test for a specific placeholder type.
+ bool isSpecificPlaceholderType(unsigned K) const;
+
+ /// Test for a placeholder type other than Overload; see
+ /// BuiltinType::isNonOverloadPlaceholderType.
+ bool isNonOverloadPlaceholderType() const;
+
+ /// isIntegerType() does *not* include complex integers (a GCC extension).
+ /// isComplexIntegerType() can be used to test for complex integers.
+ bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
+ bool isEnumeralType() const;
+
+ /// Determine whether this type is a scoped enumeration type.
+ bool isScopedEnumeralType() const;
+ bool isBooleanType() const;
+ bool isCharType() const;
+ bool isWideCharType() const;
+ bool isChar8Type() const;
+ bool isChar16Type() const;
+ bool isChar32Type() const;
+ bool isAnyCharacterType() const;
+ bool isIntegralType(const ASTContext &Ctx) const;
+
+ /// Determine whether this type is an integral or enumeration type.
+ bool isIntegralOrEnumerationType() const;
+
+ /// Determine whether this type is an integral or unscoped enumeration type.
+ bool isIntegralOrUnscopedEnumerationType() const;
+
+ /// Floating point categories.
+ bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
+ /// isComplexType() does *not* include complex integers (a GCC extension).
+ /// isComplexIntegerType() can be used to test for complex integers.
+ bool isComplexType() const; // C99 6.2.5p11 (complex)
+ bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
+ bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
+ bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
+ bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661
+ bool isFloat128Type() const;
+ bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
+ bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
+ bool isVoidType() const; // C99 6.2.5p19
+ bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
+ bool isAggregateType() const;
+ bool isFundamentalType() const;
+ bool isCompoundType() const;
+
+ // Type Predicates: Check to see if this type is structurally the specified
+ // type, ignoring typedefs and qualifiers.
+ bool isFunctionType() const;
+ bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
+ bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
+ bool isPointerType() const;
+ bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
+ bool isBlockPointerType() const;
+ bool isVoidPointerType() const;
+ bool isReferenceType() const;
+ bool isLValueReferenceType() const;
+ bool isRValueReferenceType() const;
+ bool isFunctionPointerType() const;
+ bool isMemberPointerType() const;
+ bool isMemberFunctionPointerType() const;
+ bool isMemberDataPointerType() const;
+ bool isArrayType() const;
+ bool isConstantArrayType() const;
+ bool isIncompleteArrayType() const;
+ bool isVariableArrayType() const;
+ bool isDependentSizedArrayType() const;
+ bool isRecordType() const;
+ bool isClassType() const;
+ bool isStructureType() const;
+ bool isObjCBoxableRecordType() const;
+ bool isInterfaceType() const;
+ bool isStructureOrClassType() const;
+ bool isUnionType() const;
+ bool isComplexIntegerType() const; // GCC _Complex integer type.
+ bool isVectorType() const; // GCC vector type.
+ bool isExtVectorType() const; // Extended vector type.
+ bool isDependentAddressSpaceType() const; // value-dependent address space qualifier
+ bool isObjCObjectPointerType() const; // pointer to ObjC object
+ bool isObjCRetainableType() const; // ObjC object or block pointer
+ bool isObjCLifetimeType() const; // (array of)* retainable type
+ bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
+ bool isObjCNSObjectType() const; // __attribute__((NSObject))
+ bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class))
+ // FIXME: change this to 'raw' interface type, so we can used 'interface' type
+ // for the common case.
+ bool isObjCObjectType() const; // NSString or typeof(*(id)0)
+ bool isObjCQualifiedInterfaceType() const; // NSString<foo>
+ bool isObjCQualifiedIdType() const; // id<foo>
+ bool isObjCQualifiedClassType() const; // Class<foo>
+ bool isObjCObjectOrInterfaceType() const;
+ bool isObjCIdType() const; // id
+ bool isDecltypeType() const;
+ /// Was this type written with the special inert-in-ARC __unsafe_unretained
+ /// qualifier?
+ ///
+ /// This approximates the answer to the following question: if this
+ /// translation unit were compiled in ARC, would this type be qualified
+ /// with __unsafe_unretained?
+ bool isObjCInertUnsafeUnretainedType() const {
+ return hasAttr(attr::ObjCInertUnsafeUnretained);
+ }
+
+ /// Whether the type is Objective-C 'id' or a __kindof type of an
+ /// object type, e.g., __kindof NSView * or __kindof id
+ /// <NSCopying>.
+ ///
+ /// \param bound Will be set to the bound on non-id subtype types,
+ /// which will be (possibly specialized) Objective-C class type, or
+ /// null for 'id.
+ bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
+ const ObjCObjectType *&bound) const;
+
+ bool isObjCClassType() const; // Class
+
+ /// Whether the type is Objective-C 'Class' or a __kindof type of an
+ /// Class type, e.g., __kindof Class <NSCopying>.
+ ///
+ /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
+ /// here because Objective-C's type system cannot express "a class
+ /// object for a subclass of NSFoo".
+ bool isObjCClassOrClassKindOfType() const;
+
+ bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
+ bool isObjCSelType() const; // Class
+ bool isObjCBuiltinType() const; // 'id' or 'Class'
+ bool isObjCARCBridgableType() const;
+ bool isCARCBridgableType() const;
+ bool isTemplateTypeParmType() const; // C++ template type parameter
+ bool isNullPtrType() const; // C++11 std::nullptr_t
+ bool isAlignValT() const; // C++17 std::align_val_t
+ bool isStdByteType() const; // C++17 std::byte
+ bool isAtomicType() const; // C11 _Atomic()
+
+#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
+ bool is##Id##Type() const;
+#include "clang/Basic/OpenCLImageTypes.def"
+
+ bool isImageType() const; // Any OpenCL image type
+
+ bool isSamplerT() const; // OpenCL sampler_t
+ bool isEventT() const; // OpenCL event_t
+ bool isClkEventT() const; // OpenCL clk_event_t
+ bool isQueueT() const; // OpenCL queue_t
+ bool isReserveIDT() const; // OpenCL reserve_id_t
+
+#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
+ bool is##Id##Type() const;
+#include "clang/Basic/OpenCLExtensionTypes.def"
+ // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension
+ bool isOCLIntelSubgroupAVCType() const;
+ bool isOCLExtOpaqueType() const; // Any OpenCL extension type
+
+ bool isPipeType() const; // OpenCL pipe type
+ bool isOpenCLSpecificType() const; // Any OpenCL specific type
+
+ /// Determines if this type, which must satisfy
+ /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
+ /// than implicitly __strong.
+ bool isObjCARCImplicitlyUnretainedType() const;
+
+ /// Return the implicit lifetime for this type, which must not be dependent.
+ Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
+
+ enum ScalarTypeKind {
+ STK_CPointer,
+ STK_BlockPointer,
+ STK_ObjCObjectPointer,
+ STK_MemberPointer,
+ STK_Bool,
+ STK_Integral,
+ STK_Floating,
+ STK_IntegralComplex,
+ STK_FloatingComplex,
+ STK_FixedPoint
+ };
+
+ /// Given that this is a scalar type, classify it.
+ ScalarTypeKind getScalarTypeKind() const;
+
+ /// Whether this type is a dependent type, meaning that its definition
+ /// somehow depends on a template parameter (C++ [temp.dep.type]).
+ bool isDependentType() const { return TypeBits.Dependent; }
+
+ /// Determine whether this type is an instantiation-dependent type,
+ /// meaning that the type involves a template parameter (even if the
+ /// definition does not actually depend on the type substituted for that
+ /// template parameter).
+ bool isInstantiationDependentType() const {
+ return TypeBits.InstantiationDependent;
+ }
+
+ /// Determine whether this type is an undeduced type, meaning that
+ /// it somehow involves a C++11 'auto' type or similar which has not yet been
+ /// deduced.
+ bool isUndeducedType() const;
+
+ /// Whether this type is a variably-modified type (C99 6.7.5).
+ bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
+
+ /// Whether this type involves a variable-length array type
+ /// with a definite size.
+ bool hasSizedVLAType() const;
+
+ /// Whether this type is or contains a local or unnamed type.
+ bool hasUnnamedOrLocalType() const;
+
+ bool isOverloadableType() const;
+
+ /// Determine wither this type is a C++ elaborated-type-specifier.
+ bool isElaboratedTypeSpecifier() const;
+
+ bool canDecayToPointerType() const;
+
+ /// Whether this type is represented natively as a pointer. This includes
+ /// pointers, references, block pointers, and Objective-C interface,
+ /// qualified id, and qualified interface types, as well as nullptr_t.
+ bool hasPointerRepresentation() const;
+
+ /// Whether this type can represent an objective pointer type for the
+ /// purpose of GC'ability
+ bool hasObjCPointerRepresentation() const;
+
+ /// Determine whether this type has an integer representation
+ /// of some sort, e.g., it is an integer type or a vector.
+ bool hasIntegerRepresentation() const;
+
+ /// Determine whether this type has an signed integer representation
+ /// of some sort, e.g., it is an signed integer type or a vector.
+ bool hasSignedIntegerRepresentation() const;
+
+ /// Determine whether this type has an unsigned integer representation
+ /// of some sort, e.g., it is an unsigned integer type or a vector.
+ bool hasUnsignedIntegerRepresentation() const;
+
+ /// Determine whether this type has a floating-point representation
+ /// of some sort, e.g., it is a floating-point type or a vector thereof.
+ bool hasFloatingRepresentation() const;
+
+ // Type Checking Functions: Check to see if this type is structurally the
+ // specified type, ignoring typedefs and qualifiers, and return a pointer to
+ // the best type we can.
+ const RecordType *getAsStructureType() const;
+ /// NOTE: getAs*ArrayType are methods on ASTContext.
+ const RecordType *getAsUnionType() const;
+ const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
+ const ObjCObjectType *getAsObjCInterfaceType() const;
+
+ // The following is a convenience method that returns an ObjCObjectPointerType
+ // for object declared using an interface.
+ const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
+ const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
+ const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
+ const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
+
+ /// Retrieves the CXXRecordDecl that this type refers to, either
+ /// because the type is a RecordType or because it is the injected-class-name
+ /// type of a class template or class template partial specialization.
+ CXXRecordDecl *getAsCXXRecordDecl() const;
+
+ /// Retrieves the RecordDecl this type refers to.
+ RecordDecl *getAsRecordDecl() const;
+
+ /// Retrieves the TagDecl that this type refers to, either
+ /// because the type is a TagType or because it is the injected-class-name
+ /// type of a class template or class template partial specialization.
+ TagDecl *getAsTagDecl() const;
+
+ /// If this is a pointer or reference to a RecordType, return the
+ /// CXXRecordDecl that the type refers to.
+ ///
+ /// If this is not a pointer or reference, or the type being pointed to does
+ /// not refer to a CXXRecordDecl, returns NULL.
+ const CXXRecordDecl *getPointeeCXXRecordDecl() const;
+
+ /// Get the DeducedType whose type will be deduced for a variable with
+ /// an initializer of this type. This looks through declarators like pointer
+ /// types, but not through decltype or typedefs.
+ DeducedType *getContainedDeducedType() const;
+
+ /// Get the AutoType whose type will be deduced for a variable with
+ /// an initializer of this type. This looks through declarators like pointer
+ /// types, but not through decltype or typedefs.
+ AutoType *getContainedAutoType() const {
+ return dyn_cast_or_null<AutoType>(getContainedDeducedType());
+ }
+
+ /// Determine whether this type was written with a leading 'auto'
+ /// corresponding to a trailing return type (possibly for a nested
+ /// function type within a pointer to function type or similar).
+ bool hasAutoForTrailingReturnType() const;
+
+ /// Member-template getAs<specific type>'. Look through sugar for
+ /// an instance of \<specific type>. This scheme will eventually
+ /// replace the specific getAsXXXX methods above.
+ ///
+ /// There are some specializations of this member template listed
+ /// immediately following this class.
+ template <typename T> const T *getAs() const;
+
+ /// Member-template getAsAdjusted<specific type>. Look through specific kinds
+ /// of sugar (parens, attributes, etc) for an instance of \<specific type>.
+ /// This is used when you need to walk over sugar nodes that represent some
+ /// kind of type adjustment from a type that was written as a \<specific type>
+ /// to another type that is still canonically a \<specific type>.
+ template <typename T> const T *getAsAdjusted() const;
+
+ /// A variant of getAs<> for array types which silently discards
+ /// qualifiers from the outermost type.
+ const ArrayType *getAsArrayTypeUnsafe() const;
+
+ /// Member-template castAs<specific type>. Look through sugar for
+ /// the underlying instance of \<specific type>.
+ ///
+ /// This method has the same relationship to getAs<T> as cast<T> has
+ /// to dyn_cast<T>; which is to say, the underlying type *must*
+ /// have the intended type, and this method will never return null.
+ template <typename T> const T *castAs() const;
+
+ /// A variant of castAs<> for array type which silently discards
+ /// qualifiers from the outermost type.
+ const ArrayType *castAsArrayTypeUnsafe() const;
+
+ /// Determine whether this type had the specified attribute applied to it
+ /// (looking through top-level type sugar).
+ bool hasAttr(attr::Kind AK) const;
+
+ /// Get the base element type of this type, potentially discarding type
+ /// qualifiers. This should never be used when type qualifiers
+ /// are meaningful.
+ const Type *getBaseElementTypeUnsafe() const;
+
+ /// If this is an array type, return the element type of the array,
+ /// potentially with type qualifiers missing.
+ /// This should never be used when type qualifiers are meaningful.
+ const Type *getArrayElementTypeNoTypeQual() const;
+
+ /// If this is a pointer type, return the pointee type.
+ /// If this is an array type, return the array element type.
+ /// This should never be used when type qualifiers are meaningful.
+ const Type *getPointeeOrArrayElementType() const;
+
+ /// If this is a pointer, ObjC object pointer, or block
+ /// pointer, this returns the respective pointee.
+ QualType getPointeeType() const;
+
+ /// Return the specified type with any "sugar" removed from the type,
+ /// removing any typedefs, typeofs, etc., as well as any qualifiers.
+ const Type *getUnqualifiedDesugaredType() const;
+
+ /// More type predicates useful for type checking/promotion
+ bool isPromotableIntegerType() const; // C99 6.3.1.1p2
+
+ /// Return true if this is an integer type that is
+ /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
+ /// or an enum decl which has a signed representation.
+ bool isSignedIntegerType() const;
+
+ /// Return true if this is an integer type that is
+ /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
+ /// or an enum decl which has an unsigned representation.
+ bool isUnsignedIntegerType() const;
+
+ /// Determines whether this is an integer type that is signed or an
+ /// enumeration types whose underlying type is a signed integer type.
+ bool isSignedIntegerOrEnumerationType() const;
+
+ /// Determines whether this is an integer type that is unsigned or an
+ /// enumeration types whose underlying type is a unsigned integer type.
+ bool isUnsignedIntegerOrEnumerationType() const;
+
+ /// Return true if this is a fixed point type according to
+ /// ISO/IEC JTC1 SC22 WG14 N1169.
+ bool isFixedPointType() const;
+
+ /// Return true if this is a fixed point or integer type.
+ bool isFixedPointOrIntegerType() const;
+
+ /// Return true if this is a saturated fixed point type according to
+ /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
+ bool isSaturatedFixedPointType() const;
+
+ /// Return true if this is a saturated fixed point type according to
+ /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
+ bool isUnsaturatedFixedPointType() const;
+
+ /// Return true if this is a fixed point type that is signed according
+ /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
+ bool isSignedFixedPointType() const;
+
+ /// Return true if this is a fixed point type that is unsigned according
+ /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
+ bool isUnsignedFixedPointType() const;
+
+ /// Return true if this is not a variable sized type,
+ /// according to the rules of C99 6.7.5p3. It is not legal to call this on
+ /// incomplete types.
+ bool isConstantSizeType() const;
+
+ /// Returns true if this type can be represented by some
+ /// set of type specifiers.
+ bool isSpecifierType() const;
+
+ /// Determine the linkage of this type.
+ Linkage getLinkage() const;
+
+ /// Determine the visibility of this type.
+ Visibility getVisibility() const {
+ return getLinkageAndVisibility().getVisibility();
+ }
+
+ /// Return true if the visibility was explicitly set is the code.
+ bool isVisibilityExplicit() const {
+ return getLinkageAndVisibility().isVisibilityExplicit();
+ }
+
+ /// Determine the linkage and visibility of this type.
+ LinkageInfo getLinkageAndVisibility() const;
+
+ /// True if the computed linkage is valid. Used for consistency
+ /// checking. Should always return true.
+ bool isLinkageValid() const;
+
+ /// Determine the nullability of the given type.
+ ///
+ /// Note that nullability is only captured as sugar within the type
+ /// system, not as part of the canonical type, so nullability will
+ /// be lost by canonicalization and desugaring.
+ Optional<NullabilityKind> getNullability(const ASTContext &context) const;
+
+ /// Determine whether the given type can have a nullability
+ /// specifier applied to it, i.e., if it is any kind of pointer type.
+ ///
+ /// \param ResultIfUnknown The value to return if we don't yet know whether
+ /// this type can have nullability because it is dependent.
+ bool canHaveNullability(bool ResultIfUnknown = true) const;
+
+ /// Retrieve the set of substitutions required when accessing a member
+ /// of the Objective-C receiver type that is declared in the given context.
+ ///
+ /// \c *this is the type of the object we're operating on, e.g., the
+ /// receiver for a message send or the base of a property access, and is
+ /// expected to be of some object or object pointer type.
+ ///
+ /// \param dc The declaration context for which we are building up a
+ /// substitution mapping, which should be an Objective-C class, extension,
+ /// category, or method within.
+ ///
+ /// \returns an array of type arguments that can be substituted for
+ /// the type parameters of the given declaration context in any type described
+ /// within that context, or an empty optional to indicate that no
+ /// substitution is required.
+ Optional<ArrayRef<QualType>>
+ getObjCSubstitutions(const DeclContext *dc) const;
+
+ /// Determines if this is an ObjC interface type that may accept type
+ /// parameters.
+ bool acceptsObjCTypeParams() const;
+
+ const char *getTypeClassName() const;
+
+ QualType getCanonicalTypeInternal() const {
+ return CanonicalType;
+ }
+
+ CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
+ void dump() const;
+ void dump(llvm::raw_ostream &OS) const;
+};
+
+/// This will check for a TypedefType by removing any existing sugar
+/// until it reaches a TypedefType or a non-sugared type.
+template <> const TypedefType *Type::getAs() const;
+
+/// This will check for a TemplateSpecializationType by removing any
+/// existing sugar until it reaches a TemplateSpecializationType or a
+/// non-sugared type.
+template <> const TemplateSpecializationType *Type::getAs() const;
+
+/// This will check for an AttributedType by removing any existing sugar
+/// until it reaches an AttributedType or a non-sugared type.
+template <> const AttributedType *Type::getAs() const;
+
+// We can do canonical leaf types faster, because we don't have to
+// worry about preserving child type decoration.
+#define TYPE(Class, Base)
+#define LEAF_TYPE(Class) \
+template <> inline const Class##Type *Type::getAs() const { \
+ return dyn_cast<Class##Type>(CanonicalType); \
+} \
+template <> inline const Class##Type *Type::castAs() const { \
+ return cast<Class##Type>(CanonicalType); \
+}
+#include "clang/AST/TypeNodes.def"
+
+/// This class is used for builtin types like 'int'. Builtin
+/// types are always canonical and have a literal name field.
+class BuiltinType : public Type {
+public:
+ enum Kind {
+// OpenCL image types
+#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
+#include "clang/Basic/OpenCLImageTypes.def"
+// OpenCL extension types
+#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id,
+#include "clang/Basic/OpenCLExtensionTypes.def"
+// All other builtin types
+#define BUILTIN_TYPE(Id, SingletonId) Id,
+#define LAST_BUILTIN_TYPE(Id) LastKind = Id
+#include "clang/AST/BuiltinTypes.def"
+ };
+
+private:
+ friend class ASTContext; // ASTContext creates these.
+
+ BuiltinType(Kind K)
+ : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
+ /*InstantiationDependent=*/(K == Dependent),
+ /*VariablyModified=*/false,
+ /*Unexpanded parameter pack=*/false) {
+ BuiltinTypeBits.Kind = K;
+ }
+
+public:
+ Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
+ StringRef getName(const PrintingPolicy &Policy) const;
+
+ const char *getNameAsCString(const PrintingPolicy &Policy) const {
+ // The StringRef is null-terminated.
+ StringRef str = getName(Policy);
+ assert(!str.empty() && str.data()[str.size()] == '\0');
+ return str.data();
+ }
+
+ bool isSugared() const { return false; }
+ QualType desugar() const { return QualType(this, 0); }
+
+ bool isInteger() const {
+ return getKind() >= Bool && getKind() <= Int128;
+ }
+
+ bool isSignedInteger() const {
+ return getKind() >= Char_S && getKind() <= Int128;
+ }
+
+ bool isUnsignedInteger() const {
+ return getKind() >= Bool && getKind() <= UInt128;
+ }
+
+ bool isFloatingPoint() const {
+ return getKind() >= Half && getKind() <= Float128;
+ }
+
+ /// Determines whether the given kind corresponds to a placeholder type.
+ static bool isPlaceholderTypeKind(Kind K) {
+ return K >= Overload;
+ }
+
+ /// Determines whether this type is a placeholder type, i.e. a type
+ /// which cannot appear in arbitrary positions in a fully-formed
+ /// expression.
+ bool isPlaceholderType() const {
+ return isPlaceholderTypeKind(getKind());
+ }
+
+ /// Determines whether this type is a placeholder type other than
+ /// Overload. Most placeholder types require only syntactic
+ /// information about their context in order to be resolved (e.g.
+ /// whether it is a call expression), which means they can (and
+ /// should) be resolved in an earlier "phase" of analysis.
+ /// Overload expressions sometimes pick up further information
+ /// from their context, like whether the context expects a
+ /// specific function-pointer type, and so frequently need
+ /// special treatment.
+ bool isNonOverloadPlaceholderType() const {
+ return getKind() > Overload;
+ }
+
+ static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
+};
+
+/// Complex values, per C99 6.2.5p11. This supports the C99 complex
+/// types (_Complex float etc) as well as the GCC integer complex extensions.
+class ComplexType : public Type, public llvm::FoldingSetNode {
+ friend class ASTContext; // ASTContext creates these.
+
+ QualType ElementType;
+
+ ComplexType(QualType Element, QualType CanonicalPtr)
+ : Type(Complex, CanonicalPtr, Element->isDependentType(),
+ Element->isInstantiationDependentType(),
+ Element->isVariablyModifiedType(),
+ Element->containsUnexpandedParameterPack()),
+ ElementType(Element) {}
+
+public:
+ QualType getElementType() const { return ElementType; }
+
+ bool isSugared() const { return false; }
+ QualType desugar() const { return QualType(this, 0); }
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, getElementType());
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
+ ID.AddPointer(Element.getAsOpaquePtr());
+ }
+
+ static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
+};
+
+/// Sugar for parentheses used when specifying types.
+class ParenType : public Type, public llvm::FoldingSetNode {
+ friend class ASTContext; // ASTContext creates these.
+
+ QualType Inner;
+
+ ParenType(QualType InnerType, QualType CanonType)
+ : Type(Paren, CanonType, InnerType->isDependentType(),
+ InnerType->isInstantiationDependentType(),
+ InnerType->isVariablyModifiedType(),
+ InnerType->containsUnexpandedParameterPack()),
+ Inner(InnerType) {}
+
+public:
+ QualType getInnerType() const { return Inner; }
+
+ bool isSugared() const { return true; }
+ QualType desugar() const { return getInnerType(); }
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, getInnerType());
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
+ Inner.Profile(ID);
+ }
+
+ static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
+};
+
+/// PointerType - C99 6.7.5.1 - Pointer Declarators.
+class PointerType : public Type, public llvm::FoldingSetNode {
+ friend class ASTContext; // ASTContext creates these.
+
+ QualType PointeeType;
+
+ PointerType(QualType Pointee, QualType CanonicalPtr)
+ : Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
+ Pointee->isInstantiationDependentType(),
+ Pointee->isVariablyModifiedType(),
+ Pointee->containsUnexpandedParameterPack()),
+ PointeeType(Pointee) {}
+
+public:
+ QualType getPointeeType() const { return PointeeType; }
+
+ /// Returns true if address spaces of pointers overlap.
+ /// OpenCL v2.0 defines conversion rules for pointers to different
+ /// address spaces (OpenCLC v2.0 s6.5.5) and notion of overlapping
+ /// address spaces.
+ /// CL1.1 or CL1.2:
+ /// address spaces overlap iff they are they same.
+ /// CL2.0 adds:
+ /// __generic overlaps with any address space except for __constant.
+ bool isAddressSpaceOverlapping(const PointerType &other) const {
+ Qualifiers thisQuals = PointeeType.getQualifiers();
+ Qualifiers otherQuals = other.getPointeeType().getQualifiers();
+ // Address spaces overlap if at least one of them is a superset of another
+ return thisQuals.isAddressSpaceSupersetOf(otherQuals) ||
+ otherQuals.isAddressSpaceSupersetOf(thisQuals);
+ }
+
+ bool isSugared() const { return false; }
+ QualType desugar() const { return QualType(this, 0); }
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, getPointeeType());
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
+ ID.AddPointer(Pointee.getAsOpaquePtr());
+ }
+
+ static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
+};
+
+/// Represents a type which was implicitly adjusted by the semantic
+/// engine for arbitrary reasons. For example, array and function types can
+/// decay, and function types can have their calling conventions adjusted.
+class AdjustedType : public Type, public llvm::FoldingSetNode {
+ QualType OriginalTy;
+ QualType AdjustedTy;
+
+protected:
+ friend class ASTContext; // ASTContext creates these.
+
+ AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
+ QualType CanonicalPtr)
+ : Type(TC, CanonicalPtr, OriginalTy->isDependentType(),
+ OriginalTy->isInstantiationDependentType(),
+ OriginalTy->isVariablyModifiedType(),
+ OriginalTy->containsUnexpandedParameterPack()),
+ OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
+
+public:
+ QualType getOriginalType() const { return OriginalTy; }
+ QualType getAdjustedType() const { return AdjustedTy; }
+
+ bool isSugared() const { return true; }
+ QualType desugar() const { return AdjustedTy; }
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, OriginalTy, AdjustedTy);
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
+ ID.AddPointer(Orig.getAsOpaquePtr());
+ ID.AddPointer(New.getAsOpaquePtr());
+ }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
+ }
+};
+
+/// Represents a pointer type decayed from an array or function type.
+class DecayedType : public AdjustedType {
+ friend class ASTContext; // ASTContext creates these.
+
+ inline
+ DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);
+
+public:
+ QualType getDecayedType() const { return getAdjustedType(); }
+
+ inline QualType getPointeeType() const;
+
+ static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
+};
+
+/// Pointer to a block type.
+/// This type is to represent types syntactically represented as
+/// "void (^)(int)", etc. Pointee is required to always be a function type.
+class BlockPointerType : public Type, public llvm::FoldingSetNode {
+ friend class ASTContext; // ASTContext creates these.
+
+ // Block is some kind of pointer type
+ QualType PointeeType;
+
+ BlockPointerType(QualType Pointee, QualType CanonicalCls)
+ : Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
+ Pointee->isInstantiationDependentType(),
+ Pointee->isVariablyModifiedType(),
+ Pointee->containsUnexpandedParameterPack()),
+ PointeeType(Pointee) {}
+
+public:
+ // Get the pointee type. Pointee is required to always be a function type.
+ QualType getPointeeType() const { return PointeeType; }
+
+ bool isSugared() const { return false; }
+ QualType desugar() const { return QualType(this, 0); }
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, getPointeeType());
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
+ ID.AddPointer(Pointee.getAsOpaquePtr());
+ }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == BlockPointer;
+ }
+};
+
+/// Base for LValueReferenceType and RValueReferenceType
+class ReferenceType : public Type, public llvm::FoldingSetNode {
+ QualType PointeeType;
+
+protected:
+ ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
+ bool SpelledAsLValue)
+ : Type(tc, CanonicalRef, Referencee->isDependentType(),
+ Referencee->isInstantiationDependentType(),
+ Referencee->isVariablyModifiedType(),
+ Referencee->containsUnexpandedParameterPack()),
+ PointeeType(Referencee) {
+ ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
+ ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
+ }
+
+public:
+ bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
+ bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
+
+ QualType getPointeeTypeAsWritten() const { return PointeeType; }
+
+ QualType getPointeeType() const {
+ // FIXME: this might strip inner qualifiers; okay?
+ const ReferenceType *T = this;
+ while (T->isInnerRef())
+ T = T->PointeeType->castAs<ReferenceType>();
+ return T->PointeeType;
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, PointeeType, isSpelledAsLValue());
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID,
+ QualType Referencee,
+ bool SpelledAsLValue) {
+ ID.AddPointer(Referencee.getAsOpaquePtr());
+ ID.AddBoolean(SpelledAsLValue);
+ }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == LValueReference ||
+ T->getTypeClass() == RValueReference;
+ }
+};
+
+/// An lvalue reference type, per C++11 [dcl.ref].
+class LValueReferenceType : public ReferenceType {
+ friend class ASTContext; // ASTContext creates these
+
+ LValueReferenceType(QualType Referencee, QualType CanonicalRef,
+ bool SpelledAsLValue)
+ : ReferenceType(LValueReference, Referencee, CanonicalRef,
+ SpelledAsLValue) {}
+
+public:
+ bool isSugared() const { return false; }
+ QualType desugar() const { return QualType(this, 0); }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == LValueReference;
+ }
+};
+
+/// An rvalue reference type, per C++11 [dcl.ref].
+class RValueReferenceType : public ReferenceType {
+ friend class ASTContext; // ASTContext creates these
+
+ RValueReferenceType(QualType Referencee, QualType CanonicalRef)
+ : ReferenceType(RValueReference, Referencee, CanonicalRef, false) {}
+
+public:
+ bool isSugared() const { return false; }
+ QualType desugar() const { return QualType(this, 0); }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == RValueReference;
+ }
+};
+
+/// A pointer to member type per C++ 8.3.3 - Pointers to members.
+///
+/// This includes both pointers to data members and pointer to member functions.
+class MemberPointerType : public Type, public llvm::FoldingSetNode {
+ friend class ASTContext; // ASTContext creates these.
+
+ QualType PointeeType;
+
+ /// The class of which the pointee is a member. Must ultimately be a
+ /// RecordType, but could be a typedef or a template parameter too.
+ const Type *Class;
+
+ MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr)
+ : Type(MemberPointer, CanonicalPtr,
+ Cls->isDependentType() || Pointee->isDependentType(),
+ (Cls->isInstantiationDependentType() ||
+ Pointee->isInstantiationDependentType()),
+ Pointee->isVariablyModifiedType(),
+ (Cls->containsUnexpandedParameterPack() ||
+ Pointee->containsUnexpandedParameterPack())),
+ PointeeType(Pointee), Class(Cls) {}
+
+public:
+ QualType getPointeeType() const { return PointeeType; }
+
+ /// Returns true if the member type (i.e. the pointee type) is a
+ /// function type rather than a data-member type.
+ bool isMemberFunctionPointer() const {
+ return PointeeType->isFunctionProtoType();
+ }
+
+ /// Returns true if the member type (i.e. the pointee type) is a
+ /// data type rather than a function type.
+ bool isMemberDataPointer() const {
+ return !PointeeType->isFunctionProtoType();
+ }
+
+ const Type *getClass() const { return Class; }
+ CXXRecordDecl *getMostRecentCXXRecordDecl() const;
+
+ bool isSugared() const { return false; }
+ QualType desugar() const { return QualType(this, 0); }
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, getPointeeType(), getClass());
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
+ const Type *Class) {
+ ID.AddPointer(Pointee.getAsOpaquePtr());
+ ID.AddPointer(Class);
+ }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == MemberPointer;
+ }
+};
+
+/// Represents an array type, per C99 6.7.5.2 - Array Declarators.
+class ArrayType : public Type, public llvm::FoldingSetNode {
+public:
+ /// Capture whether this is a normal array (e.g. int X[4])
+ /// an array with a static size (e.g. int X[static 4]), or an array
+ /// with a star size (e.g. int X[*]).
+ /// 'static' is only allowed on function parameters.
+ enum ArraySizeModifier {
+ Normal, Static, Star
+ };
+
+private:
+ /// The element type of the array.
+ QualType ElementType;
+
+protected:
+ friend class ASTContext; // ASTContext creates these.
+
+ // C++ [temp.dep.type]p1:
+ // A type is dependent if it is...
+ // - an array type constructed from any dependent type or whose
+ // size is specified by a constant expression that is
+ // value-dependent,
+ ArrayType(TypeClass tc, QualType et, QualType can,
+ ArraySizeModifier sm, unsigned tq,
+ bool ContainsUnexpandedParameterPack)
+ : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
+ et->isInstantiationDependentType() || tc == DependentSizedArray,
+ (tc == VariableArray || et->isVariablyModifiedType()),
+ ContainsUnexpandedParameterPack),
+ ElementType(et) {
+ ArrayTypeBits.IndexTypeQuals = tq;
+ ArrayTypeBits.SizeModifier = sm;
+ }
+
+public:
+ QualType getElementType() const { return ElementType; }
+
+ ArraySizeModifier getSizeModifier() const {
+ return ArraySizeModifier(ArrayTypeBits.SizeModifier);
+ }
+
+ Qualifiers getIndexTypeQualifiers() const {
+ return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
+ }
+
+ unsigned getIndexTypeCVRQualifiers() const {
+ return ArrayTypeBits.IndexTypeQuals;
+ }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == ConstantArray ||
+ T->getTypeClass() == VariableArray ||
+ T->getTypeClass() == IncompleteArray ||
+ T->getTypeClass() == DependentSizedArray;
+ }
+};
+
+/// Represents the canonical version of C arrays with a specified constant size.
+/// For example, the canonical type for 'int A[4 + 4*100]' is a
+/// ConstantArrayType where the element type is 'int' and the size is 404.
+class ConstantArrayType : public ArrayType {
+ llvm::APInt Size; // Allows us to unique the type.
+
+ ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
+ ArraySizeModifier sm, unsigned tq)
+ : ArrayType(ConstantArray, et, can, sm, tq,
+ et->containsUnexpandedParameterPack()),
+ Size(size) {}
+
+protected:
+ friend class ASTContext; // ASTContext creates these.
+
+ ConstantArrayType(TypeClass tc, QualType et, QualType can,
+ const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
+ : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
+ Size(size) {}
+
+public:
+ const llvm::APInt &getSize() const { return Size; }
+ bool isSugared() const { return false; }
+ QualType desugar() const { return QualType(this, 0); }
+
+ /// Determine the number of bits required to address a member of
+ // an array with the given element type and number of elements.
+ static unsigned getNumAddressingBits(const ASTContext &Context,
+ QualType ElementType,
+ const llvm::APInt &NumElements);
+
+ /// Determine the maximum number of active bits that an array's size
+ /// can require, which limits the maximum size of the array.
+ static unsigned getMaxSizeBits(const ASTContext &Context);
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, getElementType(), getSize(),
+ getSizeModifier(), getIndexTypeCVRQualifiers());
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
+ const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
+ unsigned TypeQuals) {
+ ID.AddPointer(ET.getAsOpaquePtr());
+ ID.AddInteger(ArraySize.getZExtValue());
+ ID.AddInteger(SizeMod);
+ ID.AddInteger(TypeQuals);
+ }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == ConstantArray;
+ }
+};
+
+/// Represents a C array with an unspecified size. For example 'int A[]' has
+/// an IncompleteArrayType where the element type is 'int' and the size is
+/// unspecified.
+class IncompleteArrayType : public ArrayType {
+ friend class ASTContext; // ASTContext creates these.
+
+ IncompleteArrayType(QualType et, QualType can,
+ ArraySizeModifier sm, unsigned tq)
+ : ArrayType(IncompleteArray, et, can, sm, tq,
+ et->containsUnexpandedParameterPack()) {}
+
+public:
+ friend class StmtIteratorBase;
+
+ bool isSugared() const { return false; }
+ QualType desugar() const { return QualType(this, 0); }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == IncompleteArray;
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, getElementType(), getSizeModifier(),
+ getIndexTypeCVRQualifiers());
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
+ ArraySizeModifier SizeMod, unsigned TypeQuals) {
+ ID.AddPointer(ET.getAsOpaquePtr());
+ ID.AddInteger(SizeMod);
+ ID.AddInteger(TypeQuals);
+ }
+};
+
+/// Represents a C array with a specified size that is not an
+/// integer-constant-expression. For example, 'int s[x+foo()]'.
+/// Since the size expression is an arbitrary expression, we store it as such.
+///
+/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
+/// should not be: two lexically equivalent variable array types could mean
+/// different things, for example, these variables do not have the same type
+/// dynamically:
+///
+/// void foo(int x) {
+/// int Y[x];
+/// ++x;
+/// int Z[x];
+/// }
+class VariableArrayType : public ArrayType {
+ friend class ASTContext; // ASTContext creates these.
+
+ /// An assignment-expression. VLA's are only permitted within
+ /// a function block.
+ Stmt *SizeExpr;
+
+ /// The range spanned by the left and right array brackets.
+ SourceRange Brackets;
+
+ VariableArrayType(QualType et, QualType can, Expr *e,
+ ArraySizeModifier sm, unsigned tq,
+ SourceRange brackets)
+ : ArrayType(VariableArray, et, can, sm, tq,
+ et->containsUnexpandedParameterPack()),
+ SizeExpr((Stmt*) e), Brackets(brackets) {}
+
+public:
+ friend class StmtIteratorBase;
+
+ Expr *getSizeExpr() const {
+ // We use C-style casts instead of cast<> here because we do not wish
+ // to have a dependency of Type.h on Stmt.h/Expr.h.
+ return (Expr*) SizeExpr;
+ }
+
+ SourceRange getBracketsRange() const { return Brackets; }
+ SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
+ SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
+
+ bool isSugared() const { return false; }
+ QualType desugar() const { return QualType(this, 0); }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == VariableArray;
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ llvm_unreachable("Cannot unique VariableArrayTypes.");
+ }
+};
+
+/// Represents an array type in C++ whose size is a value-dependent expression.
+///
+/// For example:
+/// \code
+/// template<typename T, int Size>
+/// class array {
+/// T data[Size];
+/// };
+/// \endcode
+///
+/// For these types, we won't actually know what the array bound is
+/// until template instantiation occurs, at which point this will
+/// become either a ConstantArrayType or a VariableArrayType.
+class DependentSizedArrayType : public ArrayType {
+ friend class ASTContext; // ASTContext creates these.
+
+ const ASTContext &Context;
+
+ /// An assignment expression that will instantiate to the
+ /// size of the array.
+ ///
+ /// The expression itself might be null, in which case the array
+ /// type will have its size deduced from an initializer.
+ Stmt *SizeExpr;
+
+ /// The range spanned by the left and right array brackets.
+ SourceRange Brackets;
+
+ DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
+ Expr *e, ArraySizeModifier sm, unsigned tq,
+ SourceRange brackets);
+
+public:
+ friend class StmtIteratorBase;
+
+ Expr *getSizeExpr() const {
+ // We use C-style casts instead of cast<> here because we do not wish
+ // to have a dependency of Type.h on Stmt.h/Expr.h.
+ return (Expr*) SizeExpr;
+ }
+
+ SourceRange getBracketsRange() const { return Brackets; }
+ SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
+ SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
+
+ bool isSugared() const { return false; }
+ QualType desugar() const { return QualType(this, 0); }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == DependentSizedArray;
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, Context, getElementType(),
+ getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
+ QualType ET, ArraySizeModifier SizeMod,
+ unsigned TypeQuals, Expr *E);
+};
+
+/// Represents an extended address space qualifier where the input address space
+/// value is dependent. Non-dependent address spaces are not represented with a
+/// special Type subclass; they are stored on an ExtQuals node as part of a QualType.
+///
+/// For example:
+/// \code
+/// template<typename T, int AddrSpace>
+/// class AddressSpace {
+/// typedef T __attribute__((address_space(AddrSpace))) type;
+/// }
+/// \endcode
+class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode {
+ friend class ASTContext;
+
+ const ASTContext &Context;
+ Expr *AddrSpaceExpr;
+ QualType PointeeType;
+ SourceLocation loc;
+
+ DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType,
+ QualType can, Expr *AddrSpaceExpr,
+ SourceLocation loc);
+
+public:
+ Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; }
+ QualType getPointeeType() const { return PointeeType; }
+ SourceLocation getAttributeLoc() const { return loc; }
+
+ bool isSugared() const { return false; }
+ QualType desugar() const { return QualType(this, 0); }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == DependentAddressSpace;
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, Context, getPointeeType(), getAddrSpaceExpr());
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
+ QualType PointeeType, Expr *AddrSpaceExpr);
+};
+
+/// Represents an extended vector type where either the type or size is
+/// dependent.
+///
+/// For example:
+/// \code
+/// template<typename T, int Size>
+/// class vector {
+/// typedef T __attribute__((ext_vector_type(Size))) type;
+/// }
+/// \endcode
+class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
+ friend class ASTContext;
+
+ const ASTContext &Context;
+ Expr *SizeExpr;
+
+ /// The element type of the array.
+ QualType ElementType;
+
+ SourceLocation loc;
+
+ DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
+ QualType can, Expr *SizeExpr, SourceLocation loc);
+
+public:
+ Expr *getSizeExpr() const { return SizeExpr; }
+ QualType getElementType() const { return ElementType; }
+ SourceLocation getAttributeLoc() const { return loc; }
+
+ bool isSugared() const { return false; }
+ QualType desugar() const { return QualType(this, 0); }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == DependentSizedExtVector;
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, Context, getElementType(), getSizeExpr());
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
+ QualType ElementType, Expr *SizeExpr);
+};
+
+
+/// Represents a GCC generic vector type. This type is created using
+/// __attribute__((vector_size(n)), where "n" specifies the vector size in
+/// bytes; or from an Altivec __vector or vector declaration.
+/// Since the constructor takes the number of vector elements, the
+/// client is responsible for converting the size into the number of elements.
+class VectorType : public Type, public llvm::FoldingSetNode {
+public:
+ enum VectorKind {
+ /// not a target-specific vector type
+ GenericVector,
+
+ /// is AltiVec vector
+ AltiVecVector,
+
+ /// is AltiVec 'vector Pixel'
+ AltiVecPixel,
+
+ /// is AltiVec 'vector bool ...'
+ AltiVecBool,
+
+ /// is ARM Neon vector
+ NeonVector,
+
+ /// is ARM Neon polynomial vector
+ NeonPolyVector
+ };
+
+protected:
+ friend class ASTContext; // ASTContext creates these.
+
+ /// The element type of the vector.
+ QualType ElementType;
+
+ VectorType(QualType vecType, unsigned nElements, QualType canonType,
+ VectorKind vecKind);
+
+ VectorType(TypeClass tc, QualType vecType, unsigned nElements,
+ QualType canonType, VectorKind vecKind);
+
+public:
+ QualType getElementType() const { return ElementType; }
+ unsigned getNumElements() const { return VectorTypeBits.NumElements; }
+
+ static bool isVectorSizeTooLarge(unsigned NumElements) {
+ return NumElements > VectorTypeBitfields::MaxNumElements;
+ }
+
+ bool isSugared() const { return false; }
+ QualType desugar() const { return QualType(this, 0); }
+
+ VectorKind getVectorKind() const {
+ return VectorKind(VectorTypeBits.VecKind);
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, getElementType(), getNumElements(),
+ getTypeClass(), getVectorKind());
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
+ unsigned NumElements, TypeClass TypeClass,
+ VectorKind VecKind) {
+ ID.AddPointer(ElementType.getAsOpaquePtr());
+ ID.AddInteger(NumElements);
+ ID.AddInteger(TypeClass);
+ ID.AddInteger(VecKind);
+ }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
+ }
+};
+
+/// Represents a vector type where either the type or size is dependent.
+////
+/// For example:
+/// \code
+/// template<typename T, int Size>
+/// class vector {
+/// typedef T __attribute__((vector_size(Size))) type;
+/// }
+/// \endcode
+class DependentVectorType : public Type, public llvm::FoldingSetNode {
+ friend class ASTContext;
+
+ const ASTContext &Context;
+ QualType ElementType;
+ Expr *SizeExpr;
+ SourceLocation Loc;
+
+ DependentVectorType(const ASTContext &Context, QualType ElementType,
+ QualType CanonType, Expr *SizeExpr,
+ SourceLocation Loc, VectorType::VectorKind vecKind);
+
+public:
+ Expr *getSizeExpr() const { return SizeExpr; }
+ QualType getElementType() const { return ElementType; }
+ SourceLocation getAttributeLoc() const { return Loc; }
+ VectorType::VectorKind getVectorKind() const {
+ return VectorType::VectorKind(VectorTypeBits.VecKind);
+ }
+
+ bool isSugared() const { return false; }
+ QualType desugar() const { return QualType(this, 0); }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == DependentVector;
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, Context, getElementType(), getSizeExpr(), getVectorKind());
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
+ QualType ElementType, const Expr *SizeExpr,
+ VectorType::VectorKind VecKind);
+};
+
+/// ExtVectorType - Extended vector type. This type is created using
+/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
+/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
+/// class enables syntactic extensions, like Vector Components for accessing
+/// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
+/// Shading Language).
+class ExtVectorType : public VectorType {
+ friend class ASTContext; // ASTContext creates these.
+
+ ExtVectorType(QualType vecType, unsigned nElements, QualType canonType)
+ : VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
+
+public:
+ static int getPointAccessorIdx(char c) {
+ switch (c) {
+ default: return -1;
+ case 'x': case 'r': return 0;
+ case 'y': case 'g': return 1;
+ case 'z': case 'b': return 2;
+ case 'w': case 'a': return 3;
+ }
+ }
+
+ static int getNumericAccessorIdx(char c) {
+ switch (c) {
+ default: return -1;
+ case '0': return 0;
+ case '1': return 1;
+ case '2': return 2;
+ case '3': return 3;
+ case '4': return 4;
+ case '5': return 5;
+ case '6': return 6;
+ case '7': return 7;
+ case '8': return 8;
+ case '9': return 9;
+ case 'A':
+ case 'a': return 10;
+ case 'B':
+ case 'b': return 11;
+ case 'C':
+ case 'c': return 12;
+ case 'D':
+ case 'd': return 13;
+ case 'E':
+ case 'e': return 14;
+ case 'F':
+ case 'f': return 15;
+ }
+ }
+
+ static int getAccessorIdx(char c, bool isNumericAccessor) {
+ if (isNumericAccessor)
+ return getNumericAccessorIdx(c);
+ else
+ return getPointAccessorIdx(c);
+ }
+
+ bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
+ if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
+ return unsigned(idx-1) < getNumElements();
+ return false;
+ }
+
+ bool isSugared() const { return false; }
+ QualType desugar() const { return QualType(this, 0); }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == ExtVector;
+ }
+};
+
+/// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base
+/// class of FunctionNoProtoType and FunctionProtoType.
+class FunctionType : public Type {
+ // The type returned by the function.
+ QualType ResultType;
+
+public:
+ /// Interesting information about a specific parameter that can't simply
+ /// be reflected in parameter's type. This is only used by FunctionProtoType
+ /// but is in FunctionType to make this class available during the
+ /// specification of the bases of FunctionProtoType.
+ ///
+ /// It makes sense to model language features this way when there's some
+ /// sort of parameter-specific override (such as an attribute) that
+ /// affects how the function is called. For example, the ARC ns_consumed
+ /// attribute changes whether a parameter is passed at +0 (the default)
+ /// or +1 (ns_consumed). This must be reflected in the function type,
+ /// but isn't really a change to the parameter type.
+ ///
+ /// One serious disadvantage of modelling language features this way is
+ /// that they generally do not work with language features that attempt
+ /// to destructure types. For example, template argument deduction will
+ /// not be able to match a parameter declared as
+ /// T (*)(U)
+ /// against an argument of type
+ /// void (*)(__attribute__((ns_consumed)) id)
+ /// because the substitution of T=void, U=id into the former will
+ /// not produce the latter.
+ class ExtParameterInfo {
+ enum {
+ ABIMask = 0x0F,
+ IsConsumed = 0x10,
+ HasPassObjSize = 0x20,
+ IsNoEscape = 0x40,
+ };
+ unsigned char Data = 0;
+
+ public:
+ ExtParameterInfo() = default;
+
+ /// Return the ABI treatment of this parameter.
+ ParameterABI getABI() const { return ParameterABI(Data & ABIMask); }
+ ExtParameterInfo withABI(ParameterABI kind) const {
+ ExtParameterInfo copy = *this;
+ copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
+ return copy;
+ }
+
+ /// Is this parameter considered "consumed" by Objective-C ARC?
+ /// Consumed parameters must have retainable object type.
+ bool isConsumed() const { return (Data & IsConsumed); }
+ ExtParameterInfo withIsConsumed(bool consumed) const {
+ ExtParameterInfo copy = *this;
+ if (consumed)
+ copy.Data |= IsConsumed;
+ else
+ copy.Data &= ~IsConsumed;
+ return copy;
+ }
+
+ bool hasPassObjectSize() const { return Data & HasPassObjSize; }
+ ExtParameterInfo withHasPassObjectSize() const {
+ ExtParameterInfo Copy = *this;
+ Copy.Data |= HasPassObjSize;
+ return Copy;
+ }
+
+ bool isNoEscape() const { return Data & IsNoEscape; }
+ ExtParameterInfo withIsNoEscape(bool NoEscape) const {
+ ExtParameterInfo Copy = *this;
+ if (NoEscape)
+ Copy.Data |= IsNoEscape;
+ else
+ Copy.Data &= ~IsNoEscape;
+ return Copy;
+ }
+
+ unsigned char getOpaqueValue() const { return Data; }
+ static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
+ ExtParameterInfo result;
+ result.Data = data;
+ return result;
+ }
+
+ friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
+ return lhs.Data == rhs.Data;
+ }
+
+ friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
+ return lhs.Data != rhs.Data;
+ }
+ };
+
+ /// A class which abstracts out some details necessary for
+ /// making a call.
+ ///
+ /// It is not actually used directly for storing this information in
+ /// a FunctionType, although FunctionType does currently use the
+ /// same bit-pattern.
+ ///
+ // If you add a field (say Foo), other than the obvious places (both,
+ // constructors, compile failures), what you need to update is
+ // * Operator==
+ // * getFoo
+ // * withFoo
+ // * functionType. Add Foo, getFoo.
+ // * ASTContext::getFooType
+ // * ASTContext::mergeFunctionTypes
+ // * FunctionNoProtoType::Profile
+ // * FunctionProtoType::Profile
+ // * TypePrinter::PrintFunctionProto
+ // * AST read and write
+ // * Codegen
+ class ExtInfo {
+ friend class FunctionType;
+
+ // Feel free to rearrange or add bits, but if you go over 12,
+ // you'll need to adjust both the Bits field below and
+ // Type::FunctionTypeBitfields.
+
+ // | CC |noreturn|produces|nocallersavedregs|regparm|nocfcheck|
+ // |0 .. 4| 5 | 6 | 7 |8 .. 10| 11 |
+ //
+ // regparm is either 0 (no regparm attribute) or the regparm value+1.
+ enum { CallConvMask = 0x1F };
+ enum { NoReturnMask = 0x20 };
+ enum { ProducesResultMask = 0x40 };
+ enum { NoCallerSavedRegsMask = 0x80 };
+ enum { NoCfCheckMask = 0x800 };
+ enum {
+ RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask |
+ NoCallerSavedRegsMask | NoCfCheckMask),
+ RegParmOffset = 8
+ }; // Assumed to be the last field
+ uint16_t Bits = CC_C;
+
+ ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
+
+ public:
+ // Constructor with no defaults. Use this when you know that you
+ // have all the elements (when reading an AST file for example).
+ ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
+ bool producesResult, bool noCallerSavedRegs, bool NoCfCheck) {
+ assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
+ Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) |
+ (producesResult ? ProducesResultMask : 0) |
+ (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) |
+ (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0) |
+ (NoCfCheck ? NoCfCheckMask : 0);
+ }
+
+ // Constructor with all defaults. Use when for example creating a
+ // function known to use defaults.
+ ExtInfo() = default;
+
+ // Constructor with just the calling convention, which is an important part
+ // of the canonical type.
+ ExtInfo(CallingConv CC) : Bits(CC) {}
+
+ bool getNoReturn() const { return Bits & NoReturnMask; }
+ bool getProducesResult() const { return Bits & ProducesResultMask; }
+ bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; }
+ bool getNoCfCheck() const { return Bits & NoCfCheckMask; }
+ bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
+
+ unsigned getRegParm() const {
+ unsigned RegParm = (Bits & RegParmMask) >> RegParmOffset;
+ if (RegParm > 0)
+ --RegParm;
+ return RegParm;
+ }
+
+ CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
+
+ bool operator==(ExtInfo Other) const {
+ return Bits == Other.Bits;
+ }
+ bool operator!=(ExtInfo Other) const {
+ return Bits != Other.Bits;
+ }
+
+ // Note that we don't have setters. That is by design, use
+ // the following with methods instead of mutating these objects.
+
+ ExtInfo withNoReturn(bool noReturn) const {
+ if (noReturn)
+ return ExtInfo(Bits | NoReturnMask);
+ else
+ return ExtInfo(Bits & ~NoReturnMask);
+ }
+
+ ExtInfo withProducesResult(bool producesResult) const {
+ if (producesResult)
+ return ExtInfo(Bits | ProducesResultMask);
+ else
+ return ExtInfo(Bits & ~ProducesResultMask);
+ }
+
+ ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const {
+ if (noCallerSavedRegs)
+ return ExtInfo(Bits | NoCallerSavedRegsMask);
+ else
+ return ExtInfo(Bits & ~NoCallerSavedRegsMask);
+ }
+
+ ExtInfo withNoCfCheck(bool noCfCheck) const {
+ if (noCfCheck)
+ return ExtInfo(Bits | NoCfCheckMask);
+ else
+ return ExtInfo(Bits & ~NoCfCheckMask);
+ }
+
+ ExtInfo withRegParm(unsigned RegParm) const {
+ assert(RegParm < 7 && "Invalid regparm value");
+ return ExtInfo((Bits & ~RegParmMask) |
+ ((RegParm + 1) << RegParmOffset));
+ }
+
+ ExtInfo withCallingConv(CallingConv cc) const {
+ return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID) const {
+ ID.AddInteger(Bits);
+ }
+ };
+
+ /// A simple holder for a QualType representing a type in an
+ /// exception specification. Unfortunately needed by FunctionProtoType
+ /// because TrailingObjects cannot handle repeated types.
+ struct ExceptionType { QualType Type; };
+
+ /// A simple holder for various uncommon bits which do not fit in
+ /// FunctionTypeBitfields. Aligned to alignof(void *) to maintain the
+ /// alignment of subsequent objects in TrailingObjects. You must update
+ /// hasExtraBitfields in FunctionProtoType after adding extra data here.
+ struct alignas(void *) FunctionTypeExtraBitfields {
+ /// The number of types in the exception specification.
+ /// A whole unsigned is not needed here and according to
+ /// [implimits] 8 bits would be enough here.
+ unsigned NumExceptionType;
+ };
+
+protected:
+ FunctionType(TypeClass tc, QualType res,
+ QualType Canonical, bool Dependent,
+ bool InstantiationDependent,
+ bool VariablyModified, bool ContainsUnexpandedParameterPack,
+ ExtInfo Info)
+ : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
+ ContainsUnexpandedParameterPack),
+ ResultType(res) {
+ FunctionTypeBits.ExtInfo = Info.Bits;
+ }
+
+ Qualifiers getFastTypeQuals() const {
+ return Qualifiers::fromFastMask(FunctionTypeBits.FastTypeQuals);
+ }
+
+public:
+ QualType getReturnType() const { return ResultType; }
+
+ bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
+ unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
+
+ /// Determine whether this function type includes the GNU noreturn
+ /// attribute. The C++11 [[noreturn]] attribute does not affect the function
+ /// type.
+ bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
+
+ CallingConv getCallConv() const { return getExtInfo().getCC(); }
+ ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
+
+ static_assert((~Qualifiers::FastMask & Qualifiers::CVRMask) == 0,
+ "Const, volatile and restrict are assumed to be a subset of "
+ "the fast qualifiers.");
+
+ bool isConst() const { return getFastTypeQuals().hasConst(); }
+ bool isVolatile() const { return getFastTypeQuals().hasVolatile(); }
+ bool isRestrict() const { return getFastTypeQuals().hasRestrict(); }
+
+ /// Determine the type of an expression that calls a function of
+ /// this type.
+ QualType getCallResultType(const ASTContext &Context) const {
+ return getReturnType().getNonLValueExprType(Context);
+ }
+
+ static StringRef getNameForCallConv(CallingConv CC);
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == FunctionNoProto ||
+ T->getTypeClass() == FunctionProto;
+ }
+};
+
+/// Represents a K&R-style 'int foo()' function, which has
+/// no information available about its arguments.
+class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
+ friend class ASTContext; // ASTContext creates these.
+
+ FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
+ : FunctionType(FunctionNoProto, Result, Canonical,
+ /*Dependent=*/false, /*InstantiationDependent=*/false,
+ Result->isVariablyModifiedType(),
+ /*ContainsUnexpandedParameterPack=*/false, Info) {}
+
+public:
+ // No additional state past what FunctionType provides.
+
+ bool isSugared() const { return false; }
+ QualType desugar() const { return QualType(this, 0); }
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, getReturnType(), getExtInfo());
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
+ ExtInfo Info) {
+ Info.Profile(ID);
+ ID.AddPointer(ResultType.getAsOpaquePtr());
+ }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == FunctionNoProto;
+ }
+};
+
+/// Represents a prototype with parameter type info, e.g.
+/// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no
+/// parameters, not as having a single void parameter. Such a type can have
+/// an exception specification, but this specification is not part of the
+/// canonical type. FunctionProtoType has several trailing objects, some of
+/// which optional. For more information about the trailing objects see
+/// the first comment inside FunctionProtoType.
+class FunctionProtoType final
+ : public FunctionType,
+ public llvm::FoldingSetNode,
+ private llvm::TrailingObjects<
+ FunctionProtoType, QualType, FunctionType::FunctionTypeExtraBitfields,
+ FunctionType::ExceptionType, Expr *, FunctionDecl *,
+ FunctionType::ExtParameterInfo, Qualifiers> {
+ friend class ASTContext; // ASTContext creates these.
+ friend TrailingObjects;
+
+ // FunctionProtoType is followed by several trailing objects, some of
+ // which optional. They are in order:
+ //
+ // * An array of getNumParams() QualType holding the parameter types.
+ // Always present. Note that for the vast majority of FunctionProtoType,
+ // these will be the only trailing objects.
+ //
+ // * Optionally if some extra data is stored in FunctionTypeExtraBitfields
+ // (see FunctionTypeExtraBitfields and FunctionTypeBitfields):
+ // a single FunctionTypeExtraBitfields. Present if and only if
+ // hasExtraBitfields() is true.
+ //
+ // * Optionally exactly one of:
+ // * an array of getNumExceptions() ExceptionType,
+ // * a single Expr *,
+ // * a pair of FunctionDecl *,
+ // * a single FunctionDecl *
+ // used to store information about the various types of exception
+ // specification. See getExceptionSpecSize for the details.
+ //
+ // * Optionally an array of getNumParams() ExtParameterInfo holding
+ // an ExtParameterInfo for each of the parameters. Present if and
+ // only if hasExtParameterInfos() is true.
+ //
+ // * Optionally a Qualifiers object to represent extra qualifiers that can't
+ // be represented by FunctionTypeBitfields.FastTypeQuals. Present if and only
+ // if hasExtQualifiers() is true.
+ //
+ // The optional FunctionTypeExtraBitfields has to be before the data
+ // related to the exception specification since it contains the number
+ // of exception types.
+ //
+ // We put the ExtParameterInfos last. If all were equal, it would make
+ // more sense to put these before the exception specification, because
+ // it's much easier to skip past them compared to the elaborate switch
+ // required to skip the exception specification. However, all is not
+ // equal; ExtParameterInfos are used to model very uncommon features,
+ // and it's better not to burden the more common paths.
+
+public:
+ /// Holds information about the various types of exception specification.
+ /// ExceptionSpecInfo is not stored as such in FunctionProtoType but is
+ /// used to group together the various bits of information about the
+ /// exception specification.
+ struct ExceptionSpecInfo {
+ /// The kind of exception specification this is.
+ ExceptionSpecificationType Type = EST_None;
+
+ /// Explicitly-specified list of exception types.
+ ArrayRef<QualType> Exceptions;
+
+ /// Noexcept expression, if this is a computed noexcept specification.
+ Expr *NoexceptExpr = nullptr;
+
+ /// The function whose exception specification this is, for
+ /// EST_Unevaluated and EST_Uninstantiated.
+ FunctionDecl *SourceDecl = nullptr;
+
+ /// The function template whose exception specification this is instantiated
+ /// from, for EST_Uninstantiated.
+ FunctionDecl *SourceTemplate = nullptr;
+
+ ExceptionSpecInfo() = default;
+
+ ExceptionSpecInfo(ExceptionSpecificationType EST) : Type(EST) {}
+ };
+
+ /// Extra information about a function prototype. ExtProtoInfo is not
+ /// stored as such in FunctionProtoType but is used to group together
+ /// the various bits of extra information about a function prototype.
+ struct ExtProtoInfo {
+ FunctionType::ExtInfo ExtInfo;
+ bool Variadic : 1;
+ bool HasTrailingReturn : 1;
+ Qualifiers TypeQuals;
+ RefQualifierKind RefQualifier = RQ_None;
+ ExceptionSpecInfo ExceptionSpec;
+ const ExtParameterInfo *ExtParameterInfos = nullptr;
+
+ ExtProtoInfo() : Variadic(false), HasTrailingReturn(false) {}
+
+ ExtProtoInfo(CallingConv CC)
+ : ExtInfo(CC), Variadic(false), HasTrailingReturn(false) {}
+
+ ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI) {
+ ExtProtoInfo Result(*this);
+ Result.ExceptionSpec = ESI;
+ return Result;
+ }
+ };
+
+private:
+ unsigned numTrailingObjects(OverloadToken<QualType>) const {
+ return getNumParams();
+ }
+
+ unsigned numTrailingObjects(OverloadToken<FunctionTypeExtraBitfields>) const {
+ return hasExtraBitfields();
+ }
+
+ unsigned numTrailingObjects(OverloadToken<ExceptionType>) const {
+ return getExceptionSpecSize().NumExceptionType;
+ }
+
+ unsigned numTrailingObjects(OverloadToken<Expr *>) const {
+ return getExceptionSpecSize().NumExprPtr;
+ }
+
+ unsigned numTrailingObjects(OverloadToken<FunctionDecl *>) const {
+ return getExceptionSpecSize().NumFunctionDeclPtr;
+ }
+
+ unsigned numTrailingObjects(OverloadToken<ExtParameterInfo>) const {
+ return hasExtParameterInfos() ? getNumParams() : 0;
+ }
+
+ /// Determine whether there are any argument types that
+ /// contain an unexpanded parameter pack.
+ static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
+ unsigned numArgs) {
+ for (unsigned Idx = 0; Idx < numArgs; ++Idx)
+ if (ArgArray[Idx]->containsUnexpandedParameterPack())
+ return true;
+
+ return false;
+ }
+
+ FunctionProtoType(QualType result, ArrayRef<QualType> params,
+ QualType canonical, const ExtProtoInfo &epi);
+
+ /// This struct is returned by getExceptionSpecSize and is used to
+ /// translate an ExceptionSpecificationType to the number and kind
+ /// of trailing objects related to the exception specification.
+ struct ExceptionSpecSizeHolder {
+ unsigned NumExceptionType;
+ unsigned NumExprPtr;
+ unsigned NumFunctionDeclPtr;
+ };
+
+ /// Return the number and kind of trailing objects
+ /// related to the exception specification.
+ static ExceptionSpecSizeHolder
+ getExceptionSpecSize(ExceptionSpecificationType EST, unsigned NumExceptions) {
+ switch (EST) {
+ case EST_None:
+ case EST_DynamicNone:
+ case EST_MSAny:
+ case EST_BasicNoexcept:
+ case EST_Unparsed:
+ return {0, 0, 0};
+
+ case EST_Dynamic:
+ return {NumExceptions, 0, 0};
+
+ case EST_DependentNoexcept:
+ case EST_NoexceptFalse:
+ case EST_NoexceptTrue:
+ return {0, 1, 0};
+
+ case EST_Uninstantiated:
+ return {0, 0, 2};
+
+ case EST_Unevaluated:
+ return {0, 0, 1};
+ }
+ llvm_unreachable("bad exception specification kind");
+ }
+
+ /// Return the number and kind of trailing objects
+ /// related to the exception specification.
+ ExceptionSpecSizeHolder getExceptionSpecSize() const {
+ return getExceptionSpecSize(getExceptionSpecType(), getNumExceptions());
+ }
+
+ /// Whether the trailing FunctionTypeExtraBitfields is present.
+ static bool hasExtraBitfields(ExceptionSpecificationType EST) {
+ // If the exception spec type is EST_Dynamic then we have > 0 exception
+ // types and the exact number is stored in FunctionTypeExtraBitfields.
+ return EST == EST_Dynamic;
+ }
+
+ /// Whether the trailing FunctionTypeExtraBitfields is present.
+ bool hasExtraBitfields() const {
+ return hasExtraBitfields(getExceptionSpecType());
+ }
+
+ bool hasExtQualifiers() const {
+ return FunctionTypeBits.HasExtQuals;
+ }
+
+public:
+ unsigned getNumParams() const { return FunctionTypeBits.NumParams; }
+
+ QualType getParamType(unsigned i) const {
+ assert(i < getNumParams() && "invalid parameter index");
+ return param_type_begin()[i];
+ }
+
+ ArrayRef<QualType> getParamTypes() const {
+ return llvm::makeArrayRef(param_type_begin(), param_type_end());
+ }
+
+ ExtProtoInfo getExtProtoInfo() const {
+ ExtProtoInfo EPI;
+ EPI.ExtInfo = getExtInfo();
+ EPI.Variadic = isVariadic();
+ EPI.HasTrailingReturn = hasTrailingReturn();
+ EPI.ExceptionSpec.Type = getExceptionSpecType();
+ EPI.TypeQuals = getMethodQuals();
+ EPI.RefQualifier = getRefQualifier();
+ if (EPI.ExceptionSpec.Type == EST_Dynamic) {
+ EPI.ExceptionSpec.Exceptions = exceptions();
+ } else if (isComputedNoexcept(EPI.ExceptionSpec.Type)) {
+ EPI.ExceptionSpec.NoexceptExpr = getNoexceptExpr();
+ } else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) {
+ EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
+ EPI.ExceptionSpec.SourceTemplate = getExceptionSpecTemplate();
+ } else if (EPI.ExceptionSpec.Type == EST_Unevaluated) {
+ EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
+ }
+ EPI.ExtParameterInfos = getExtParameterInfosOrNull();
+ return EPI;
+ }
+
+ /// Get the kind of exception specification on this function.
+ ExceptionSpecificationType getExceptionSpecType() const {
+ return static_cast<ExceptionSpecificationType>(
+ FunctionTypeBits.ExceptionSpecType);
+ }
+
+ /// Return whether this function has any kind of exception spec.
+ bool hasExceptionSpec() const { return getExceptionSpecType() != EST_None; }
+
+ /// Return whether this function has a dynamic (throw) exception spec.
+ bool hasDynamicExceptionSpec() const {
+ return isDynamicExceptionSpec(getExceptionSpecType());
+ }
+
+ /// Return whether this function has a noexcept exception spec.
+ bool hasNoexceptExceptionSpec() const {
+ return isNoexceptExceptionSpec(getExceptionSpecType());
+ }
+
+ /// Return whether this function has a dependent exception spec.
+ bool hasDependentExceptionSpec() const;
+
+ /// Return whether this function has an instantiation-dependent exception
+ /// spec.
+ bool hasInstantiationDependentExceptionSpec() const;
+
+ /// Return the number of types in the exception specification.
+ unsigned getNumExceptions() const {
+ return getExceptionSpecType() == EST_Dynamic
+ ? getTrailingObjects<FunctionTypeExtraBitfields>()
+ ->NumExceptionType
+ : 0;
+ }
+
+ /// Return the ith exception type, where 0 <= i < getNumExceptions().
+ QualType getExceptionType(unsigned i) const {
+ assert(i < getNumExceptions() && "Invalid exception number!");
+ return exception_begin()[i];
+ }
+
+ /// Return the expression inside noexcept(expression), or a null pointer
+ /// if there is none (because the exception spec is not of this form).
+ Expr *getNoexceptExpr() const {
+ if (!isComputedNoexcept(getExceptionSpecType()))
+ return nullptr;
+ return *getTrailingObjects<Expr *>();
+ }
+
+ /// If this function type has an exception specification which hasn't
+ /// been determined yet (either because it has not been evaluated or because
+ /// it has not been instantiated), this is the function whose exception
+ /// specification is represented by this type.
+ FunctionDecl *getExceptionSpecDecl() const {
+ if (getExceptionSpecType() != EST_Uninstantiated &&
+ getExceptionSpecType() != EST_Unevaluated)
+ return nullptr;
+ return getTrailingObjects<FunctionDecl *>()[0];
+ }
+
+ /// If this function type has an uninstantiated exception
+ /// specification, this is the function whose exception specification
+ /// should be instantiated to find the exception specification for
+ /// this type.
+ FunctionDecl *getExceptionSpecTemplate() const {
+ if (getExceptionSpecType() != EST_Uninstantiated)
+ return nullptr;
+ return getTrailingObjects<FunctionDecl *>()[1];
+ }
+
+ /// Determine whether this function type has a non-throwing exception
+ /// specification.
+ CanThrowResult canThrow() const;
+
+ /// Determine whether this function type has a non-throwing exception
+ /// specification. If this depends on template arguments, returns
+ /// \c ResultIfDependent.
+ bool isNothrow(bool ResultIfDependent = false) const {
+ return ResultIfDependent ? canThrow() != CT_Can : canThrow() == CT_Cannot;
+ }
+
+ /// Whether this function prototype is variadic.
+ bool isVariadic() const { return FunctionTypeBits.Variadic; }
+
+ /// Determines whether this function prototype contains a
+ /// parameter pack at the end.
+ ///
+ /// A function template whose last parameter is a parameter pack can be
+ /// called with an arbitrary number of arguments, much like a variadic
+ /// function.
+ bool isTemplateVariadic() const;
+
+ /// Whether this function prototype has a trailing return type.
+ bool hasTrailingReturn() const { return FunctionTypeBits.HasTrailingReturn; }
+
+ Qualifiers getMethodQuals() const {
+ if (hasExtQualifiers())
+ return *getTrailingObjects<Qualifiers>();
+ else
+ return getFastTypeQuals();
+ }
+
+ /// Retrieve the ref-qualifier associated with this function type.
+ RefQualifierKind getRefQualifier() const {
+ return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
+ }
+
+ using param_type_iterator = const QualType *;
+ using param_type_range = llvm::iterator_range<param_type_iterator>;
+
+ param_type_range param_types() const {
+ return param_type_range(param_type_begin(), param_type_end());
+ }
+
+ param_type_iterator param_type_begin() const {
+ return getTrailingObjects<QualType>();
+ }
+
+ param_type_iterator param_type_end() const {
+ return param_type_begin() + getNumParams();
+ }
+
+ using exception_iterator = const QualType *;
+
+ ArrayRef<QualType> exceptions() const {
+ return llvm::makeArrayRef(exception_begin(), exception_end());
+ }
+
+ exception_iterator exception_begin() const {
+ return reinterpret_cast<exception_iterator>(
+ getTrailingObjects<ExceptionType>());
+ }
+
+ exception_iterator exception_end() const {
+ return exception_begin() + getNumExceptions();
+ }
+
+ /// Is there any interesting extra information for any of the parameters
+ /// of this function type?
+ bool hasExtParameterInfos() const {
+ return FunctionTypeBits.HasExtParameterInfos;
+ }
+
+ ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
+ assert(hasExtParameterInfos());
+ return ArrayRef<ExtParameterInfo>(getTrailingObjects<ExtParameterInfo>(),
+ getNumParams());
+ }
+
+ /// Return a pointer to the beginning of the array of extra parameter
+ /// information, if present, or else null if none of the parameters
+ /// carry it. This is equivalent to getExtProtoInfo().ExtParameterInfos.
+ const ExtParameterInfo *getExtParameterInfosOrNull() const {
+ if (!hasExtParameterInfos())
+ return nullptr;
+ return getTrailingObjects<ExtParameterInfo>();
+ }
+
+ ExtParameterInfo getExtParameterInfo(unsigned I) const {
+ assert(I < getNumParams() && "parameter index out of range");
+ if (hasExtParameterInfos())
+ return getTrailingObjects<ExtParameterInfo>()[I];
+ return ExtParameterInfo();
+ }
+
+ ParameterABI getParameterABI(unsigned I) const {
+ assert(I < getNumParams() && "parameter index out of range");
+ if (hasExtParameterInfos())
+ return getTrailingObjects<ExtParameterInfo>()[I].getABI();
+ return ParameterABI::Ordinary;
+ }
+
+ bool isParamConsumed(unsigned I) const {
+ assert(I < getNumParams() && "parameter index out of range");
+ if (hasExtParameterInfos())
+ return getTrailingObjects<ExtParameterInfo>()[I].isConsumed();
+ return false;
+ }
+
+ bool isSugared() const { return false; }
+ QualType desugar() const { return QualType(this, 0); }
+
+ void printExceptionSpecification(raw_ostream &OS,
+ const PrintingPolicy &Policy) const;
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == FunctionProto;
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
+ static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
+ param_type_iterator ArgTys, unsigned NumArgs,
+ const ExtProtoInfo &EPI, const ASTContext &Context,
+ bool Canonical);
+};
+
+/// Represents the dependent type named by a dependently-scoped
+/// typename using declaration, e.g.
+/// using typename Base<T>::foo;
+///
+/// Template instantiation turns these into the underlying type.
+class UnresolvedUsingType : public Type {
+ friend class ASTContext; // ASTContext creates these.
+
+ UnresolvedUsingTypenameDecl *Decl;
+
+ UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
+ : Type(UnresolvedUsing, QualType(), true, true, false,
+ /*ContainsUnexpandedParameterPack=*/false),
+ Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
+
+public:
+ UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
+
+ bool isSugared() const { return false; }
+ QualType desugar() const { return QualType(this, 0); }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == UnresolvedUsing;
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ return Profile(ID, Decl);
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID,
+ UnresolvedUsingTypenameDecl *D) {
+ ID.AddPointer(D);
+ }
+};
+
+class TypedefType : public Type {
+ TypedefNameDecl *Decl;
+
+protected:
+ friend class ASTContext; // ASTContext creates these.
+
+ TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
+ : Type(tc, can, can->isDependentType(),
+ can->isInstantiationDependentType(),
+ can->isVariablyModifiedType(),
+ /*ContainsUnexpandedParameterPack=*/false),
+ Decl(const_cast<TypedefNameDecl*>(D)) {
+ assert(!isa<TypedefType>(can) && "Invalid canonical type");
+ }
+
+public:
+ TypedefNameDecl *getDecl() const { return Decl; }
+
+ bool isSugared() const { return true; }
+ QualType desugar() const;
+
+ static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
+};
+
+/// Represents a `typeof` (or __typeof__) expression (a GCC extension).
+class TypeOfExprType : public Type {
+ Expr *TOExpr;
+
+protected:
+ friend class ASTContext; // ASTContext creates these.
+
+ TypeOfExprType(Expr *E, QualType can = QualType());
+
+public:
+ Expr *getUnderlyingExpr() const { return TOExpr; }
+
+ /// Remove a single level of sugar.
+ QualType desugar() const;
+
+ /// Returns whether this type directly provides sugar.
+ bool isSugared() const;
+
+ static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
+};
+
+/// Internal representation of canonical, dependent
+/// `typeof(expr)` types.
+///
+/// This class is used internally by the ASTContext to manage
+/// canonical, dependent types, only. Clients will only see instances
+/// of this class via TypeOfExprType nodes.
+class DependentTypeOfExprType
+ : public TypeOfExprType, public llvm::FoldingSetNode {
+ const ASTContext &Context;
+
+public:
+ DependentTypeOfExprType(const ASTContext &Context, Expr *E)
+ : TypeOfExprType(E), Context(Context) {}
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, Context, getUnderlyingExpr());
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
+ Expr *E);
+};
+
+/// Represents `typeof(type)`, a GCC extension.
+class TypeOfType : public Type {
+ friend class ASTContext; // ASTContext creates these.
+
+ QualType TOType;
+
+ TypeOfType(QualType T, QualType can)
+ : Type(TypeOf, can, T->isDependentType(),
+ T->isInstantiationDependentType(),
+ T->isVariablyModifiedType(),
+ T->containsUnexpandedParameterPack()),
+ TOType(T) {
+ assert(!isa<TypedefType>(can) && "Invalid canonical type");
+ }
+
+public:
+ QualType getUnderlyingType() const { return TOType; }
+
+ /// Remove a single level of sugar.
+ QualType desugar() const { return getUnderlyingType(); }
+
+ /// Returns whether this type directly provides sugar.
+ bool isSugared() const { return true; }
+
+ static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
+};
+
+/// Represents the type `decltype(expr)` (C++11).
+class DecltypeType : public Type {
+ Expr *E;
+ QualType UnderlyingType;
+
+protected:
+ friend class ASTContext; // ASTContext creates these.
+
+ DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
+
+public:
+ Expr *getUnderlyingExpr() const { return E; }
+ QualType getUnderlyingType() const { return UnderlyingType; }
+
+ /// Remove a single level of sugar.
+ QualType desugar() const;
+
+ /// Returns whether this type directly provides sugar.
+ bool isSugared() const;
+
+ static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
+};
+
+/// Internal representation of canonical, dependent
+/// decltype(expr) types.
+///
+/// This class is used internally by the ASTContext to manage
+/// canonical, dependent types, only. Clients will only see instances
+/// of this class via DecltypeType nodes.
+class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
+ const ASTContext &Context;
+
+public:
+ DependentDecltypeType(const ASTContext &Context, Expr *E);
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, Context, getUnderlyingExpr());
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
+ Expr *E);
+};
+
+/// A unary type transform, which is a type constructed from another.
+class UnaryTransformType : public Type {
+public:
+ enum UTTKind {
+ EnumUnderlyingType
+ };
+
+private:
+ /// The untransformed type.
+ QualType BaseType;
+
+ /// The transformed type if not dependent, otherwise the same as BaseType.
+ QualType UnderlyingType;
+
+ UTTKind UKind;
+
+protected:
+ friend class ASTContext;
+
+ UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
+ QualType CanonicalTy);
+
+public:
+ bool isSugared() const { return !isDependentType(); }
+ QualType desugar() const { return UnderlyingType; }
+
+ QualType getUnderlyingType() const { return UnderlyingType; }
+ QualType getBaseType() const { return BaseType; }
+
+ UTTKind getUTTKind() const { return UKind; }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == UnaryTransform;
+ }
+};
+
+/// Internal representation of canonical, dependent
+/// __underlying_type(type) types.
+///
+/// This class is used internally by the ASTContext to manage
+/// canonical, dependent types, only. Clients will only see instances
+/// of this class via UnaryTransformType nodes.
+class DependentUnaryTransformType : public UnaryTransformType,
+ public llvm::FoldingSetNode {
+public:
+ DependentUnaryTransformType(const ASTContext &C, QualType BaseType,
+ UTTKind UKind);
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, getBaseType(), getUTTKind());
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType,
+ UTTKind UKind) {
+ ID.AddPointer(BaseType.getAsOpaquePtr());
+ ID.AddInteger((unsigned)UKind);
+ }
+};
+
+class TagType : public Type {
+ friend class ASTReader;
+
+ /// Stores the TagDecl associated with this type. The decl may point to any
+ /// TagDecl that declares the entity.
+ TagDecl *decl;
+
+protected:
+ TagType(TypeClass TC, const TagDecl *D, QualType can);
+
+public:
+ TagDecl *getDecl() const;
+
+ /// Determines whether this type is in the process of being defined.
+ bool isBeingDefined() const;
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
+ }
+};
+
+/// A helper class that allows the use of isa/cast/dyncast
+/// to detect TagType objects of structs/unions/classes.
+class RecordType : public TagType {
+protected:
+ friend class ASTContext; // ASTContext creates these.
+
+ explicit RecordType(const RecordDecl *D)
+ : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) {}
+ explicit RecordType(TypeClass TC, RecordDecl *D)
+ : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) {}
+
+public:
+ RecordDecl *getDecl() const {
+ return reinterpret_cast<RecordDecl*>(TagType::getDecl());
+ }
+
+ /// Recursively check all fields in the record for const-ness. If any field
+ /// is declared const, return true. Otherwise, return false.
+ bool hasConstFields() const;
+
+ bool isSugared() const { return false; }
+ QualType desugar() const { return QualType(this, 0); }
+
+ static bool classof(const Type *T) { return T->getTypeClass() == Record; }
+};
+
+/// A helper class that allows the use of isa/cast/dyncast
+/// to detect TagType objects of enums.
+class EnumType : public TagType {
+ friend class ASTContext; // ASTContext creates these.
+
+ explicit EnumType(const EnumDecl *D)
+ : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) {}
+
+public:
+ EnumDecl *getDecl() const {
+ return reinterpret_cast<EnumDecl*>(TagType::getDecl());
+ }
+
+ bool isSugared() const { return false; }
+ QualType desugar() const { return QualType(this, 0); }
+
+ static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
+};
+
+/// An attributed type is a type to which a type attribute has been applied.
+///
+/// The "modified type" is the fully-sugared type to which the attributed
+/// type was applied; generally it is not canonically equivalent to the
+/// attributed type. The "equivalent type" is the minimally-desugared type
+/// which the type is canonically equivalent to.
+///
+/// For example, in the following attributed type:
+/// int32_t __attribute__((vector_size(16)))
+/// - the modified type is the TypedefType for int32_t
+/// - the equivalent type is VectorType(16, int32_t)
+/// - the canonical type is VectorType(16, int)
+class AttributedType : public Type, public llvm::FoldingSetNode {
+public:
+ using Kind = attr::Kind;
+
+private:
+ friend class ASTContext; // ASTContext creates these
+
+ QualType ModifiedType;
+ QualType EquivalentType;
+
+ AttributedType(QualType canon, attr::Kind attrKind, QualType modified,
+ QualType equivalent)
+ : Type(Attributed, canon, equivalent->isDependentType(),
+ equivalent->isInstantiationDependentType(),
+ equivalent->isVariablyModifiedType(),
+ equivalent->containsUnexpandedParameterPack()),
+ ModifiedType(modified), EquivalentType(equivalent) {
+ AttributedTypeBits.AttrKind = attrKind;
+ }
+
+public:
+ Kind getAttrKind() const {
+ return static_cast<Kind>(AttributedTypeBits.AttrKind);
+ }
+
+ QualType getModifiedType() const { return ModifiedType; }
+ QualType getEquivalentType() const { return EquivalentType; }
+
+ bool isSugared() const { return true; }
+ QualType desugar() const { return getEquivalentType(); }
+
+ /// Does this attribute behave like a type qualifier?
+ ///
+ /// A type qualifier adjusts a type to provide specialized rules for
+ /// a specific object, like the standard const and volatile qualifiers.
+ /// This includes attributes controlling things like nullability,
+ /// address spaces, and ARC ownership. The value of the object is still
+ /// largely described by the modified type.
+ ///
+ /// In contrast, many type attributes "rewrite" their modified type to
+ /// produce a fundamentally different type, not necessarily related in any
+ /// formalizable way to the original type. For example, calling convention
+ /// and vector attributes are not simple type qualifiers.
+ ///
+ /// Type qualifiers are often, but not always, reflected in the canonical
+ /// type.
+ bool isQualifier() const;
+
+ bool isMSTypeSpec() const;
+
+ bool isCallingConv() const;
+
+ llvm::Optional<NullabilityKind> getImmediateNullability() const;
+
+ /// Retrieve the attribute kind corresponding to the given
+ /// nullability kind.
+ static Kind getNullabilityAttrKind(NullabilityKind kind) {
+ switch (kind) {
+ case NullabilityKind::NonNull:
+ return attr::TypeNonNull;
+
+ case NullabilityKind::Nullable:
+ return attr::TypeNullable;
+
+ case NullabilityKind::Unspecified:
+ return attr::TypeNullUnspecified;
+ }
+ llvm_unreachable("Unknown nullability kind.");
+ }
+
+ /// Strip off the top-level nullability annotation on the given
+ /// type, if it's there.
+ ///
+ /// \param T The type to strip. If the type is exactly an
+ /// AttributedType specifying nullability (without looking through
+ /// type sugar), the nullability is returned and this type changed
+ /// to the underlying modified type.
+ ///
+ /// \returns the top-level nullability, if present.
+ static Optional<NullabilityKind> stripOuterNullability(QualType &T);
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
+ QualType modified, QualType equivalent) {
+ ID.AddInteger(attrKind);
+ ID.AddPointer(modified.getAsOpaquePtr());
+ ID.AddPointer(equivalent.getAsOpaquePtr());
+ }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == Attributed;
+ }
+};
+
+class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
+ friend class ASTContext; // ASTContext creates these
+
+ // Helper data collector for canonical types.
+ struct CanonicalTTPTInfo {
+ unsigned Depth : 15;
+ unsigned ParameterPack : 1;
+ unsigned Index : 16;
+ };
+
+ union {
+ // Info for the canonical type.
+ CanonicalTTPTInfo CanTTPTInfo;
+
+ // Info for the non-canonical type.
+ TemplateTypeParmDecl *TTPDecl;
+ };
+
+ /// Build a non-canonical type.
+ TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
+ : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
+ /*InstantiationDependent=*/true,
+ /*VariablyModified=*/false,
+ Canon->containsUnexpandedParameterPack()),
+ TTPDecl(TTPDecl) {}
+
+ /// Build the canonical type.
+ TemplateTypeParmType(unsigned D, unsigned I, bool PP)
+ : Type(TemplateTypeParm, QualType(this, 0),
+ /*Dependent=*/true,
+ /*InstantiationDependent=*/true,
+ /*VariablyModified=*/false, PP) {
+ CanTTPTInfo.Depth = D;
+ CanTTPTInfo.Index = I;
+ CanTTPTInfo.ParameterPack = PP;
+ }
+
+ const CanonicalTTPTInfo& getCanTTPTInfo() const {
+ QualType Can = getCanonicalTypeInternal();
+ return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
+ }
+
+public:
+ unsigned getDepth() const { return getCanTTPTInfo().Depth; }
+ unsigned getIndex() const { return getCanTTPTInfo().Index; }
+ bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
+
+ TemplateTypeParmDecl *getDecl() const {
+ return isCanonicalUnqualified() ? nullptr : TTPDecl;
+ }
+
+ IdentifierInfo *getIdentifier() const;
+
+ bool isSugared() const { return false; }
+ QualType desugar() const { return QualType(this, 0); }
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
+ unsigned Index, bool ParameterPack,
+ TemplateTypeParmDecl *TTPDecl) {
+ ID.AddInteger(Depth);
+ ID.AddInteger(Index);
+ ID.AddBoolean(ParameterPack);
+ ID.AddPointer(TTPDecl);
+ }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == TemplateTypeParm;
+ }
+};
+
+/// Represents the result of substituting a type for a template
+/// type parameter.
+///
+/// Within an instantiated template, all template type parameters have
+/// been replaced with these. They are used solely to record that a
+/// type was originally written as a template type parameter;
+/// therefore they are never canonical.
+class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
+ friend class ASTContext;
+
+ // The original type parameter.
+ const TemplateTypeParmType *Replaced;
+
+ SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
+ : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
+ Canon->isInstantiationDependentType(),
+ Canon->isVariablyModifiedType(),
+ Canon->containsUnexpandedParameterPack()),
+ Replaced(Param) {}
+
+public:
+ /// Gets the template parameter that was substituted for.
+ const TemplateTypeParmType *getReplacedParameter() const {
+ return Replaced;
+ }
+
+ /// Gets the type that was substituted for the template
+ /// parameter.
+ QualType getReplacementType() const {
+ return getCanonicalTypeInternal();
+ }
+
+ bool isSugared() const { return true; }
+ QualType desugar() const { return getReplacementType(); }
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, getReplacedParameter(), getReplacementType());
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID,
+ const TemplateTypeParmType *Replaced,
+ QualType Replacement) {
+ ID.AddPointer(Replaced);
+ ID.AddPointer(Replacement.getAsOpaquePtr());
+ }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == SubstTemplateTypeParm;
+ }
+};
+
+/// Represents the result of substituting a set of types for a template
+/// type parameter pack.
+///
+/// When a pack expansion in the source code contains multiple parameter packs
+/// and those parameter packs correspond to different levels of template
+/// parameter lists, this type node is used to represent a template type
+/// parameter pack from an outer level, which has already had its argument pack
+/// substituted but that still lives within a pack expansion that itself
+/// could not be instantiated. When actually performing a substitution into
+/// that pack expansion (e.g., when all template parameters have corresponding
+/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
+/// at the current pack substitution index.
+class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
+ friend class ASTContext;
+
+ /// The original type parameter.
+ const TemplateTypeParmType *Replaced;
+
+ /// A pointer to the set of template arguments that this
+ /// parameter pack is instantiated with.
+ const TemplateArgument *Arguments;
+
+ SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
+ QualType Canon,
+ const TemplateArgument &ArgPack);
+
+public:
+ IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
+
+ /// Gets the template parameter that was substituted for.
+ const TemplateTypeParmType *getReplacedParameter() const {
+ return Replaced;
+ }
+
+ unsigned getNumArgs() const {
+ return SubstTemplateTypeParmPackTypeBits.NumArgs;
+ }
+
+ bool isSugared() const { return false; }
+ QualType desugar() const { return QualType(this, 0); }
+
+ TemplateArgument getArgumentPack() const;
+
+ void Profile(llvm::FoldingSetNodeID &ID);
+ static void Profile(llvm::FoldingSetNodeID &ID,
+ const TemplateTypeParmType *Replaced,
+ const TemplateArgument &ArgPack);
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == SubstTemplateTypeParmPack;
+ }
+};
+
+/// Common base class for placeholders for types that get replaced by
+/// placeholder type deduction: C++11 auto, C++14 decltype(auto), C++17 deduced
+/// class template types, and (eventually) constrained type names from the C++
+/// Concepts TS.
+///
+/// These types are usually a placeholder for a deduced type. However, before
+/// the initializer is attached, or (usually) if the initializer is
+/// type-dependent, there is no deduced type and the type is canonical. In
+/// the latter case, it is also a dependent type.
+class DeducedType : public Type {
+protected:
+ DeducedType(TypeClass TC, QualType DeducedAsType, bool IsDependent,
+ bool IsInstantiationDependent, bool ContainsParameterPack)
+ : Type(TC,
+ // FIXME: Retain the sugared deduced type?
+ DeducedAsType.isNull() ? QualType(this, 0)
+ : DeducedAsType.getCanonicalType(),
+ IsDependent, IsInstantiationDependent,
+ /*VariablyModified=*/false, ContainsParameterPack) {
+ if (!DeducedAsType.isNull()) {
+ if (DeducedAsType->isDependentType())
+ setDependent();
+ if (DeducedAsType->isInstantiationDependentType())
+ setInstantiationDependent();
+ if (DeducedAsType->containsUnexpandedParameterPack())
+ setContainsUnexpandedParameterPack();
+ }
+ }
+
+public:
+ bool isSugared() const { return !isCanonicalUnqualified(); }
+ QualType desugar() const { return getCanonicalTypeInternal(); }
+
+ /// Get the type deduced for this placeholder type, or null if it's
+ /// either not been deduced or was deduced to a dependent type.
+ QualType getDeducedType() const {
+ return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
+ }
+ bool isDeduced() const {
+ return !isCanonicalUnqualified() || isDependentType();
+ }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == Auto ||
+ T->getTypeClass() == DeducedTemplateSpecialization;
+ }
+};
+
+/// Represents a C++11 auto or C++14 decltype(auto) type.
+class AutoType : public DeducedType, public llvm::FoldingSetNode {
+ friend class ASTContext; // ASTContext creates these
+
+ AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword,
+ bool IsDeducedAsDependent)
+ : DeducedType(Auto, DeducedAsType, IsDeducedAsDependent,
+ IsDeducedAsDependent, /*ContainsPack=*/false) {
+ AutoTypeBits.Keyword = (unsigned)Keyword;
+ }
+
+public:
+ bool isDecltypeAuto() const {
+ return getKeyword() == AutoTypeKeyword::DecltypeAuto;
+ }
+
+ AutoTypeKeyword getKeyword() const {
+ return (AutoTypeKeyword)AutoTypeBits.Keyword;
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, getDeducedType(), getKeyword(), isDependentType());
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID, QualType Deduced,
+ AutoTypeKeyword Keyword, bool IsDependent) {
+ ID.AddPointer(Deduced.getAsOpaquePtr());
+ ID.AddInteger((unsigned)Keyword);
+ ID.AddBoolean(IsDependent);
+ }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == Auto;
+ }
+};
+
+/// Represents a C++17 deduced template specialization type.
+class DeducedTemplateSpecializationType : public DeducedType,
+ public llvm::FoldingSetNode {
+ friend class ASTContext; // ASTContext creates these
+
+ /// The name of the template whose arguments will be deduced.
+ TemplateName Template;
+
+ DeducedTemplateSpecializationType(TemplateName Template,
+ QualType DeducedAsType,
+ bool IsDeducedAsDependent)
+ : DeducedType(DeducedTemplateSpecialization, DeducedAsType,
+ IsDeducedAsDependent || Template.isDependent(),
+ IsDeducedAsDependent || Template.isInstantiationDependent(),
+ Template.containsUnexpandedParameterPack()),
+ Template(Template) {}
+
+public:
+ /// Retrieve the name of the template that we are deducing.
+ TemplateName getTemplateName() const { return Template;}
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, getTemplateName(), getDeducedType(), isDependentType());
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID, TemplateName Template,
+ QualType Deduced, bool IsDependent) {
+ Template.Profile(ID);
+ ID.AddPointer(Deduced.getAsOpaquePtr());
+ ID.AddBoolean(IsDependent);
+ }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == DeducedTemplateSpecialization;
+ }
+};
+
+/// Represents a type template specialization; the template
+/// must be a class template, a type alias template, or a template
+/// template parameter. A template which cannot be resolved to one of
+/// these, e.g. because it is written with a dependent scope
+/// specifier, is instead represented as a
+/// @c DependentTemplateSpecializationType.
+///
+/// A non-dependent template specialization type is always "sugar",
+/// typically for a \c RecordType. For example, a class template
+/// specialization type of \c vector<int> will refer to a tag type for
+/// the instantiation \c std::vector<int, std::allocator<int>>
+///
+/// Template specializations are dependent if either the template or
+/// any of the template arguments are dependent, in which case the
+/// type may also be canonical.
+///
+/// Instances of this type are allocated with a trailing array of
+/// TemplateArguments, followed by a QualType representing the
+/// non-canonical aliased type when the template is a type alias
+/// template.
+class alignas(8) TemplateSpecializationType
+ : public Type,
+ public llvm::FoldingSetNode {
+ friend class ASTContext; // ASTContext creates these
+
+ /// The name of the template being specialized. This is
+ /// either a TemplateName::Template (in which case it is a
+ /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
+ /// TypeAliasTemplateDecl*), a
+ /// TemplateName::SubstTemplateTemplateParmPack, or a
+ /// TemplateName::SubstTemplateTemplateParm (in which case the
+ /// replacement must, recursively, be one of these).
+ TemplateName Template;
+
+ TemplateSpecializationType(TemplateName T,
+ ArrayRef<TemplateArgument> Args,
+ QualType Canon,
+ QualType Aliased);
+
+public:
+ /// Determine whether any of the given template arguments are dependent.
+ static bool anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
+ bool &InstantiationDependent);
+
+ static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
+ bool &InstantiationDependent);
+
+ /// True if this template specialization type matches a current
+ /// instantiation in the context in which it is found.
+ bool isCurrentInstantiation() const {
+ return isa<InjectedClassNameType>(getCanonicalTypeInternal());
+ }
+
+ /// Determine if this template specialization type is for a type alias
+ /// template that has been substituted.
+ ///
+ /// Nearly every template specialization type whose template is an alias
+ /// template will be substituted. However, this is not the case when
+ /// the specialization contains a pack expansion but the template alias
+ /// does not have a corresponding parameter pack, e.g.,
+ ///
+ /// \code
+ /// template<typename T, typename U, typename V> struct S;
+ /// template<typename T, typename U> using A = S<T, int, U>;
+ /// template<typename... Ts> struct X {
+ /// typedef A<Ts...> type; // not a type alias
+ /// };
+ /// \endcode
+ bool isTypeAlias() const { return TemplateSpecializationTypeBits.TypeAlias; }
+
+ /// Get the aliased type, if this is a specialization of a type alias
+ /// template.
+ QualType getAliasedType() const {
+ assert(isTypeAlias() && "not a type alias template specialization");
+ return *reinterpret_cast<const QualType*>(end());
+ }
+
+ using iterator = const TemplateArgument *;
+
+ iterator begin() const { return getArgs(); }
+ iterator end() const; // defined inline in TemplateBase.h
+
+ /// Retrieve the name of the template that we are specializing.
+ TemplateName getTemplateName() const { return Template; }
+
+ /// Retrieve the template arguments.
+ const TemplateArgument *getArgs() const {
+ return reinterpret_cast<const TemplateArgument *>(this + 1);
+ }
+
+ /// Retrieve the number of template arguments.
+ unsigned getNumArgs() const {
+ return TemplateSpecializationTypeBits.NumArgs;
+ }
+
+ /// Retrieve a specific template argument as a type.
+ /// \pre \c isArgType(Arg)
+ const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
+
+ ArrayRef<TemplateArgument> template_arguments() const {
+ return {getArgs(), getNumArgs()};
+ }
+
+ bool isSugared() const {
+ return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
+ }
+
+ QualType desugar() const {
+ return isTypeAlias() ? getAliasedType() : getCanonicalTypeInternal();
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
+ Profile(ID, Template, template_arguments(), Ctx);
+ if (isTypeAlias())
+ getAliasedType().Profile(ID);
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
+ ArrayRef<TemplateArgument> Args,
+ const ASTContext &Context);
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == TemplateSpecialization;
+ }
+};
+
+/// Print a template argument list, including the '<' and '>'
+/// enclosing the template arguments.
+void printTemplateArgumentList(raw_ostream &OS,
+ ArrayRef<TemplateArgument> Args,
+ const PrintingPolicy &Policy);
+
+void printTemplateArgumentList(raw_ostream &OS,
+ ArrayRef<TemplateArgumentLoc> Args,
+ const PrintingPolicy &Policy);
+
+void printTemplateArgumentList(raw_ostream &OS,
+ const TemplateArgumentListInfo &Args,
+ const PrintingPolicy &Policy);
+
+/// The injected class name of a C++ class template or class
+/// template partial specialization. Used to record that a type was
+/// spelled with a bare identifier rather than as a template-id; the
+/// equivalent for non-templated classes is just RecordType.
+///
+/// Injected class name types are always dependent. Template
+/// instantiation turns these into RecordTypes.
+///
+/// Injected class name types are always canonical. This works
+/// because it is impossible to compare an injected class name type
+/// with the corresponding non-injected template type, for the same
+/// reason that it is impossible to directly compare template
+/// parameters from different dependent contexts: injected class name
+/// types can only occur within the scope of a particular templated
+/// declaration, and within that scope every template specialization
+/// will canonicalize to the injected class name (when appropriate
+/// according to the rules of the language).
+class InjectedClassNameType : public Type {
+ friend class ASTContext; // ASTContext creates these.
+ friend class ASTNodeImporter;
+ friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
+ // currently suitable for AST reading, too much
+ // interdependencies.
+
+ CXXRecordDecl *Decl;
+
+ /// The template specialization which this type represents.
+ /// For example, in
+ /// template <class T> class A { ... };
+ /// this is A<T>, whereas in
+ /// template <class X, class Y> class A<B<X,Y> > { ... };
+ /// this is A<B<X,Y> >.
+ ///
+ /// It is always unqualified, always a template specialization type,
+ /// and always dependent.
+ QualType InjectedType;
+
+ InjectedClassNameType(CXXRecordDecl *D, QualType TST)
+ : Type(InjectedClassName, QualType(), /*Dependent=*/true,
+ /*InstantiationDependent=*/true,
+ /*VariablyModified=*/false,
+ /*ContainsUnexpandedParameterPack=*/false),
+ Decl(D), InjectedType(TST) {
+ assert(isa<TemplateSpecializationType>(TST));
+ assert(!TST.hasQualifiers());
+ assert(TST->isDependentType());
+ }
+
+public:
+ QualType getInjectedSpecializationType() const { return InjectedType; }
+
+ const TemplateSpecializationType *getInjectedTST() const {
+ return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
+ }
+
+ TemplateName getTemplateName() const {
+ return getInjectedTST()->getTemplateName();
+ }
+
+ CXXRecordDecl *getDecl() const;
+
+ bool isSugared() const { return false; }
+ QualType desugar() const { return QualType(this, 0); }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == InjectedClassName;
+ }
+};
+
+/// The kind of a tag type.
+enum TagTypeKind {
+ /// The "struct" keyword.
+ TTK_Struct,
+
+ /// The "__interface" keyword.
+ TTK_Interface,
+
+ /// The "union" keyword.
+ TTK_Union,
+
+ /// The "class" keyword.
+ TTK_Class,
+
+ /// The "enum" keyword.
+ TTK_Enum
+};
+
+/// The elaboration keyword that precedes a qualified type name or
+/// introduces an elaborated-type-specifier.
+enum ElaboratedTypeKeyword {
+ /// The "struct" keyword introduces the elaborated-type-specifier.
+ ETK_Struct,
+
+ /// The "__interface" keyword introduces the elaborated-type-specifier.
+ ETK_Interface,
+
+ /// The "union" keyword introduces the elaborated-type-specifier.
+ ETK_Union,
+
+ /// The "class" keyword introduces the elaborated-type-specifier.
+ ETK_Class,
+
+ /// The "enum" keyword introduces the elaborated-type-specifier.
+ ETK_Enum,
+
+ /// The "typename" keyword precedes the qualified type name, e.g.,
+ /// \c typename T::type.
+ ETK_Typename,
+
+ /// No keyword precedes the qualified type name.
+ ETK_None
+};
+
+/// A helper class for Type nodes having an ElaboratedTypeKeyword.
+/// The keyword in stored in the free bits of the base class.
+/// Also provides a few static helpers for converting and printing
+/// elaborated type keyword and tag type kind enumerations.
+class TypeWithKeyword : public Type {
+protected:
+ TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
+ QualType Canonical, bool Dependent,
+ bool InstantiationDependent, bool VariablyModified,
+ bool ContainsUnexpandedParameterPack)
+ : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
+ ContainsUnexpandedParameterPack) {
+ TypeWithKeywordBits.Keyword = Keyword;
+ }
+
+public:
+ ElaboratedTypeKeyword getKeyword() const {
+ return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
+ }
+
+ /// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
+ static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
+
+ /// Converts a type specifier (DeclSpec::TST) into a tag type kind.
+ /// It is an error to provide a type specifier which *isn't* a tag kind here.
+ static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
+
+ /// Converts a TagTypeKind into an elaborated type keyword.
+ static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
+
+ /// Converts an elaborated type keyword into a TagTypeKind.
+ /// It is an error to provide an elaborated type keyword
+ /// which *isn't* a tag kind here.
+ static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
+
+ static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
+
+ static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);
+
+ static StringRef getTagTypeKindName(TagTypeKind Kind) {
+ return getKeywordName(getKeywordForTagTypeKind(Kind));
+ }
+
+ class CannotCastToThisType {};
+ static CannotCastToThisType classof(const Type *);
+};
+
+/// Represents a type that was referred to using an elaborated type
+/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
+/// or both.
+///
+/// This type is used to keep track of a type name as written in the
+/// source code, including tag keywords and any nested-name-specifiers.
+/// The type itself is always "sugar", used to express what was written
+/// in the source code but containing no additional semantic information.
+class ElaboratedType final
+ : public TypeWithKeyword,
+ public llvm::FoldingSetNode,
+ private llvm::TrailingObjects<ElaboratedType, TagDecl *> {
+ friend class ASTContext; // ASTContext creates these
+ friend TrailingObjects;
+
+ /// The nested name specifier containing the qualifier.
+ NestedNameSpecifier *NNS;
+
+ /// The type that this qualified name refers to.
+ QualType NamedType;
+
+ /// The (re)declaration of this tag type owned by this occurrence is stored
+ /// as a trailing object if there is one. Use getOwnedTagDecl to obtain
+ /// it, or obtain a null pointer if there is none.
+
+ ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
+ QualType NamedType, QualType CanonType, TagDecl *OwnedTagDecl)
+ : TypeWithKeyword(Keyword, Elaborated, CanonType,
+ NamedType->isDependentType(),
+ NamedType->isInstantiationDependentType(),
+ NamedType->isVariablyModifiedType(),
+ NamedType->containsUnexpandedParameterPack()),
+ NNS(NNS), NamedType(NamedType) {
+ ElaboratedTypeBits.HasOwnedTagDecl = false;
+ if (OwnedTagDecl) {
+ ElaboratedTypeBits.HasOwnedTagDecl = true;
+ *getTrailingObjects<TagDecl *>() = OwnedTagDecl;
+ }
+ assert(!(Keyword == ETK_None && NNS == nullptr) &&
+ "ElaboratedType cannot have elaborated type keyword "
+ "and name qualifier both null.");
+ }
+
+public:
+ /// Retrieve the qualification on this type.
+ NestedNameSpecifier *getQualifier() const { return NNS; }
+
+ /// Retrieve the type named by the qualified-id.
+ QualType getNamedType() const { return NamedType; }
+
+ /// Remove a single level of sugar.
+ QualType desugar() const { return getNamedType(); }
+
+ /// Returns whether this type directly provides sugar.
+ bool isSugared() const { return true; }
+
+ /// Return the (re)declaration of this type owned by this occurrence of this
+ /// type, or nullptr if there is none.
+ TagDecl *getOwnedTagDecl() const {
+ return ElaboratedTypeBits.HasOwnedTagDecl ? *getTrailingObjects<TagDecl *>()
+ : nullptr;
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, getKeyword(), NNS, NamedType, getOwnedTagDecl());
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
+ NestedNameSpecifier *NNS, QualType NamedType,
+ TagDecl *OwnedTagDecl) {
+ ID.AddInteger(Keyword);
+ ID.AddPointer(NNS);
+ NamedType.Profile(ID);
+ ID.AddPointer(OwnedTagDecl);
+ }
+
+ static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
+};
+
+/// Represents a qualified type name for which the type name is
+/// dependent.
+///
+/// DependentNameType represents a class of dependent types that involve a
+/// possibly dependent nested-name-specifier (e.g., "T::") followed by a
+/// name of a type. The DependentNameType may start with a "typename" (for a
+/// typename-specifier), "class", "struct", "union", or "enum" (for a
+/// dependent elaborated-type-specifier), or nothing (in contexts where we
+/// know that we must be referring to a type, e.g., in a base class specifier).
+/// Typically the nested-name-specifier is dependent, but in MSVC compatibility
+/// mode, this type is used with non-dependent names to delay name lookup until
+/// instantiation.
+class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
+ friend class ASTContext; // ASTContext creates these
+
+ /// The nested name specifier containing the qualifier.
+ NestedNameSpecifier *NNS;
+
+ /// The type that this typename specifier refers to.
+ const IdentifierInfo *Name;
+
+ DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
+ const IdentifierInfo *Name, QualType CanonType)
+ : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
+ /*InstantiationDependent=*/true,
+ /*VariablyModified=*/false,
+ NNS->containsUnexpandedParameterPack()),
+ NNS(NNS), Name(Name) {}
+
+public:
+ /// Retrieve the qualification on this type.
+ NestedNameSpecifier *getQualifier() const { return NNS; }
+
+ /// Retrieve the type named by the typename specifier as an identifier.
+ ///
+ /// This routine will return a non-NULL identifier pointer when the
+ /// form of the original typename was terminated by an identifier,
+ /// e.g., "typename T::type".
+ const IdentifierInfo *getIdentifier() const {
+ return Name;
+ }
+
+ bool isSugared() const { return false; }
+ QualType desugar() const { return QualType(this, 0); }
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, getKeyword(), NNS, Name);
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
+ NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
+ ID.AddInteger(Keyword);
+ ID.AddPointer(NNS);
+ ID.AddPointer(Name);
+ }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == DependentName;
+ }
+};
+
+/// Represents a template specialization type whose template cannot be
+/// resolved, e.g.
+/// A<T>::template B<T>
+class alignas(8) DependentTemplateSpecializationType
+ : public TypeWithKeyword,
+ public llvm::FoldingSetNode {
+ friend class ASTContext; // ASTContext creates these
+
+ /// The nested name specifier containing the qualifier.
+ NestedNameSpecifier *NNS;
+
+ /// The identifier of the template.
+ const IdentifierInfo *Name;
+
+ DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
+ NestedNameSpecifier *NNS,
+ const IdentifierInfo *Name,
+ ArrayRef<TemplateArgument> Args,
+ QualType Canon);
+
+ const TemplateArgument *getArgBuffer() const {
+ return reinterpret_cast<const TemplateArgument*>(this+1);
+ }
+
+ TemplateArgument *getArgBuffer() {
+ return reinterpret_cast<TemplateArgument*>(this+1);
+ }
+
+public:
+ NestedNameSpecifier *getQualifier() const { return NNS; }
+ const IdentifierInfo *getIdentifier() const { return Name; }
+
+ /// Retrieve the template arguments.
+ const TemplateArgument *getArgs() const {
+ return getArgBuffer();
+ }
+
+ /// Retrieve the number of template arguments.
+ unsigned getNumArgs() const {
+ return DependentTemplateSpecializationTypeBits.NumArgs;
+ }
+
+ const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
+
+ ArrayRef<TemplateArgument> template_arguments() const {
+ return {getArgs(), getNumArgs()};
+ }
+
+ using iterator = const TemplateArgument *;
+
+ iterator begin() const { return getArgs(); }
+ iterator end() const; // inline in TemplateBase.h
+
+ bool isSugared() const { return false; }
+ QualType desugar() const { return QualType(this, 0); }
+
+ void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
+ Profile(ID, Context, getKeyword(), NNS, Name, {getArgs(), getNumArgs()});
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID,
+ const ASTContext &Context,
+ ElaboratedTypeKeyword Keyword,
+ NestedNameSpecifier *Qualifier,
+ const IdentifierInfo *Name,
+ ArrayRef<TemplateArgument> Args);
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == DependentTemplateSpecialization;
+ }
+};
+
+/// Represents a pack expansion of types.
+///
+/// Pack expansions are part of C++11 variadic templates. A pack
+/// expansion contains a pattern, which itself contains one or more
+/// "unexpanded" parameter packs. When instantiated, a pack expansion
+/// produces a series of types, each instantiated from the pattern of
+/// the expansion, where the Ith instantiation of the pattern uses the
+/// Ith arguments bound to each of the unexpanded parameter packs. The
+/// pack expansion is considered to "expand" these unexpanded
+/// parameter packs.
+///
+/// \code
+/// template<typename ...Types> struct tuple;
+///
+/// template<typename ...Types>
+/// struct tuple_of_references {
+/// typedef tuple<Types&...> type;
+/// };
+/// \endcode
+///
+/// Here, the pack expansion \c Types&... is represented via a
+/// PackExpansionType whose pattern is Types&.
+class PackExpansionType : public Type, public llvm::FoldingSetNode {
+ friend class ASTContext; // ASTContext creates these
+
+ /// The pattern of the pack expansion.
+ QualType Pattern;
+
+ PackExpansionType(QualType Pattern, QualType Canon,
+ Optional<unsigned> NumExpansions)
+ : Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
+ /*InstantiationDependent=*/true,
+ /*VariablyModified=*/Pattern->isVariablyModifiedType(),
+ /*ContainsUnexpandedParameterPack=*/false),
+ Pattern(Pattern) {
+ PackExpansionTypeBits.NumExpansions =
+ NumExpansions ? *NumExpansions + 1 : 0;
+ }
+
+public:
+ /// Retrieve the pattern of this pack expansion, which is the
+ /// type that will be repeatedly instantiated when instantiating the
+ /// pack expansion itself.
+ QualType getPattern() const { return Pattern; }
+
+ /// Retrieve the number of expansions that this pack expansion will
+ /// generate, if known.
+ Optional<unsigned> getNumExpansions() const {
+ if (PackExpansionTypeBits.NumExpansions)
+ return PackExpansionTypeBits.NumExpansions - 1;
+ return None;
+ }
+
+ bool isSugared() const { return !Pattern->isDependentType(); }
+ QualType desugar() const { return isSugared() ? Pattern : QualType(this, 0); }
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, getPattern(), getNumExpansions());
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
+ Optional<unsigned> NumExpansions) {
+ ID.AddPointer(Pattern.getAsOpaquePtr());
+ ID.AddBoolean(NumExpansions.hasValue());
+ if (NumExpansions)
+ ID.AddInteger(*NumExpansions);
+ }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == PackExpansion;
+ }
+};
+
+/// This class wraps the list of protocol qualifiers. For types that can
+/// take ObjC protocol qualifers, they can subclass this class.
+template <class T>
+class ObjCProtocolQualifiers {
+protected:
+ ObjCProtocolQualifiers() = default;
+
+ ObjCProtocolDecl * const *getProtocolStorage() const {
+ return const_cast<ObjCProtocolQualifiers*>(this)->getProtocolStorage();
+ }
+
+ ObjCProtocolDecl **getProtocolStorage() {
+ return static_cast<T*>(this)->getProtocolStorageImpl();
+ }
+
+ void setNumProtocols(unsigned N) {
+ static_cast<T*>(this)->setNumProtocolsImpl(N);
+ }
+
+ void initialize(ArrayRef<ObjCProtocolDecl *> protocols) {
+ setNumProtocols(protocols.size());
+ assert(getNumProtocols() == protocols.size() &&
+ "bitfield overflow in protocol count");
+ if (!protocols.empty())
+ memcpy(getProtocolStorage(), protocols.data(),
+ protocols.size() * sizeof(ObjCProtocolDecl*));
+ }
+
+public:
+ using qual_iterator = ObjCProtocolDecl * const *;
+ using qual_range = llvm::iterator_range<qual_iterator>;
+
+ qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
+ qual_iterator qual_begin() const { return getProtocolStorage(); }
+ qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
+
+ bool qual_empty() const { return getNumProtocols() == 0; }
+
+ /// Return the number of qualifying protocols in this type, or 0 if
+ /// there are none.
+ unsigned getNumProtocols() const {
+ return static_cast<const T*>(this)->getNumProtocolsImpl();
+ }
+
+ /// Fetch a protocol by index.
+ ObjCProtocolDecl *getProtocol(unsigned I) const {
+ assert(I < getNumProtocols() && "Out-of-range protocol access");
+ return qual_begin()[I];
+ }
+
+ /// Retrieve all of the protocol qualifiers.
+ ArrayRef<ObjCProtocolDecl *> getProtocols() const {
+ return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols());
+ }
+};
+
+/// Represents a type parameter type in Objective C. It can take
+/// a list of protocols.
+class ObjCTypeParamType : public Type,
+ public ObjCProtocolQualifiers<ObjCTypeParamType>,
+ public llvm::FoldingSetNode {
+ friend class ASTContext;
+ friend class ObjCProtocolQualifiers<ObjCTypeParamType>;
+
+ /// The number of protocols stored on this type.
+ unsigned NumProtocols : 6;
+
+ ObjCTypeParamDecl *OTPDecl;
+
+ /// The protocols are stored after the ObjCTypeParamType node. In the
+ /// canonical type, the list of protocols are sorted alphabetically
+ /// and uniqued.
+ ObjCProtocolDecl **getProtocolStorageImpl();
+
+ /// Return the number of qualifying protocols in this interface type,
+ /// or 0 if there are none.
+ unsigned getNumProtocolsImpl() const {
+ return NumProtocols;
+ }
+
+ void setNumProtocolsImpl(unsigned N) {
+ NumProtocols = N;
+ }
+
+ ObjCTypeParamType(const ObjCTypeParamDecl *D,
+ QualType can,
+ ArrayRef<ObjCProtocolDecl *> protocols);
+
+public:
+ bool isSugared() const { return true; }
+ QualType desugar() const { return getCanonicalTypeInternal(); }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == ObjCTypeParam;
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID);
+ static void Profile(llvm::FoldingSetNodeID &ID,
+ const ObjCTypeParamDecl *OTPDecl,
+ ArrayRef<ObjCProtocolDecl *> protocols);
+
+ ObjCTypeParamDecl *getDecl() const { return OTPDecl; }
+};
+
+/// Represents a class type in Objective C.
+///
+/// Every Objective C type is a combination of a base type, a set of
+/// type arguments (optional, for parameterized classes) and a list of
+/// protocols.
+///
+/// Given the following declarations:
+/// \code
+/// \@class C<T>;
+/// \@protocol P;
+/// \endcode
+///
+/// 'C' is an ObjCInterfaceType C. It is sugar for an ObjCObjectType
+/// with base C and no protocols.
+///
+/// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P].
+/// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no
+/// protocol list.
+/// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*',
+/// and protocol list [P].
+///
+/// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
+/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
+/// and no protocols.
+///
+/// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
+/// with base BuiltinType::ObjCIdType and protocol list [P]. Eventually
+/// this should get its own sugar class to better represent the source.
+class ObjCObjectType : public Type,
+ public ObjCProtocolQualifiers<ObjCObjectType> {
+ friend class ObjCProtocolQualifiers<ObjCObjectType>;
+
+ // ObjCObjectType.NumTypeArgs - the number of type arguments stored
+ // after the ObjCObjectPointerType node.
+ // ObjCObjectType.NumProtocols - the number of protocols stored
+ // after the type arguments of ObjCObjectPointerType node.
+ //
+ // These protocols are those written directly on the type. If
+ // protocol qualifiers ever become additive, the iterators will need
+ // to get kindof complicated.
+ //
+ // In the canonical object type, these are sorted alphabetically
+ // and uniqued.
+
+ /// Either a BuiltinType or an InterfaceType or sugar for either.
+ QualType BaseType;
+
+ /// Cached superclass type.
+ mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool>
+ CachedSuperClassType;
+
+ QualType *getTypeArgStorage();
+ const QualType *getTypeArgStorage() const {
+ return const_cast<ObjCObjectType *>(this)->getTypeArgStorage();
+ }
+
+ ObjCProtocolDecl **getProtocolStorageImpl();
+ /// Return the number of qualifying protocols in this interface type,
+ /// or 0 if there are none.
+ unsigned getNumProtocolsImpl() const {
+ return ObjCObjectTypeBits.NumProtocols;
+ }
+ void setNumProtocolsImpl(unsigned N) {
+ ObjCObjectTypeBits.NumProtocols = N;
+ }
+
+protected:
+ enum Nonce_ObjCInterface { Nonce_ObjCInterface };
+
+ ObjCObjectType(QualType Canonical, QualType Base,
+ ArrayRef<QualType> typeArgs,
+ ArrayRef<ObjCProtocolDecl *> protocols,
+ bool isKindOf);
+
+ ObjCObjectType(enum Nonce_ObjCInterface)
+ : Type(ObjCInterface, QualType(), false, false, false, false),
+ BaseType(QualType(this_(), 0)) {
+ ObjCObjectTypeBits.NumProtocols = 0;
+ ObjCObjectTypeBits.NumTypeArgs = 0;
+ ObjCObjectTypeBits.IsKindOf = 0;
+ }
+
+ void computeSuperClassTypeSlow() const;
+
+public:
+ /// Gets the base type of this object type. This is always (possibly
+ /// sugar for) one of:
+ /// - the 'id' builtin type (as opposed to the 'id' type visible to the
+ /// user, which is a typedef for an ObjCObjectPointerType)
+ /// - the 'Class' builtin type (same caveat)
+ /// - an ObjCObjectType (currently always an ObjCInterfaceType)
+ QualType getBaseType() const { return BaseType; }
+
+ bool isObjCId() const {
+ return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
+ }
+
+ bool isObjCClass() const {
+ return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
+ }
+
+ bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
+ bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
+ bool isObjCUnqualifiedIdOrClass() const {
+ if (!qual_empty()) return false;
+ if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
+ return T->getKind() == BuiltinType::ObjCId ||
+ T->getKind() == BuiltinType::ObjCClass;
+ return false;
+ }
+ bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
+ bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
+
+ /// Gets the interface declaration for this object type, if the base type
+ /// really is an interface.
+ ObjCInterfaceDecl *getInterface() const;
+
+ /// Determine whether this object type is "specialized", meaning
+ /// that it has type arguments.
+ bool isSpecialized() const;
+
+ /// Determine whether this object type was written with type arguments.
+ bool isSpecializedAsWritten() const {
+ return ObjCObjectTypeBits.NumTypeArgs > 0;
+ }
+
+ /// Determine whether this object type is "unspecialized", meaning
+ /// that it has no type arguments.
+ bool isUnspecialized() const { return !isSpecialized(); }
+
+ /// Determine whether this object type is "unspecialized" as
+ /// written, meaning that it has no type arguments.
+ bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
+
+ /// Retrieve the type arguments of this object type (semantically).
+ ArrayRef<QualType> getTypeArgs() const;
+
+ /// Retrieve the type arguments of this object type as they were
+ /// written.
+ ArrayRef<QualType> getTypeArgsAsWritten() const {
+ return llvm::makeArrayRef(getTypeArgStorage(),
+ ObjCObjectTypeBits.NumTypeArgs);
+ }
+
+ /// Whether this is a "__kindof" type as written.
+ bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; }
+
+ /// Whether this ia a "__kindof" type (semantically).
+ bool isKindOfType() const;
+
+ /// Retrieve the type of the superclass of this object type.
+ ///
+ /// This operation substitutes any type arguments into the
+ /// superclass of the current class type, potentially producing a
+ /// specialization of the superclass type. Produces a null type if
+ /// there is no superclass.
+ QualType getSuperClassType() const {
+ if (!CachedSuperClassType.getInt())
+ computeSuperClassTypeSlow();
+
+ assert(CachedSuperClassType.getInt() && "Superclass not set?");
+ return QualType(CachedSuperClassType.getPointer(), 0);
+ }
+
+ /// Strip off the Objective-C "kindof" type and (with it) any
+ /// protocol qualifiers.
+ QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const;
+
+ bool isSugared() const { return false; }
+ QualType desugar() const { return QualType(this, 0); }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == ObjCObject ||
+ T->getTypeClass() == ObjCInterface;
+ }
+};
+
+/// A class providing a concrete implementation
+/// of ObjCObjectType, so as to not increase the footprint of
+/// ObjCInterfaceType. Code outside of ASTContext and the core type
+/// system should not reference this type.
+class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
+ friend class ASTContext;
+
+ // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
+ // will need to be modified.
+
+ ObjCObjectTypeImpl(QualType Canonical, QualType Base,
+ ArrayRef<QualType> typeArgs,
+ ArrayRef<ObjCProtocolDecl *> protocols,
+ bool isKindOf)
+ : ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {}
+
+public:
+ void Profile(llvm::FoldingSetNodeID &ID);
+ static void Profile(llvm::FoldingSetNodeID &ID,
+ QualType Base,
+ ArrayRef<QualType> typeArgs,
+ ArrayRef<ObjCProtocolDecl *> protocols,
+ bool isKindOf);
+};
+
+inline QualType *ObjCObjectType::getTypeArgStorage() {
+ return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1);
+}
+
+inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorageImpl() {
+ return reinterpret_cast<ObjCProtocolDecl**>(
+ getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs);
+}
+
+inline ObjCProtocolDecl **ObjCTypeParamType::getProtocolStorageImpl() {
+ return reinterpret_cast<ObjCProtocolDecl**>(
+ static_cast<ObjCTypeParamType*>(this)+1);
+}
+
+/// Interfaces are the core concept in Objective-C for object oriented design.
+/// They basically correspond to C++ classes. There are two kinds of interface
+/// types: normal interfaces like `NSString`, and qualified interfaces, which
+/// are qualified with a protocol list like `NSString<NSCopyable, NSAmazing>`.
+///
+/// ObjCInterfaceType guarantees the following properties when considered
+/// as a subtype of its superclass, ObjCObjectType:
+/// - There are no protocol qualifiers. To reinforce this, code which
+/// tries to invoke the protocol methods via an ObjCInterfaceType will
+/// fail to compile.
+/// - It is its own base type. That is, if T is an ObjCInterfaceType*,
+/// T->getBaseType() == QualType(T, 0).
+class ObjCInterfaceType : public ObjCObjectType {
+ friend class ASTContext; // ASTContext creates these.
+ friend class ASTReader;
+ friend class ObjCInterfaceDecl;
+
+ mutable ObjCInterfaceDecl *Decl;
+
+ ObjCInterfaceType(const ObjCInterfaceDecl *D)
+ : ObjCObjectType(Nonce_ObjCInterface),
+ Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
+
+public:
+ /// Get the declaration of this interface.
+ ObjCInterfaceDecl *getDecl() const { return Decl; }
+
+ bool isSugared() const { return false; }
+ QualType desugar() const { return QualType(this, 0); }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == ObjCInterface;
+ }
+
+ // Nonsense to "hide" certain members of ObjCObjectType within this
+ // class. People asking for protocols on an ObjCInterfaceType are
+ // not going to get what they want: ObjCInterfaceTypes are
+ // guaranteed to have no protocols.
+ enum {
+ qual_iterator,
+ qual_begin,
+ qual_end,
+ getNumProtocols,
+ getProtocol
+ };
+};
+
+inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
+ QualType baseType = getBaseType();
+ while (const auto *ObjT = baseType->getAs<ObjCObjectType>()) {
+ if (const auto *T = dyn_cast<ObjCInterfaceType>(ObjT))
+ return T->getDecl();
+
+ baseType = ObjT->getBaseType();
+ }
+
+ return nullptr;
+}
+
+/// Represents a pointer to an Objective C object.
+///
+/// These are constructed from pointer declarators when the pointee type is
+/// an ObjCObjectType (or sugar for one). In addition, the 'id' and 'Class'
+/// types are typedefs for these, and the protocol-qualified types 'id<P>'
+/// and 'Class<P>' are translated into these.
+///
+/// Pointers to pointers to Objective C objects are still PointerTypes;
+/// only the first level of pointer gets it own type implementation.
+class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
+ friend class ASTContext; // ASTContext creates these.
+
+ QualType PointeeType;
+
+ ObjCObjectPointerType(QualType Canonical, QualType Pointee)
+ : Type(ObjCObjectPointer, Canonical,
+ Pointee->isDependentType(),
+ Pointee->isInstantiationDependentType(),
+ Pointee->isVariablyModifiedType(),
+ Pointee->containsUnexpandedParameterPack()),
+ PointeeType(Pointee) {}
+
+public:
+ /// Gets the type pointed to by this ObjC pointer.
+ /// The result will always be an ObjCObjectType or sugar thereof.
+ QualType getPointeeType() const { return PointeeType; }
+
+ /// Gets the type pointed to by this ObjC pointer. Always returns non-null.
+ ///
+ /// This method is equivalent to getPointeeType() except that
+ /// it discards any typedefs (or other sugar) between this
+ /// type and the "outermost" object type. So for:
+ /// \code
+ /// \@class A; \@protocol P; \@protocol Q;
+ /// typedef A<P> AP;
+ /// typedef A A1;
+ /// typedef A1<P> A1P;
+ /// typedef A1P<Q> A1PQ;
+ /// \endcode
+ /// For 'A*', getObjectType() will return 'A'.
+ /// For 'A<P>*', getObjectType() will return 'A<P>'.
+ /// For 'AP*', getObjectType() will return 'A<P>'.
+ /// For 'A1*', getObjectType() will return 'A'.
+ /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
+ /// For 'A1P*', getObjectType() will return 'A1<P>'.
+ /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
+ /// adding protocols to a protocol-qualified base discards the
+ /// old qualifiers (for now). But if it didn't, getObjectType()
+ /// would return 'A1P<Q>' (and we'd have to make iterating over
+ /// qualifiers more complicated).
+ const ObjCObjectType *getObjectType() const {
+ return PointeeType->castAs<ObjCObjectType>();
+ }
+
+ /// If this pointer points to an Objective C
+ /// \@interface type, gets the type for that interface. Any protocol
+ /// qualifiers on the interface are ignored.
+ ///
+ /// \return null if the base type for this pointer is 'id' or 'Class'
+ const ObjCInterfaceType *getInterfaceType() const;
+
+ /// If this pointer points to an Objective \@interface
+ /// type, gets the declaration for that interface.
+ ///
+ /// \return null if the base type for this pointer is 'id' or 'Class'
+ ObjCInterfaceDecl *getInterfaceDecl() const {
+ return getObjectType()->getInterface();
+ }
+
+ /// True if this is equivalent to the 'id' type, i.e. if
+ /// its object type is the primitive 'id' type with no protocols.
+ bool isObjCIdType() const {
+ return getObjectType()->isObjCUnqualifiedId();
+ }
+
+ /// True if this is equivalent to the 'Class' type,
+ /// i.e. if its object tive is the primitive 'Class' type with no protocols.
+ bool isObjCClassType() const {
+ return getObjectType()->isObjCUnqualifiedClass();
+ }
+
+ /// True if this is equivalent to the 'id' or 'Class' type,
+ bool isObjCIdOrClassType() const {
+ return getObjectType()->isObjCUnqualifiedIdOrClass();
+ }
+
+ /// True if this is equivalent to 'id<P>' for some non-empty set of
+ /// protocols.
+ bool isObjCQualifiedIdType() const {
+ return getObjectType()->isObjCQualifiedId();
+ }
+
+ /// True if this is equivalent to 'Class<P>' for some non-empty set of
+ /// protocols.
+ bool isObjCQualifiedClassType() const {
+ return getObjectType()->isObjCQualifiedClass();
+ }
+
+ /// Whether this is a "__kindof" type.
+ bool isKindOfType() const { return getObjectType()->isKindOfType(); }
+
+ /// Whether this type is specialized, meaning that it has type arguments.
+ bool isSpecialized() const { return getObjectType()->isSpecialized(); }
+
+ /// Whether this type is specialized, meaning that it has type arguments.
+ bool isSpecializedAsWritten() const {
+ return getObjectType()->isSpecializedAsWritten();
+ }
+
+ /// Whether this type is unspecialized, meaning that is has no type arguments.
+ bool isUnspecialized() const { return getObjectType()->isUnspecialized(); }
+
+ /// Determine whether this object type is "unspecialized" as
+ /// written, meaning that it has no type arguments.
+ bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
+
+ /// Retrieve the type arguments for this type.
+ ArrayRef<QualType> getTypeArgs() const {
+ return getObjectType()->getTypeArgs();
+ }
+
+ /// Retrieve the type arguments for this type.
+ ArrayRef<QualType> getTypeArgsAsWritten() const {
+ return getObjectType()->getTypeArgsAsWritten();
+ }
+
+ /// An iterator over the qualifiers on the object type. Provided
+ /// for convenience. This will always iterate over the full set of
+ /// protocols on a type, not just those provided directly.
+ using qual_iterator = ObjCObjectType::qual_iterator;
+ using qual_range = llvm::iterator_range<qual_iterator>;
+
+ qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
+
+ qual_iterator qual_begin() const {
+ return getObjectType()->qual_begin();
+ }
+
+ qual_iterator qual_end() const {
+ return getObjectType()->qual_end();
+ }
+
+ bool qual_empty() const { return getObjectType()->qual_empty(); }
+
+ /// Return the number of qualifying protocols on the object type.
+ unsigned getNumProtocols() const {
+ return getObjectType()->getNumProtocols();
+ }
+
+ /// Retrieve a qualifying protocol by index on the object type.
+ ObjCProtocolDecl *getProtocol(unsigned I) const {
+ return getObjectType()->getProtocol(I);
+ }
+
+ bool isSugared() const { return false; }
+ QualType desugar() const { return QualType(this, 0); }
+
+ /// Retrieve the type of the superclass of this object pointer type.
+ ///
+ /// This operation substitutes any type arguments into the
+ /// superclass of the current class type, potentially producing a
+ /// pointer to a specialization of the superclass type. Produces a
+ /// null type if there is no superclass.
+ QualType getSuperClassType() const;
+
+ /// Strip off the Objective-C "kindof" type and (with it) any
+ /// protocol qualifiers.
+ const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals(
+ const ASTContext &ctx) const;
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, getPointeeType());
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
+ ID.AddPointer(T.getAsOpaquePtr());
+ }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == ObjCObjectPointer;
+ }
+};
+
+class AtomicType : public Type, public llvm::FoldingSetNode {
+ friend class ASTContext; // ASTContext creates these.
+
+ QualType ValueType;
+
+ AtomicType(QualType ValTy, QualType Canonical)
+ : Type(Atomic, Canonical, ValTy->isDependentType(),
+ ValTy->isInstantiationDependentType(),
+ ValTy->isVariablyModifiedType(),
+ ValTy->containsUnexpandedParameterPack()),
+ ValueType(ValTy) {}
+
+public:
+ /// Gets the type contained by this atomic type, i.e.
+ /// the type returned by performing an atomic load of this atomic type.
+ QualType getValueType() const { return ValueType; }
+
+ bool isSugared() const { return false; }
+ QualType desugar() const { return QualType(this, 0); }
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, getValueType());
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
+ ID.AddPointer(T.getAsOpaquePtr());
+ }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == Atomic;
+ }
+};
+
+/// PipeType - OpenCL20.
+class PipeType : public Type, public llvm::FoldingSetNode {
+ friend class ASTContext; // ASTContext creates these.
+
+ QualType ElementType;
+ bool isRead;
+
+ PipeType(QualType elemType, QualType CanonicalPtr, bool isRead)
+ : Type(Pipe, CanonicalPtr, elemType->isDependentType(),
+ elemType->isInstantiationDependentType(),
+ elemType->isVariablyModifiedType(),
+ elemType->containsUnexpandedParameterPack()),
+ ElementType(elemType), isRead(isRead) {}
+
+public:
+ QualType getElementType() const { return ElementType; }
+
+ bool isSugared() const { return false; }
+
+ QualType desugar() const { return QualType(this, 0); }
+
+ void Profile(llvm::FoldingSetNodeID &ID) {
+ Profile(ID, getElementType(), isReadOnly());
+ }
+
+ static void Profile(llvm::FoldingSetNodeID &ID, QualType T, bool isRead) {
+ ID.AddPointer(T.getAsOpaquePtr());
+ ID.AddBoolean(isRead);
+ }
+
+ static bool classof(const Type *T) {
+ return T->getTypeClass() == Pipe;
+ }
+
+ bool isReadOnly() const { return isRead; }
+};
+
+/// A qualifier set is used to build a set of qualifiers.
+class QualifierCollector : public Qualifiers {
+public:
+ QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
+
+ /// Collect any qualifiers on the given type and return an
+ /// unqualified type. The qualifiers are assumed to be consistent
+ /// with those already in the type.
+ const Type *strip(QualType type) {
+ addFastQualifiers(type.getLocalFastQualifiers());
+ if (!type.hasLocalNonFastQualifiers())
+ return type.getTypePtrUnsafe();
+
+ const ExtQuals *extQuals = type.getExtQualsUnsafe();
+ addConsistentQualifiers(extQuals->getQualifiers());
+ return extQuals->getBaseType();
+ }
+
+ /// Apply the collected qualifiers to the given type.
+ QualType apply(const ASTContext &Context, QualType QT) const;
+
+ /// Apply the collected qualifiers to the given type.
+ QualType apply(const ASTContext &Context, const Type* T) const;
+};
+
+// Inline function definitions.
+
+inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
+ SplitQualType desugar =
+ Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
+ desugar.Quals.addConsistentQualifiers(Quals);
+ return desugar;
+}
+
+inline const Type *QualType::getTypePtr() const {
+ return getCommonPtr()->BaseType;
+}
+
+inline const Type *QualType::getTypePtrOrNull() const {
+ return (isNull() ? nullptr : getCommonPtr()->BaseType);
+}
+
+inline SplitQualType QualType::split() const {
+ if (!hasLocalNonFastQualifiers())
+ return SplitQualType(getTypePtrUnsafe(),
+ Qualifiers::fromFastMask(getLocalFastQualifiers()));
+
+ const ExtQuals *eq = getExtQualsUnsafe();
+ Qualifiers qs = eq->getQualifiers();
+ qs.addFastQualifiers(getLocalFastQualifiers());
+ return SplitQualType(eq->getBaseType(), qs);
+}
+
+inline Qualifiers QualType::getLocalQualifiers() const {
+ Qualifiers Quals;
+ if (hasLocalNonFastQualifiers())
+ Quals = getExtQualsUnsafe()->getQualifiers();
+ Quals.addFastQualifiers(getLocalFastQualifiers());
+ return Quals;
+}
+
+inline Qualifiers QualType::getQualifiers() const {
+ Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
+ quals.addFastQualifiers(getLocalFastQualifiers());
+ return quals;
+}
+
+inline unsigned QualType::getCVRQualifiers() const {
+ unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
+ cvr |= getLocalCVRQualifiers();
+ return cvr;
+}
+
+inline QualType QualType::getCanonicalType() const {
+ QualType canon = getCommonPtr()->CanonicalType;
+ return canon.withFastQualifiers(getLocalFastQualifiers());
+}
+
+inline bool QualType::isCanonical() const {
+ return getTypePtr()->isCanonicalUnqualified();
+}
+
+inline bool QualType::isCanonicalAsParam() const {
+ if (!isCanonical()) return false;
+ if (hasLocalQualifiers()) return false;
+
+ const Type *T = getTypePtr();
+ if (T->isVariablyModifiedType() && T->hasSizedVLAType())
+ return false;
+
+ return !isa<FunctionType>(T) && !isa<ArrayType>(T);
+}
+
+inline bool QualType::isConstQualified() const {
+ return isLocalConstQualified() ||
+ getCommonPtr()->CanonicalType.isLocalConstQualified();
+}
+
+inline bool QualType::isRestrictQualified() const {
+ return isLocalRestrictQualified() ||
+ getCommonPtr()->CanonicalType.isLocalRestrictQualified();
+}
+
+
+inline bool QualType::isVolatileQualified() const {
+ return isLocalVolatileQualified() ||
+ getCommonPtr()->CanonicalType.isLocalVolatileQualified();
+}
+
+inline bool QualType::hasQualifiers() const {
+ return hasLocalQualifiers() ||
+ getCommonPtr()->CanonicalType.hasLocalQualifiers();
+}
+
+inline QualType QualType::getUnqualifiedType() const {
+ if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
+ return QualType(getTypePtr(), 0);
+
+ return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
+}
+
+inline SplitQualType QualType::getSplitUnqualifiedType() const {
+ if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
+ return split();
+
+ return getSplitUnqualifiedTypeImpl(*this);
+}
+
+inline void QualType::removeLocalConst() {
+ removeLocalFastQualifiers(Qualifiers::Const);
+}
+
+inline void QualType::removeLocalRestrict() {
+ removeLocalFastQualifiers(Qualifiers::Restrict);
+}
+
+inline void QualType::removeLocalVolatile() {
+ removeLocalFastQualifiers(Qualifiers::Volatile);
+}
+
+inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
+ assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
+ static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask,
+ "Fast bits differ from CVR bits!");
+
+ // Fast path: we don't need to touch the slow qualifiers.
+ removeLocalFastQualifiers(Mask);
+}
+
+/// Return the address space of this type.
+inline LangAS QualType::getAddressSpace() const {
+ return getQualifiers().getAddressSpace();
+}
+
+/// Return the gc attribute of this type.
+inline Qualifiers::GC QualType::getObjCGCAttr() const {
+ return getQualifiers().getObjCGCAttr();
+}
+
+inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
+ if (const auto *PT = t.getAs<PointerType>()) {
+ if (const auto *FT = PT->getPointeeType()->getAs<FunctionType>())
+ return FT->getExtInfo();
+ } else if (const auto *FT = t.getAs<FunctionType>())
+ return FT->getExtInfo();
+
+ return FunctionType::ExtInfo();
+}
+
+inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
+ return getFunctionExtInfo(*t);
+}
+
+/// Determine whether this type is more
+/// qualified than the Other type. For example, "const volatile int"
+/// is more qualified than "const int", "volatile int", and
+/// "int". However, it is not more qualified than "const volatile
+/// int".
+inline bool QualType::isMoreQualifiedThan(QualType other) const {
+ Qualifiers MyQuals = getQualifiers();
+ Qualifiers OtherQuals = other.getQualifiers();
+ return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals));
+}
+
+/// Determine whether this type is at last
+/// as qualified as the Other type. For example, "const volatile
+/// int" is at least as qualified as "const int", "volatile int",
+/// "int", and "const volatile int".
+inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
+ Qualifiers OtherQuals = other.getQualifiers();
+
+ // Ignore __unaligned qualifier if this type is a void.
+ if (getUnqualifiedType()->isVoidType())
+ OtherQuals.removeUnaligned();
+
+ return getQualifiers().compatiblyIncludes(OtherQuals);
+}
+
+/// If Type is a reference type (e.g., const
+/// int&), returns the type that the reference refers to ("const
+/// int"). Otherwise, returns the type itself. This routine is used
+/// throughout Sema to implement C++ 5p6:
+///
+/// If an expression initially has the type "reference to T" (8.3.2,
+/// 8.5.3), the type is adjusted to "T" prior to any further
+/// analysis, the expression designates the object or function
+/// denoted by the reference, and the expression is an lvalue.
+inline QualType QualType::getNonReferenceType() const {
+ if (const auto *RefType = (*this)->getAs<ReferenceType>())
+ return RefType->getPointeeType();
+ else
+ return *this;
+}
+
+inline bool QualType::isCForbiddenLValueType() const {
+ return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
+ getTypePtr()->isFunctionType());
+}
+
+/// Tests whether the type is categorized as a fundamental type.
+///
+/// \returns True for types specified in C++0x [basic.fundamental].
+inline bool Type::isFundamentalType() const {
+ return isVoidType() ||
+ // FIXME: It's really annoying that we don't have an
+ // 'isArithmeticType()' which agrees with the standard definition.
+ (isArithmeticType() && !isEnumeralType());
+}
+
+/// Tests whether the type is categorized as a compound type.
+///
+/// \returns True for types specified in C++0x [basic.compound].
+inline bool Type::isCompoundType() const {
+ // C++0x [basic.compound]p1:
+ // Compound types can be constructed in the following ways:
+ // -- arrays of objects of a given type [...];
+ return isArrayType() ||
+ // -- functions, which have parameters of given types [...];
+ isFunctionType() ||
+ // -- pointers to void or objects or functions [...];
+ isPointerType() ||
+ // -- references to objects or functions of a given type. [...]
+ isReferenceType() ||
+ // -- classes containing a sequence of objects of various types, [...];
+ isRecordType() ||
+ // -- unions, which are classes capable of containing objects of different
+ // types at different times;
+ isUnionType() ||
+ // -- enumerations, which comprise a set of named constant values. [...];
+ isEnumeralType() ||
+ // -- pointers to non-static class members, [...].
+ isMemberPointerType();
+}
+
+inline bool Type::isFunctionType() const {
+ return isa<FunctionType>(CanonicalType);
+}
+
+inline bool Type::isPointerType() const {
+ return isa<PointerType>(CanonicalType);
+}
+
+inline bool Type::isAnyPointerType() const {
+ return isPointerType() || isObjCObjectPointerType();
+}
+
+inline bool Type::isBlockPointerType() const {
+ return isa<BlockPointerType>(CanonicalType);
+}
+
+inline bool Type::isReferenceType() const {
+ return isa<ReferenceType>(CanonicalType);
+}
+
+inline bool Type::isLValueReferenceType() const {
+ return isa<LValueReferenceType>(CanonicalType);
+}
+
+inline bool Type::isRValueReferenceType() const {
+ return isa<RValueReferenceType>(CanonicalType);
+}
+
+inline bool Type::isFunctionPointerType() const {
+ if (const auto *T = getAs<PointerType>())
+ return T->getPointeeType()->isFunctionType();
+ else
+ return false;
+}
+
+inline bool Type::isMemberPointerType() const {
+ return isa<MemberPointerType>(CanonicalType);
+}
+
+inline bool Type::isMemberFunctionPointerType() const {
+ if (const auto *T = getAs<MemberPointerType>())
+ return T->isMemberFunctionPointer();
+ else
+ return false;
+}
+
+inline bool Type::isMemberDataPointerType() const {
+ if (const auto *T = getAs<MemberPointerType>())
+ return T->isMemberDataPointer();
+ else
+ return false;
+}
+
+inline bool Type::isArrayType() const {
+ return isa<ArrayType>(CanonicalType);
+}
+
+inline bool Type::isConstantArrayType() const {
+ return isa<ConstantArrayType>(CanonicalType);
+}
+
+inline bool Type::isIncompleteArrayType() const {
+ return isa<IncompleteArrayType>(CanonicalType);
+}
+
+inline bool Type::isVariableArrayType() const {
+ return isa<VariableArrayType>(CanonicalType);
+}
+
+inline bool Type::isDependentSizedArrayType() const {
+ return isa<DependentSizedArrayType>(CanonicalType);
+}
+
+inline bool Type::isBuiltinType() const {
+ return isa<BuiltinType>(CanonicalType);
+}
+
+inline bool Type::isRecordType() const {
+ return isa<RecordType>(CanonicalType);
+}
+
+inline bool Type::isEnumeralType() const {
+ return isa<EnumType>(CanonicalType);
+}
+
+inline bool Type::isAnyComplexType() const {
+ return isa<ComplexType>(CanonicalType);
+}
+
+inline bool Type::isVectorType() const {
+ return isa<VectorType>(CanonicalType);
+}
+
+inline bool Type::isExtVectorType() const {
+ return isa<ExtVectorType>(CanonicalType);
+}
+
+inline bool Type::isDependentAddressSpaceType() const {
+ return isa<DependentAddressSpaceType>(CanonicalType);
+}
+
+inline bool Type::isObjCObjectPointerType() const {
+ return isa<ObjCObjectPointerType>(CanonicalType);
+}
+
+inline bool Type::isObjCObjectType() const {
+ return isa<ObjCObjectType>(CanonicalType);
+}
+
+inline bool Type::isObjCObjectOrInterfaceType() const {
+ return isa<ObjCInterfaceType>(CanonicalType) ||
+ isa<ObjCObjectType>(CanonicalType);
+}
+
+inline bool Type::isAtomicType() const {
+ return isa<AtomicType>(CanonicalType);
+}
+
+inline bool Type::isObjCQualifiedIdType() const {
+ if (const auto *OPT = getAs<ObjCObjectPointerType>())
+ return OPT->isObjCQualifiedIdType();
+ return false;
+}
+
+inline bool Type::isObjCQualifiedClassType() const {
+ if (const auto *OPT = getAs<ObjCObjectPointerType>())
+ return OPT->isObjCQualifiedClassType();
+ return false;
+}
+
+inline bool Type::isObjCIdType() const {
+ if (const auto *OPT = getAs<ObjCObjectPointerType>())
+ return OPT->isObjCIdType();
+ return false;
+}
+
+inline bool Type::isObjCClassType() const {
+ if (const auto *OPT = getAs<ObjCObjectPointerType>())
+ return OPT->isObjCClassType();
+ return false;
+}
+
+inline bool Type::isObjCSelType() const {
+ if (const auto *OPT = getAs<PointerType>())
+ return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
+ return false;
+}
+
+inline bool Type::isObjCBuiltinType() const {
+ return isObjCIdType() || isObjCClassType() || isObjCSelType();
+}
+
+inline bool Type::isDecltypeType() const {
+ return isa<DecltypeType>(this);
+}
+
+#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
+ inline bool Type::is##Id##Type() const { \
+ return isSpecificBuiltinType(BuiltinType::Id); \
+ }
+#include "clang/Basic/OpenCLImageTypes.def"
+
+inline bool Type::isSamplerT() const {
+ return isSpecificBuiltinType(BuiltinType::OCLSampler);
+}
+
+inline bool Type::isEventT() const {
+ return isSpecificBuiltinType(BuiltinType::OCLEvent);
+}
+
+inline bool Type::isClkEventT() const {
+ return isSpecificBuiltinType(BuiltinType::OCLClkEvent);
+}
+
+inline bool Type::isQueueT() const {
+ return isSpecificBuiltinType(BuiltinType::OCLQueue);
+}
+
+inline bool Type::isReserveIDT() const {
+ return isSpecificBuiltinType(BuiltinType::OCLReserveID);
+}
+
+inline bool Type::isImageType() const {
+#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() ||
+ return
+#include "clang/Basic/OpenCLImageTypes.def"
+ false; // end boolean or operation
+}
+
+inline bool Type::isPipeType() const {
+ return isa<PipeType>(CanonicalType);
+}
+
+#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
+ inline bool Type::is##Id##Type() const { \
+ return isSpecificBuiltinType(BuiltinType::Id); \
+ }
+#include "clang/Basic/OpenCLExtensionTypes.def"
+
+inline bool Type::isOCLIntelSubgroupAVCType() const {
+#define INTEL_SUBGROUP_AVC_TYPE(ExtType, Id) \
+ isOCLIntelSubgroupAVC##Id##Type() ||
+ return
+#include "clang/Basic/OpenCLExtensionTypes.def"
+ false; // end of boolean or operation
+}
+
+inline bool Type::isOCLExtOpaqueType() const {
+#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) is##Id##Type() ||
+ return
+#include "clang/Basic/OpenCLExtensionTypes.def"
+ false; // end of boolean or operation
+}
+
+inline bool Type::isOpenCLSpecificType() const {
+ return isSamplerT() || isEventT() || isImageType() || isClkEventT() ||
+ isQueueT() || isReserveIDT() || isPipeType() || isOCLExtOpaqueType();
+}
+
+inline bool Type::isTemplateTypeParmType() const {
+ return isa<TemplateTypeParmType>(CanonicalType);
+}
+
+inline bool Type::isSpecificBuiltinType(unsigned K) const {
+ if (const BuiltinType *BT = getAs<BuiltinType>())
+ if (BT->getKind() == (BuiltinType::Kind) K)
+ return true;
+ return false;
+}
+
+inline bool Type::isPlaceholderType() const {
+ if (const auto *BT = dyn_cast<BuiltinType>(this))
+ return BT->isPlaceholderType();
+ return false;
+}
+
+inline const BuiltinType *Type::getAsPlaceholderType() const {
+ if (const auto *BT = dyn_cast<BuiltinType>(this))
+ if (BT->isPlaceholderType())
+ return BT;
+ return nullptr;
+}
+
+inline bool Type::isSpecificPlaceholderType(unsigned K) const {
+ assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K));
+ if (const auto *BT = dyn_cast<BuiltinType>(this))
+ return (BT->getKind() == (BuiltinType::Kind) K);
+ return false;
+}
+
+inline bool Type::isNonOverloadPlaceholderType() const {
+ if (const auto *BT = dyn_cast<BuiltinType>(this))
+ return BT->isNonOverloadPlaceholderType();
+ return false;
+}
+
+inline bool Type::isVoidType() const {
+ if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
+ return BT->getKind() == BuiltinType::Void;
+ return false;
+}
+
+inline bool Type::isHalfType() const {
+ if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
+ return BT->getKind() == BuiltinType::Half;
+ // FIXME: Should we allow complex __fp16? Probably not.
+ return false;
+}
+
+inline bool Type::isFloat16Type() const {
+ if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
+ return BT->getKind() == BuiltinType::Float16;
+ return false;
+}
+
+inline bool Type::isFloat128Type() const {
+ if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
+ return BT->getKind() == BuiltinType::Float128;
+ return false;
+}
+
+inline bool Type::isNullPtrType() const {
+ if (const auto *BT = getAs<BuiltinType>())
+ return BT->getKind() == BuiltinType::NullPtr;
+ return false;
+}
+
+bool IsEnumDeclComplete(EnumDecl *);
+bool IsEnumDeclScoped(EnumDecl *);
+
+inline bool Type::isIntegerType() const {
+ if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
+ return BT->getKind() >= BuiltinType::Bool &&
+ BT->getKind() <= BuiltinType::Int128;
+ if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
+ // Incomplete enum types are not treated as integer types.
+ // FIXME: In C++, enum types are never integer types.
+ return IsEnumDeclComplete(ET->getDecl()) &&
+ !IsEnumDeclScoped(ET->getDecl());
+ }
+ return false;
+}
+
+inline bool Type::isFixedPointType() const {
+ if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
+ return BT->getKind() >= BuiltinType::ShortAccum &&
+ BT->getKind() <= BuiltinType::SatULongFract;
+ }
+ return false;
+}
+
+inline bool Type::isFixedPointOrIntegerType() const {
+ return isFixedPointType() || isIntegerType();
+}
+
+inline bool Type::isSaturatedFixedPointType() const {
+ if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
+ return BT->getKind() >= BuiltinType::SatShortAccum &&
+ BT->getKind() <= BuiltinType::SatULongFract;
+ }
+ return false;
+}
+
+inline bool Type::isUnsaturatedFixedPointType() const {
+ return isFixedPointType() && !isSaturatedFixedPointType();
+}
+
+inline bool Type::isSignedFixedPointType() const {
+ if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
+ return ((BT->getKind() >= BuiltinType::ShortAccum &&
+ BT->getKind() <= BuiltinType::LongAccum) ||
+ (BT->getKind() >= BuiltinType::ShortFract &&
+ BT->getKind() <= BuiltinType::LongFract) ||
+ (BT->getKind() >= BuiltinType::SatShortAccum &&
+ BT->getKind() <= BuiltinType::SatLongAccum) ||
+ (BT->getKind() >= BuiltinType::SatShortFract &&
+ BT->getKind() <= BuiltinType::SatLongFract));
+ }
+ return false;
+}
+
+inline bool Type::isUnsignedFixedPointType() const {
+ return isFixedPointType() && !isSignedFixedPointType();
+}
+
+inline bool Type::isScalarType() const {
+ if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
+ return BT->getKind() > BuiltinType::Void &&
+ BT->getKind() <= BuiltinType::NullPtr;
+ if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
+ // Enums are scalar types, but only if they are defined. Incomplete enums
+ // are not treated as scalar types.
+ return IsEnumDeclComplete(ET->getDecl());
+ return isa<PointerType>(CanonicalType) ||
+ isa<BlockPointerType>(CanonicalType) ||
+ isa<MemberPointerType>(CanonicalType) ||
+ isa<ComplexType>(CanonicalType) ||
+ isa<ObjCObjectPointerType>(CanonicalType);
+}
+
+inline bool Type::isIntegralOrEnumerationType() const {
+ if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
+ return BT->getKind() >= BuiltinType::Bool &&
+ BT->getKind() <= BuiltinType::Int128;
+
+ // Check for a complete enum type; incomplete enum types are not properly an
+ // enumeration type in the sense required here.
+ if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
+ return IsEnumDeclComplete(ET->getDecl());
+
+ return false;
+}
+
+inline bool Type::isBooleanType() const {
+ if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
+ return BT->getKind() == BuiltinType::Bool;
+ return false;
+}
+
+inline bool Type::isUndeducedType() const {
+ auto *DT = getContainedDeducedType();
+ return DT && !DT->isDeduced();
+}
+
+/// Determines whether this is a type for which one can define
+/// an overloaded operator.
+inline bool Type::isOverloadableType() const {
+ return isDependentType() || isRecordType() || isEnumeralType();
+}
+
+/// Determines whether this type can decay to a pointer type.
+inline bool Type::canDecayToPointerType() const {
+ return isFunctionType() || isArrayType();
+}
+
+inline bool Type::hasPointerRepresentation() const {
+ return (isPointerType() || isReferenceType() || isBlockPointerType() ||
+ isObjCObjectPointerType() || isNullPtrType());
+}
+
+inline bool Type::hasObjCPointerRepresentation() const {
+ return isObjCObjectPointerType();
+}
+
+inline const Type *Type::getBaseElementTypeUnsafe() const {
+ const Type *type = this;
+ while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
+ type = arrayType->getElementType().getTypePtr();
+ return type;
+}
+
+inline const Type *Type::getPointeeOrArrayElementType() const {
+ const Type *type = this;
+ if (type->isAnyPointerType())
+ return type->getPointeeType().getTypePtr();
+ else if (type->isArrayType())
+ return type->getBaseElementTypeUnsafe();
+ return type;
+}
+
+/// Insertion operator for diagnostics. This allows sending Qualifiers into a
+/// diagnostic with <<.
+inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
+ Qualifiers Q) {
+ DB.AddTaggedVal(Q.getAsOpaqueValue(),
+ DiagnosticsEngine::ArgumentKind::ak_qual);
+ return DB;
+}
+
+/// Insertion operator for partial diagnostics. This allows sending Qualifiers
+/// into a diagnostic with <<.
+inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
+ Qualifiers Q) {
+ PD.AddTaggedVal(Q.getAsOpaqueValue(),
+ DiagnosticsEngine::ArgumentKind::ak_qual);
+ return PD;
+}
+
+/// Insertion operator for diagnostics. This allows sending QualType's into a
+/// diagnostic with <<.
+inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
+ QualType T) {
+ DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
+ DiagnosticsEngine::ak_qualtype);
+ return DB;
+}
+
+/// Insertion operator for partial diagnostics. This allows sending QualType's
+/// into a diagnostic with <<.
+inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
+ QualType T) {
+ PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
+ DiagnosticsEngine::ak_qualtype);
+ return PD;
+}
+
+// Helper class template that is used by Type::getAs to ensure that one does
+// not try to look through a qualified type to get to an array type.
+template <typename T>
+using TypeIsArrayType =
+ std::integral_constant<bool, std::is_same<T, ArrayType>::value ||
+ std::is_base_of<ArrayType, T>::value>;
+
+// Member-template getAs<specific type>'.
+template <typename T> const T *Type::getAs() const {
+ static_assert(!TypeIsArrayType<T>::value,
+ "ArrayType cannot be used with getAs!");
+
+ // If this is directly a T type, return it.
+ if (const auto *Ty = dyn_cast<T>(this))
+ return Ty;
+
+ // If the canonical form of this type isn't the right kind, reject it.
+ if (!isa<T>(CanonicalType))
+ return nullptr;
+
+ // If this is a typedef for the type, strip the typedef off without
+ // losing all typedef information.
+ return cast<T>(getUnqualifiedDesugaredType());
+}
+
+template <typename T> const T *Type::getAsAdjusted() const {
+ static_assert(!TypeIsArrayType<T>::value, "ArrayType cannot be used with getAsAdjusted!");
+
+ // If this is directly a T type, return it.
+ if (const auto *Ty = dyn_cast<T>(this))
+ return Ty;
+
+ // If the canonical form of this type isn't the right kind, reject it.
+ if (!isa<T>(CanonicalType))
+ return nullptr;
+
+ // Strip off type adjustments that do not modify the underlying nature of the
+ // type.
+ const Type *Ty = this;
+ while (Ty) {
+ if (const auto *A = dyn_cast<AttributedType>(Ty))
+ Ty = A->getModifiedType().getTypePtr();
+ else if (const auto *E = dyn_cast<ElaboratedType>(Ty))
+ Ty = E->desugar().getTypePtr();
+ else if (const auto *P = dyn_cast<ParenType>(Ty))
+ Ty = P->desugar().getTypePtr();
+ else if (const auto *A = dyn_cast<AdjustedType>(Ty))
+ Ty = A->desugar().getTypePtr();
+ else
+ break;
+ }
+
+ // Just because the canonical type is correct does not mean we can use cast<>,
+ // since we may not have stripped off all the sugar down to the base type.
+ return dyn_cast<T>(Ty);
+}
+
+inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
+ // If this is directly an array type, return it.
+ if (const auto *arr = dyn_cast<ArrayType>(this))
+ return arr;
+
+ // If the canonical form of this type isn't the right kind, reject it.
+ if (!isa<ArrayType>(CanonicalType))
+ return nullptr;
+
+ // If this is a typedef for the type, strip the typedef off without
+ // losing all typedef information.
+ return cast<ArrayType>(getUnqualifiedDesugaredType());
+}
+
+template <typename T> const T *Type::castAs() const {
+ static_assert(!TypeIsArrayType<T>::value,
+ "ArrayType cannot be used with castAs!");
+
+ if (const auto *ty = dyn_cast<T>(this)) return ty;
+ assert(isa<T>(CanonicalType));
+ return cast<T>(getUnqualifiedDesugaredType());
+}
+
+inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
+ assert(isa<ArrayType>(CanonicalType));
+ if (const auto *arr = dyn_cast<ArrayType>(this)) return arr;
+ return cast<ArrayType>(getUnqualifiedDesugaredType());
+}
+
+DecayedType::DecayedType(QualType OriginalType, QualType DecayedPtr,
+ QualType CanonicalPtr)
+ : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) {
+#ifndef NDEBUG
+ QualType Adjusted = getAdjustedType();
+ (void)AttributedType::stripOuterNullability(Adjusted);
+ assert(isa<PointerType>(Adjusted));
+#endif
+}
+
+QualType DecayedType::getPointeeType() const {
+ QualType Decayed = getDecayedType();
+ (void)AttributedType::stripOuterNullability(Decayed);
+ return cast<PointerType>(Decayed)->getPointeeType();
+}
+
+// Get the decimal string representation of a fixed point type, represented
+// as a scaled integer.
+// TODO: At some point, we should change the arguments to instead just accept an
+// APFixedPoint instead of APSInt and scale.
+void FixedPointValueToString(SmallVectorImpl<char> &Str, llvm::APSInt Val,
+ unsigned Scale);
+
+} // namespace clang
+
+#endif // LLVM_CLANG_AST_TYPE_H