diff options
Diffstat (limited to 'clang-r353983/include/llvm/Analysis/AliasAnalysis.h')
| -rw-r--r-- | clang-r353983/include/llvm/Analysis/AliasAnalysis.h | 1105 |
1 files changed, 1105 insertions, 0 deletions
diff --git a/clang-r353983/include/llvm/Analysis/AliasAnalysis.h b/clang-r353983/include/llvm/Analysis/AliasAnalysis.h new file mode 100644 index 00000000..4e55f017 --- /dev/null +++ b/clang-r353983/include/llvm/Analysis/AliasAnalysis.h @@ -0,0 +1,1105 @@ +//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines the generic AliasAnalysis interface, which is used as the +// common interface used by all clients of alias analysis information, and +// implemented by all alias analysis implementations. Mod/Ref information is +// also captured by this interface. +// +// Implementations of this interface must implement the various virtual methods, +// which automatically provides functionality for the entire suite of client +// APIs. +// +// This API identifies memory regions with the MemoryLocation class. The pointer +// component specifies the base memory address of the region. The Size specifies +// the maximum size (in address units) of the memory region, or +// MemoryLocation::UnknownSize if the size is not known. The TBAA tag +// identifies the "type" of the memory reference; see the +// TypeBasedAliasAnalysis class for details. +// +// Some non-obvious details include: +// - Pointers that point to two completely different objects in memory never +// alias, regardless of the value of the Size component. +// - NoAlias doesn't imply inequal pointers. The most obvious example of this +// is two pointers to constant memory. Even if they are equal, constant +// memory is never stored to, so there will never be any dependencies. +// In this and other situations, the pointers may be both NoAlias and +// MustAlias at the same time. The current API can only return one result, +// though this is rarely a problem in practice. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_ANALYSIS_ALIASANALYSIS_H +#define LLVM_ANALYSIS_ALIASANALYSIS_H + +#include "llvm/ADT/None.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Analysis/MemoryLocation.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/PassManager.h" +#include "llvm/Pass.h" +#include <cstdint> +#include <functional> +#include <memory> +#include <vector> + +namespace llvm { + +class AnalysisUsage; +class BasicAAResult; +class BasicBlock; +class DominatorTree; +class OrderedBasicBlock; +class Value; + +/// The possible results of an alias query. +/// +/// These results are always computed between two MemoryLocation objects as +/// a query to some alias analysis. +/// +/// Note that these are unscoped enumerations because we would like to support +/// implicitly testing a result for the existence of any possible aliasing with +/// a conversion to bool, but an "enum class" doesn't support this. The +/// canonical names from the literature are suffixed and unique anyways, and so +/// they serve as global constants in LLVM for these results. +/// +/// See docs/AliasAnalysis.html for more information on the specific meanings +/// of these values. +enum AliasResult : uint8_t { + /// The two locations do not alias at all. + /// + /// This value is arranged to convert to false, while all other values + /// convert to true. This allows a boolean context to convert the result to + /// a binary flag indicating whether there is the possibility of aliasing. + NoAlias = 0, + /// The two locations may or may not alias. This is the least precise result. + MayAlias, + /// The two locations alias, but only due to a partial overlap. + PartialAlias, + /// The two locations precisely alias each other. + MustAlias, +}; + +/// << operator for AliasResult. +raw_ostream &operator<<(raw_ostream &OS, AliasResult AR); + +/// Flags indicating whether a memory access modifies or references memory. +/// +/// This is no access at all, a modification, a reference, or both +/// a modification and a reference. These are specifically structured such that +/// they form a three bit matrix and bit-tests for 'mod' or 'ref' or 'must' +/// work with any of the possible values. +enum class ModRefInfo : uint8_t { + /// Must is provided for completeness, but no routines will return only + /// Must today. See definition of Must below. + Must = 0, + /// The access may reference the value stored in memory, + /// a mustAlias relation was found, and no mayAlias or partialAlias found. + MustRef = 1, + /// The access may modify the value stored in memory, + /// a mustAlias relation was found, and no mayAlias or partialAlias found. + MustMod = 2, + /// The access may reference, modify or both the value stored in memory, + /// a mustAlias relation was found, and no mayAlias or partialAlias found. + MustModRef = MustRef | MustMod, + /// The access neither references nor modifies the value stored in memory. + NoModRef = 4, + /// The access may reference the value stored in memory. + Ref = NoModRef | MustRef, + /// The access may modify the value stored in memory. + Mod = NoModRef | MustMod, + /// The access may reference and may modify the value stored in memory. + ModRef = Ref | Mod, + + /// About Must: + /// Must is set in a best effort manner. + /// We usually do not try our best to infer Must, instead it is merely + /// another piece of "free" information that is presented when available. + /// Must set means there was certainly a MustAlias found. For calls, + /// where multiple arguments are checked (argmemonly), this translates to + /// only MustAlias or NoAlias was found. + /// Must is not set for RAR accesses, even if the two locations must + /// alias. The reason is that two read accesses translate to an early return + /// of NoModRef. An additional alias check to set Must may be + /// expensive. Other cases may also not set Must(e.g. callCapturesBefore). + /// We refer to Must being *set* when the most significant bit is *cleared*. + /// Conversely we *clear* Must information by *setting* the Must bit to 1. +}; + +LLVM_NODISCARD inline bool isNoModRef(const ModRefInfo MRI) { + return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) == + static_cast<int>(ModRefInfo::Must); +} +LLVM_NODISCARD inline bool isModOrRefSet(const ModRefInfo MRI) { + return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef); +} +LLVM_NODISCARD inline bool isModAndRefSet(const ModRefInfo MRI) { + return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) == + static_cast<int>(ModRefInfo::MustModRef); +} +LLVM_NODISCARD inline bool isModSet(const ModRefInfo MRI) { + return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustMod); +} +LLVM_NODISCARD inline bool isRefSet(const ModRefInfo MRI) { + return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustRef); +} +LLVM_NODISCARD inline bool isMustSet(const ModRefInfo MRI) { + return !(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::NoModRef)); +} + +LLVM_NODISCARD inline ModRefInfo setMod(const ModRefInfo MRI) { + return ModRefInfo(static_cast<int>(MRI) | + static_cast<int>(ModRefInfo::MustMod)); +} +LLVM_NODISCARD inline ModRefInfo setRef(const ModRefInfo MRI) { + return ModRefInfo(static_cast<int>(MRI) | + static_cast<int>(ModRefInfo::MustRef)); +} +LLVM_NODISCARD inline ModRefInfo setMust(const ModRefInfo MRI) { + return ModRefInfo(static_cast<int>(MRI) & + static_cast<int>(ModRefInfo::MustModRef)); +} +LLVM_NODISCARD inline ModRefInfo setModAndRef(const ModRefInfo MRI) { + return ModRefInfo(static_cast<int>(MRI) | + static_cast<int>(ModRefInfo::MustModRef)); +} +LLVM_NODISCARD inline ModRefInfo clearMod(const ModRefInfo MRI) { + return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Ref)); +} +LLVM_NODISCARD inline ModRefInfo clearRef(const ModRefInfo MRI) { + return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Mod)); +} +LLVM_NODISCARD inline ModRefInfo clearMust(const ModRefInfo MRI) { + return ModRefInfo(static_cast<int>(MRI) | + static_cast<int>(ModRefInfo::NoModRef)); +} +LLVM_NODISCARD inline ModRefInfo unionModRef(const ModRefInfo MRI1, + const ModRefInfo MRI2) { + return ModRefInfo(static_cast<int>(MRI1) | static_cast<int>(MRI2)); +} +LLVM_NODISCARD inline ModRefInfo intersectModRef(const ModRefInfo MRI1, + const ModRefInfo MRI2) { + return ModRefInfo(static_cast<int>(MRI1) & static_cast<int>(MRI2)); +} + +/// The locations at which a function might access memory. +/// +/// These are primarily used in conjunction with the \c AccessKind bits to +/// describe both the nature of access and the locations of access for a +/// function call. +enum FunctionModRefLocation { + /// Base case is no access to memory. + FMRL_Nowhere = 0, + /// Access to memory via argument pointers. + FMRL_ArgumentPointees = 8, + /// Memory that is inaccessible via LLVM IR. + FMRL_InaccessibleMem = 16, + /// Access to any memory. + FMRL_Anywhere = 32 | FMRL_InaccessibleMem | FMRL_ArgumentPointees +}; + +/// Summary of how a function affects memory in the program. +/// +/// Loads from constant globals are not considered memory accesses for this +/// interface. Also, functions may freely modify stack space local to their +/// invocation without having to report it through these interfaces. +enum FunctionModRefBehavior { + /// This function does not perform any non-local loads or stores to memory. + /// + /// This property corresponds to the GCC 'const' attribute. + /// This property corresponds to the LLVM IR 'readnone' attribute. + /// This property corresponds to the IntrNoMem LLVM intrinsic flag. + FMRB_DoesNotAccessMemory = + FMRL_Nowhere | static_cast<int>(ModRefInfo::NoModRef), + + /// The only memory references in this function (if it has any) are + /// non-volatile loads from objects pointed to by its pointer-typed + /// arguments, with arbitrary offsets. + /// + /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag. + FMRB_OnlyReadsArgumentPointees = + FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::Ref), + + /// The only memory references in this function (if it has any) are + /// non-volatile loads and stores from objects pointed to by its + /// pointer-typed arguments, with arbitrary offsets. + /// + /// This property corresponds to the IntrArgMemOnly LLVM intrinsic flag. + FMRB_OnlyAccessesArgumentPointees = + FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::ModRef), + + /// The only memory references in this function (if it has any) are + /// references of memory that is otherwise inaccessible via LLVM IR. + /// + /// This property corresponds to the LLVM IR inaccessiblememonly attribute. + FMRB_OnlyAccessesInaccessibleMem = + FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::ModRef), + + /// The function may perform non-volatile loads and stores of objects + /// pointed to by its pointer-typed arguments, with arbitrary offsets, and + /// it may also perform loads and stores of memory that is otherwise + /// inaccessible via LLVM IR. + /// + /// This property corresponds to the LLVM IR + /// inaccessiblemem_or_argmemonly attribute. + FMRB_OnlyAccessesInaccessibleOrArgMem = FMRL_InaccessibleMem | + FMRL_ArgumentPointees | + static_cast<int>(ModRefInfo::ModRef), + + /// This function does not perform any non-local stores or volatile loads, + /// but may read from any memory location. + /// + /// This property corresponds to the GCC 'pure' attribute. + /// This property corresponds to the LLVM IR 'readonly' attribute. + /// This property corresponds to the IntrReadMem LLVM intrinsic flag. + FMRB_OnlyReadsMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Ref), + + // This function does not read from memory anywhere, but may write to any + // memory location. + // + // This property corresponds to the LLVM IR 'writeonly' attribute. + // This property corresponds to the IntrWriteMem LLVM intrinsic flag. + FMRB_DoesNotReadMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Mod), + + /// This indicates that the function could not be classified into one of the + /// behaviors above. + FMRB_UnknownModRefBehavior = + FMRL_Anywhere | static_cast<int>(ModRefInfo::ModRef) +}; + +// Wrapper method strips bits significant only in FunctionModRefBehavior, +// to obtain a valid ModRefInfo. The benefit of using the wrapper is that if +// ModRefInfo enum changes, the wrapper can be updated to & with the new enum +// entry with all bits set to 1. +LLVM_NODISCARD inline ModRefInfo +createModRefInfo(const FunctionModRefBehavior FMRB) { + return ModRefInfo(FMRB & static_cast<int>(ModRefInfo::ModRef)); +} + +class AAResults { +public: + // Make these results default constructable and movable. We have to spell + // these out because MSVC won't synthesize them. + AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {} + AAResults(AAResults &&Arg); + ~AAResults(); + + /// Register a specific AA result. + template <typename AAResultT> void addAAResult(AAResultT &AAResult) { + // FIXME: We should use a much lighter weight system than the usual + // polymorphic pattern because we don't own AAResult. It should + // ideally involve two pointers and no separate allocation. + AAs.emplace_back(new Model<AAResultT>(AAResult, *this)); + } + + /// Register a function analysis ID that the results aggregation depends on. + /// + /// This is used in the new pass manager to implement the invalidation logic + /// where we must invalidate the results aggregation if any of our component + /// analyses become invalid. + void addAADependencyID(AnalysisKey *ID) { AADeps.push_back(ID); } + + /// Handle invalidation events in the new pass manager. + /// + /// The aggregation is invalidated if any of the underlying analyses is + /// invalidated. + bool invalidate(Function &F, const PreservedAnalyses &PA, + FunctionAnalysisManager::Invalidator &Inv); + + //===--------------------------------------------------------------------===// + /// \name Alias Queries + /// @{ + + /// The main low level interface to the alias analysis implementation. + /// Returns an AliasResult indicating whether the two pointers are aliased to + /// each other. This is the interface that must be implemented by specific + /// alias analysis implementations. + AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB); + + /// A convenience wrapper around the primary \c alias interface. + AliasResult alias(const Value *V1, LocationSize V1Size, const Value *V2, + LocationSize V2Size) { + return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size)); + } + + /// A convenience wrapper around the primary \c alias interface. + AliasResult alias(const Value *V1, const Value *V2) { + return alias(V1, LocationSize::unknown(), V2, LocationSize::unknown()); + } + + /// A trivial helper function to check to see if the specified pointers are + /// no-alias. + bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) { + return alias(LocA, LocB) == NoAlias; + } + + /// A convenience wrapper around the \c isNoAlias helper interface. + bool isNoAlias(const Value *V1, LocationSize V1Size, const Value *V2, + LocationSize V2Size) { + return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size)); + } + + /// A convenience wrapper around the \c isNoAlias helper interface. + bool isNoAlias(const Value *V1, const Value *V2) { + return isNoAlias(MemoryLocation(V1), MemoryLocation(V2)); + } + + /// A trivial helper function to check to see if the specified pointers are + /// must-alias. + bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) { + return alias(LocA, LocB) == MustAlias; + } + + /// A convenience wrapper around the \c isMustAlias helper interface. + bool isMustAlias(const Value *V1, const Value *V2) { + return alias(V1, LocationSize::precise(1), V2, LocationSize::precise(1)) == + MustAlias; + } + + /// Checks whether the given location points to constant memory, or if + /// \p OrLocal is true whether it points to a local alloca. + bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false); + + /// A convenience wrapper around the primary \c pointsToConstantMemory + /// interface. + bool pointsToConstantMemory(const Value *P, bool OrLocal = false) { + return pointsToConstantMemory(MemoryLocation(P), OrLocal); + } + + /// @} + //===--------------------------------------------------------------------===// + /// \name Simple mod/ref information + /// @{ + + /// Get the ModRef info associated with a pointer argument of a call. The + /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note + /// that these bits do not necessarily account for the overall behavior of + /// the function, but rather only provide additional per-argument + /// information. This never sets ModRefInfo::Must. + ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx); + + /// Return the behavior of the given call site. + FunctionModRefBehavior getModRefBehavior(const CallBase *Call); + + /// Return the behavior when calling the given function. + FunctionModRefBehavior getModRefBehavior(const Function *F); + + /// Checks if the specified call is known to never read or write memory. + /// + /// Note that if the call only reads from known-constant memory, it is also + /// legal to return true. Also, calls that unwind the stack are legal for + /// this predicate. + /// + /// Many optimizations (such as CSE and LICM) can be performed on such calls + /// without worrying about aliasing properties, and many calls have this + /// property (e.g. calls to 'sin' and 'cos'). + /// + /// This property corresponds to the GCC 'const' attribute. + bool doesNotAccessMemory(const CallBase *Call) { + return getModRefBehavior(Call) == FMRB_DoesNotAccessMemory; + } + + /// Checks if the specified function is known to never read or write memory. + /// + /// Note that if the function only reads from known-constant memory, it is + /// also legal to return true. Also, function that unwind the stack are legal + /// for this predicate. + /// + /// Many optimizations (such as CSE and LICM) can be performed on such calls + /// to such functions without worrying about aliasing properties, and many + /// functions have this property (e.g. 'sin' and 'cos'). + /// + /// This property corresponds to the GCC 'const' attribute. + bool doesNotAccessMemory(const Function *F) { + return getModRefBehavior(F) == FMRB_DoesNotAccessMemory; + } + + /// Checks if the specified call is known to only read from non-volatile + /// memory (or not access memory at all). + /// + /// Calls that unwind the stack are legal for this predicate. + /// + /// This property allows many common optimizations to be performed in the + /// absence of interfering store instructions, such as CSE of strlen calls. + /// + /// This property corresponds to the GCC 'pure' attribute. + bool onlyReadsMemory(const CallBase *Call) { + return onlyReadsMemory(getModRefBehavior(Call)); + } + + /// Checks if the specified function is known to only read from non-volatile + /// memory (or not access memory at all). + /// + /// Functions that unwind the stack are legal for this predicate. + /// + /// This property allows many common optimizations to be performed in the + /// absence of interfering store instructions, such as CSE of strlen calls. + /// + /// This property corresponds to the GCC 'pure' attribute. + bool onlyReadsMemory(const Function *F) { + return onlyReadsMemory(getModRefBehavior(F)); + } + + /// Checks if functions with the specified behavior are known to only read + /// from non-volatile memory (or not access memory at all). + static bool onlyReadsMemory(FunctionModRefBehavior MRB) { + return !isModSet(createModRefInfo(MRB)); + } + + /// Checks if functions with the specified behavior are known to only write + /// memory (or not access memory at all). + static bool doesNotReadMemory(FunctionModRefBehavior MRB) { + return !isRefSet(createModRefInfo(MRB)); + } + + /// Checks if functions with the specified behavior are known to read and + /// write at most from objects pointed to by their pointer-typed arguments + /// (with arbitrary offsets). + static bool onlyAccessesArgPointees(FunctionModRefBehavior MRB) { + return !(MRB & FMRL_Anywhere & ~FMRL_ArgumentPointees); + } + + /// Checks if functions with the specified behavior are known to potentially + /// read or write from objects pointed to be their pointer-typed arguments + /// (with arbitrary offsets). + static bool doesAccessArgPointees(FunctionModRefBehavior MRB) { + return isModOrRefSet(createModRefInfo(MRB)) && + (MRB & FMRL_ArgumentPointees); + } + + /// Checks if functions with the specified behavior are known to read and + /// write at most from memory that is inaccessible from LLVM IR. + static bool onlyAccessesInaccessibleMem(FunctionModRefBehavior MRB) { + return !(MRB & FMRL_Anywhere & ~FMRL_InaccessibleMem); + } + + /// Checks if functions with the specified behavior are known to potentially + /// read or write from memory that is inaccessible from LLVM IR. + static bool doesAccessInaccessibleMem(FunctionModRefBehavior MRB) { + return isModOrRefSet(createModRefInfo(MRB)) && (MRB & FMRL_InaccessibleMem); + } + + /// Checks if functions with the specified behavior are known to read and + /// write at most from memory that is inaccessible from LLVM IR or objects + /// pointed to by their pointer-typed arguments (with arbitrary offsets). + static bool onlyAccessesInaccessibleOrArgMem(FunctionModRefBehavior MRB) { + return !(MRB & FMRL_Anywhere & + ~(FMRL_InaccessibleMem | FMRL_ArgumentPointees)); + } + + /// getModRefInfo (for call sites) - Return information about whether + /// a particular call site modifies or reads the specified memory location. + ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc); + + /// getModRefInfo (for call sites) - A convenience wrapper. + ModRefInfo getModRefInfo(const CallBase *Call, const Value *P, + LocationSize Size) { + return getModRefInfo(Call, MemoryLocation(P, Size)); + } + + /// getModRefInfo (for loads) - Return information about whether + /// a particular load modifies or reads the specified memory location. + ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc); + + /// getModRefInfo (for loads) - A convenience wrapper. + ModRefInfo getModRefInfo(const LoadInst *L, const Value *P, + LocationSize Size) { + return getModRefInfo(L, MemoryLocation(P, Size)); + } + + /// getModRefInfo (for stores) - Return information about whether + /// a particular store modifies or reads the specified memory location. + ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc); + + /// getModRefInfo (for stores) - A convenience wrapper. + ModRefInfo getModRefInfo(const StoreInst *S, const Value *P, + LocationSize Size) { + return getModRefInfo(S, MemoryLocation(P, Size)); + } + + /// getModRefInfo (for fences) - Return information about whether + /// a particular store modifies or reads the specified memory location. + ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc); + + /// getModRefInfo (for fences) - A convenience wrapper. + ModRefInfo getModRefInfo(const FenceInst *S, const Value *P, + LocationSize Size) { + return getModRefInfo(S, MemoryLocation(P, Size)); + } + + /// getModRefInfo (for cmpxchges) - Return information about whether + /// a particular cmpxchg modifies or reads the specified memory location. + ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX, + const MemoryLocation &Loc); + + /// getModRefInfo (for cmpxchges) - A convenience wrapper. + ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX, const Value *P, + LocationSize Size) { + return getModRefInfo(CX, MemoryLocation(P, Size)); + } + + /// getModRefInfo (for atomicrmws) - Return information about whether + /// a particular atomicrmw modifies or reads the specified memory location. + ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc); + + /// getModRefInfo (for atomicrmws) - A convenience wrapper. + ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const Value *P, + LocationSize Size) { + return getModRefInfo(RMW, MemoryLocation(P, Size)); + } + + /// getModRefInfo (for va_args) - Return information about whether + /// a particular va_arg modifies or reads the specified memory location. + ModRefInfo getModRefInfo(const VAArgInst *I, const MemoryLocation &Loc); + + /// getModRefInfo (for va_args) - A convenience wrapper. + ModRefInfo getModRefInfo(const VAArgInst *I, const Value *P, + LocationSize Size) { + return getModRefInfo(I, MemoryLocation(P, Size)); + } + + /// getModRefInfo (for catchpads) - Return information about whether + /// a particular catchpad modifies or reads the specified memory location. + ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc); + + /// getModRefInfo (for catchpads) - A convenience wrapper. + ModRefInfo getModRefInfo(const CatchPadInst *I, const Value *P, + LocationSize Size) { + return getModRefInfo(I, MemoryLocation(P, Size)); + } + + /// getModRefInfo (for catchrets) - Return information about whether + /// a particular catchret modifies or reads the specified memory location. + ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc); + + /// getModRefInfo (for catchrets) - A convenience wrapper. + ModRefInfo getModRefInfo(const CatchReturnInst *I, const Value *P, + LocationSize Size) { + return getModRefInfo(I, MemoryLocation(P, Size)); + } + + /// Check whether or not an instruction may read or write the optionally + /// specified memory location. + /// + /// + /// An instruction that doesn't read or write memory may be trivially LICM'd + /// for example. + /// + /// For function calls, this delegates to the alias-analysis specific + /// call-site mod-ref behavior queries. Otherwise it delegates to the specific + /// helpers above. + ModRefInfo getModRefInfo(const Instruction *I, + const Optional<MemoryLocation> &OptLoc) { + if (OptLoc == None) { + if (const auto *Call = dyn_cast<CallBase>(I)) { + return createModRefInfo(getModRefBehavior(Call)); + } + } + + const MemoryLocation &Loc = OptLoc.getValueOr(MemoryLocation()); + + switch (I->getOpcode()) { + case Instruction::VAArg: return getModRefInfo((const VAArgInst*)I, Loc); + case Instruction::Load: return getModRefInfo((const LoadInst*)I, Loc); + case Instruction::Store: return getModRefInfo((const StoreInst*)I, Loc); + case Instruction::Fence: return getModRefInfo((const FenceInst*)I, Loc); + case Instruction::AtomicCmpXchg: + return getModRefInfo((const AtomicCmpXchgInst*)I, Loc); + case Instruction::AtomicRMW: + return getModRefInfo((const AtomicRMWInst*)I, Loc); + case Instruction::Call: return getModRefInfo((const CallInst*)I, Loc); + case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc); + case Instruction::CatchPad: + return getModRefInfo((const CatchPadInst *)I, Loc); + case Instruction::CatchRet: + return getModRefInfo((const CatchReturnInst *)I, Loc); + default: + return ModRefInfo::NoModRef; + } + } + + /// A convenience wrapper for constructing the memory location. + ModRefInfo getModRefInfo(const Instruction *I, const Value *P, + LocationSize Size) { + return getModRefInfo(I, MemoryLocation(P, Size)); + } + + /// Return information about whether a call and an instruction may refer to + /// the same memory locations. + ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call); + + /// Return information about whether two call sites may refer to the same set + /// of memory locations. See the AA documentation for details: + /// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo + ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2); + + /// Return information about whether a particular call site modifies + /// or reads the specified memory location \p MemLoc before instruction \p I + /// in a BasicBlock. An ordered basic block \p OBB can be used to speed up + /// instruction ordering queries inside the BasicBlock containing \p I. + /// Early exits in callCapturesBefore may lead to ModRefInfo::Must not being + /// set. + ModRefInfo callCapturesBefore(const Instruction *I, + const MemoryLocation &MemLoc, DominatorTree *DT, + OrderedBasicBlock *OBB = nullptr); + + /// A convenience wrapper to synthesize a memory location. + ModRefInfo callCapturesBefore(const Instruction *I, const Value *P, + LocationSize Size, DominatorTree *DT, + OrderedBasicBlock *OBB = nullptr) { + return callCapturesBefore(I, MemoryLocation(P, Size), DT, OBB); + } + + /// @} + //===--------------------------------------------------------------------===// + /// \name Higher level methods for querying mod/ref information. + /// @{ + + /// Check if it is possible for execution of the specified basic block to + /// modify the location Loc. + bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc); + + /// A convenience wrapper synthesizing a memory location. + bool canBasicBlockModify(const BasicBlock &BB, const Value *P, + LocationSize Size) { + return canBasicBlockModify(BB, MemoryLocation(P, Size)); + } + + /// Check if it is possible for the execution of the specified instructions + /// to mod\ref (according to the mode) the location Loc. + /// + /// The instructions to consider are all of the instructions in the range of + /// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block. + bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2, + const MemoryLocation &Loc, + const ModRefInfo Mode); + + /// A convenience wrapper synthesizing a memory location. + bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2, + const Value *Ptr, LocationSize Size, + const ModRefInfo Mode) { + return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode); + } + +private: + class Concept; + + template <typename T> class Model; + + template <typename T> friend class AAResultBase; + + const TargetLibraryInfo &TLI; + + std::vector<std::unique_ptr<Concept>> AAs; + + std::vector<AnalysisKey *> AADeps; +}; + +/// Temporary typedef for legacy code that uses a generic \c AliasAnalysis +/// pointer or reference. +using AliasAnalysis = AAResults; + +/// A private abstract base class describing the concept of an individual alias +/// analysis implementation. +/// +/// This interface is implemented by any \c Model instantiation. It is also the +/// interface which a type used to instantiate the model must provide. +/// +/// All of these methods model methods by the same name in the \c +/// AAResults class. Only differences and specifics to how the +/// implementations are called are documented here. +class AAResults::Concept { +public: + virtual ~Concept() = 0; + + /// An update API used internally by the AAResults to provide + /// a handle back to the top level aggregation. + virtual void setAAResults(AAResults *NewAAR) = 0; + + //===--------------------------------------------------------------------===// + /// \name Alias Queries + /// @{ + + /// The main low level interface to the alias analysis implementation. + /// Returns an AliasResult indicating whether the two pointers are aliased to + /// each other. This is the interface that must be implemented by specific + /// alias analysis implementations. + virtual AliasResult alias(const MemoryLocation &LocA, + const MemoryLocation &LocB) = 0; + + /// Checks whether the given location points to constant memory, or if + /// \p OrLocal is true whether it points to a local alloca. + virtual bool pointsToConstantMemory(const MemoryLocation &Loc, + bool OrLocal) = 0; + + /// @} + //===--------------------------------------------------------------------===// + /// \name Simple mod/ref information + /// @{ + + /// Get the ModRef info associated with a pointer argument of a callsite. The + /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note + /// that these bits do not necessarily account for the overall behavior of + /// the function, but rather only provide additional per-argument + /// information. + virtual ModRefInfo getArgModRefInfo(const CallBase *Call, + unsigned ArgIdx) = 0; + + /// Return the behavior of the given call site. + virtual FunctionModRefBehavior getModRefBehavior(const CallBase *Call) = 0; + + /// Return the behavior when calling the given function. + virtual FunctionModRefBehavior getModRefBehavior(const Function *F) = 0; + + /// getModRefInfo (for call sites) - Return information about whether + /// a particular call site modifies or reads the specified memory location. + virtual ModRefInfo getModRefInfo(const CallBase *Call, + const MemoryLocation &Loc) = 0; + + /// Return information about whether two call sites may refer to the same set + /// of memory locations. See the AA documentation for details: + /// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo + virtual ModRefInfo getModRefInfo(const CallBase *Call1, + const CallBase *Call2) = 0; + + /// @} +}; + +/// A private class template which derives from \c Concept and wraps some other +/// type. +/// +/// This models the concept by directly forwarding each interface point to the +/// wrapped type which must implement a compatible interface. This provides +/// a type erased binding. +template <typename AAResultT> class AAResults::Model final : public Concept { + AAResultT &Result; + +public: + explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) { + Result.setAAResults(&AAR); + } + ~Model() override = default; + + void setAAResults(AAResults *NewAAR) override { Result.setAAResults(NewAAR); } + + AliasResult alias(const MemoryLocation &LocA, + const MemoryLocation &LocB) override { + return Result.alias(LocA, LocB); + } + + bool pointsToConstantMemory(const MemoryLocation &Loc, + bool OrLocal) override { + return Result.pointsToConstantMemory(Loc, OrLocal); + } + + ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) override { + return Result.getArgModRefInfo(Call, ArgIdx); + } + + FunctionModRefBehavior getModRefBehavior(const CallBase *Call) override { + return Result.getModRefBehavior(Call); + } + + FunctionModRefBehavior getModRefBehavior(const Function *F) override { + return Result.getModRefBehavior(F); + } + + ModRefInfo getModRefInfo(const CallBase *Call, + const MemoryLocation &Loc) override { + return Result.getModRefInfo(Call, Loc); + } + + ModRefInfo getModRefInfo(const CallBase *Call1, + const CallBase *Call2) override { + return Result.getModRefInfo(Call1, Call2); + } +}; + +/// A CRTP-driven "mixin" base class to help implement the function alias +/// analysis results concept. +/// +/// Because of the nature of many alias analysis implementations, they often +/// only implement a subset of the interface. This base class will attempt to +/// implement the remaining portions of the interface in terms of simpler forms +/// of the interface where possible, and otherwise provide conservatively +/// correct fallback implementations. +/// +/// Implementors of an alias analysis should derive from this CRTP, and then +/// override specific methods that they wish to customize. There is no need to +/// use virtual anywhere, the CRTP base class does static dispatch to the +/// derived type passed into it. +template <typename DerivedT> class AAResultBase { + // Expose some parts of the interface only to the AAResults::Model + // for wrapping. Specifically, this allows the model to call our + // setAAResults method without exposing it as a fully public API. + friend class AAResults::Model<DerivedT>; + + /// A pointer to the AAResults object that this AAResult is + /// aggregated within. May be null if not aggregated. + AAResults *AAR; + + /// Helper to dispatch calls back through the derived type. + DerivedT &derived() { return static_cast<DerivedT &>(*this); } + + /// A setter for the AAResults pointer, which is used to satisfy the + /// AAResults::Model contract. + void setAAResults(AAResults *NewAAR) { AAR = NewAAR; } + +protected: + /// This proxy class models a common pattern where we delegate to either the + /// top-level \c AAResults aggregation if one is registered, or to the + /// current result if none are registered. + class AAResultsProxy { + AAResults *AAR; + DerivedT &CurrentResult; + + public: + AAResultsProxy(AAResults *AAR, DerivedT &CurrentResult) + : AAR(AAR), CurrentResult(CurrentResult) {} + + AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) { + return AAR ? AAR->alias(LocA, LocB) : CurrentResult.alias(LocA, LocB); + } + + bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal) { + return AAR ? AAR->pointsToConstantMemory(Loc, OrLocal) + : CurrentResult.pointsToConstantMemory(Loc, OrLocal); + } + + ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) { + return AAR ? AAR->getArgModRefInfo(Call, ArgIdx) + : CurrentResult.getArgModRefInfo(Call, ArgIdx); + } + + FunctionModRefBehavior getModRefBehavior(const CallBase *Call) { + return AAR ? AAR->getModRefBehavior(Call) + : CurrentResult.getModRefBehavior(Call); + } + + FunctionModRefBehavior getModRefBehavior(const Function *F) { + return AAR ? AAR->getModRefBehavior(F) : CurrentResult.getModRefBehavior(F); + } + + ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc) { + return AAR ? AAR->getModRefInfo(Call, Loc) + : CurrentResult.getModRefInfo(Call, Loc); + } + + ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2) { + return AAR ? AAR->getModRefInfo(Call1, Call2) + : CurrentResult.getModRefInfo(Call1, Call2); + } + }; + + explicit AAResultBase() = default; + + // Provide all the copy and move constructors so that derived types aren't + // constrained. + AAResultBase(const AAResultBase &Arg) {} + AAResultBase(AAResultBase &&Arg) {} + + /// Get a proxy for the best AA result set to query at this time. + /// + /// When this result is part of a larger aggregation, this will proxy to that + /// aggregation. When this result is used in isolation, it will just delegate + /// back to the derived class's implementation. + /// + /// Note that callers of this need to take considerable care to not cause + /// performance problems when they use this routine, in the case of a large + /// number of alias analyses being aggregated, it can be expensive to walk + /// back across the chain. + AAResultsProxy getBestAAResults() { return AAResultsProxy(AAR, derived()); } + +public: + AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) { + return MayAlias; + } + + bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal) { + return false; + } + + ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) { + return ModRefInfo::ModRef; + } + + FunctionModRefBehavior getModRefBehavior(const CallBase *Call) { + return FMRB_UnknownModRefBehavior; + } + + FunctionModRefBehavior getModRefBehavior(const Function *F) { + return FMRB_UnknownModRefBehavior; + } + + ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc) { + return ModRefInfo::ModRef; + } + + ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2) { + return ModRefInfo::ModRef; + } +}; + +/// Return true if this pointer is returned by a noalias function. +bool isNoAliasCall(const Value *V); + +/// Return true if this is an argument with the noalias attribute. +bool isNoAliasArgument(const Value *V); + +/// Return true if this pointer refers to a distinct and identifiable object. +/// This returns true for: +/// Global Variables and Functions (but not Global Aliases) +/// Allocas +/// ByVal and NoAlias Arguments +/// NoAlias returns (e.g. calls to malloc) +/// +bool isIdentifiedObject(const Value *V); + +/// Return true if V is umabigously identified at the function-level. +/// Different IdentifiedFunctionLocals can't alias. +/// Further, an IdentifiedFunctionLocal can not alias with any function +/// arguments other than itself, which is not necessarily true for +/// IdentifiedObjects. +bool isIdentifiedFunctionLocal(const Value *V); + +/// A manager for alias analyses. +/// +/// This class can have analyses registered with it and when run, it will run +/// all of them and aggregate their results into single AA results interface +/// that dispatches across all of the alias analysis results available. +/// +/// Note that the order in which analyses are registered is very significant. +/// That is the order in which the results will be aggregated and queried. +/// +/// This manager effectively wraps the AnalysisManager for registering alias +/// analyses. When you register your alias analysis with this manager, it will +/// ensure the analysis itself is registered with its AnalysisManager. +class AAManager : public AnalysisInfoMixin<AAManager> { +public: + using Result = AAResults; + + /// Register a specific AA result. + template <typename AnalysisT> void registerFunctionAnalysis() { + ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>); + } + + /// Register a specific AA result. + template <typename AnalysisT> void registerModuleAnalysis() { + ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>); + } + + Result run(Function &F, FunctionAnalysisManager &AM) { + Result R(AM.getResult<TargetLibraryAnalysis>(F)); + for (auto &Getter : ResultGetters) + (*Getter)(F, AM, R); + return R; + } + +private: + friend AnalysisInfoMixin<AAManager>; + + static AnalysisKey Key; + + SmallVector<void (*)(Function &F, FunctionAnalysisManager &AM, + AAResults &AAResults), + 4> ResultGetters; + + template <typename AnalysisT> + static void getFunctionAAResultImpl(Function &F, + FunctionAnalysisManager &AM, + AAResults &AAResults) { + AAResults.addAAResult(AM.template getResult<AnalysisT>(F)); + AAResults.addAADependencyID(AnalysisT::ID()); + } + + template <typename AnalysisT> + static void getModuleAAResultImpl(Function &F, FunctionAnalysisManager &AM, + AAResults &AAResults) { + auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); + auto &MAM = MAMProxy.getManager(); + if (auto *R = MAM.template getCachedResult<AnalysisT>(*F.getParent())) { + AAResults.addAAResult(*R); + MAMProxy + .template registerOuterAnalysisInvalidation<AnalysisT, AAManager>(); + } + } +}; + +/// A wrapper pass to provide the legacy pass manager access to a suitably +/// prepared AAResults object. +class AAResultsWrapperPass : public FunctionPass { + std::unique_ptr<AAResults> AAR; + +public: + static char ID; + + AAResultsWrapperPass(); + + AAResults &getAAResults() { return *AAR; } + const AAResults &getAAResults() const { return *AAR; } + + bool runOnFunction(Function &F) override; + + void getAnalysisUsage(AnalysisUsage &AU) const override; +}; + +/// A wrapper pass for external alias analyses. This just squirrels away the +/// callback used to run any analyses and register their results. +struct ExternalAAWrapperPass : ImmutablePass { + using CallbackT = std::function<void(Pass &, Function &, AAResults &)>; + + CallbackT CB; + + static char ID; + + ExternalAAWrapperPass() : ImmutablePass(ID) { + initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry()); + } + + explicit ExternalAAWrapperPass(CallbackT CB) + : ImmutablePass(ID), CB(std::move(CB)) { + initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry()); + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesAll(); + } +}; + +FunctionPass *createAAResultsWrapperPass(); + +/// A wrapper pass around a callback which can be used to populate the +/// AAResults in the AAResultsWrapperPass from an external AA. +/// +/// The callback provided here will be used each time we prepare an AAResults +/// object, and will receive a reference to the function wrapper pass, the +/// function, and the AAResults object to populate. This should be used when +/// setting up a custom pass pipeline to inject a hook into the AA results. +ImmutablePass *createExternalAAWrapperPass( + std::function<void(Pass &, Function &, AAResults &)> Callback); + +/// A helper for the legacy pass manager to create a \c AAResults +/// object populated to the best of our ability for a particular function when +/// inside of a \c ModulePass or a \c CallGraphSCCPass. +/// +/// If a \c ModulePass or a \c CallGraphSCCPass calls \p +/// createLegacyPMAAResults, it also needs to call \p addUsedAAAnalyses in \p +/// getAnalysisUsage. +AAResults createLegacyPMAAResults(Pass &P, Function &F, BasicAAResult &BAR); + +/// A helper for the legacy pass manager to populate \p AU to add uses to make +/// sure the analyses required by \p createLegacyPMAAResults are available. +void getAAResultsAnalysisUsage(AnalysisUsage &AU); + +} // end namespace llvm + +#endif // LLVM_ANALYSIS_ALIASANALYSIS_H |
