summaryrefslogtreecommitdiff
path: root/clang-r353983/include/llvm/Analysis/RegionInfo.h
diff options
context:
space:
mode:
Diffstat (limited to 'clang-r353983/include/llvm/Analysis/RegionInfo.h')
-rw-r--r--clang-r353983/include/llvm/Analysis/RegionInfo.h1032
1 files changed, 1032 insertions, 0 deletions
diff --git a/clang-r353983/include/llvm/Analysis/RegionInfo.h b/clang-r353983/include/llvm/Analysis/RegionInfo.h
new file mode 100644
index 00000000..8bcc3e85
--- /dev/null
+++ b/clang-r353983/include/llvm/Analysis/RegionInfo.h
@@ -0,0 +1,1032 @@
+//===- RegionInfo.h - SESE region analysis ----------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Calculate a program structure tree built out of single entry single exit
+// regions.
+// The basic ideas are taken from "The Program Structure Tree - Richard Johnson,
+// David Pearson, Keshav Pingali - 1994", however enriched with ideas from "The
+// Refined Process Structure Tree - Jussi Vanhatalo, Hagen Voelyer, Jana
+// Koehler - 2009".
+// The algorithm to calculate these data structures however is completely
+// different, as it takes advantage of existing information already available
+// in (Post)dominace tree and dominance frontier passes. This leads to a simpler
+// and in practice hopefully better performing algorithm. The runtime of the
+// algorithms described in the papers above are both linear in graph size,
+// O(V+E), whereas this algorithm is not, as the dominance frontier information
+// itself is not, but in practice runtime seems to be in the order of magnitude
+// of dominance tree calculation.
+//
+// WARNING: LLVM is generally very concerned about compile time such that
+// the use of additional analysis passes in the default
+// optimization sequence is avoided as much as possible.
+// Specifically, if you do not need the RegionInfo, but dominance
+// information could be sufficient please base your work only on
+// the dominator tree. Most passes maintain it, such that using
+// it has often near zero cost. In contrast RegionInfo is by
+// default not available, is not maintained by existing
+// transformations and there is no intention to do so.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ANALYSIS_REGIONINFO_H
+#define LLVM_ANALYSIS_REGIONINFO_H
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/GraphTraits.h"
+#include "llvm/ADT/PointerIntPair.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <map>
+#include <memory>
+#include <set>
+#include <string>
+#include <type_traits>
+#include <vector>
+
+namespace llvm {
+
+class DominanceFrontier;
+class DominatorTree;
+class Loop;
+class LoopInfo;
+class PostDominatorTree;
+class Region;
+template <class RegionTr> class RegionBase;
+class RegionInfo;
+template <class RegionTr> class RegionInfoBase;
+class RegionNode;
+
+// Class to be specialized for different users of RegionInfo
+// (i.e. BasicBlocks or MachineBasicBlocks). This is only to avoid needing to
+// pass around an unreasonable number of template parameters.
+template <class FuncT_>
+struct RegionTraits {
+ // FuncT
+ // BlockT
+ // RegionT
+ // RegionNodeT
+ // RegionInfoT
+ using BrokenT = typename FuncT_::UnknownRegionTypeError;
+};
+
+template <>
+struct RegionTraits<Function> {
+ using FuncT = Function;
+ using BlockT = BasicBlock;
+ using RegionT = Region;
+ using RegionNodeT = RegionNode;
+ using RegionInfoT = RegionInfo;
+ using DomTreeT = DominatorTree;
+ using DomTreeNodeT = DomTreeNode;
+ using DomFrontierT = DominanceFrontier;
+ using PostDomTreeT = PostDominatorTree;
+ using InstT = Instruction;
+ using LoopT = Loop;
+ using LoopInfoT = LoopInfo;
+
+ static unsigned getNumSuccessors(BasicBlock *BB) {
+ return BB->getTerminator()->getNumSuccessors();
+ }
+};
+
+/// Marker class to iterate over the elements of a Region in flat mode.
+///
+/// The class is used to either iterate in Flat mode or by not using it to not
+/// iterate in Flat mode. During a Flat mode iteration all Regions are entered
+/// and the iteration returns every BasicBlock. If the Flat mode is not
+/// selected for SubRegions just one RegionNode containing the subregion is
+/// returned.
+template <class GraphType>
+class FlatIt {};
+
+/// A RegionNode represents a subregion or a BasicBlock that is part of a
+/// Region.
+template <class Tr>
+class RegionNodeBase {
+ friend class RegionBase<Tr>;
+
+public:
+ using BlockT = typename Tr::BlockT;
+ using RegionT = typename Tr::RegionT;
+
+private:
+ /// This is the entry basic block that starts this region node. If this is a
+ /// BasicBlock RegionNode, then entry is just the basic block, that this
+ /// RegionNode represents. Otherwise it is the entry of this (Sub)RegionNode.
+ ///
+ /// In the BBtoRegionNode map of the parent of this node, BB will always map
+ /// to this node no matter which kind of node this one is.
+ ///
+ /// The node can hold either a Region or a BasicBlock.
+ /// Use one bit to save, if this RegionNode is a subregion or BasicBlock
+ /// RegionNode.
+ PointerIntPair<BlockT *, 1, bool> entry;
+
+ /// The parent Region of this RegionNode.
+ /// @see getParent()
+ RegionT *parent;
+
+protected:
+ /// Create a RegionNode.
+ ///
+ /// @param Parent The parent of this RegionNode.
+ /// @param Entry The entry BasicBlock of the RegionNode. If this
+ /// RegionNode represents a BasicBlock, this is the
+ /// BasicBlock itself. If it represents a subregion, this
+ /// is the entry BasicBlock of the subregion.
+ /// @param isSubRegion If this RegionNode represents a SubRegion.
+ inline RegionNodeBase(RegionT *Parent, BlockT *Entry,
+ bool isSubRegion = false)
+ : entry(Entry, isSubRegion), parent(Parent) {}
+
+public:
+ RegionNodeBase(const RegionNodeBase &) = delete;
+ RegionNodeBase &operator=(const RegionNodeBase &) = delete;
+
+ /// Get the parent Region of this RegionNode.
+ ///
+ /// The parent Region is the Region this RegionNode belongs to. If for
+ /// example a BasicBlock is element of two Regions, there exist two
+ /// RegionNodes for this BasicBlock. Each with the getParent() function
+ /// pointing to the Region this RegionNode belongs to.
+ ///
+ /// @return Get the parent Region of this RegionNode.
+ inline RegionT *getParent() const { return parent; }
+
+ /// Get the entry BasicBlock of this RegionNode.
+ ///
+ /// If this RegionNode represents a BasicBlock this is just the BasicBlock
+ /// itself, otherwise we return the entry BasicBlock of the Subregion
+ ///
+ /// @return The entry BasicBlock of this RegionNode.
+ inline BlockT *getEntry() const { return entry.getPointer(); }
+
+ /// Get the content of this RegionNode.
+ ///
+ /// This can be either a BasicBlock or a subregion. Before calling getNodeAs()
+ /// check the type of the content with the isSubRegion() function call.
+ ///
+ /// @return The content of this RegionNode.
+ template <class T> inline T *getNodeAs() const;
+
+ /// Is this RegionNode a subregion?
+ ///
+ /// @return True if it contains a subregion. False if it contains a
+ /// BasicBlock.
+ inline bool isSubRegion() const { return entry.getInt(); }
+};
+
+//===----------------------------------------------------------------------===//
+/// A single entry single exit Region.
+///
+/// A Region is a connected subgraph of a control flow graph that has exactly
+/// two connections to the remaining graph. It can be used to analyze or
+/// optimize parts of the control flow graph.
+///
+/// A <em> simple Region </em> is connected to the remaining graph by just two
+/// edges. One edge entering the Region and another one leaving the Region.
+///
+/// An <em> extended Region </em> (or just Region) is a subgraph that can be
+/// transform into a simple Region. The transformation is done by adding
+/// BasicBlocks that merge several entry or exit edges so that after the merge
+/// just one entry and one exit edge exists.
+///
+/// The \e Entry of a Region is the first BasicBlock that is passed after
+/// entering the Region. It is an element of the Region. The entry BasicBlock
+/// dominates all BasicBlocks in the Region.
+///
+/// The \e Exit of a Region is the first BasicBlock that is passed after
+/// leaving the Region. It is not an element of the Region. The exit BasicBlock,
+/// postdominates all BasicBlocks in the Region.
+///
+/// A <em> canonical Region </em> cannot be constructed by combining smaller
+/// Regions.
+///
+/// Region A is the \e parent of Region B, if B is completely contained in A.
+///
+/// Two canonical Regions either do not intersect at all or one is
+/// the parent of the other.
+///
+/// The <em> Program Structure Tree</em> is a graph (V, E) where V is the set of
+/// Regions in the control flow graph and E is the \e parent relation of these
+/// Regions.
+///
+/// Example:
+///
+/// \verbatim
+/// A simple control flow graph, that contains two regions.
+///
+/// 1
+/// / |
+/// 2 |
+/// / \ 3
+/// 4 5 |
+/// | | |
+/// 6 7 8
+/// \ | /
+/// \ |/ Region A: 1 -> 9 {1,2,3,4,5,6,7,8}
+/// 9 Region B: 2 -> 9 {2,4,5,6,7}
+/// \endverbatim
+///
+/// You can obtain more examples by either calling
+///
+/// <tt> "opt -regions -analyze anyprogram.ll" </tt>
+/// or
+/// <tt> "opt -view-regions-only anyprogram.ll" </tt>
+///
+/// on any LLVM file you are interested in.
+///
+/// The first call returns a textual representation of the program structure
+/// tree, the second one creates a graphical representation using graphviz.
+template <class Tr>
+class RegionBase : public RegionNodeBase<Tr> {
+ friend class RegionInfoBase<Tr>;
+
+ using FuncT = typename Tr::FuncT;
+ using BlockT = typename Tr::BlockT;
+ using RegionInfoT = typename Tr::RegionInfoT;
+ using RegionT = typename Tr::RegionT;
+ using RegionNodeT = typename Tr::RegionNodeT;
+ using DomTreeT = typename Tr::DomTreeT;
+ using LoopT = typename Tr::LoopT;
+ using LoopInfoT = typename Tr::LoopInfoT;
+ using InstT = typename Tr::InstT;
+
+ using BlockTraits = GraphTraits<BlockT *>;
+ using InvBlockTraits = GraphTraits<Inverse<BlockT *>>;
+ using SuccIterTy = typename BlockTraits::ChildIteratorType;
+ using PredIterTy = typename InvBlockTraits::ChildIteratorType;
+
+ // Information necessary to manage this Region.
+ RegionInfoT *RI;
+ DomTreeT *DT;
+
+ // The exit BasicBlock of this region.
+ // (The entry BasicBlock is part of RegionNode)
+ BlockT *exit;
+
+ using RegionSet = std::vector<std::unique_ptr<RegionT>>;
+
+ // The subregions of this region.
+ RegionSet children;
+
+ using BBNodeMapT = std::map<BlockT *, std::unique_ptr<RegionNodeT>>;
+
+ // Save the BasicBlock RegionNodes that are element of this Region.
+ mutable BBNodeMapT BBNodeMap;
+
+ /// Check if a BB is in this Region. This check also works
+ /// if the region is incorrectly built. (EXPENSIVE!)
+ void verifyBBInRegion(BlockT *BB) const;
+
+ /// Walk over all the BBs of the region starting from BB and
+ /// verify that all reachable basic blocks are elements of the region.
+ /// (EXPENSIVE!)
+ void verifyWalk(BlockT *BB, std::set<BlockT *> *visitedBB) const;
+
+ /// Verify if the region and its children are valid regions (EXPENSIVE!)
+ void verifyRegionNest() const;
+
+public:
+ /// Create a new region.
+ ///
+ /// @param Entry The entry basic block of the region.
+ /// @param Exit The exit basic block of the region.
+ /// @param RI The region info object that is managing this region.
+ /// @param DT The dominator tree of the current function.
+ /// @param Parent The surrounding region or NULL if this is a top level
+ /// region.
+ RegionBase(BlockT *Entry, BlockT *Exit, RegionInfoT *RI, DomTreeT *DT,
+ RegionT *Parent = nullptr);
+
+ RegionBase(const RegionBase &) = delete;
+ RegionBase &operator=(const RegionBase &) = delete;
+
+ /// Delete the Region and all its subregions.
+ ~RegionBase();
+
+ /// Get the entry BasicBlock of the Region.
+ /// @return The entry BasicBlock of the region.
+ BlockT *getEntry() const {
+ return RegionNodeBase<Tr>::getEntry();
+ }
+
+ /// Replace the entry basic block of the region with the new basic
+ /// block.
+ ///
+ /// @param BB The new entry basic block of the region.
+ void replaceEntry(BlockT *BB);
+
+ /// Replace the exit basic block of the region with the new basic
+ /// block.
+ ///
+ /// @param BB The new exit basic block of the region.
+ void replaceExit(BlockT *BB);
+
+ /// Recursively replace the entry basic block of the region.
+ ///
+ /// This function replaces the entry basic block with a new basic block. It
+ /// also updates all child regions that have the same entry basic block as
+ /// this region.
+ ///
+ /// @param NewEntry The new entry basic block.
+ void replaceEntryRecursive(BlockT *NewEntry);
+
+ /// Recursively replace the exit basic block of the region.
+ ///
+ /// This function replaces the exit basic block with a new basic block. It
+ /// also updates all child regions that have the same exit basic block as
+ /// this region.
+ ///
+ /// @param NewExit The new exit basic block.
+ void replaceExitRecursive(BlockT *NewExit);
+
+ /// Get the exit BasicBlock of the Region.
+ /// @return The exit BasicBlock of the Region, NULL if this is the TopLevel
+ /// Region.
+ BlockT *getExit() const { return exit; }
+
+ /// Get the parent of the Region.
+ /// @return The parent of the Region or NULL if this is a top level
+ /// Region.
+ RegionT *getParent() const {
+ return RegionNodeBase<Tr>::getParent();
+ }
+
+ /// Get the RegionNode representing the current Region.
+ /// @return The RegionNode representing the current Region.
+ RegionNodeT *getNode() const {
+ return const_cast<RegionNodeT *>(
+ reinterpret_cast<const RegionNodeT *>(this));
+ }
+
+ /// Get the nesting level of this Region.
+ ///
+ /// An toplevel Region has depth 0.
+ ///
+ /// @return The depth of the region.
+ unsigned getDepth() const;
+
+ /// Check if a Region is the TopLevel region.
+ ///
+ /// The toplevel region represents the whole function.
+ bool isTopLevelRegion() const { return exit == nullptr; }
+
+ /// Return a new (non-canonical) region, that is obtained by joining
+ /// this region with its predecessors.
+ ///
+ /// @return A region also starting at getEntry(), but reaching to the next
+ /// basic block that forms with getEntry() a (non-canonical) region.
+ /// NULL if such a basic block does not exist.
+ RegionT *getExpandedRegion() const;
+
+ /// Return the first block of this region's single entry edge,
+ /// if existing.
+ ///
+ /// @return The BasicBlock starting this region's single entry edge,
+ /// else NULL.
+ BlockT *getEnteringBlock() const;
+
+ /// Return the first block of this region's single exit edge,
+ /// if existing.
+ ///
+ /// @return The BasicBlock starting this region's single exit edge,
+ /// else NULL.
+ BlockT *getExitingBlock() const;
+
+ /// Collect all blocks of this region's single exit edge, if existing.
+ ///
+ /// @return True if this region contains all the predecessors of the exit.
+ bool getExitingBlocks(SmallVectorImpl<BlockT *> &Exitings) const;
+
+ /// Is this a simple region?
+ ///
+ /// A region is simple if it has exactly one exit and one entry edge.
+ ///
+ /// @return True if the Region is simple.
+ bool isSimple() const;
+
+ /// Returns the name of the Region.
+ /// @return The Name of the Region.
+ std::string getNameStr() const;
+
+ /// Return the RegionInfo object, that belongs to this Region.
+ RegionInfoT *getRegionInfo() const { return RI; }
+
+ /// PrintStyle - Print region in difference ways.
+ enum PrintStyle { PrintNone, PrintBB, PrintRN };
+
+ /// Print the region.
+ ///
+ /// @param OS The output stream the Region is printed to.
+ /// @param printTree Print also the tree of subregions.
+ /// @param level The indentation level used for printing.
+ void print(raw_ostream &OS, bool printTree = true, unsigned level = 0,
+ PrintStyle Style = PrintNone) const;
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+ /// Print the region to stderr.
+ void dump() const;
+#endif
+
+ /// Check if the region contains a BasicBlock.
+ ///
+ /// @param BB The BasicBlock that might be contained in this Region.
+ /// @return True if the block is contained in the region otherwise false.
+ bool contains(const BlockT *BB) const;
+
+ /// Check if the region contains another region.
+ ///
+ /// @param SubRegion The region that might be contained in this Region.
+ /// @return True if SubRegion is contained in the region otherwise false.
+ bool contains(const RegionT *SubRegion) const {
+ // Toplevel Region.
+ if (!getExit())
+ return true;
+
+ return contains(SubRegion->getEntry()) &&
+ (contains(SubRegion->getExit()) ||
+ SubRegion->getExit() == getExit());
+ }
+
+ /// Check if the region contains an Instruction.
+ ///
+ /// @param Inst The Instruction that might be contained in this region.
+ /// @return True if the Instruction is contained in the region otherwise
+ /// false.
+ bool contains(const InstT *Inst) const { return contains(Inst->getParent()); }
+
+ /// Check if the region contains a loop.
+ ///
+ /// @param L The loop that might be contained in this region.
+ /// @return True if the loop is contained in the region otherwise false.
+ /// In case a NULL pointer is passed to this function the result
+ /// is false, except for the region that describes the whole function.
+ /// In that case true is returned.
+ bool contains(const LoopT *L) const;
+
+ /// Get the outermost loop in the region that contains a loop.
+ ///
+ /// Find for a Loop L the outermost loop OuterL that is a parent loop of L
+ /// and is itself contained in the region.
+ ///
+ /// @param L The loop the lookup is started.
+ /// @return The outermost loop in the region, NULL if such a loop does not
+ /// exist or if the region describes the whole function.
+ LoopT *outermostLoopInRegion(LoopT *L) const;
+
+ /// Get the outermost loop in the region that contains a basic block.
+ ///
+ /// Find for a basic block BB the outermost loop L that contains BB and is
+ /// itself contained in the region.
+ ///
+ /// @param LI A pointer to a LoopInfo analysis.
+ /// @param BB The basic block surrounded by the loop.
+ /// @return The outermost loop in the region, NULL if such a loop does not
+ /// exist or if the region describes the whole function.
+ LoopT *outermostLoopInRegion(LoopInfoT *LI, BlockT *BB) const;
+
+ /// Get the subregion that starts at a BasicBlock
+ ///
+ /// @param BB The BasicBlock the subregion should start.
+ /// @return The Subregion if available, otherwise NULL.
+ RegionT *getSubRegionNode(BlockT *BB) const;
+
+ /// Get the RegionNode for a BasicBlock
+ ///
+ /// @param BB The BasicBlock at which the RegionNode should start.
+ /// @return If available, the RegionNode that represents the subregion
+ /// starting at BB. If no subregion starts at BB, the RegionNode
+ /// representing BB.
+ RegionNodeT *getNode(BlockT *BB) const;
+
+ /// Get the BasicBlock RegionNode for a BasicBlock
+ ///
+ /// @param BB The BasicBlock for which the RegionNode is requested.
+ /// @return The RegionNode representing the BB.
+ RegionNodeT *getBBNode(BlockT *BB) const;
+
+ /// Add a new subregion to this Region.
+ ///
+ /// @param SubRegion The new subregion that will be added.
+ /// @param moveChildren Move the children of this region, that are also
+ /// contained in SubRegion into SubRegion.
+ void addSubRegion(RegionT *SubRegion, bool moveChildren = false);
+
+ /// Remove a subregion from this Region.
+ ///
+ /// The subregion is not deleted, as it will probably be inserted into another
+ /// region.
+ /// @param SubRegion The SubRegion that will be removed.
+ RegionT *removeSubRegion(RegionT *SubRegion);
+
+ /// Move all direct child nodes of this Region to another Region.
+ ///
+ /// @param To The Region the child nodes will be transferred to.
+ void transferChildrenTo(RegionT *To);
+
+ /// Verify if the region is a correct region.
+ ///
+ /// Check if this is a correctly build Region. This is an expensive check, as
+ /// the complete CFG of the Region will be walked.
+ void verifyRegion() const;
+
+ /// Clear the cache for BB RegionNodes.
+ ///
+ /// After calling this function the BasicBlock RegionNodes will be stored at
+ /// different memory locations. RegionNodes obtained before this function is
+ /// called are therefore not comparable to RegionNodes abtained afterwords.
+ void clearNodeCache();
+
+ /// @name Subregion Iterators
+ ///
+ /// These iterators iterator over all subregions of this Region.
+ //@{
+ using iterator = typename RegionSet::iterator;
+ using const_iterator = typename RegionSet::const_iterator;
+
+ iterator begin() { return children.begin(); }
+ iterator end() { return children.end(); }
+
+ const_iterator begin() const { return children.begin(); }
+ const_iterator end() const { return children.end(); }
+ //@}
+
+ /// @name BasicBlock Iterators
+ ///
+ /// These iterators iterate over all BasicBlocks that are contained in this
+ /// Region. The iterator also iterates over BasicBlocks that are elements of
+ /// a subregion of this Region. It is therefore called a flat iterator.
+ //@{
+ template <bool IsConst>
+ class block_iterator_wrapper
+ : public df_iterator<
+ typename std::conditional<IsConst, const BlockT, BlockT>::type *> {
+ using super =
+ df_iterator<
+ typename std::conditional<IsConst, const BlockT, BlockT>::type *>;
+
+ public:
+ using Self = block_iterator_wrapper<IsConst>;
+ using value_type = typename super::value_type;
+
+ // Construct the begin iterator.
+ block_iterator_wrapper(value_type Entry, value_type Exit)
+ : super(df_begin(Entry)) {
+ // Mark the exit of the region as visited, so that the children of the
+ // exit and the exit itself, i.e. the block outside the region will never
+ // be visited.
+ super::Visited.insert(Exit);
+ }
+
+ // Construct the end iterator.
+ block_iterator_wrapper() : super(df_end<value_type>((BlockT *)nullptr)) {}
+
+ /*implicit*/ block_iterator_wrapper(super I) : super(I) {}
+
+ // FIXME: Even a const_iterator returns a non-const BasicBlock pointer.
+ // This was introduced for backwards compatibility, but should
+ // be removed as soon as all users are fixed.
+ BlockT *operator*() const {
+ return const_cast<BlockT *>(super::operator*());
+ }
+ };
+
+ using block_iterator = block_iterator_wrapper<false>;
+ using const_block_iterator = block_iterator_wrapper<true>;
+
+ block_iterator block_begin() { return block_iterator(getEntry(), getExit()); }
+
+ block_iterator block_end() { return block_iterator(); }
+
+ const_block_iterator block_begin() const {
+ return const_block_iterator(getEntry(), getExit());
+ }
+ const_block_iterator block_end() const { return const_block_iterator(); }
+
+ using block_range = iterator_range<block_iterator>;
+ using const_block_range = iterator_range<const_block_iterator>;
+
+ /// Returns a range view of the basic blocks in the region.
+ inline block_range blocks() {
+ return block_range(block_begin(), block_end());
+ }
+
+ /// Returns a range view of the basic blocks in the region.
+ ///
+ /// This is the 'const' version of the range view.
+ inline const_block_range blocks() const {
+ return const_block_range(block_begin(), block_end());
+ }
+ //@}
+
+ /// @name Element Iterators
+ ///
+ /// These iterators iterate over all BasicBlock and subregion RegionNodes that
+ /// are direct children of this Region. It does not iterate over any
+ /// RegionNodes that are also element of a subregion of this Region.
+ //@{
+ using element_iterator =
+ df_iterator<RegionNodeT *, df_iterator_default_set<RegionNodeT *>, false,
+ GraphTraits<RegionNodeT *>>;
+
+ using const_element_iterator =
+ df_iterator<const RegionNodeT *,
+ df_iterator_default_set<const RegionNodeT *>, false,
+ GraphTraits<const RegionNodeT *>>;
+
+ element_iterator element_begin();
+ element_iterator element_end();
+ iterator_range<element_iterator> elements() {
+ return make_range(element_begin(), element_end());
+ }
+
+ const_element_iterator element_begin() const;
+ const_element_iterator element_end() const;
+ iterator_range<const_element_iterator> elements() const {
+ return make_range(element_begin(), element_end());
+ }
+ //@}
+};
+
+/// Print a RegionNode.
+template <class Tr>
+inline raw_ostream &operator<<(raw_ostream &OS, const RegionNodeBase<Tr> &Node);
+
+//===----------------------------------------------------------------------===//
+/// Analysis that detects all canonical Regions.
+///
+/// The RegionInfo pass detects all canonical regions in a function. The Regions
+/// are connected using the parent relation. This builds a Program Structure
+/// Tree.
+template <class Tr>
+class RegionInfoBase {
+ friend class RegionInfo;
+ friend class MachineRegionInfo;
+
+ using BlockT = typename Tr::BlockT;
+ using FuncT = typename Tr::FuncT;
+ using RegionT = typename Tr::RegionT;
+ using RegionInfoT = typename Tr::RegionInfoT;
+ using DomTreeT = typename Tr::DomTreeT;
+ using DomTreeNodeT = typename Tr::DomTreeNodeT;
+ using PostDomTreeT = typename Tr::PostDomTreeT;
+ using DomFrontierT = typename Tr::DomFrontierT;
+ using BlockTraits = GraphTraits<BlockT *>;
+ using InvBlockTraits = GraphTraits<Inverse<BlockT *>>;
+ using SuccIterTy = typename BlockTraits::ChildIteratorType;
+ using PredIterTy = typename InvBlockTraits::ChildIteratorType;
+
+ using BBtoBBMap = DenseMap<BlockT *, BlockT *>;
+ using BBtoRegionMap = DenseMap<BlockT *, RegionT *>;
+
+ RegionInfoBase();
+
+ RegionInfoBase(RegionInfoBase &&Arg)
+ : DT(std::move(Arg.DT)), PDT(std::move(Arg.PDT)), DF(std::move(Arg.DF)),
+ TopLevelRegion(std::move(Arg.TopLevelRegion)),
+ BBtoRegion(std::move(Arg.BBtoRegion)) {
+ Arg.wipe();
+ }
+
+ RegionInfoBase &operator=(RegionInfoBase &&RHS) {
+ DT = std::move(RHS.DT);
+ PDT = std::move(RHS.PDT);
+ DF = std::move(RHS.DF);
+ TopLevelRegion = std::move(RHS.TopLevelRegion);
+ BBtoRegion = std::move(RHS.BBtoRegion);
+ RHS.wipe();
+ return *this;
+ }
+
+ virtual ~RegionInfoBase();
+
+ DomTreeT *DT;
+ PostDomTreeT *PDT;
+ DomFrontierT *DF;
+
+ /// The top level region.
+ RegionT *TopLevelRegion = nullptr;
+
+ /// Map every BB to the smallest region, that contains BB.
+ BBtoRegionMap BBtoRegion;
+
+protected:
+ /// Update refences to a RegionInfoT held by the RegionT managed here
+ ///
+ /// This is a post-move helper. Regions hold references to the owning
+ /// RegionInfo object. After a move these need to be fixed.
+ template<typename TheRegionT>
+ void updateRegionTree(RegionInfoT &RI, TheRegionT *R) {
+ if (!R)
+ return;
+ R->RI = &RI;
+ for (auto &SubR : *R)
+ updateRegionTree(RI, SubR.get());
+ }
+
+private:
+ /// Wipe this region tree's state without releasing any resources.
+ ///
+ /// This is essentially a post-move helper only. It leaves the object in an
+ /// assignable and destroyable state, but otherwise invalid.
+ void wipe() {
+ DT = nullptr;
+ PDT = nullptr;
+ DF = nullptr;
+ TopLevelRegion = nullptr;
+ BBtoRegion.clear();
+ }
+
+ // Check whether the entries of BBtoRegion for the BBs of region
+ // SR are correct. Triggers an assertion if not. Calls itself recursively for
+ // subregions.
+ void verifyBBMap(const RegionT *SR) const;
+
+ // Returns true if BB is in the dominance frontier of
+ // entry, because it was inherited from exit. In the other case there is an
+ // edge going from entry to BB without passing exit.
+ bool isCommonDomFrontier(BlockT *BB, BlockT *entry, BlockT *exit) const;
+
+ // Check if entry and exit surround a valid region, based on
+ // dominance tree and dominance frontier.
+ bool isRegion(BlockT *entry, BlockT *exit) const;
+
+ // Saves a shortcut pointing from entry to exit.
+ // This function may extend this shortcut if possible.
+ void insertShortCut(BlockT *entry, BlockT *exit, BBtoBBMap *ShortCut) const;
+
+ // Returns the next BB that postdominates N, while skipping
+ // all post dominators that cannot finish a canonical region.
+ DomTreeNodeT *getNextPostDom(DomTreeNodeT *N, BBtoBBMap *ShortCut) const;
+
+ // A region is trivial, if it contains only one BB.
+ bool isTrivialRegion(BlockT *entry, BlockT *exit) const;
+
+ // Creates a single entry single exit region.
+ RegionT *createRegion(BlockT *entry, BlockT *exit);
+
+ // Detect all regions starting with bb 'entry'.
+ void findRegionsWithEntry(BlockT *entry, BBtoBBMap *ShortCut);
+
+ // Detects regions in F.
+ void scanForRegions(FuncT &F, BBtoBBMap *ShortCut);
+
+ // Get the top most parent with the same entry block.
+ RegionT *getTopMostParent(RegionT *region);
+
+ // Build the region hierarchy after all region detected.
+ void buildRegionsTree(DomTreeNodeT *N, RegionT *region);
+
+ // Update statistic about created regions.
+ virtual void updateStatistics(RegionT *R) = 0;
+
+ // Detect all regions in function and build the region tree.
+ void calculate(FuncT &F);
+
+public:
+ RegionInfoBase(const RegionInfoBase &) = delete;
+ RegionInfoBase &operator=(const RegionInfoBase &) = delete;
+
+ static bool VerifyRegionInfo;
+ static typename RegionT::PrintStyle printStyle;
+
+ void print(raw_ostream &OS) const;
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+ void dump() const;
+#endif
+
+ void releaseMemory();
+
+ /// Get the smallest region that contains a BasicBlock.
+ ///
+ /// @param BB The basic block.
+ /// @return The smallest region, that contains BB or NULL, if there is no
+ /// region containing BB.
+ RegionT *getRegionFor(BlockT *BB) const;
+
+ /// Set the smallest region that surrounds a basic block.
+ ///
+ /// @param BB The basic block surrounded by a region.
+ /// @param R The smallest region that surrounds BB.
+ void setRegionFor(BlockT *BB, RegionT *R);
+
+ /// A shortcut for getRegionFor().
+ ///
+ /// @param BB The basic block.
+ /// @return The smallest region, that contains BB or NULL, if there is no
+ /// region containing BB.
+ RegionT *operator[](BlockT *BB) const;
+
+ /// Return the exit of the maximal refined region, that starts at a
+ /// BasicBlock.
+ ///
+ /// @param BB The BasicBlock the refined region starts.
+ BlockT *getMaxRegionExit(BlockT *BB) const;
+
+ /// Find the smallest region that contains two regions.
+ ///
+ /// @param A The first region.
+ /// @param B The second region.
+ /// @return The smallest region containing A and B.
+ RegionT *getCommonRegion(RegionT *A, RegionT *B) const;
+
+ /// Find the smallest region that contains two basic blocks.
+ ///
+ /// @param A The first basic block.
+ /// @param B The second basic block.
+ /// @return The smallest region that contains A and B.
+ RegionT *getCommonRegion(BlockT *A, BlockT *B) const {
+ return getCommonRegion(getRegionFor(A), getRegionFor(B));
+ }
+
+ /// Find the smallest region that contains a set of regions.
+ ///
+ /// @param Regions A vector of regions.
+ /// @return The smallest region that contains all regions in Regions.
+ RegionT *getCommonRegion(SmallVectorImpl<RegionT *> &Regions) const;
+
+ /// Find the smallest region that contains a set of basic blocks.
+ ///
+ /// @param BBs A vector of basic blocks.
+ /// @return The smallest region that contains all basic blocks in BBS.
+ RegionT *getCommonRegion(SmallVectorImpl<BlockT *> &BBs) const;
+
+ RegionT *getTopLevelRegion() const { return TopLevelRegion; }
+
+ /// Clear the Node Cache for all Regions.
+ ///
+ /// @see Region::clearNodeCache()
+ void clearNodeCache() {
+ if (TopLevelRegion)
+ TopLevelRegion->clearNodeCache();
+ }
+
+ void verifyAnalysis() const;
+};
+
+class Region;
+
+class RegionNode : public RegionNodeBase<RegionTraits<Function>> {
+public:
+ inline RegionNode(Region *Parent, BasicBlock *Entry, bool isSubRegion = false)
+ : RegionNodeBase<RegionTraits<Function>>(Parent, Entry, isSubRegion) {}
+
+ bool operator==(const Region &RN) const {
+ return this == reinterpret_cast<const RegionNode *>(&RN);
+ }
+};
+
+class Region : public RegionBase<RegionTraits<Function>> {
+public:
+ Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo *RI, DominatorTree *DT,
+ Region *Parent = nullptr);
+ ~Region();
+
+ bool operator==(const RegionNode &RN) const {
+ return &RN == reinterpret_cast<const RegionNode *>(this);
+ }
+};
+
+class RegionInfo : public RegionInfoBase<RegionTraits<Function>> {
+public:
+ using Base = RegionInfoBase<RegionTraits<Function>>;
+
+ explicit RegionInfo();
+
+ RegionInfo(RegionInfo &&Arg) : Base(std::move(static_cast<Base &>(Arg))) {
+ updateRegionTree(*this, TopLevelRegion);
+ }
+
+ RegionInfo &operator=(RegionInfo &&RHS) {
+ Base::operator=(std::move(static_cast<Base &>(RHS)));
+ updateRegionTree(*this, TopLevelRegion);
+ return *this;
+ }
+
+ ~RegionInfo() override;
+
+ /// Handle invalidation explicitly.
+ bool invalidate(Function &F, const PreservedAnalyses &PA,
+ FunctionAnalysisManager::Invalidator &);
+
+ // updateStatistics - Update statistic about created regions.
+ void updateStatistics(Region *R) final;
+
+ void recalculate(Function &F, DominatorTree *DT, PostDominatorTree *PDT,
+ DominanceFrontier *DF);
+
+#ifndef NDEBUG
+ /// Opens a viewer to show the GraphViz visualization of the regions.
+ ///
+ /// Useful during debugging as an alternative to dump().
+ void view();
+
+ /// Opens a viewer to show the GraphViz visualization of this region
+ /// without instructions in the BasicBlocks.
+ ///
+ /// Useful during debugging as an alternative to dump().
+ void viewOnly();
+#endif
+};
+
+class RegionInfoPass : public FunctionPass {
+ RegionInfo RI;
+
+public:
+ static char ID;
+
+ explicit RegionInfoPass();
+ ~RegionInfoPass() override;
+
+ RegionInfo &getRegionInfo() { return RI; }
+
+ const RegionInfo &getRegionInfo() const { return RI; }
+
+ /// @name FunctionPass interface
+ //@{
+ bool runOnFunction(Function &F) override;
+ void releaseMemory() override;
+ void verifyAnalysis() const override;
+ void getAnalysisUsage(AnalysisUsage &AU) const override;
+ void print(raw_ostream &OS, const Module *) const override;
+ void dump() const;
+ //@}
+};
+
+/// Analysis pass that exposes the \c RegionInfo for a function.
+class RegionInfoAnalysis : public AnalysisInfoMixin<RegionInfoAnalysis> {
+ friend AnalysisInfoMixin<RegionInfoAnalysis>;
+
+ static AnalysisKey Key;
+
+public:
+ using Result = RegionInfo;
+
+ RegionInfo run(Function &F, FunctionAnalysisManager &AM);
+};
+
+/// Printer pass for the \c RegionInfo.
+class RegionInfoPrinterPass : public PassInfoMixin<RegionInfoPrinterPass> {
+ raw_ostream &OS;
+
+public:
+ explicit RegionInfoPrinterPass(raw_ostream &OS);
+
+ PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
+};
+
+/// Verifier pass for the \c RegionInfo.
+struct RegionInfoVerifierPass : PassInfoMixin<RegionInfoVerifierPass> {
+ PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
+};
+
+template <>
+template <>
+inline BasicBlock *
+RegionNodeBase<RegionTraits<Function>>::getNodeAs<BasicBlock>() const {
+ assert(!isSubRegion() && "This is not a BasicBlock RegionNode!");
+ return getEntry();
+}
+
+template <>
+template <>
+inline Region *
+RegionNodeBase<RegionTraits<Function>>::getNodeAs<Region>() const {
+ assert(isSubRegion() && "This is not a subregion RegionNode!");
+ auto Unconst = const_cast<RegionNodeBase<RegionTraits<Function>> *>(this);
+ return reinterpret_cast<Region *>(Unconst);
+}
+
+template <class Tr>
+inline raw_ostream &operator<<(raw_ostream &OS,
+ const RegionNodeBase<Tr> &Node) {
+ using BlockT = typename Tr::BlockT;
+ using RegionT = typename Tr::RegionT;
+
+ if (Node.isSubRegion())
+ return OS << Node.template getNodeAs<RegionT>()->getNameStr();
+ else
+ return OS << Node.template getNodeAs<BlockT>()->getName();
+}
+
+extern template class RegionBase<RegionTraits<Function>>;
+extern template class RegionNodeBase<RegionTraits<Function>>;
+extern template class RegionInfoBase<RegionTraits<Function>>;
+
+} // end namespace llvm
+
+#endif // LLVM_ANALYSIS_REGIONINFO_H