diff options
Diffstat (limited to 'clang-r353983/include/llvm/Analysis/TargetTransformInfoImpl.h')
| -rw-r--r-- | clang-r353983/include/llvm/Analysis/TargetTransformInfoImpl.h | 868 |
1 files changed, 868 insertions, 0 deletions
diff --git a/clang-r353983/include/llvm/Analysis/TargetTransformInfoImpl.h b/clang-r353983/include/llvm/Analysis/TargetTransformInfoImpl.h new file mode 100644 index 00000000..47059337 --- /dev/null +++ b/clang-r353983/include/llvm/Analysis/TargetTransformInfoImpl.h @@ -0,0 +1,868 @@ +//===- TargetTransformInfoImpl.h --------------------------------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +/// \file +/// This file provides helpers for the implementation of +/// a TargetTransformInfo-conforming class. +/// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H +#define LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H + +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/VectorUtils.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/Type.h" + +namespace llvm { + +/// Base class for use as a mix-in that aids implementing +/// a TargetTransformInfo-compatible class. +class TargetTransformInfoImplBase { +protected: + typedef TargetTransformInfo TTI; + + const DataLayout &DL; + + explicit TargetTransformInfoImplBase(const DataLayout &DL) : DL(DL) {} + +public: + // Provide value semantics. MSVC requires that we spell all of these out. + TargetTransformInfoImplBase(const TargetTransformInfoImplBase &Arg) + : DL(Arg.DL) {} + TargetTransformInfoImplBase(TargetTransformInfoImplBase &&Arg) : DL(Arg.DL) {} + + const DataLayout &getDataLayout() const { return DL; } + + unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) { + switch (Opcode) { + default: + // By default, just classify everything as 'basic'. + return TTI::TCC_Basic; + + case Instruction::GetElementPtr: + llvm_unreachable("Use getGEPCost for GEP operations!"); + + case Instruction::BitCast: + assert(OpTy && "Cast instructions must provide the operand type"); + if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy())) + // Identity and pointer-to-pointer casts are free. + return TTI::TCC_Free; + + // Otherwise, the default basic cost is used. + return TTI::TCC_Basic; + + case Instruction::FDiv: + case Instruction::FRem: + case Instruction::SDiv: + case Instruction::SRem: + case Instruction::UDiv: + case Instruction::URem: + return TTI::TCC_Expensive; + + case Instruction::IntToPtr: { + // An inttoptr cast is free so long as the input is a legal integer type + // which doesn't contain values outside the range of a pointer. + unsigned OpSize = OpTy->getScalarSizeInBits(); + if (DL.isLegalInteger(OpSize) && + OpSize <= DL.getPointerTypeSizeInBits(Ty)) + return TTI::TCC_Free; + + // Otherwise it's not a no-op. + return TTI::TCC_Basic; + } + case Instruction::PtrToInt: { + // A ptrtoint cast is free so long as the result is large enough to store + // the pointer, and a legal integer type. + unsigned DestSize = Ty->getScalarSizeInBits(); + if (DL.isLegalInteger(DestSize) && + DestSize >= DL.getPointerTypeSizeInBits(OpTy)) + return TTI::TCC_Free; + + // Otherwise it's not a no-op. + return TTI::TCC_Basic; + } + case Instruction::Trunc: + // trunc to a native type is free (assuming the target has compare and + // shift-right of the same width). + if (DL.isLegalInteger(DL.getTypeSizeInBits(Ty))) + return TTI::TCC_Free; + + return TTI::TCC_Basic; + } + } + + int getGEPCost(Type *PointeeType, const Value *Ptr, + ArrayRef<const Value *> Operands) { + // In the basic model, we just assume that all-constant GEPs will be folded + // into their uses via addressing modes. + for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx) + if (!isa<Constant>(Operands[Idx])) + return TTI::TCC_Basic; + + return TTI::TCC_Free; + } + + unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, + unsigned &JTSize) { + JTSize = 0; + return SI.getNumCases(); + } + + int getExtCost(const Instruction *I, const Value *Src) { + return TTI::TCC_Basic; + } + + unsigned getCallCost(FunctionType *FTy, int NumArgs) { + assert(FTy && "FunctionType must be provided to this routine."); + + // The target-independent implementation just measures the size of the + // function by approximating that each argument will take on average one + // instruction to prepare. + + if (NumArgs < 0) + // Set the argument number to the number of explicit arguments in the + // function. + NumArgs = FTy->getNumParams(); + + return TTI::TCC_Basic * (NumArgs + 1); + } + + unsigned getInliningThresholdMultiplier() { return 1; } + + unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, + ArrayRef<Type *> ParamTys) { + switch (IID) { + default: + // Intrinsics rarely (if ever) have normal argument setup constraints. + // Model them as having a basic instruction cost. + // FIXME: This is wrong for libc intrinsics. + return TTI::TCC_Basic; + + case Intrinsic::annotation: + case Intrinsic::assume: + case Intrinsic::sideeffect: + case Intrinsic::dbg_declare: + case Intrinsic::dbg_value: + case Intrinsic::dbg_label: + case Intrinsic::invariant_start: + case Intrinsic::invariant_end: + case Intrinsic::launder_invariant_group: + case Intrinsic::strip_invariant_group: + case Intrinsic::is_constant: + case Intrinsic::lifetime_start: + case Intrinsic::lifetime_end: + case Intrinsic::objectsize: + case Intrinsic::ptr_annotation: + case Intrinsic::var_annotation: + case Intrinsic::experimental_gc_result: + case Intrinsic::experimental_gc_relocate: + case Intrinsic::coro_alloc: + case Intrinsic::coro_begin: + case Intrinsic::coro_free: + case Intrinsic::coro_end: + case Intrinsic::coro_frame: + case Intrinsic::coro_size: + case Intrinsic::coro_suspend: + case Intrinsic::coro_param: + case Intrinsic::coro_subfn_addr: + // These intrinsics don't actually represent code after lowering. + return TTI::TCC_Free; + } + } + + bool hasBranchDivergence() { return false; } + + bool isSourceOfDivergence(const Value *V) { return false; } + + bool isAlwaysUniform(const Value *V) { return false; } + + unsigned getFlatAddressSpace () { + return -1; + } + + bool isLoweredToCall(const Function *F) { + assert(F && "A concrete function must be provided to this routine."); + + // FIXME: These should almost certainly not be handled here, and instead + // handled with the help of TLI or the target itself. This was largely + // ported from existing analysis heuristics here so that such refactorings + // can take place in the future. + + if (F->isIntrinsic()) + return false; + + if (F->hasLocalLinkage() || !F->hasName()) + return true; + + StringRef Name = F->getName(); + + // These will all likely lower to a single selection DAG node. + if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" || + Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" || + Name == "fmin" || Name == "fminf" || Name == "fminl" || + Name == "fmax" || Name == "fmaxf" || Name == "fmaxl" || + Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" || + Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") + return false; + + // These are all likely to be optimized into something smaller. + if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" || + Name == "exp2l" || Name == "exp2f" || Name == "floor" || + Name == "floorf" || Name == "ceil" || Name == "round" || + Name == "ffs" || Name == "ffsl" || Name == "abs" || Name == "labs" || + Name == "llabs") + return false; + + return true; + } + + void getUnrollingPreferences(Loop *, ScalarEvolution &, + TTI::UnrollingPreferences &) {} + + bool isLegalAddImmediate(int64_t Imm) { return false; } + + bool isLegalICmpImmediate(int64_t Imm) { return false; } + + bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, + bool HasBaseReg, int64_t Scale, + unsigned AddrSpace, Instruction *I = nullptr) { + // Guess that only reg and reg+reg addressing is allowed. This heuristic is + // taken from the implementation of LSR. + return !BaseGV && BaseOffset == 0 && (Scale == 0 || Scale == 1); + } + + bool isLSRCostLess(TTI::LSRCost &C1, TTI::LSRCost &C2) { + return std::tie(C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, C1.NumBaseAdds, + C1.ScaleCost, C1.ImmCost, C1.SetupCost) < + std::tie(C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, C2.NumBaseAdds, + C2.ScaleCost, C2.ImmCost, C2.SetupCost); + } + + bool canMacroFuseCmp() { return false; } + + bool shouldFavorPostInc() const { return false; } + + bool shouldFavorBackedgeIndex(const Loop *L) const { return false; } + + bool isLegalMaskedStore(Type *DataType) { return false; } + + bool isLegalMaskedLoad(Type *DataType) { return false; } + + bool isLegalMaskedScatter(Type *DataType) { return false; } + + bool isLegalMaskedGather(Type *DataType) { return false; } + + bool hasDivRemOp(Type *DataType, bool IsSigned) { return false; } + + bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) { return false; } + + bool prefersVectorizedAddressing() { return true; } + + int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, + bool HasBaseReg, int64_t Scale, unsigned AddrSpace) { + // Guess that all legal addressing mode are free. + if (isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, + Scale, AddrSpace)) + return 0; + return -1; + } + + bool LSRWithInstrQueries() { return false; } + + bool isTruncateFree(Type *Ty1, Type *Ty2) { return false; } + + bool isProfitableToHoist(Instruction *I) { return true; } + + bool useAA() { return false; } + + bool isTypeLegal(Type *Ty) { return false; } + + unsigned getJumpBufAlignment() { return 0; } + + unsigned getJumpBufSize() { return 0; } + + bool shouldBuildLookupTables() { return true; } + bool shouldBuildLookupTablesForConstant(Constant *C) { return true; } + + bool useColdCCForColdCall(Function &F) { return false; } + + unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) { + return 0; + } + + unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, + unsigned VF) { return 0; } + + bool supportsEfficientVectorElementLoadStore() { return false; } + + bool enableAggressiveInterleaving(bool LoopHasReductions) { return false; } + + const TTI::MemCmpExpansionOptions *enableMemCmpExpansion( + bool IsZeroCmp) const { + return nullptr; + } + + bool enableInterleavedAccessVectorization() { return false; } + + bool enableMaskedInterleavedAccessVectorization() { return false; } + + bool isFPVectorizationPotentiallyUnsafe() { return false; } + + bool allowsMisalignedMemoryAccesses(LLVMContext &Context, + unsigned BitWidth, + unsigned AddressSpace, + unsigned Alignment, + bool *Fast) { return false; } + + TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) { + return TTI::PSK_Software; + } + + bool haveFastSqrt(Type *Ty) { return false; } + + bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) { return true; } + + unsigned getFPOpCost(Type *Ty) { return TargetTransformInfo::TCC_Basic; } + + int getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, const APInt &Imm, + Type *Ty) { + return 0; + } + + unsigned getIntImmCost(const APInt &Imm, Type *Ty) { return TTI::TCC_Basic; } + + unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, + Type *Ty) { + return TTI::TCC_Free; + } + + unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, + Type *Ty) { + return TTI::TCC_Free; + } + + unsigned getNumberOfRegisters(bool Vector) { return 8; } + + unsigned getRegisterBitWidth(bool Vector) const { return 32; } + + unsigned getMinVectorRegisterBitWidth() { return 128; } + + bool shouldMaximizeVectorBandwidth(bool OptSize) const { return false; } + + unsigned getMinimumVF(unsigned ElemWidth) const { return 0; } + + bool + shouldConsiderAddressTypePromotion(const Instruction &I, + bool &AllowPromotionWithoutCommonHeader) { + AllowPromotionWithoutCommonHeader = false; + return false; + } + + unsigned getCacheLineSize() { return 0; } + + llvm::Optional<unsigned> getCacheSize(TargetTransformInfo::CacheLevel Level) { + switch (Level) { + case TargetTransformInfo::CacheLevel::L1D: + LLVM_FALLTHROUGH; + case TargetTransformInfo::CacheLevel::L2D: + return llvm::Optional<unsigned>(); + } + + llvm_unreachable("Unknown TargetTransformInfo::CacheLevel"); + } + + llvm::Optional<unsigned> getCacheAssociativity( + TargetTransformInfo::CacheLevel Level) { + switch (Level) { + case TargetTransformInfo::CacheLevel::L1D: + LLVM_FALLTHROUGH; + case TargetTransformInfo::CacheLevel::L2D: + return llvm::Optional<unsigned>(); + } + + llvm_unreachable("Unknown TargetTransformInfo::CacheLevel"); + } + + unsigned getPrefetchDistance() { return 0; } + + unsigned getMinPrefetchStride() { return 1; } + + unsigned getMaxPrefetchIterationsAhead() { return UINT_MAX; } + + unsigned getMaxInterleaveFactor(unsigned VF) { return 1; } + + unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, + TTI::OperandValueKind Opd1Info, + TTI::OperandValueKind Opd2Info, + TTI::OperandValueProperties Opd1PropInfo, + TTI::OperandValueProperties Opd2PropInfo, + ArrayRef<const Value *> Args) { + return 1; + } + + unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Ty, int Index, + Type *SubTp) { + return 1; + } + + unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, + const Instruction *I) { return 1; } + + unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst, + VectorType *VecTy, unsigned Index) { + return 1; + } + + unsigned getCFInstrCost(unsigned Opcode) { return 1; } + + unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, + const Instruction *I) { + return 1; + } + + unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { + return 1; + } + + unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, + unsigned AddressSpace, const Instruction *I) { + return 1; + } + + unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, + unsigned AddressSpace) { + return 1; + } + + unsigned getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr, + bool VariableMask, + unsigned Alignment) { + return 1; + } + + unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, + unsigned Factor, + ArrayRef<unsigned> Indices, + unsigned Alignment, unsigned AddressSpace, + bool UseMaskForCond = false, + bool UseMaskForGaps = false) { + return 1; + } + + unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, + ArrayRef<Type *> Tys, FastMathFlags FMF, + unsigned ScalarizationCostPassed) { + return 1; + } + unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, + ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) { + return 1; + } + + unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) { + return 1; + } + + unsigned getNumberOfParts(Type *Tp) { return 0; } + + unsigned getAddressComputationCost(Type *Tp, ScalarEvolution *, + const SCEV *) { + return 0; + } + + unsigned getArithmeticReductionCost(unsigned, Type *, bool) { return 1; } + + unsigned getMinMaxReductionCost(Type *, Type *, bool, bool) { return 1; } + + unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { return 0; } + + bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) { + return false; + } + + unsigned getAtomicMemIntrinsicMaxElementSize() const { + // Note for overrides: You must ensure for all element unordered-atomic + // memory intrinsics that all power-of-2 element sizes up to, and + // including, the return value of this method have a corresponding + // runtime lib call. These runtime lib call definitions can be found + // in RuntimeLibcalls.h + return 0; + } + + Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, + Type *ExpectedType) { + return nullptr; + } + + Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, + unsigned SrcAlign, unsigned DestAlign) const { + return Type::getInt8Ty(Context); + } + + void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut, + LLVMContext &Context, + unsigned RemainingBytes, + unsigned SrcAlign, + unsigned DestAlign) const { + for (unsigned i = 0; i != RemainingBytes; ++i) + OpsOut.push_back(Type::getInt8Ty(Context)); + } + + bool areInlineCompatible(const Function *Caller, + const Function *Callee) const { + return (Caller->getFnAttribute("target-cpu") == + Callee->getFnAttribute("target-cpu")) && + (Caller->getFnAttribute("target-features") == + Callee->getFnAttribute("target-features")); + } + + bool areFunctionArgsABICompatible(const Function *Caller, const Function *Callee, + SmallPtrSetImpl<Argument *> &Args) const { + return (Caller->getFnAttribute("target-cpu") == + Callee->getFnAttribute("target-cpu")) && + (Caller->getFnAttribute("target-features") == + Callee->getFnAttribute("target-features")); + } + + bool isIndexedLoadLegal(TTI::MemIndexedMode Mode, Type *Ty, + const DataLayout &DL) const { + return false; + } + + bool isIndexedStoreLegal(TTI::MemIndexedMode Mode, Type *Ty, + const DataLayout &DL) const { + return false; + } + + unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { return 128; } + + bool isLegalToVectorizeLoad(LoadInst *LI) const { return true; } + + bool isLegalToVectorizeStore(StoreInst *SI) const { return true; } + + bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, + unsigned Alignment, + unsigned AddrSpace) const { + return true; + } + + bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, + unsigned Alignment, + unsigned AddrSpace) const { + return true; + } + + unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, + unsigned ChainSizeInBytes, + VectorType *VecTy) const { + return VF; + } + + unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, + unsigned ChainSizeInBytes, + VectorType *VecTy) const { + return VF; + } + + bool useReductionIntrinsic(unsigned Opcode, Type *Ty, + TTI::ReductionFlags Flags) const { + return false; + } + + bool shouldExpandReduction(const IntrinsicInst *II) const { + return true; + } + +protected: + // Obtain the minimum required size to hold the value (without the sign) + // In case of a vector it returns the min required size for one element. + unsigned minRequiredElementSize(const Value* Val, bool &isSigned) { + if (isa<ConstantDataVector>(Val) || isa<ConstantVector>(Val)) { + const auto* VectorValue = cast<Constant>(Val); + + // In case of a vector need to pick the max between the min + // required size for each element + auto *VT = cast<VectorType>(Val->getType()); + + // Assume unsigned elements + isSigned = false; + + // The max required size is the total vector width divided by num + // of elements in the vector + unsigned MaxRequiredSize = VT->getBitWidth() / VT->getNumElements(); + + unsigned MinRequiredSize = 0; + for(unsigned i = 0, e = VT->getNumElements(); i < e; ++i) { + if (auto* IntElement = + dyn_cast<ConstantInt>(VectorValue->getAggregateElement(i))) { + bool signedElement = IntElement->getValue().isNegative(); + // Get the element min required size. + unsigned ElementMinRequiredSize = + IntElement->getValue().getMinSignedBits() - 1; + // In case one element is signed then all the vector is signed. + isSigned |= signedElement; + // Save the max required bit size between all the elements. + MinRequiredSize = std::max(MinRequiredSize, ElementMinRequiredSize); + } + else { + // not an int constant element + return MaxRequiredSize; + } + } + return MinRequiredSize; + } + + if (const auto* CI = dyn_cast<ConstantInt>(Val)) { + isSigned = CI->getValue().isNegative(); + return CI->getValue().getMinSignedBits() - 1; + } + + if (const auto* Cast = dyn_cast<SExtInst>(Val)) { + isSigned = true; + return Cast->getSrcTy()->getScalarSizeInBits() - 1; + } + + if (const auto* Cast = dyn_cast<ZExtInst>(Val)) { + isSigned = false; + return Cast->getSrcTy()->getScalarSizeInBits(); + } + + isSigned = false; + return Val->getType()->getScalarSizeInBits(); + } + + bool isStridedAccess(const SCEV *Ptr) { + return Ptr && isa<SCEVAddRecExpr>(Ptr); + } + + const SCEVConstant *getConstantStrideStep(ScalarEvolution *SE, + const SCEV *Ptr) { + if (!isStridedAccess(Ptr)) + return nullptr; + const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ptr); + return dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*SE)); + } + + bool isConstantStridedAccessLessThan(ScalarEvolution *SE, const SCEV *Ptr, + int64_t MergeDistance) { + const SCEVConstant *Step = getConstantStrideStep(SE, Ptr); + if (!Step) + return false; + APInt StrideVal = Step->getAPInt(); + if (StrideVal.getBitWidth() > 64) + return false; + // FIXME: Need to take absolute value for negative stride case. + return StrideVal.getSExtValue() < MergeDistance; + } +}; + +/// CRTP base class for use as a mix-in that aids implementing +/// a TargetTransformInfo-compatible class. +template <typename T> +class TargetTransformInfoImplCRTPBase : public TargetTransformInfoImplBase { +private: + typedef TargetTransformInfoImplBase BaseT; + +protected: + explicit TargetTransformInfoImplCRTPBase(const DataLayout &DL) : BaseT(DL) {} + +public: + using BaseT::getCallCost; + + unsigned getCallCost(const Function *F, int NumArgs) { + assert(F && "A concrete function must be provided to this routine."); + + if (NumArgs < 0) + // Set the argument number to the number of explicit arguments in the + // function. + NumArgs = F->arg_size(); + + if (Intrinsic::ID IID = F->getIntrinsicID()) { + FunctionType *FTy = F->getFunctionType(); + SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end()); + return static_cast<T *>(this) + ->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys); + } + + if (!static_cast<T *>(this)->isLoweredToCall(F)) + return TTI::TCC_Basic; // Give a basic cost if it will be lowered + // directly. + + return static_cast<T *>(this)->getCallCost(F->getFunctionType(), NumArgs); + } + + unsigned getCallCost(const Function *F, ArrayRef<const Value *> Arguments) { + // Simply delegate to generic handling of the call. + // FIXME: We should use instsimplify or something else to catch calls which + // will constant fold with these arguments. + return static_cast<T *>(this)->getCallCost(F, Arguments.size()); + } + + using BaseT::getGEPCost; + + int getGEPCost(Type *PointeeType, const Value *Ptr, + ArrayRef<const Value *> Operands) { + const GlobalValue *BaseGV = nullptr; + if (Ptr != nullptr) { + // TODO: will remove this when pointers have an opaque type. + assert(Ptr->getType()->getScalarType()->getPointerElementType() == + PointeeType && + "explicit pointee type doesn't match operand's pointee type"); + BaseGV = dyn_cast<GlobalValue>(Ptr->stripPointerCasts()); + } + bool HasBaseReg = (BaseGV == nullptr); + + auto PtrSizeBits = DL.getPointerTypeSizeInBits(Ptr->getType()); + APInt BaseOffset(PtrSizeBits, 0); + int64_t Scale = 0; + + auto GTI = gep_type_begin(PointeeType, Operands); + Type *TargetType = nullptr; + + // Handle the case where the GEP instruction has a single operand, + // the basis, therefore TargetType is a nullptr. + if (Operands.empty()) + return !BaseGV ? TTI::TCC_Free : TTI::TCC_Basic; + + for (auto I = Operands.begin(); I != Operands.end(); ++I, ++GTI) { + TargetType = GTI.getIndexedType(); + // We assume that the cost of Scalar GEP with constant index and the + // cost of Vector GEP with splat constant index are the same. + const ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I); + if (!ConstIdx) + if (auto Splat = getSplatValue(*I)) + ConstIdx = dyn_cast<ConstantInt>(Splat); + if (StructType *STy = GTI.getStructTypeOrNull()) { + // For structures the index is always splat or scalar constant + assert(ConstIdx && "Unexpected GEP index"); + uint64_t Field = ConstIdx->getZExtValue(); + BaseOffset += DL.getStructLayout(STy)->getElementOffset(Field); + } else { + int64_t ElementSize = DL.getTypeAllocSize(GTI.getIndexedType()); + if (ConstIdx) { + BaseOffset += + ConstIdx->getValue().sextOrTrunc(PtrSizeBits) * ElementSize; + } else { + // Needs scale register. + if (Scale != 0) + // No addressing mode takes two scale registers. + return TTI::TCC_Basic; + Scale = ElementSize; + } + } + } + + // Assumes the address space is 0 when Ptr is nullptr. + unsigned AS = + (Ptr == nullptr ? 0 : Ptr->getType()->getPointerAddressSpace()); + + if (static_cast<T *>(this)->isLegalAddressingMode( + TargetType, const_cast<GlobalValue *>(BaseGV), + BaseOffset.sextOrTrunc(64).getSExtValue(), HasBaseReg, Scale, AS)) + return TTI::TCC_Free; + return TTI::TCC_Basic; + } + + using BaseT::getIntrinsicCost; + + unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, + ArrayRef<const Value *> Arguments) { + // Delegate to the generic intrinsic handling code. This mostly provides an + // opportunity for targets to (for example) special case the cost of + // certain intrinsics based on constants used as arguments. + SmallVector<Type *, 8> ParamTys; + ParamTys.reserve(Arguments.size()); + for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx) + ParamTys.push_back(Arguments[Idx]->getType()); + return static_cast<T *>(this)->getIntrinsicCost(IID, RetTy, ParamTys); + } + + unsigned getUserCost(const User *U, ArrayRef<const Value *> Operands) { + if (isa<PHINode>(U)) + return TTI::TCC_Free; // Model all PHI nodes as free. + + // Static alloca doesn't generate target instructions. + if (auto *A = dyn_cast<AllocaInst>(U)) + if (A->isStaticAlloca()) + return TTI::TCC_Free; + + if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) { + return static_cast<T *>(this)->getGEPCost(GEP->getSourceElementType(), + GEP->getPointerOperand(), + Operands.drop_front()); + } + + if (auto CS = ImmutableCallSite(U)) { + const Function *F = CS.getCalledFunction(); + if (!F) { + // Just use the called value type. + Type *FTy = CS.getCalledValue()->getType()->getPointerElementType(); + return static_cast<T *>(this) + ->getCallCost(cast<FunctionType>(FTy), CS.arg_size()); + } + + SmallVector<const Value *, 8> Arguments(CS.arg_begin(), CS.arg_end()); + return static_cast<T *>(this)->getCallCost(F, Arguments); + } + + if (const CastInst *CI = dyn_cast<CastInst>(U)) { + // Result of a cmp instruction is often extended (to be used by other + // cmp instructions, logical or return instructions). These are usually + // nop on most sane targets. + if (isa<CmpInst>(CI->getOperand(0))) + return TTI::TCC_Free; + if (isa<SExtInst>(CI) || isa<ZExtInst>(CI) || isa<FPExtInst>(CI)) + return static_cast<T *>(this)->getExtCost(CI, Operands.back()); + } + + return static_cast<T *>(this)->getOperationCost( + Operator::getOpcode(U), U->getType(), + U->getNumOperands() == 1 ? U->getOperand(0)->getType() : nullptr); + } + + int getInstructionLatency(const Instruction *I) { + SmallVector<const Value *, 4> Operands(I->value_op_begin(), + I->value_op_end()); + if (getUserCost(I, Operands) == TTI::TCC_Free) + return 0; + + if (isa<LoadInst>(I)) + return 4; + + Type *DstTy = I->getType(); + + // Usually an intrinsic is a simple instruction. + // A real function call is much slower. + if (auto *CI = dyn_cast<CallInst>(I)) { + const Function *F = CI->getCalledFunction(); + if (!F || static_cast<T *>(this)->isLoweredToCall(F)) + return 40; + // Some intrinsics return a value and a flag, we use the value type + // to decide its latency. + if (StructType* StructTy = dyn_cast<StructType>(DstTy)) + DstTy = StructTy->getElementType(0); + // Fall through to simple instructions. + } + + if (VectorType *VectorTy = dyn_cast<VectorType>(DstTy)) + DstTy = VectorTy->getElementType(); + if (DstTy->isFloatingPointTy()) + return 3; + + return 1; + } +}; +} + +#endif |
