diff options
Diffstat (limited to 'clang-r353983/include/llvm/CodeGen/PBQP/Graph.h')
| -rw-r--r-- | clang-r353983/include/llvm/CodeGen/PBQP/Graph.h | 674 |
1 files changed, 674 insertions, 0 deletions
diff --git a/clang-r353983/include/llvm/CodeGen/PBQP/Graph.h b/clang-r353983/include/llvm/CodeGen/PBQP/Graph.h new file mode 100644 index 00000000..c2cd6dad --- /dev/null +++ b/clang-r353983/include/llvm/CodeGen/PBQP/Graph.h @@ -0,0 +1,674 @@ +//===- Graph.h - PBQP Graph -------------------------------------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// PBQP Graph class. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_CODEGEN_PBQP_GRAPH_H +#define LLVM_CODEGEN_PBQP_GRAPH_H + +#include "llvm/ADT/STLExtras.h" +#include <algorithm> +#include <cassert> +#include <iterator> +#include <limits> +#include <vector> + +namespace llvm { +namespace PBQP { + + class GraphBase { + public: + using NodeId = unsigned; + using EdgeId = unsigned; + + /// Returns a value representing an invalid (non-existent) node. + static NodeId invalidNodeId() { + return std::numeric_limits<NodeId>::max(); + } + + /// Returns a value representing an invalid (non-existent) edge. + static EdgeId invalidEdgeId() { + return std::numeric_limits<EdgeId>::max(); + } + }; + + /// PBQP Graph class. + /// Instances of this class describe PBQP problems. + /// + template <typename SolverT> + class Graph : public GraphBase { + private: + using CostAllocator = typename SolverT::CostAllocator; + + public: + using RawVector = typename SolverT::RawVector; + using RawMatrix = typename SolverT::RawMatrix; + using Vector = typename SolverT::Vector; + using Matrix = typename SolverT::Matrix; + using VectorPtr = typename CostAllocator::VectorPtr; + using MatrixPtr = typename CostAllocator::MatrixPtr; + using NodeMetadata = typename SolverT::NodeMetadata; + using EdgeMetadata = typename SolverT::EdgeMetadata; + using GraphMetadata = typename SolverT::GraphMetadata; + + private: + class NodeEntry { + public: + using AdjEdgeList = std::vector<EdgeId>; + using AdjEdgeIdx = AdjEdgeList::size_type; + using AdjEdgeItr = AdjEdgeList::const_iterator; + + NodeEntry(VectorPtr Costs) : Costs(std::move(Costs)) {} + + static AdjEdgeIdx getInvalidAdjEdgeIdx() { + return std::numeric_limits<AdjEdgeIdx>::max(); + } + + AdjEdgeIdx addAdjEdgeId(EdgeId EId) { + AdjEdgeIdx Idx = AdjEdgeIds.size(); + AdjEdgeIds.push_back(EId); + return Idx; + } + + void removeAdjEdgeId(Graph &G, NodeId ThisNId, AdjEdgeIdx Idx) { + // Swap-and-pop for fast removal. + // 1) Update the adj index of the edge currently at back(). + // 2) Move last Edge down to Idx. + // 3) pop_back() + // If Idx == size() - 1 then the setAdjEdgeIdx and swap are + // redundant, but both operations are cheap. + G.getEdge(AdjEdgeIds.back()).setAdjEdgeIdx(ThisNId, Idx); + AdjEdgeIds[Idx] = AdjEdgeIds.back(); + AdjEdgeIds.pop_back(); + } + + const AdjEdgeList& getAdjEdgeIds() const { return AdjEdgeIds; } + + VectorPtr Costs; + NodeMetadata Metadata; + + private: + AdjEdgeList AdjEdgeIds; + }; + + class EdgeEntry { + public: + EdgeEntry(NodeId N1Id, NodeId N2Id, MatrixPtr Costs) + : Costs(std::move(Costs)) { + NIds[0] = N1Id; + NIds[1] = N2Id; + ThisEdgeAdjIdxs[0] = NodeEntry::getInvalidAdjEdgeIdx(); + ThisEdgeAdjIdxs[1] = NodeEntry::getInvalidAdjEdgeIdx(); + } + + void connectToN(Graph &G, EdgeId ThisEdgeId, unsigned NIdx) { + assert(ThisEdgeAdjIdxs[NIdx] == NodeEntry::getInvalidAdjEdgeIdx() && + "Edge already connected to NIds[NIdx]."); + NodeEntry &N = G.getNode(NIds[NIdx]); + ThisEdgeAdjIdxs[NIdx] = N.addAdjEdgeId(ThisEdgeId); + } + + void connect(Graph &G, EdgeId ThisEdgeId) { + connectToN(G, ThisEdgeId, 0); + connectToN(G, ThisEdgeId, 1); + } + + void setAdjEdgeIdx(NodeId NId, typename NodeEntry::AdjEdgeIdx NewIdx) { + if (NId == NIds[0]) + ThisEdgeAdjIdxs[0] = NewIdx; + else { + assert(NId == NIds[1] && "Edge not connected to NId"); + ThisEdgeAdjIdxs[1] = NewIdx; + } + } + + void disconnectFromN(Graph &G, unsigned NIdx) { + assert(ThisEdgeAdjIdxs[NIdx] != NodeEntry::getInvalidAdjEdgeIdx() && + "Edge not connected to NIds[NIdx]."); + NodeEntry &N = G.getNode(NIds[NIdx]); + N.removeAdjEdgeId(G, NIds[NIdx], ThisEdgeAdjIdxs[NIdx]); + ThisEdgeAdjIdxs[NIdx] = NodeEntry::getInvalidAdjEdgeIdx(); + } + + void disconnectFrom(Graph &G, NodeId NId) { + if (NId == NIds[0]) + disconnectFromN(G, 0); + else { + assert(NId == NIds[1] && "Edge does not connect NId"); + disconnectFromN(G, 1); + } + } + + NodeId getN1Id() const { return NIds[0]; } + NodeId getN2Id() const { return NIds[1]; } + + MatrixPtr Costs; + EdgeMetadata Metadata; + + private: + NodeId NIds[2]; + typename NodeEntry::AdjEdgeIdx ThisEdgeAdjIdxs[2]; + }; + + // ----- MEMBERS ----- + + GraphMetadata Metadata; + CostAllocator CostAlloc; + SolverT *Solver = nullptr; + + using NodeVector = std::vector<NodeEntry>; + using FreeNodeVector = std::vector<NodeId>; + NodeVector Nodes; + FreeNodeVector FreeNodeIds; + + using EdgeVector = std::vector<EdgeEntry>; + using FreeEdgeVector = std::vector<EdgeId>; + EdgeVector Edges; + FreeEdgeVector FreeEdgeIds; + + Graph(const Graph &Other) {} + + // ----- INTERNAL METHODS ----- + + NodeEntry &getNode(NodeId NId) { + assert(NId < Nodes.size() && "Out of bound NodeId"); + return Nodes[NId]; + } + const NodeEntry &getNode(NodeId NId) const { + assert(NId < Nodes.size() && "Out of bound NodeId"); + return Nodes[NId]; + } + + EdgeEntry& getEdge(EdgeId EId) { return Edges[EId]; } + const EdgeEntry& getEdge(EdgeId EId) const { return Edges[EId]; } + + NodeId addConstructedNode(NodeEntry N) { + NodeId NId = 0; + if (!FreeNodeIds.empty()) { + NId = FreeNodeIds.back(); + FreeNodeIds.pop_back(); + Nodes[NId] = std::move(N); + } else { + NId = Nodes.size(); + Nodes.push_back(std::move(N)); + } + return NId; + } + + EdgeId addConstructedEdge(EdgeEntry E) { + assert(findEdge(E.getN1Id(), E.getN2Id()) == invalidEdgeId() && + "Attempt to add duplicate edge."); + EdgeId EId = 0; + if (!FreeEdgeIds.empty()) { + EId = FreeEdgeIds.back(); + FreeEdgeIds.pop_back(); + Edges[EId] = std::move(E); + } else { + EId = Edges.size(); + Edges.push_back(std::move(E)); + } + + EdgeEntry &NE = getEdge(EId); + + // Add the edge to the adjacency sets of its nodes. + NE.connect(*this, EId); + return EId; + } + + void operator=(const Graph &Other) {} + + public: + using AdjEdgeItr = typename NodeEntry::AdjEdgeItr; + + class NodeItr { + public: + using iterator_category = std::forward_iterator_tag; + using value_type = NodeId; + using difference_type = int; + using pointer = NodeId *; + using reference = NodeId &; + + NodeItr(NodeId CurNId, const Graph &G) + : CurNId(CurNId), EndNId(G.Nodes.size()), FreeNodeIds(G.FreeNodeIds) { + this->CurNId = findNextInUse(CurNId); // Move to first in-use node id + } + + bool operator==(const NodeItr &O) const { return CurNId == O.CurNId; } + bool operator!=(const NodeItr &O) const { return !(*this == O); } + NodeItr& operator++() { CurNId = findNextInUse(++CurNId); return *this; } + NodeId operator*() const { return CurNId; } + + private: + NodeId findNextInUse(NodeId NId) const { + while (NId < EndNId && is_contained(FreeNodeIds, NId)) { + ++NId; + } + return NId; + } + + NodeId CurNId, EndNId; + const FreeNodeVector &FreeNodeIds; + }; + + class EdgeItr { + public: + EdgeItr(EdgeId CurEId, const Graph &G) + : CurEId(CurEId), EndEId(G.Edges.size()), FreeEdgeIds(G.FreeEdgeIds) { + this->CurEId = findNextInUse(CurEId); // Move to first in-use edge id + } + + bool operator==(const EdgeItr &O) const { return CurEId == O.CurEId; } + bool operator!=(const EdgeItr &O) const { return !(*this == O); } + EdgeItr& operator++() { CurEId = findNextInUse(++CurEId); return *this; } + EdgeId operator*() const { return CurEId; } + + private: + EdgeId findNextInUse(EdgeId EId) const { + while (EId < EndEId && is_contained(FreeEdgeIds, EId)) { + ++EId; + } + return EId; + } + + EdgeId CurEId, EndEId; + const FreeEdgeVector &FreeEdgeIds; + }; + + class NodeIdSet { + public: + NodeIdSet(const Graph &G) : G(G) {} + + NodeItr begin() const { return NodeItr(0, G); } + NodeItr end() const { return NodeItr(G.Nodes.size(), G); } + + bool empty() const { return G.Nodes.empty(); } + + typename NodeVector::size_type size() const { + return G.Nodes.size() - G.FreeNodeIds.size(); + } + + private: + const Graph& G; + }; + + class EdgeIdSet { + public: + EdgeIdSet(const Graph &G) : G(G) {} + + EdgeItr begin() const { return EdgeItr(0, G); } + EdgeItr end() const { return EdgeItr(G.Edges.size(), G); } + + bool empty() const { return G.Edges.empty(); } + + typename NodeVector::size_type size() const { + return G.Edges.size() - G.FreeEdgeIds.size(); + } + + private: + const Graph& G; + }; + + class AdjEdgeIdSet { + public: + AdjEdgeIdSet(const NodeEntry &NE) : NE(NE) {} + + typename NodeEntry::AdjEdgeItr begin() const { + return NE.getAdjEdgeIds().begin(); + } + + typename NodeEntry::AdjEdgeItr end() const { + return NE.getAdjEdgeIds().end(); + } + + bool empty() const { return NE.getAdjEdgeIds().empty(); } + + typename NodeEntry::AdjEdgeList::size_type size() const { + return NE.getAdjEdgeIds().size(); + } + + private: + const NodeEntry &NE; + }; + + /// Construct an empty PBQP graph. + Graph() = default; + + /// Construct an empty PBQP graph with the given graph metadata. + Graph(GraphMetadata Metadata) : Metadata(std::move(Metadata)) {} + + /// Get a reference to the graph metadata. + GraphMetadata& getMetadata() { return Metadata; } + + /// Get a const-reference to the graph metadata. + const GraphMetadata& getMetadata() const { return Metadata; } + + /// Lock this graph to the given solver instance in preparation + /// for running the solver. This method will call solver.handleAddNode for + /// each node in the graph, and handleAddEdge for each edge, to give the + /// solver an opportunity to set up any requried metadata. + void setSolver(SolverT &S) { + assert(!Solver && "Solver already set. Call unsetSolver()."); + Solver = &S; + for (auto NId : nodeIds()) + Solver->handleAddNode(NId); + for (auto EId : edgeIds()) + Solver->handleAddEdge(EId); + } + + /// Release from solver instance. + void unsetSolver() { + assert(Solver && "Solver not set."); + Solver = nullptr; + } + + /// Add a node with the given costs. + /// @param Costs Cost vector for the new node. + /// @return Node iterator for the added node. + template <typename OtherVectorT> + NodeId addNode(OtherVectorT Costs) { + // Get cost vector from the problem domain + VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs)); + NodeId NId = addConstructedNode(NodeEntry(AllocatedCosts)); + if (Solver) + Solver->handleAddNode(NId); + return NId; + } + + /// Add a node bypassing the cost allocator. + /// @param Costs Cost vector ptr for the new node (must be convertible to + /// VectorPtr). + /// @return Node iterator for the added node. + /// + /// This method allows for fast addition of a node whose costs don't need + /// to be passed through the cost allocator. The most common use case for + /// this is when duplicating costs from an existing node (when using a + /// pooling allocator). These have already been uniqued, so we can avoid + /// re-constructing and re-uniquing them by attaching them directly to the + /// new node. + template <typename OtherVectorPtrT> + NodeId addNodeBypassingCostAllocator(OtherVectorPtrT Costs) { + NodeId NId = addConstructedNode(NodeEntry(Costs)); + if (Solver) + Solver->handleAddNode(NId); + return NId; + } + + /// Add an edge between the given nodes with the given costs. + /// @param N1Id First node. + /// @param N2Id Second node. + /// @param Costs Cost matrix for new edge. + /// @return Edge iterator for the added edge. + template <typename OtherVectorT> + EdgeId addEdge(NodeId N1Id, NodeId N2Id, OtherVectorT Costs) { + assert(getNodeCosts(N1Id).getLength() == Costs.getRows() && + getNodeCosts(N2Id).getLength() == Costs.getCols() && + "Matrix dimensions mismatch."); + // Get cost matrix from the problem domain. + MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs)); + EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, AllocatedCosts)); + if (Solver) + Solver->handleAddEdge(EId); + return EId; + } + + /// Add an edge bypassing the cost allocator. + /// @param N1Id First node. + /// @param N2Id Second node. + /// @param Costs Cost matrix for new edge. + /// @return Edge iterator for the added edge. + /// + /// This method allows for fast addition of an edge whose costs don't need + /// to be passed through the cost allocator. The most common use case for + /// this is when duplicating costs from an existing edge (when using a + /// pooling allocator). These have already been uniqued, so we can avoid + /// re-constructing and re-uniquing them by attaching them directly to the + /// new edge. + template <typename OtherMatrixPtrT> + NodeId addEdgeBypassingCostAllocator(NodeId N1Id, NodeId N2Id, + OtherMatrixPtrT Costs) { + assert(getNodeCosts(N1Id).getLength() == Costs->getRows() && + getNodeCosts(N2Id).getLength() == Costs->getCols() && + "Matrix dimensions mismatch."); + // Get cost matrix from the problem domain. + EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, Costs)); + if (Solver) + Solver->handleAddEdge(EId); + return EId; + } + + /// Returns true if the graph is empty. + bool empty() const { return NodeIdSet(*this).empty(); } + + NodeIdSet nodeIds() const { return NodeIdSet(*this); } + EdgeIdSet edgeIds() const { return EdgeIdSet(*this); } + + AdjEdgeIdSet adjEdgeIds(NodeId NId) { return AdjEdgeIdSet(getNode(NId)); } + + /// Get the number of nodes in the graph. + /// @return Number of nodes in the graph. + unsigned getNumNodes() const { return NodeIdSet(*this).size(); } + + /// Get the number of edges in the graph. + /// @return Number of edges in the graph. + unsigned getNumEdges() const { return EdgeIdSet(*this).size(); } + + /// Set a node's cost vector. + /// @param NId Node to update. + /// @param Costs New costs to set. + template <typename OtherVectorT> + void setNodeCosts(NodeId NId, OtherVectorT Costs) { + VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs)); + if (Solver) + Solver->handleSetNodeCosts(NId, *AllocatedCosts); + getNode(NId).Costs = AllocatedCosts; + } + + /// Get a VectorPtr to a node's cost vector. Rarely useful - use + /// getNodeCosts where possible. + /// @param NId Node id. + /// @return VectorPtr to node cost vector. + /// + /// This method is primarily useful for duplicating costs quickly by + /// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer + /// getNodeCosts when dealing with node cost values. + const VectorPtr& getNodeCostsPtr(NodeId NId) const { + return getNode(NId).Costs; + } + + /// Get a node's cost vector. + /// @param NId Node id. + /// @return Node cost vector. + const Vector& getNodeCosts(NodeId NId) const { + return *getNodeCostsPtr(NId); + } + + NodeMetadata& getNodeMetadata(NodeId NId) { + return getNode(NId).Metadata; + } + + const NodeMetadata& getNodeMetadata(NodeId NId) const { + return getNode(NId).Metadata; + } + + typename NodeEntry::AdjEdgeList::size_type getNodeDegree(NodeId NId) const { + return getNode(NId).getAdjEdgeIds().size(); + } + + /// Update an edge's cost matrix. + /// @param EId Edge id. + /// @param Costs New cost matrix. + template <typename OtherMatrixT> + void updateEdgeCosts(EdgeId EId, OtherMatrixT Costs) { + MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs)); + if (Solver) + Solver->handleUpdateCosts(EId, *AllocatedCosts); + getEdge(EId).Costs = AllocatedCosts; + } + + /// Get a MatrixPtr to a node's cost matrix. Rarely useful - use + /// getEdgeCosts where possible. + /// @param EId Edge id. + /// @return MatrixPtr to edge cost matrix. + /// + /// This method is primarily useful for duplicating costs quickly by + /// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer + /// getEdgeCosts when dealing with edge cost values. + const MatrixPtr& getEdgeCostsPtr(EdgeId EId) const { + return getEdge(EId).Costs; + } + + /// Get an edge's cost matrix. + /// @param EId Edge id. + /// @return Edge cost matrix. + const Matrix& getEdgeCosts(EdgeId EId) const { + return *getEdge(EId).Costs; + } + + EdgeMetadata& getEdgeMetadata(EdgeId EId) { + return getEdge(EId).Metadata; + } + + const EdgeMetadata& getEdgeMetadata(EdgeId EId) const { + return getEdge(EId).Metadata; + } + + /// Get the first node connected to this edge. + /// @param EId Edge id. + /// @return The first node connected to the given edge. + NodeId getEdgeNode1Id(EdgeId EId) const { + return getEdge(EId).getN1Id(); + } + + /// Get the second node connected to this edge. + /// @param EId Edge id. + /// @return The second node connected to the given edge. + NodeId getEdgeNode2Id(EdgeId EId) const { + return getEdge(EId).getN2Id(); + } + + /// Get the "other" node connected to this edge. + /// @param EId Edge id. + /// @param NId Node id for the "given" node. + /// @return The iterator for the "other" node connected to this edge. + NodeId getEdgeOtherNodeId(EdgeId EId, NodeId NId) { + EdgeEntry &E = getEdge(EId); + if (E.getN1Id() == NId) { + return E.getN2Id(); + } // else + return E.getN1Id(); + } + + /// Get the edge connecting two nodes. + /// @param N1Id First node id. + /// @param N2Id Second node id. + /// @return An id for edge (N1Id, N2Id) if such an edge exists, + /// otherwise returns an invalid edge id. + EdgeId findEdge(NodeId N1Id, NodeId N2Id) { + for (auto AEId : adjEdgeIds(N1Id)) { + if ((getEdgeNode1Id(AEId) == N2Id) || + (getEdgeNode2Id(AEId) == N2Id)) { + return AEId; + } + } + return invalidEdgeId(); + } + + /// Remove a node from the graph. + /// @param NId Node id. + void removeNode(NodeId NId) { + if (Solver) + Solver->handleRemoveNode(NId); + NodeEntry &N = getNode(NId); + // TODO: Can this be for-each'd? + for (AdjEdgeItr AEItr = N.adjEdgesBegin(), + AEEnd = N.adjEdgesEnd(); + AEItr != AEEnd;) { + EdgeId EId = *AEItr; + ++AEItr; + removeEdge(EId); + } + FreeNodeIds.push_back(NId); + } + + /// Disconnect an edge from the given node. + /// + /// Removes the given edge from the adjacency list of the given node. + /// This operation leaves the edge in an 'asymmetric' state: It will no + /// longer appear in an iteration over the given node's (NId's) edges, but + /// will appear in an iteration over the 'other', unnamed node's edges. + /// + /// This does not correspond to any normal graph operation, but exists to + /// support efficient PBQP graph-reduction based solvers. It is used to + /// 'effectively' remove the unnamed node from the graph while the solver + /// is performing the reduction. The solver will later call reconnectNode + /// to restore the edge in the named node's adjacency list. + /// + /// Since the degree of a node is the number of connected edges, + /// disconnecting an edge from a node 'u' will cause the degree of 'u' to + /// drop by 1. + /// + /// A disconnected edge WILL still appear in an iteration over the graph + /// edges. + /// + /// A disconnected edge should not be removed from the graph, it should be + /// reconnected first. + /// + /// A disconnected edge can be reconnected by calling the reconnectEdge + /// method. + void disconnectEdge(EdgeId EId, NodeId NId) { + if (Solver) + Solver->handleDisconnectEdge(EId, NId); + + EdgeEntry &E = getEdge(EId); + E.disconnectFrom(*this, NId); + } + + /// Convenience method to disconnect all neighbours from the given + /// node. + void disconnectAllNeighborsFromNode(NodeId NId) { + for (auto AEId : adjEdgeIds(NId)) + disconnectEdge(AEId, getEdgeOtherNodeId(AEId, NId)); + } + + /// Re-attach an edge to its nodes. + /// + /// Adds an edge that had been previously disconnected back into the + /// adjacency set of the nodes that the edge connects. + void reconnectEdge(EdgeId EId, NodeId NId) { + EdgeEntry &E = getEdge(EId); + E.connectTo(*this, EId, NId); + if (Solver) + Solver->handleReconnectEdge(EId, NId); + } + + /// Remove an edge from the graph. + /// @param EId Edge id. + void removeEdge(EdgeId EId) { + if (Solver) + Solver->handleRemoveEdge(EId); + EdgeEntry &E = getEdge(EId); + E.disconnect(); + FreeEdgeIds.push_back(EId); + Edges[EId].invalidate(); + } + + /// Remove all nodes and edges from the graph. + void clear() { + Nodes.clear(); + FreeNodeIds.clear(); + Edges.clear(); + FreeEdgeIds.clear(); + } + }; + +} // end namespace PBQP +} // end namespace llvm + +#endif // LLVM_CODEGEN_PBQP_GRAPH_HPP |
