diff options
Diffstat (limited to 'clang-r353983/include/llvm/IR/Constants.h')
| -rw-r--r-- | clang-r353983/include/llvm/IR/Constants.h | 1324 |
1 files changed, 1324 insertions, 0 deletions
diff --git a/clang-r353983/include/llvm/IR/Constants.h b/clang-r353983/include/llvm/IR/Constants.h new file mode 100644 index 00000000..ca56e8b9 --- /dev/null +++ b/clang-r353983/include/llvm/IR/Constants.h @@ -0,0 +1,1324 @@ +//===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +/// @file +/// This file contains the declarations for the subclasses of Constant, +/// which represent the different flavors of constant values that live in LLVM. +/// Note that Constants are immutable (once created they never change) and are +/// fully shared by structural equivalence. This means that two structurally +/// equivalent constants will always have the same address. Constants are +/// created on demand as needed and never deleted: thus clients don't have to +/// worry about the lifetime of the objects. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_IR_CONSTANTS_H +#define LLVM_IR_CONSTANTS_H + +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/OperandTraits.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/ErrorHandling.h" +#include <cassert> +#include <cstddef> +#include <cstdint> + +namespace llvm { + +class ArrayType; +class IntegerType; +class PointerType; +class SequentialType; +class StructType; +class VectorType; +template <class ConstantClass> struct ConstantAggrKeyType; + +/// Base class for constants with no operands. +/// +/// These constants have no operands; they represent their data directly. +/// Since they can be in use by unrelated modules (and are never based on +/// GlobalValues), it never makes sense to RAUW them. +class ConstantData : public Constant { + friend class Constant; + + Value *handleOperandChangeImpl(Value *From, Value *To) { + llvm_unreachable("Constant data does not have operands!"); + } + +protected: + explicit ConstantData(Type *Ty, ValueTy VT) : Constant(Ty, VT, nullptr, 0) {} + + void *operator new(size_t s) { return User::operator new(s, 0); } + +public: + ConstantData(const ConstantData &) = delete; + + /// Methods to support type inquiry through isa, cast, and dyn_cast. + static bool classof(const Value *V) { + return V->getValueID() >= ConstantDataFirstVal && + V->getValueID() <= ConstantDataLastVal; + } +}; + +//===----------------------------------------------------------------------===// +/// This is the shared class of boolean and integer constants. This class +/// represents both boolean and integral constants. +/// Class for constant integers. +class ConstantInt final : public ConstantData { + friend class Constant; + + APInt Val; + + ConstantInt(IntegerType *Ty, const APInt& V); + + void destroyConstantImpl(); + +public: + ConstantInt(const ConstantInt &) = delete; + + static ConstantInt *getTrue(LLVMContext &Context); + static ConstantInt *getFalse(LLVMContext &Context); + static Constant *getTrue(Type *Ty); + static Constant *getFalse(Type *Ty); + + /// If Ty is a vector type, return a Constant with a splat of the given + /// value. Otherwise return a ConstantInt for the given value. + static Constant *get(Type *Ty, uint64_t V, bool isSigned = false); + + /// Return a ConstantInt with the specified integer value for the specified + /// type. If the type is wider than 64 bits, the value will be zero-extended + /// to fit the type, unless isSigned is true, in which case the value will + /// be interpreted as a 64-bit signed integer and sign-extended to fit + /// the type. + /// Get a ConstantInt for a specific value. + static ConstantInt *get(IntegerType *Ty, uint64_t V, + bool isSigned = false); + + /// Return a ConstantInt with the specified value for the specified type. The + /// value V will be canonicalized to a an unsigned APInt. Accessing it with + /// either getSExtValue() or getZExtValue() will yield a correctly sized and + /// signed value for the type Ty. + /// Get a ConstantInt for a specific signed value. + static ConstantInt *getSigned(IntegerType *Ty, int64_t V); + static Constant *getSigned(Type *Ty, int64_t V); + + /// Return a ConstantInt with the specified value and an implied Type. The + /// type is the integer type that corresponds to the bit width of the value. + static ConstantInt *get(LLVMContext &Context, const APInt &V); + + /// Return a ConstantInt constructed from the string strStart with the given + /// radix. + static ConstantInt *get(IntegerType *Ty, StringRef Str, + uint8_t radix); + + /// If Ty is a vector type, return a Constant with a splat of the given + /// value. Otherwise return a ConstantInt for the given value. + static Constant *get(Type* Ty, const APInt& V); + + /// Return the constant as an APInt value reference. This allows clients to + /// obtain a full-precision copy of the value. + /// Return the constant's value. + inline const APInt &getValue() const { + return Val; + } + + /// getBitWidth - Return the bitwidth of this constant. + unsigned getBitWidth() const { return Val.getBitWidth(); } + + /// Return the constant as a 64-bit unsigned integer value after it + /// has been zero extended as appropriate for the type of this constant. Note + /// that this method can assert if the value does not fit in 64 bits. + /// Return the zero extended value. + inline uint64_t getZExtValue() const { + return Val.getZExtValue(); + } + + /// Return the constant as a 64-bit integer value after it has been sign + /// extended as appropriate for the type of this constant. Note that + /// this method can assert if the value does not fit in 64 bits. + /// Return the sign extended value. + inline int64_t getSExtValue() const { + return Val.getSExtValue(); + } + + /// A helper method that can be used to determine if the constant contained + /// within is equal to a constant. This only works for very small values, + /// because this is all that can be represented with all types. + /// Determine if this constant's value is same as an unsigned char. + bool equalsInt(uint64_t V) const { + return Val == V; + } + + /// getType - Specialize the getType() method to always return an IntegerType, + /// which reduces the amount of casting needed in parts of the compiler. + /// + inline IntegerType *getType() const { + return cast<IntegerType>(Value::getType()); + } + + /// This static method returns true if the type Ty is big enough to + /// represent the value V. This can be used to avoid having the get method + /// assert when V is larger than Ty can represent. Note that there are two + /// versions of this method, one for unsigned and one for signed integers. + /// Although ConstantInt canonicalizes everything to an unsigned integer, + /// the signed version avoids callers having to convert a signed quantity + /// to the appropriate unsigned type before calling the method. + /// @returns true if V is a valid value for type Ty + /// Determine if the value is in range for the given type. + static bool isValueValidForType(Type *Ty, uint64_t V); + static bool isValueValidForType(Type *Ty, int64_t V); + + bool isNegative() const { return Val.isNegative(); } + + /// This is just a convenience method to make client code smaller for a + /// common code. It also correctly performs the comparison without the + /// potential for an assertion from getZExtValue(). + bool isZero() const { + return Val.isNullValue(); + } + + /// This is just a convenience method to make client code smaller for a + /// common case. It also correctly performs the comparison without the + /// potential for an assertion from getZExtValue(). + /// Determine if the value is one. + bool isOne() const { + return Val.isOneValue(); + } + + /// This function will return true iff every bit in this constant is set + /// to true. + /// @returns true iff this constant's bits are all set to true. + /// Determine if the value is all ones. + bool isMinusOne() const { + return Val.isAllOnesValue(); + } + + /// This function will return true iff this constant represents the largest + /// value that may be represented by the constant's type. + /// @returns true iff this is the largest value that may be represented + /// by this type. + /// Determine if the value is maximal. + bool isMaxValue(bool isSigned) const { + if (isSigned) + return Val.isMaxSignedValue(); + else + return Val.isMaxValue(); + } + + /// This function will return true iff this constant represents the smallest + /// value that may be represented by this constant's type. + /// @returns true if this is the smallest value that may be represented by + /// this type. + /// Determine if the value is minimal. + bool isMinValue(bool isSigned) const { + if (isSigned) + return Val.isMinSignedValue(); + else + return Val.isMinValue(); + } + + /// This function will return true iff this constant represents a value with + /// active bits bigger than 64 bits or a value greater than the given uint64_t + /// value. + /// @returns true iff this constant is greater or equal to the given number. + /// Determine if the value is greater or equal to the given number. + bool uge(uint64_t Num) const { + return Val.uge(Num); + } + + /// getLimitedValue - If the value is smaller than the specified limit, + /// return it, otherwise return the limit value. This causes the value + /// to saturate to the limit. + /// @returns the min of the value of the constant and the specified value + /// Get the constant's value with a saturation limit + uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const { + return Val.getLimitedValue(Limit); + } + + /// Methods to support type inquiry through isa, cast, and dyn_cast. + static bool classof(const Value *V) { + return V->getValueID() == ConstantIntVal; + } +}; + +//===----------------------------------------------------------------------===// +/// ConstantFP - Floating Point Values [float, double] +/// +class ConstantFP final : public ConstantData { + friend class Constant; + + APFloat Val; + + ConstantFP(Type *Ty, const APFloat& V); + + void destroyConstantImpl(); + +public: + ConstantFP(const ConstantFP &) = delete; + + /// Floating point negation must be implemented with f(x) = -0.0 - x. This + /// method returns the negative zero constant for floating point or vector + /// floating point types; for all other types, it returns the null value. + static Constant *getZeroValueForNegation(Type *Ty); + + /// This returns a ConstantFP, or a vector containing a splat of a ConstantFP, + /// for the specified value in the specified type. This should only be used + /// for simple constant values like 2.0/1.0 etc, that are known-valid both as + /// host double and as the target format. + static Constant *get(Type* Ty, double V); + + /// If Ty is a vector type, return a Constant with a splat of the given + /// value. Otherwise return a ConstantFP for the given value. + static Constant *get(Type *Ty, const APFloat &V); + + static Constant *get(Type* Ty, StringRef Str); + static ConstantFP *get(LLVMContext &Context, const APFloat &V); + static Constant *getNaN(Type *Ty, bool Negative = false, uint64_t Payload = 0); + static Constant *getQNaN(Type *Ty, bool Negative = false, + APInt *Payload = nullptr); + static Constant *getSNaN(Type *Ty, bool Negative = false, + APInt *Payload = nullptr); + static Constant *getNegativeZero(Type *Ty); + static Constant *getInfinity(Type *Ty, bool Negative = false); + + /// Return true if Ty is big enough to represent V. + static bool isValueValidForType(Type *Ty, const APFloat &V); + inline const APFloat &getValueAPF() const { return Val; } + + /// Return true if the value is positive or negative zero. + bool isZero() const { return Val.isZero(); } + + /// Return true if the sign bit is set. + bool isNegative() const { return Val.isNegative(); } + + /// Return true if the value is infinity + bool isInfinity() const { return Val.isInfinity(); } + + /// Return true if the value is a NaN. + bool isNaN() const { return Val.isNaN(); } + + /// We don't rely on operator== working on double values, as it returns true + /// for things that are clearly not equal, like -0.0 and 0.0. + /// As such, this method can be used to do an exact bit-for-bit comparison of + /// two floating point values. The version with a double operand is retained + /// because it's so convenient to write isExactlyValue(2.0), but please use + /// it only for simple constants. + bool isExactlyValue(const APFloat &V) const; + + bool isExactlyValue(double V) const { + bool ignored; + APFloat FV(V); + FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored); + return isExactlyValue(FV); + } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Value *V) { + return V->getValueID() == ConstantFPVal; + } +}; + +//===----------------------------------------------------------------------===// +/// All zero aggregate value +/// +class ConstantAggregateZero final : public ConstantData { + friend class Constant; + + explicit ConstantAggregateZero(Type *Ty) + : ConstantData(Ty, ConstantAggregateZeroVal) {} + + void destroyConstantImpl(); + +public: + ConstantAggregateZero(const ConstantAggregateZero &) = delete; + + static ConstantAggregateZero *get(Type *Ty); + + /// If this CAZ has array or vector type, return a zero with the right element + /// type. + Constant *getSequentialElement() const; + + /// If this CAZ has struct type, return a zero with the right element type for + /// the specified element. + Constant *getStructElement(unsigned Elt) const; + + /// Return a zero of the right value for the specified GEP index if we can, + /// otherwise return null (e.g. if C is a ConstantExpr). + Constant *getElementValue(Constant *C) const; + + /// Return a zero of the right value for the specified GEP index. + Constant *getElementValue(unsigned Idx) const; + + /// Return the number of elements in the array, vector, or struct. + unsigned getNumElements() const; + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + /// + static bool classof(const Value *V) { + return V->getValueID() == ConstantAggregateZeroVal; + } +}; + +/// Base class for aggregate constants (with operands). +/// +/// These constants are aggregates of other constants, which are stored as +/// operands. +/// +/// Subclasses are \a ConstantStruct, \a ConstantArray, and \a +/// ConstantVector. +/// +/// \note Some subclasses of \a ConstantData are semantically aggregates -- +/// such as \a ConstantDataArray -- but are not subclasses of this because they +/// use operands. +class ConstantAggregate : public Constant { +protected: + ConstantAggregate(CompositeType *T, ValueTy VT, ArrayRef<Constant *> V); + +public: + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Value *V) { + return V->getValueID() >= ConstantAggregateFirstVal && + V->getValueID() <= ConstantAggregateLastVal; + } +}; + +template <> +struct OperandTraits<ConstantAggregate> + : public VariadicOperandTraits<ConstantAggregate> {}; + +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantAggregate, Constant) + +//===----------------------------------------------------------------------===// +/// ConstantArray - Constant Array Declarations +/// +class ConstantArray final : public ConstantAggregate { + friend struct ConstantAggrKeyType<ConstantArray>; + friend class Constant; + + ConstantArray(ArrayType *T, ArrayRef<Constant *> Val); + + void destroyConstantImpl(); + Value *handleOperandChangeImpl(Value *From, Value *To); + +public: + // ConstantArray accessors + static Constant *get(ArrayType *T, ArrayRef<Constant*> V); + +private: + static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V); + +public: + /// Specialize the getType() method to always return an ArrayType, + /// which reduces the amount of casting needed in parts of the compiler. + inline ArrayType *getType() const { + return cast<ArrayType>(Value::getType()); + } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Value *V) { + return V->getValueID() == ConstantArrayVal; + } +}; + +//===----------------------------------------------------------------------===// +// Constant Struct Declarations +// +class ConstantStruct final : public ConstantAggregate { + friend struct ConstantAggrKeyType<ConstantStruct>; + friend class Constant; + + ConstantStruct(StructType *T, ArrayRef<Constant *> Val); + + void destroyConstantImpl(); + Value *handleOperandChangeImpl(Value *From, Value *To); + +public: + // ConstantStruct accessors + static Constant *get(StructType *T, ArrayRef<Constant*> V); + + template <typename... Csts> + static typename std::enable_if<are_base_of<Constant, Csts...>::value, + Constant *>::type + get(StructType *T, Csts *... Vs) { + SmallVector<Constant *, 8> Values({Vs...}); + return get(T, Values); + } + + /// Return an anonymous struct that has the specified elements. + /// If the struct is possibly empty, then you must specify a context. + static Constant *getAnon(ArrayRef<Constant*> V, bool Packed = false) { + return get(getTypeForElements(V, Packed), V); + } + static Constant *getAnon(LLVMContext &Ctx, + ArrayRef<Constant*> V, bool Packed = false) { + return get(getTypeForElements(Ctx, V, Packed), V); + } + + /// Return an anonymous struct type to use for a constant with the specified + /// set of elements. The list must not be empty. + static StructType *getTypeForElements(ArrayRef<Constant*> V, + bool Packed = false); + /// This version of the method allows an empty list. + static StructType *getTypeForElements(LLVMContext &Ctx, + ArrayRef<Constant*> V, + bool Packed = false); + + /// Specialization - reduce amount of casting. + inline StructType *getType() const { + return cast<StructType>(Value::getType()); + } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Value *V) { + return V->getValueID() == ConstantStructVal; + } +}; + +//===----------------------------------------------------------------------===// +/// Constant Vector Declarations +/// +class ConstantVector final : public ConstantAggregate { + friend struct ConstantAggrKeyType<ConstantVector>; + friend class Constant; + + ConstantVector(VectorType *T, ArrayRef<Constant *> Val); + + void destroyConstantImpl(); + Value *handleOperandChangeImpl(Value *From, Value *To); + +public: + // ConstantVector accessors + static Constant *get(ArrayRef<Constant*> V); + +private: + static Constant *getImpl(ArrayRef<Constant *> V); + +public: + /// Return a ConstantVector with the specified constant in each element. + static Constant *getSplat(unsigned NumElts, Constant *Elt); + + /// Specialize the getType() method to always return a VectorType, + /// which reduces the amount of casting needed in parts of the compiler. + inline VectorType *getType() const { + return cast<VectorType>(Value::getType()); + } + + /// If this is a splat constant, meaning that all of the elements have the + /// same value, return that value. Otherwise return NULL. + Constant *getSplatValue() const; + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Value *V) { + return V->getValueID() == ConstantVectorVal; + } +}; + +//===----------------------------------------------------------------------===// +/// A constant pointer value that points to null +/// +class ConstantPointerNull final : public ConstantData { + friend class Constant; + + explicit ConstantPointerNull(PointerType *T) + : ConstantData(T, Value::ConstantPointerNullVal) {} + + void destroyConstantImpl(); + +public: + ConstantPointerNull(const ConstantPointerNull &) = delete; + + /// Static factory methods - Return objects of the specified value + static ConstantPointerNull *get(PointerType *T); + + /// Specialize the getType() method to always return an PointerType, + /// which reduces the amount of casting needed in parts of the compiler. + inline PointerType *getType() const { + return cast<PointerType>(Value::getType()); + } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Value *V) { + return V->getValueID() == ConstantPointerNullVal; + } +}; + +//===----------------------------------------------------------------------===// +/// ConstantDataSequential - A vector or array constant whose element type is a +/// simple 1/2/4/8-byte integer or float/double, and whose elements are just +/// simple data values (i.e. ConstantInt/ConstantFP). This Constant node has no +/// operands because it stores all of the elements of the constant as densely +/// packed data, instead of as Value*'s. +/// +/// This is the common base class of ConstantDataArray and ConstantDataVector. +/// +class ConstantDataSequential : public ConstantData { + friend class LLVMContextImpl; + friend class Constant; + + /// A pointer to the bytes underlying this constant (which is owned by the + /// uniquing StringMap). + const char *DataElements; + + /// This forms a link list of ConstantDataSequential nodes that have + /// the same value but different type. For example, 0,0,0,1 could be a 4 + /// element array of i8, or a 1-element array of i32. They'll both end up in + /// the same StringMap bucket, linked up. + ConstantDataSequential *Next; + + void destroyConstantImpl(); + +protected: + explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data) + : ConstantData(ty, VT), DataElements(Data), Next(nullptr) {} + ~ConstantDataSequential() { delete Next; } + + static Constant *getImpl(StringRef Bytes, Type *Ty); + +public: + ConstantDataSequential(const ConstantDataSequential &) = delete; + + /// Return true if a ConstantDataSequential can be formed with a vector or + /// array of the specified element type. + /// ConstantDataArray only works with normal float and int types that are + /// stored densely in memory, not with things like i42 or x86_f80. + static bool isElementTypeCompatible(Type *Ty); + + /// If this is a sequential container of integers (of any size), return the + /// specified element in the low bits of a uint64_t. + uint64_t getElementAsInteger(unsigned i) const; + + /// If this is a sequential container of integers (of any size), return the + /// specified element as an APInt. + APInt getElementAsAPInt(unsigned i) const; + + /// If this is a sequential container of floating point type, return the + /// specified element as an APFloat. + APFloat getElementAsAPFloat(unsigned i) const; + + /// If this is an sequential container of floats, return the specified element + /// as a float. + float getElementAsFloat(unsigned i) const; + + /// If this is an sequential container of doubles, return the specified + /// element as a double. + double getElementAsDouble(unsigned i) const; + + /// Return a Constant for a specified index's element. + /// Note that this has to compute a new constant to return, so it isn't as + /// efficient as getElementAsInteger/Float/Double. + Constant *getElementAsConstant(unsigned i) const; + + /// Specialize the getType() method to always return a SequentialType, which + /// reduces the amount of casting needed in parts of the compiler. + inline SequentialType *getType() const { + return cast<SequentialType>(Value::getType()); + } + + /// Return the element type of the array/vector. + Type *getElementType() const; + + /// Return the number of elements in the array or vector. + unsigned getNumElements() const; + + /// Return the size (in bytes) of each element in the array/vector. + /// The size of the elements is known to be a multiple of one byte. + uint64_t getElementByteSize() const; + + /// This method returns true if this is an array of \p CharSize integers. + bool isString(unsigned CharSize = 8) const; + + /// This method returns true if the array "isString", ends with a null byte, + /// and does not contains any other null bytes. + bool isCString() const; + + /// If this array is isString(), then this method returns the array as a + /// StringRef. Otherwise, it asserts out. + StringRef getAsString() const { + assert(isString() && "Not a string"); + return getRawDataValues(); + } + + /// If this array is isCString(), then this method returns the array (without + /// the trailing null byte) as a StringRef. Otherwise, it asserts out. + StringRef getAsCString() const { + assert(isCString() && "Isn't a C string"); + StringRef Str = getAsString(); + return Str.substr(0, Str.size()-1); + } + + /// Return the raw, underlying, bytes of this data. Note that this is an + /// extremely tricky thing to work with, as it exposes the host endianness of + /// the data elements. + StringRef getRawDataValues() const; + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Value *V) { + return V->getValueID() == ConstantDataArrayVal || + V->getValueID() == ConstantDataVectorVal; + } + +private: + const char *getElementPointer(unsigned Elt) const; +}; + +//===----------------------------------------------------------------------===// +/// An array constant whose element type is a simple 1/2/4/8-byte integer or +/// float/double, and whose elements are just simple data values +/// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it +/// stores all of the elements of the constant as densely packed data, instead +/// of as Value*'s. +class ConstantDataArray final : public ConstantDataSequential { + friend class ConstantDataSequential; + + explicit ConstantDataArray(Type *ty, const char *Data) + : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {} + +public: + ConstantDataArray(const ConstantDataArray &) = delete; + + /// get() constructor - Return a constant with array type with an element + /// count and element type matching the ArrayRef passed in. Note that this + /// can return a ConstantAggregateZero object. + template <typename ElementTy> + static Constant *get(LLVMContext &Context, ArrayRef<ElementTy> Elts) { + const char *Data = reinterpret_cast<const char *>(Elts.data()); + return getRaw(StringRef(Data, Elts.size() * sizeof(ElementTy)), Elts.size(), + Type::getScalarTy<ElementTy>(Context)); + } + + /// get() constructor - ArrayTy needs to be compatible with + /// ArrayRef<ElementTy>. Calls get(LLVMContext, ArrayRef<ElementTy>). + template <typename ArrayTy> + static Constant *get(LLVMContext &Context, ArrayTy &Elts) { + return ConstantDataArray::get(Context, makeArrayRef(Elts)); + } + + /// get() constructor - Return a constant with array type with an element + /// count and element type matching the NumElements and ElementTy parameters + /// passed in. Note that this can return a ConstantAggregateZero object. + /// ElementTy needs to be one of i8/i16/i32/i64/float/double. Data is the + /// buffer containing the elements. Be careful to make sure Data uses the + /// right endianness, the buffer will be used as-is. + static Constant *getRaw(StringRef Data, uint64_t NumElements, Type *ElementTy) { + Type *Ty = ArrayType::get(ElementTy, NumElements); + return getImpl(Data, Ty); + } + + /// getFP() constructors - Return a constant with array type with an element + /// count and element type of float with precision matching the number of + /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits, + /// double for 64bits) Note that this can return a ConstantAggregateZero + /// object. + static Constant *getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts); + static Constant *getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts); + static Constant *getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts); + + /// This method constructs a CDS and initializes it with a text string. + /// The default behavior (AddNull==true) causes a null terminator to + /// be placed at the end of the array (increasing the length of the string by + /// one more than the StringRef would normally indicate. Pass AddNull=false + /// to disable this behavior. + static Constant *getString(LLVMContext &Context, StringRef Initializer, + bool AddNull = true); + + /// Specialize the getType() method to always return an ArrayType, + /// which reduces the amount of casting needed in parts of the compiler. + inline ArrayType *getType() const { + return cast<ArrayType>(Value::getType()); + } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Value *V) { + return V->getValueID() == ConstantDataArrayVal; + } +}; + +//===----------------------------------------------------------------------===// +/// A vector constant whose element type is a simple 1/2/4/8-byte integer or +/// float/double, and whose elements are just simple data values +/// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it +/// stores all of the elements of the constant as densely packed data, instead +/// of as Value*'s. +class ConstantDataVector final : public ConstantDataSequential { + friend class ConstantDataSequential; + + explicit ConstantDataVector(Type *ty, const char *Data) + : ConstantDataSequential(ty, ConstantDataVectorVal, Data) {} + +public: + ConstantDataVector(const ConstantDataVector &) = delete; + + /// get() constructors - Return a constant with vector type with an element + /// count and element type matching the ArrayRef passed in. Note that this + /// can return a ConstantAggregateZero object. + static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts); + static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts); + static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts); + static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts); + static Constant *get(LLVMContext &Context, ArrayRef<float> Elts); + static Constant *get(LLVMContext &Context, ArrayRef<double> Elts); + + /// getFP() constructors - Return a constant with vector type with an element + /// count and element type of float with the precision matching the number of + /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits, + /// double for 64bits) Note that this can return a ConstantAggregateZero + /// object. + static Constant *getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts); + static Constant *getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts); + static Constant *getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts); + + /// Return a ConstantVector with the specified constant in each element. + /// The specified constant has to be a of a compatible type (i8/i16/ + /// i32/i64/float/double) and must be a ConstantFP or ConstantInt. + static Constant *getSplat(unsigned NumElts, Constant *Elt); + + /// Returns true if this is a splat constant, meaning that all elements have + /// the same value. + bool isSplat() const; + + /// If this is a splat constant, meaning that all of the elements have the + /// same value, return that value. Otherwise return NULL. + Constant *getSplatValue() const; + + /// Specialize the getType() method to always return a VectorType, + /// which reduces the amount of casting needed in parts of the compiler. + inline VectorType *getType() const { + return cast<VectorType>(Value::getType()); + } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Value *V) { + return V->getValueID() == ConstantDataVectorVal; + } +}; + +//===----------------------------------------------------------------------===// +/// A constant token which is empty +/// +class ConstantTokenNone final : public ConstantData { + friend class Constant; + + explicit ConstantTokenNone(LLVMContext &Context) + : ConstantData(Type::getTokenTy(Context), ConstantTokenNoneVal) {} + + void destroyConstantImpl(); + +public: + ConstantTokenNone(const ConstantTokenNone &) = delete; + + /// Return the ConstantTokenNone. + static ConstantTokenNone *get(LLVMContext &Context); + + /// Methods to support type inquiry through isa, cast, and dyn_cast. + static bool classof(const Value *V) { + return V->getValueID() == ConstantTokenNoneVal; + } +}; + +/// The address of a basic block. +/// +class BlockAddress final : public Constant { + friend class Constant; + + BlockAddress(Function *F, BasicBlock *BB); + + void *operator new(size_t s) { return User::operator new(s, 2); } + + void destroyConstantImpl(); + Value *handleOperandChangeImpl(Value *From, Value *To); + +public: + /// Return a BlockAddress for the specified function and basic block. + static BlockAddress *get(Function *F, BasicBlock *BB); + + /// Return a BlockAddress for the specified basic block. The basic + /// block must be embedded into a function. + static BlockAddress *get(BasicBlock *BB); + + /// Lookup an existing \c BlockAddress constant for the given BasicBlock. + /// + /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress. + static BlockAddress *lookup(const BasicBlock *BB); + + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); + + Function *getFunction() const { return (Function*)Op<0>().get(); } + BasicBlock *getBasicBlock() const { return (BasicBlock*)Op<1>().get(); } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Value *V) { + return V->getValueID() == BlockAddressVal; + } +}; + +template <> +struct OperandTraits<BlockAddress> : + public FixedNumOperandTraits<BlockAddress, 2> { +}; + +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value) + +//===----------------------------------------------------------------------===// +/// A constant value that is initialized with an expression using +/// other constant values. +/// +/// This class uses the standard Instruction opcodes to define the various +/// constant expressions. The Opcode field for the ConstantExpr class is +/// maintained in the Value::SubclassData field. +class ConstantExpr : public Constant { + friend struct ConstantExprKeyType; + friend class Constant; + + void destroyConstantImpl(); + Value *handleOperandChangeImpl(Value *From, Value *To); + +protected: + ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps) + : Constant(ty, ConstantExprVal, Ops, NumOps) { + // Operation type (an Instruction opcode) is stored as the SubclassData. + setValueSubclassData(Opcode); + } + +public: + // Static methods to construct a ConstantExpr of different kinds. Note that + // these methods may return a object that is not an instance of the + // ConstantExpr class, because they will attempt to fold the constant + // expression into something simpler if possible. + + /// getAlignOf constant expr - computes the alignment of a type in a target + /// independent way (Note: the return type is an i64). + static Constant *getAlignOf(Type *Ty); + + /// getSizeOf constant expr - computes the (alloc) size of a type (in + /// address-units, not bits) in a target independent way (Note: the return + /// type is an i64). + /// + static Constant *getSizeOf(Type *Ty); + + /// getOffsetOf constant expr - computes the offset of a struct field in a + /// target independent way (Note: the return type is an i64). + /// + static Constant *getOffsetOf(StructType *STy, unsigned FieldNo); + + /// getOffsetOf constant expr - This is a generalized form of getOffsetOf, + /// which supports any aggregate type, and any Constant index. + /// + static Constant *getOffsetOf(Type *Ty, Constant *FieldNo); + + static Constant *getNeg(Constant *C, bool HasNUW = false, bool HasNSW =false); + static Constant *getFNeg(Constant *C); + static Constant *getNot(Constant *C); + static Constant *getAdd(Constant *C1, Constant *C2, + bool HasNUW = false, bool HasNSW = false); + static Constant *getFAdd(Constant *C1, Constant *C2); + static Constant *getSub(Constant *C1, Constant *C2, + bool HasNUW = false, bool HasNSW = false); + static Constant *getFSub(Constant *C1, Constant *C2); + static Constant *getMul(Constant *C1, Constant *C2, + bool HasNUW = false, bool HasNSW = false); + static Constant *getFMul(Constant *C1, Constant *C2); + static Constant *getUDiv(Constant *C1, Constant *C2, bool isExact = false); + static Constant *getSDiv(Constant *C1, Constant *C2, bool isExact = false); + static Constant *getFDiv(Constant *C1, Constant *C2); + static Constant *getURem(Constant *C1, Constant *C2); + static Constant *getSRem(Constant *C1, Constant *C2); + static Constant *getFRem(Constant *C1, Constant *C2); + static Constant *getAnd(Constant *C1, Constant *C2); + static Constant *getOr(Constant *C1, Constant *C2); + static Constant *getXor(Constant *C1, Constant *C2); + static Constant *getShl(Constant *C1, Constant *C2, + bool HasNUW = false, bool HasNSW = false); + static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false); + static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false); + static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false); + static Constant *getSExt(Constant *C, Type *Ty, bool OnlyIfReduced = false); + static Constant *getZExt(Constant *C, Type *Ty, bool OnlyIfReduced = false); + static Constant *getFPTrunc(Constant *C, Type *Ty, + bool OnlyIfReduced = false); + static Constant *getFPExtend(Constant *C, Type *Ty, + bool OnlyIfReduced = false); + static Constant *getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false); + static Constant *getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false); + static Constant *getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced = false); + static Constant *getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced = false); + static Constant *getPtrToInt(Constant *C, Type *Ty, + bool OnlyIfReduced = false); + static Constant *getIntToPtr(Constant *C, Type *Ty, + bool OnlyIfReduced = false); + static Constant *getBitCast(Constant *C, Type *Ty, + bool OnlyIfReduced = false); + static Constant *getAddrSpaceCast(Constant *C, Type *Ty, + bool OnlyIfReduced = false); + + static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); } + static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); } + + static Constant *getNSWAdd(Constant *C1, Constant *C2) { + return getAdd(C1, C2, false, true); + } + + static Constant *getNUWAdd(Constant *C1, Constant *C2) { + return getAdd(C1, C2, true, false); + } + + static Constant *getNSWSub(Constant *C1, Constant *C2) { + return getSub(C1, C2, false, true); + } + + static Constant *getNUWSub(Constant *C1, Constant *C2) { + return getSub(C1, C2, true, false); + } + + static Constant *getNSWMul(Constant *C1, Constant *C2) { + return getMul(C1, C2, false, true); + } + + static Constant *getNUWMul(Constant *C1, Constant *C2) { + return getMul(C1, C2, true, false); + } + + static Constant *getNSWShl(Constant *C1, Constant *C2) { + return getShl(C1, C2, false, true); + } + + static Constant *getNUWShl(Constant *C1, Constant *C2) { + return getShl(C1, C2, true, false); + } + + static Constant *getExactSDiv(Constant *C1, Constant *C2) { + return getSDiv(C1, C2, true); + } + + static Constant *getExactUDiv(Constant *C1, Constant *C2) { + return getUDiv(C1, C2, true); + } + + static Constant *getExactAShr(Constant *C1, Constant *C2) { + return getAShr(C1, C2, true); + } + + static Constant *getExactLShr(Constant *C1, Constant *C2) { + return getLShr(C1, C2, true); + } + + /// Return the identity constant for a binary opcode. + /// The identity constant C is defined as X op C = X and C op X = X for every + /// X when the binary operation is commutative. If the binop is not + /// commutative, callers can acquire the operand 1 identity constant by + /// setting AllowRHSConstant to true. For example, any shift has a zero + /// identity constant for operand 1: X shift 0 = X. + /// Return nullptr if the operator does not have an identity constant. + static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty, + bool AllowRHSConstant = false); + + /// Return the absorbing element for the given binary + /// operation, i.e. a constant C such that X op C = C and C op X = C for + /// every X. For example, this returns zero for integer multiplication. + /// It returns null if the operator doesn't have an absorbing element. + static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty); + + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); + + /// Convenience function for getting a Cast operation. + /// + /// \param ops The opcode for the conversion + /// \param C The constant to be converted + /// \param Ty The type to which the constant is converted + /// \param OnlyIfReduced see \a getWithOperands() docs. + static Constant *getCast(unsigned ops, Constant *C, Type *Ty, + bool OnlyIfReduced = false); + + // Create a ZExt or BitCast cast constant expression + static Constant *getZExtOrBitCast( + Constant *C, ///< The constant to zext or bitcast + Type *Ty ///< The type to zext or bitcast C to + ); + + // Create a SExt or BitCast cast constant expression + static Constant *getSExtOrBitCast( + Constant *C, ///< The constant to sext or bitcast + Type *Ty ///< The type to sext or bitcast C to + ); + + // Create a Trunc or BitCast cast constant expression + static Constant *getTruncOrBitCast( + Constant *C, ///< The constant to trunc or bitcast + Type *Ty ///< The type to trunc or bitcast C to + ); + + /// Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant + /// expression. + static Constant *getPointerCast( + Constant *C, ///< The pointer value to be casted (operand 0) + Type *Ty ///< The type to which cast should be made + ); + + /// Create a BitCast or AddrSpaceCast for a pointer type depending on + /// the address space. + static Constant *getPointerBitCastOrAddrSpaceCast( + Constant *C, ///< The constant to addrspacecast or bitcast + Type *Ty ///< The type to bitcast or addrspacecast C to + ); + + /// Create a ZExt, Bitcast or Trunc for integer -> integer casts + static Constant *getIntegerCast( + Constant *C, ///< The integer constant to be casted + Type *Ty, ///< The integer type to cast to + bool isSigned ///< Whether C should be treated as signed or not + ); + + /// Create a FPExt, Bitcast or FPTrunc for fp -> fp casts + static Constant *getFPCast( + Constant *C, ///< The integer constant to be casted + Type *Ty ///< The integer type to cast to + ); + + /// Return true if this is a convert constant expression + bool isCast() const; + + /// Return true if this is a compare constant expression + bool isCompare() const; + + /// Return true if this is an insertvalue or extractvalue expression, + /// and the getIndices() method may be used. + bool hasIndices() const; + + /// Return true if this is a getelementptr expression and all + /// the index operands are compile-time known integers within the + /// corresponding notional static array extents. Note that this is + /// not equivalant to, a subset of, or a superset of the "inbounds" + /// property. + bool isGEPWithNoNotionalOverIndexing() const; + + /// Select constant expr + /// + /// \param OnlyIfReducedTy see \a getWithOperands() docs. + static Constant *getSelect(Constant *C, Constant *V1, Constant *V2, + Type *OnlyIfReducedTy = nullptr); + + /// get - Return a unary operator constant expression, + /// folding if possible. + /// + /// \param OnlyIfReducedTy see \a getWithOperands() docs. + static Constant *get(unsigned Opcode, Constant *C1, unsigned Flags = 0, + Type *OnlyIfReducedTy = nullptr); + + /// get - Return a binary or shift operator constant expression, + /// folding if possible. + /// + /// \param OnlyIfReducedTy see \a getWithOperands() docs. + static Constant *get(unsigned Opcode, Constant *C1, Constant *C2, + unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr); + + /// Return an ICmp or FCmp comparison operator constant expression. + /// + /// \param OnlyIfReduced see \a getWithOperands() docs. + static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2, + bool OnlyIfReduced = false); + + /// get* - Return some common constants without having to + /// specify the full Instruction::OPCODE identifier. + /// + static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS, + bool OnlyIfReduced = false); + static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS, + bool OnlyIfReduced = false); + + /// Getelementptr form. Value* is only accepted for convenience; + /// all elements must be Constants. + /// + /// \param InRangeIndex the inrange index if present or None. + /// \param OnlyIfReducedTy see \a getWithOperands() docs. + static Constant *getGetElementPtr(Type *Ty, Constant *C, + ArrayRef<Constant *> IdxList, + bool InBounds = false, + Optional<unsigned> InRangeIndex = None, + Type *OnlyIfReducedTy = nullptr) { + return getGetElementPtr( + Ty, C, makeArrayRef((Value * const *)IdxList.data(), IdxList.size()), + InBounds, InRangeIndex, OnlyIfReducedTy); + } + static Constant *getGetElementPtr(Type *Ty, Constant *C, Constant *Idx, + bool InBounds = false, + Optional<unsigned> InRangeIndex = None, + Type *OnlyIfReducedTy = nullptr) { + // This form of the function only exists to avoid ambiguous overload + // warnings about whether to convert Idx to ArrayRef<Constant *> or + // ArrayRef<Value *>. + return getGetElementPtr(Ty, C, cast<Value>(Idx), InBounds, InRangeIndex, + OnlyIfReducedTy); + } + static Constant *getGetElementPtr(Type *Ty, Constant *C, + ArrayRef<Value *> IdxList, + bool InBounds = false, + Optional<unsigned> InRangeIndex = None, + Type *OnlyIfReducedTy = nullptr); + + /// Create an "inbounds" getelementptr. See the documentation for the + /// "inbounds" flag in LangRef.html for details. + static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, + ArrayRef<Constant *> IdxList) { + return getGetElementPtr(Ty, C, IdxList, true); + } + static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, + Constant *Idx) { + // This form of the function only exists to avoid ambiguous overload + // warnings about whether to convert Idx to ArrayRef<Constant *> or + // ArrayRef<Value *>. + return getGetElementPtr(Ty, C, Idx, true); + } + static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, + ArrayRef<Value *> IdxList) { + return getGetElementPtr(Ty, C, IdxList, true); + } + + static Constant *getExtractElement(Constant *Vec, Constant *Idx, + Type *OnlyIfReducedTy = nullptr); + static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, + Type *OnlyIfReducedTy = nullptr); + static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask, + Type *OnlyIfReducedTy = nullptr); + static Constant *getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs, + Type *OnlyIfReducedTy = nullptr); + static Constant *getInsertValue(Constant *Agg, Constant *Val, + ArrayRef<unsigned> Idxs, + Type *OnlyIfReducedTy = nullptr); + + /// Return the opcode at the root of this constant expression + unsigned getOpcode() const { return getSubclassDataFromValue(); } + + /// Return the ICMP or FCMP predicate value. Assert if this is not an ICMP or + /// FCMP constant expression. + unsigned getPredicate() const; + + /// Assert that this is an insertvalue or exactvalue + /// expression and return the list of indices. + ArrayRef<unsigned> getIndices() const; + + /// Return a string representation for an opcode. + const char *getOpcodeName() const; + + /// Return a constant expression identical to this one, but with the specified + /// operand set to the specified value. + Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const; + + /// This returns the current constant expression with the operands replaced + /// with the specified values. The specified array must have the same number + /// of operands as our current one. + Constant *getWithOperands(ArrayRef<Constant*> Ops) const { + return getWithOperands(Ops, getType()); + } + + /// Get the current expression with the operands replaced. + /// + /// Return the current constant expression with the operands replaced with \c + /// Ops and the type with \c Ty. The new operands must have the same number + /// as the current ones. + /// + /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something + /// gets constant-folded, the type changes, or the expression is otherwise + /// canonicalized. This parameter should almost always be \c false. + Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty, + bool OnlyIfReduced = false, + Type *SrcTy = nullptr) const; + + /// Returns an Instruction which implements the same operation as this + /// ConstantExpr. The instruction is not linked to any basic block. + /// + /// A better approach to this could be to have a constructor for Instruction + /// which would take a ConstantExpr parameter, but that would have spread + /// implementation details of ConstantExpr outside of Constants.cpp, which + /// would make it harder to remove ConstantExprs altogether. + Instruction *getAsInstruction(); + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Value *V) { + return V->getValueID() == ConstantExprVal; + } + +private: + // Shadow Value::setValueSubclassData with a private forwarding method so that + // subclasses cannot accidentally use it. + void setValueSubclassData(unsigned short D) { + Value::setValueSubclassData(D); + } +}; + +template <> +struct OperandTraits<ConstantExpr> : + public VariadicOperandTraits<ConstantExpr, 1> { +}; + +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant) + +//===----------------------------------------------------------------------===// +/// 'undef' values are things that do not have specified contents. +/// These are used for a variety of purposes, including global variable +/// initializers and operands to instructions. 'undef' values can occur with +/// any first-class type. +/// +/// Undef values aren't exactly constants; if they have multiple uses, they +/// can appear to have different bit patterns at each use. See +/// LangRef.html#undefvalues for details. +/// +class UndefValue final : public ConstantData { + friend class Constant; + + explicit UndefValue(Type *T) : ConstantData(T, UndefValueVal) {} + + void destroyConstantImpl(); + +public: + UndefValue(const UndefValue &) = delete; + + /// Static factory methods - Return an 'undef' object of the specified type. + static UndefValue *get(Type *T); + + /// If this Undef has array or vector type, return a undef with the right + /// element type. + UndefValue *getSequentialElement() const; + + /// If this undef has struct type, return a undef with the right element type + /// for the specified element. + UndefValue *getStructElement(unsigned Elt) const; + + /// Return an undef of the right value for the specified GEP index if we can, + /// otherwise return null (e.g. if C is a ConstantExpr). + UndefValue *getElementValue(Constant *C) const; + + /// Return an undef of the right value for the specified GEP index. + UndefValue *getElementValue(unsigned Idx) const; + + /// Return the number of elements in the array, vector, or struct. + unsigned getNumElements() const; + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Value *V) { + return V->getValueID() == UndefValueVal; + } +}; + +} // end namespace llvm + +#endif // LLVM_IR_CONSTANTS_H |
