diff options
Diffstat (limited to 'clang-r353983/include/llvm/IR/Instructions.h')
| -rw-r--r-- | clang-r353983/include/llvm/IR/Instructions.h | 5274 |
1 files changed, 5274 insertions, 0 deletions
diff --git a/clang-r353983/include/llvm/IR/Instructions.h b/clang-r353983/include/llvm/IR/Instructions.h new file mode 100644 index 00000000..a82cedab --- /dev/null +++ b/clang-r353983/include/llvm/IR/Instructions.h @@ -0,0 +1,5274 @@ +//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file exposes the class definitions of all of the subclasses of the +// Instruction class. This is meant to be an easy way to get access to all +// instruction subclasses. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_IR_INSTRUCTIONS_H +#define LLVM_IR_INSTRUCTIONS_H + +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/Twine.h" +#include "llvm/ADT/iterator.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/OperandTraits.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/Support/AtomicOrdering.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/ErrorHandling.h" +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <iterator> + +namespace llvm { + +class APInt; +class ConstantInt; +class DataLayout; +class LLVMContext; + +//===----------------------------------------------------------------------===// +// AllocaInst Class +//===----------------------------------------------------------------------===// + +/// an instruction to allocate memory on the stack +class AllocaInst : public UnaryInstruction { + Type *AllocatedType; + +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + AllocaInst *cloneImpl() const; + +public: + explicit AllocaInst(Type *Ty, unsigned AddrSpace, + Value *ArraySize = nullptr, + const Twine &Name = "", + Instruction *InsertBefore = nullptr); + AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, + const Twine &Name, BasicBlock *InsertAtEnd); + + AllocaInst(Type *Ty, unsigned AddrSpace, + const Twine &Name, Instruction *InsertBefore = nullptr); + AllocaInst(Type *Ty, unsigned AddrSpace, + const Twine &Name, BasicBlock *InsertAtEnd); + + AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, unsigned Align, + const Twine &Name = "", Instruction *InsertBefore = nullptr); + AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, unsigned Align, + const Twine &Name, BasicBlock *InsertAtEnd); + + /// Return true if there is an allocation size parameter to the allocation + /// instruction that is not 1. + bool isArrayAllocation() const; + + /// Get the number of elements allocated. For a simple allocation of a single + /// element, this will return a constant 1 value. + const Value *getArraySize() const { return getOperand(0); } + Value *getArraySize() { return getOperand(0); } + + /// Overload to return most specific pointer type. + PointerType *getType() const { + return cast<PointerType>(Instruction::getType()); + } + + /// Get allocation size in bits. Returns None if size can't be determined, + /// e.g. in case of a VLA. + Optional<uint64_t> getAllocationSizeInBits(const DataLayout &DL) const; + + /// Return the type that is being allocated by the instruction. + Type *getAllocatedType() const { return AllocatedType; } + /// for use only in special circumstances that need to generically + /// transform a whole instruction (eg: IR linking and vectorization). + void setAllocatedType(Type *Ty) { AllocatedType = Ty; } + + /// Return the alignment of the memory that is being allocated by the + /// instruction. + unsigned getAlignment() const { + return (1u << (getSubclassDataFromInstruction() & 31)) >> 1; + } + void setAlignment(unsigned Align); + + /// Return true if this alloca is in the entry block of the function and is a + /// constant size. If so, the code generator will fold it into the + /// prolog/epilog code, so it is basically free. + bool isStaticAlloca() const; + + /// Return true if this alloca is used as an inalloca argument to a call. Such + /// allocas are never considered static even if they are in the entry block. + bool isUsedWithInAlloca() const { + return getSubclassDataFromInstruction() & 32; + } + + /// Specify whether this alloca is used to represent the arguments to a call. + void setUsedWithInAlloca(bool V) { + setInstructionSubclassData((getSubclassDataFromInstruction() & ~32) | + (V ? 32 : 0)); + } + + /// Return true if this alloca is used as a swifterror argument to a call. + bool isSwiftError() const { + return getSubclassDataFromInstruction() & 64; + } + + /// Specify whether this alloca is used to represent a swifterror. + void setSwiftError(bool V) { + setInstructionSubclassData((getSubclassDataFromInstruction() & ~64) | + (V ? 64 : 0)); + } + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return (I->getOpcode() == Instruction::Alloca); + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } + +private: + // Shadow Instruction::setInstructionSubclassData with a private forwarding + // method so that subclasses cannot accidentally use it. + void setInstructionSubclassData(unsigned short D) { + Instruction::setInstructionSubclassData(D); + } +}; + +//===----------------------------------------------------------------------===// +// LoadInst Class +//===----------------------------------------------------------------------===// + +/// An instruction for reading from memory. This uses the SubclassData field in +/// Value to store whether or not the load is volatile. +class LoadInst : public UnaryInstruction { + void AssertOK(); + +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + LoadInst *cloneImpl() const; + +public: + LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr = "", + Instruction *InsertBefore = nullptr); + LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd); + LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, + Instruction *InsertBefore = nullptr); + LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, + BasicBlock *InsertAtEnd); + LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, + unsigned Align, Instruction *InsertBefore = nullptr); + LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, + unsigned Align, BasicBlock *InsertAtEnd); + LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, + unsigned Align, AtomicOrdering Order, + SyncScope::ID SSID = SyncScope::System, + Instruction *InsertBefore = nullptr); + LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, + unsigned Align, AtomicOrdering Order, SyncScope::ID SSID, + BasicBlock *InsertAtEnd); + + // Deprecated [opaque pointer types] + explicit LoadInst(Value *Ptr, const Twine &NameStr = "", + Instruction *InsertBefore = nullptr) + : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr, + InsertBefore) {} + LoadInst(Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd) + : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr, + InsertAtEnd) {} + LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, + Instruction *InsertBefore = nullptr) + : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr, + isVolatile, InsertBefore) {} + LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, + BasicBlock *InsertAtEnd) + : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr, + isVolatile, InsertAtEnd) {} + LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align, + Instruction *InsertBefore = nullptr) + : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr, + isVolatile, Align, InsertBefore) {} + LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align, + BasicBlock *InsertAtEnd) + : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr, + isVolatile, Align, InsertAtEnd) {} + LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align, + AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System, + Instruction *InsertBefore = nullptr) + : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr, + isVolatile, Align, Order, SSID, InsertBefore) {} + LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align, + AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd) + : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr, + isVolatile, Align, Order, SSID, InsertAtEnd) {} + + /// Return true if this is a load from a volatile memory location. + bool isVolatile() const { return getSubclassDataFromInstruction() & 1; } + + /// Specify whether this is a volatile load or not. + void setVolatile(bool V) { + setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | + (V ? 1 : 0)); + } + + /// Return the alignment of the access that is being performed. + unsigned getAlignment() const { + return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1; + } + + void setAlignment(unsigned Align); + + /// Returns the ordering constraint of this load instruction. + AtomicOrdering getOrdering() const { + return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7); + } + + /// Sets the ordering constraint of this load instruction. May not be Release + /// or AcquireRelease. + void setOrdering(AtomicOrdering Ordering) { + setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) | + ((unsigned)Ordering << 7)); + } + + /// Returns the synchronization scope ID of this load instruction. + SyncScope::ID getSyncScopeID() const { + return SSID; + } + + /// Sets the synchronization scope ID of this load instruction. + void setSyncScopeID(SyncScope::ID SSID) { + this->SSID = SSID; + } + + /// Sets the ordering constraint and the synchronization scope ID of this load + /// instruction. + void setAtomic(AtomicOrdering Ordering, + SyncScope::ID SSID = SyncScope::System) { + setOrdering(Ordering); + setSyncScopeID(SSID); + } + + bool isSimple() const { return !isAtomic() && !isVolatile(); } + + bool isUnordered() const { + return (getOrdering() == AtomicOrdering::NotAtomic || + getOrdering() == AtomicOrdering::Unordered) && + !isVolatile(); + } + + Value *getPointerOperand() { return getOperand(0); } + const Value *getPointerOperand() const { return getOperand(0); } + static unsigned getPointerOperandIndex() { return 0U; } + Type *getPointerOperandType() const { return getPointerOperand()->getType(); } + + /// Returns the address space of the pointer operand. + unsigned getPointerAddressSpace() const { + return getPointerOperandType()->getPointerAddressSpace(); + } + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == Instruction::Load; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } + +private: + // Shadow Instruction::setInstructionSubclassData with a private forwarding + // method so that subclasses cannot accidentally use it. + void setInstructionSubclassData(unsigned short D) { + Instruction::setInstructionSubclassData(D); + } + + /// The synchronization scope ID of this load instruction. Not quite enough + /// room in SubClassData for everything, so synchronization scope ID gets its + /// own field. + SyncScope::ID SSID; +}; + +//===----------------------------------------------------------------------===// +// StoreInst Class +//===----------------------------------------------------------------------===// + +/// An instruction for storing to memory. +class StoreInst : public Instruction { + void AssertOK(); + +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + StoreInst *cloneImpl() const; + +public: + StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore); + StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd); + StoreInst(Value *Val, Value *Ptr, bool isVolatile = false, + Instruction *InsertBefore = nullptr); + StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd); + StoreInst(Value *Val, Value *Ptr, bool isVolatile, + unsigned Align, Instruction *InsertBefore = nullptr); + StoreInst(Value *Val, Value *Ptr, bool isVolatile, + unsigned Align, BasicBlock *InsertAtEnd); + StoreInst(Value *Val, Value *Ptr, bool isVolatile, + unsigned Align, AtomicOrdering Order, + SyncScope::ID SSID = SyncScope::System, + Instruction *InsertBefore = nullptr); + StoreInst(Value *Val, Value *Ptr, bool isVolatile, + unsigned Align, AtomicOrdering Order, SyncScope::ID SSID, + BasicBlock *InsertAtEnd); + + // allocate space for exactly two operands + void *operator new(size_t s) { + return User::operator new(s, 2); + } + + /// Return true if this is a store to a volatile memory location. + bool isVolatile() const { return getSubclassDataFromInstruction() & 1; } + + /// Specify whether this is a volatile store or not. + void setVolatile(bool V) { + setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | + (V ? 1 : 0)); + } + + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); + + /// Return the alignment of the access that is being performed + unsigned getAlignment() const { + return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1; + } + + void setAlignment(unsigned Align); + + /// Returns the ordering constraint of this store instruction. + AtomicOrdering getOrdering() const { + return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7); + } + + /// Sets the ordering constraint of this store instruction. May not be + /// Acquire or AcquireRelease. + void setOrdering(AtomicOrdering Ordering) { + setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) | + ((unsigned)Ordering << 7)); + } + + /// Returns the synchronization scope ID of this store instruction. + SyncScope::ID getSyncScopeID() const { + return SSID; + } + + /// Sets the synchronization scope ID of this store instruction. + void setSyncScopeID(SyncScope::ID SSID) { + this->SSID = SSID; + } + + /// Sets the ordering constraint and the synchronization scope ID of this + /// store instruction. + void setAtomic(AtomicOrdering Ordering, + SyncScope::ID SSID = SyncScope::System) { + setOrdering(Ordering); + setSyncScopeID(SSID); + } + + bool isSimple() const { return !isAtomic() && !isVolatile(); } + + bool isUnordered() const { + return (getOrdering() == AtomicOrdering::NotAtomic || + getOrdering() == AtomicOrdering::Unordered) && + !isVolatile(); + } + + Value *getValueOperand() { return getOperand(0); } + const Value *getValueOperand() const { return getOperand(0); } + + Value *getPointerOperand() { return getOperand(1); } + const Value *getPointerOperand() const { return getOperand(1); } + static unsigned getPointerOperandIndex() { return 1U; } + Type *getPointerOperandType() const { return getPointerOperand()->getType(); } + + /// Returns the address space of the pointer operand. + unsigned getPointerAddressSpace() const { + return getPointerOperandType()->getPointerAddressSpace(); + } + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == Instruction::Store; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } + +private: + // Shadow Instruction::setInstructionSubclassData with a private forwarding + // method so that subclasses cannot accidentally use it. + void setInstructionSubclassData(unsigned short D) { + Instruction::setInstructionSubclassData(D); + } + + /// The synchronization scope ID of this store instruction. Not quite enough + /// room in SubClassData for everything, so synchronization scope ID gets its + /// own field. + SyncScope::ID SSID; +}; + +template <> +struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> { +}; + +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value) + +//===----------------------------------------------------------------------===// +// FenceInst Class +//===----------------------------------------------------------------------===// + +/// An instruction for ordering other memory operations. +class FenceInst : public Instruction { + void Init(AtomicOrdering Ordering, SyncScope::ID SSID); + +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + FenceInst *cloneImpl() const; + +public: + // Ordering may only be Acquire, Release, AcquireRelease, or + // SequentiallyConsistent. + FenceInst(LLVMContext &C, AtomicOrdering Ordering, + SyncScope::ID SSID = SyncScope::System, + Instruction *InsertBefore = nullptr); + FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID, + BasicBlock *InsertAtEnd); + + // allocate space for exactly zero operands + void *operator new(size_t s) { + return User::operator new(s, 0); + } + + /// Returns the ordering constraint of this fence instruction. + AtomicOrdering getOrdering() const { + return AtomicOrdering(getSubclassDataFromInstruction() >> 1); + } + + /// Sets the ordering constraint of this fence instruction. May only be + /// Acquire, Release, AcquireRelease, or SequentiallyConsistent. + void setOrdering(AtomicOrdering Ordering) { + setInstructionSubclassData((getSubclassDataFromInstruction() & 1) | + ((unsigned)Ordering << 1)); + } + + /// Returns the synchronization scope ID of this fence instruction. + SyncScope::ID getSyncScopeID() const { + return SSID; + } + + /// Sets the synchronization scope ID of this fence instruction. + void setSyncScopeID(SyncScope::ID SSID) { + this->SSID = SSID; + } + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == Instruction::Fence; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } + +private: + // Shadow Instruction::setInstructionSubclassData with a private forwarding + // method so that subclasses cannot accidentally use it. + void setInstructionSubclassData(unsigned short D) { + Instruction::setInstructionSubclassData(D); + } + + /// The synchronization scope ID of this fence instruction. Not quite enough + /// room in SubClassData for everything, so synchronization scope ID gets its + /// own field. + SyncScope::ID SSID; +}; + +//===----------------------------------------------------------------------===// +// AtomicCmpXchgInst Class +//===----------------------------------------------------------------------===// + +/// an instruction that atomically checks whether a +/// specified value is in a memory location, and, if it is, stores a new value +/// there. Returns the value that was loaded. +/// +class AtomicCmpXchgInst : public Instruction { + void Init(Value *Ptr, Value *Cmp, Value *NewVal, + AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, + SyncScope::ID SSID); + +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + AtomicCmpXchgInst *cloneImpl() const; + +public: + AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, + AtomicOrdering SuccessOrdering, + AtomicOrdering FailureOrdering, + SyncScope::ID SSID, Instruction *InsertBefore = nullptr); + AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, + AtomicOrdering SuccessOrdering, + AtomicOrdering FailureOrdering, + SyncScope::ID SSID, BasicBlock *InsertAtEnd); + + // allocate space for exactly three operands + void *operator new(size_t s) { + return User::operator new(s, 3); + } + + /// Return true if this is a cmpxchg from a volatile memory + /// location. + /// + bool isVolatile() const { + return getSubclassDataFromInstruction() & 1; + } + + /// Specify whether this is a volatile cmpxchg. + /// + void setVolatile(bool V) { + setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | + (unsigned)V); + } + + /// Return true if this cmpxchg may spuriously fail. + bool isWeak() const { + return getSubclassDataFromInstruction() & 0x100; + } + + void setWeak(bool IsWeak) { + setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x100) | + (IsWeak << 8)); + } + + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); + + /// Returns the success ordering constraint of this cmpxchg instruction. + AtomicOrdering getSuccessOrdering() const { + return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7); + } + + /// Sets the success ordering constraint of this cmpxchg instruction. + void setSuccessOrdering(AtomicOrdering Ordering) { + assert(Ordering != AtomicOrdering::NotAtomic && + "CmpXchg instructions can only be atomic."); + setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x1c) | + ((unsigned)Ordering << 2)); + } + + /// Returns the failure ordering constraint of this cmpxchg instruction. + AtomicOrdering getFailureOrdering() const { + return AtomicOrdering((getSubclassDataFromInstruction() >> 5) & 7); + } + + /// Sets the failure ordering constraint of this cmpxchg instruction. + void setFailureOrdering(AtomicOrdering Ordering) { + assert(Ordering != AtomicOrdering::NotAtomic && + "CmpXchg instructions can only be atomic."); + setInstructionSubclassData((getSubclassDataFromInstruction() & ~0xe0) | + ((unsigned)Ordering << 5)); + } + + /// Returns the synchronization scope ID of this cmpxchg instruction. + SyncScope::ID getSyncScopeID() const { + return SSID; + } + + /// Sets the synchronization scope ID of this cmpxchg instruction. + void setSyncScopeID(SyncScope::ID SSID) { + this->SSID = SSID; + } + + Value *getPointerOperand() { return getOperand(0); } + const Value *getPointerOperand() const { return getOperand(0); } + static unsigned getPointerOperandIndex() { return 0U; } + + Value *getCompareOperand() { return getOperand(1); } + const Value *getCompareOperand() const { return getOperand(1); } + + Value *getNewValOperand() { return getOperand(2); } + const Value *getNewValOperand() const { return getOperand(2); } + + /// Returns the address space of the pointer operand. + unsigned getPointerAddressSpace() const { + return getPointerOperand()->getType()->getPointerAddressSpace(); + } + + /// Returns the strongest permitted ordering on failure, given the + /// desired ordering on success. + /// + /// If the comparison in a cmpxchg operation fails, there is no atomic store + /// so release semantics cannot be provided. So this function drops explicit + /// Release requests from the AtomicOrdering. A SequentiallyConsistent + /// operation would remain SequentiallyConsistent. + static AtomicOrdering + getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) { + switch (SuccessOrdering) { + default: + llvm_unreachable("invalid cmpxchg success ordering"); + case AtomicOrdering::Release: + case AtomicOrdering::Monotonic: + return AtomicOrdering::Monotonic; + case AtomicOrdering::AcquireRelease: + case AtomicOrdering::Acquire: + return AtomicOrdering::Acquire; + case AtomicOrdering::SequentiallyConsistent: + return AtomicOrdering::SequentiallyConsistent; + } + } + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == Instruction::AtomicCmpXchg; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } + +private: + // Shadow Instruction::setInstructionSubclassData with a private forwarding + // method so that subclasses cannot accidentally use it. + void setInstructionSubclassData(unsigned short D) { + Instruction::setInstructionSubclassData(D); + } + + /// The synchronization scope ID of this cmpxchg instruction. Not quite + /// enough room in SubClassData for everything, so synchronization scope ID + /// gets its own field. + SyncScope::ID SSID; +}; + +template <> +struct OperandTraits<AtomicCmpXchgInst> : + public FixedNumOperandTraits<AtomicCmpXchgInst, 3> { +}; + +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value) + +//===----------------------------------------------------------------------===// +// AtomicRMWInst Class +//===----------------------------------------------------------------------===// + +/// an instruction that atomically reads a memory location, +/// combines it with another value, and then stores the result back. Returns +/// the old value. +/// +class AtomicRMWInst : public Instruction { +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + AtomicRMWInst *cloneImpl() const; + +public: + /// This enumeration lists the possible modifications atomicrmw can make. In + /// the descriptions, 'p' is the pointer to the instruction's memory location, + /// 'old' is the initial value of *p, and 'v' is the other value passed to the + /// instruction. These instructions always return 'old'. + enum BinOp { + /// *p = v + Xchg, + /// *p = old + v + Add, + /// *p = old - v + Sub, + /// *p = old & v + And, + /// *p = ~(old & v) + Nand, + /// *p = old | v + Or, + /// *p = old ^ v + Xor, + /// *p = old >signed v ? old : v + Max, + /// *p = old <signed v ? old : v + Min, + /// *p = old >unsigned v ? old : v + UMax, + /// *p = old <unsigned v ? old : v + UMin, + + /// *p = old + v + FAdd, + + /// *p = old - v + FSub, + + FIRST_BINOP = Xchg, + LAST_BINOP = FSub, + BAD_BINOP + }; + + AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, + AtomicOrdering Ordering, SyncScope::ID SSID, + Instruction *InsertBefore = nullptr); + AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, + AtomicOrdering Ordering, SyncScope::ID SSID, + BasicBlock *InsertAtEnd); + + // allocate space for exactly two operands + void *operator new(size_t s) { + return User::operator new(s, 2); + } + + BinOp getOperation() const { + return static_cast<BinOp>(getSubclassDataFromInstruction() >> 5); + } + + static StringRef getOperationName(BinOp Op); + + static bool isFPOperation(BinOp Op) { + switch (Op) { + case AtomicRMWInst::FAdd: + case AtomicRMWInst::FSub: + return true; + default: + return false; + } + } + + void setOperation(BinOp Operation) { + unsigned short SubclassData = getSubclassDataFromInstruction(); + setInstructionSubclassData((SubclassData & 31) | + (Operation << 5)); + } + + /// Return true if this is a RMW on a volatile memory location. + /// + bool isVolatile() const { + return getSubclassDataFromInstruction() & 1; + } + + /// Specify whether this is a volatile RMW or not. + /// + void setVolatile(bool V) { + setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | + (unsigned)V); + } + + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); + + /// Returns the ordering constraint of this rmw instruction. + AtomicOrdering getOrdering() const { + return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7); + } + + /// Sets the ordering constraint of this rmw instruction. + void setOrdering(AtomicOrdering Ordering) { + assert(Ordering != AtomicOrdering::NotAtomic && + "atomicrmw instructions can only be atomic."); + setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 2)) | + ((unsigned)Ordering << 2)); + } + + /// Returns the synchronization scope ID of this rmw instruction. + SyncScope::ID getSyncScopeID() const { + return SSID; + } + + /// Sets the synchronization scope ID of this rmw instruction. + void setSyncScopeID(SyncScope::ID SSID) { + this->SSID = SSID; + } + + Value *getPointerOperand() { return getOperand(0); } + const Value *getPointerOperand() const { return getOperand(0); } + static unsigned getPointerOperandIndex() { return 0U; } + + Value *getValOperand() { return getOperand(1); } + const Value *getValOperand() const { return getOperand(1); } + + /// Returns the address space of the pointer operand. + unsigned getPointerAddressSpace() const { + return getPointerOperand()->getType()->getPointerAddressSpace(); + } + + bool isFloatingPointOperation() const { + return isFPOperation(getOperation()); + } + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == Instruction::AtomicRMW; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } + +private: + void Init(BinOp Operation, Value *Ptr, Value *Val, + AtomicOrdering Ordering, SyncScope::ID SSID); + + // Shadow Instruction::setInstructionSubclassData with a private forwarding + // method so that subclasses cannot accidentally use it. + void setInstructionSubclassData(unsigned short D) { + Instruction::setInstructionSubclassData(D); + } + + /// The synchronization scope ID of this rmw instruction. Not quite enough + /// room in SubClassData for everything, so synchronization scope ID gets its + /// own field. + SyncScope::ID SSID; +}; + +template <> +struct OperandTraits<AtomicRMWInst> + : public FixedNumOperandTraits<AtomicRMWInst,2> { +}; + +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value) + +//===----------------------------------------------------------------------===// +// GetElementPtrInst Class +//===----------------------------------------------------------------------===// + +// checkGEPType - Simple wrapper function to give a better assertion failure +// message on bad indexes for a gep instruction. +// +inline Type *checkGEPType(Type *Ty) { + assert(Ty && "Invalid GetElementPtrInst indices for type!"); + return Ty; +} + +/// an instruction for type-safe pointer arithmetic to +/// access elements of arrays and structs +/// +class GetElementPtrInst : public Instruction { + Type *SourceElementType; + Type *ResultElementType; + + GetElementPtrInst(const GetElementPtrInst &GEPI); + + /// Constructors - Create a getelementptr instruction with a base pointer an + /// list of indices. The first ctor can optionally insert before an existing + /// instruction, the second appends the new instruction to the specified + /// BasicBlock. + inline GetElementPtrInst(Type *PointeeType, Value *Ptr, + ArrayRef<Value *> IdxList, unsigned Values, + const Twine &NameStr, Instruction *InsertBefore); + inline GetElementPtrInst(Type *PointeeType, Value *Ptr, + ArrayRef<Value *> IdxList, unsigned Values, + const Twine &NameStr, BasicBlock *InsertAtEnd); + + void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr); + +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + GetElementPtrInst *cloneImpl() const; + +public: + static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, + ArrayRef<Value *> IdxList, + const Twine &NameStr = "", + Instruction *InsertBefore = nullptr) { + unsigned Values = 1 + unsigned(IdxList.size()); + if (!PointeeType) + PointeeType = + cast<PointerType>(Ptr->getType()->getScalarType())->getElementType(); + else + assert( + PointeeType == + cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()); + return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, + NameStr, InsertBefore); + } + + static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, + ArrayRef<Value *> IdxList, + const Twine &NameStr, + BasicBlock *InsertAtEnd) { + unsigned Values = 1 + unsigned(IdxList.size()); + if (!PointeeType) + PointeeType = + cast<PointerType>(Ptr->getType()->getScalarType())->getElementType(); + else + assert( + PointeeType == + cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()); + return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, + NameStr, InsertAtEnd); + } + + /// Create an "inbounds" getelementptr. See the documentation for the + /// "inbounds" flag in LangRef.html for details. + static GetElementPtrInst *CreateInBounds(Value *Ptr, + ArrayRef<Value *> IdxList, + const Twine &NameStr = "", + Instruction *InsertBefore = nullptr){ + return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertBefore); + } + + static GetElementPtrInst * + CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList, + const Twine &NameStr = "", + Instruction *InsertBefore = nullptr) { + GetElementPtrInst *GEP = + Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore); + GEP->setIsInBounds(true); + return GEP; + } + + static GetElementPtrInst *CreateInBounds(Value *Ptr, + ArrayRef<Value *> IdxList, + const Twine &NameStr, + BasicBlock *InsertAtEnd) { + return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertAtEnd); + } + + static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr, + ArrayRef<Value *> IdxList, + const Twine &NameStr, + BasicBlock *InsertAtEnd) { + GetElementPtrInst *GEP = + Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd); + GEP->setIsInBounds(true); + return GEP; + } + + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); + + Type *getSourceElementType() const { return SourceElementType; } + + void setSourceElementType(Type *Ty) { SourceElementType = Ty; } + void setResultElementType(Type *Ty) { ResultElementType = Ty; } + + Type *getResultElementType() const { + assert(ResultElementType == + cast<PointerType>(getType()->getScalarType())->getElementType()); + return ResultElementType; + } + + /// Returns the address space of this instruction's pointer type. + unsigned getAddressSpace() const { + // Note that this is always the same as the pointer operand's address space + // and that is cheaper to compute, so cheat here. + return getPointerAddressSpace(); + } + + /// Returns the type of the element that would be loaded with + /// a load instruction with the specified parameters. + /// + /// Null is returned if the indices are invalid for the specified + /// pointer type. + /// + static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList); + static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList); + static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList); + + inline op_iterator idx_begin() { return op_begin()+1; } + inline const_op_iterator idx_begin() const { return op_begin()+1; } + inline op_iterator idx_end() { return op_end(); } + inline const_op_iterator idx_end() const { return op_end(); } + + inline iterator_range<op_iterator> indices() { + return make_range(idx_begin(), idx_end()); + } + + inline iterator_range<const_op_iterator> indices() const { + return make_range(idx_begin(), idx_end()); + } + + Value *getPointerOperand() { + return getOperand(0); + } + const Value *getPointerOperand() const { + return getOperand(0); + } + static unsigned getPointerOperandIndex() { + return 0U; // get index for modifying correct operand. + } + + /// Method to return the pointer operand as a + /// PointerType. + Type *getPointerOperandType() const { + return getPointerOperand()->getType(); + } + + /// Returns the address space of the pointer operand. + unsigned getPointerAddressSpace() const { + return getPointerOperandType()->getPointerAddressSpace(); + } + + /// Returns the pointer type returned by the GEP + /// instruction, which may be a vector of pointers. + static Type *getGEPReturnType(Value *Ptr, ArrayRef<Value *> IdxList) { + return getGEPReturnType( + cast<PointerType>(Ptr->getType()->getScalarType())->getElementType(), + Ptr, IdxList); + } + static Type *getGEPReturnType(Type *ElTy, Value *Ptr, + ArrayRef<Value *> IdxList) { + Type *PtrTy = PointerType::get(checkGEPType(getIndexedType(ElTy, IdxList)), + Ptr->getType()->getPointerAddressSpace()); + // Vector GEP + if (Ptr->getType()->isVectorTy()) { + unsigned NumElem = Ptr->getType()->getVectorNumElements(); + return VectorType::get(PtrTy, NumElem); + } + for (Value *Index : IdxList) + if (Index->getType()->isVectorTy()) { + unsigned NumElem = Index->getType()->getVectorNumElements(); + return VectorType::get(PtrTy, NumElem); + } + // Scalar GEP + return PtrTy; + } + + unsigned getNumIndices() const { // Note: always non-negative + return getNumOperands() - 1; + } + + bool hasIndices() const { + return getNumOperands() > 1; + } + + /// Return true if all of the indices of this GEP are + /// zeros. If so, the result pointer and the first operand have the same + /// value, just potentially different types. + bool hasAllZeroIndices() const; + + /// Return true if all of the indices of this GEP are + /// constant integers. If so, the result pointer and the first operand have + /// a constant offset between them. + bool hasAllConstantIndices() const; + + /// Set or clear the inbounds flag on this GEP instruction. + /// See LangRef.html for the meaning of inbounds on a getelementptr. + void setIsInBounds(bool b = true); + + /// Determine whether the GEP has the inbounds flag. + bool isInBounds() const; + + /// Accumulate the constant address offset of this GEP if possible. + /// + /// This routine accepts an APInt into which it will accumulate the constant + /// offset of this GEP if the GEP is in fact constant. If the GEP is not + /// all-constant, it returns false and the value of the offset APInt is + /// undefined (it is *not* preserved!). The APInt passed into this routine + /// must be at least as wide as the IntPtr type for the address space of + /// the base GEP pointer. + bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const; + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return (I->getOpcode() == Instruction::GetElementPtr); + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } +}; + +template <> +struct OperandTraits<GetElementPtrInst> : + public VariadicOperandTraits<GetElementPtrInst, 1> { +}; + +GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, + ArrayRef<Value *> IdxList, unsigned Values, + const Twine &NameStr, + Instruction *InsertBefore) + : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, + OperandTraits<GetElementPtrInst>::op_end(this) - Values, + Values, InsertBefore), + SourceElementType(PointeeType), + ResultElementType(getIndexedType(PointeeType, IdxList)) { + assert(ResultElementType == + cast<PointerType>(getType()->getScalarType())->getElementType()); + init(Ptr, IdxList, NameStr); +} + +GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, + ArrayRef<Value *> IdxList, unsigned Values, + const Twine &NameStr, + BasicBlock *InsertAtEnd) + : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, + OperandTraits<GetElementPtrInst>::op_end(this) - Values, + Values, InsertAtEnd), + SourceElementType(PointeeType), + ResultElementType(getIndexedType(PointeeType, IdxList)) { + assert(ResultElementType == + cast<PointerType>(getType()->getScalarType())->getElementType()); + init(Ptr, IdxList, NameStr); +} + +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value) + +//===----------------------------------------------------------------------===// +// UnaryOperator Class +//===----------------------------------------------------------------------===// + +/// a unary instruction +class UnaryOperator : public UnaryInstruction { + void AssertOK(); + +protected: + UnaryOperator(UnaryOps iType, Value *S, Type *Ty, + const Twine &Name, Instruction *InsertBefore); + UnaryOperator(UnaryOps iType, Value *S, Type *Ty, + const Twine &Name, BasicBlock *InsertAtEnd); + + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + UnaryOperator *cloneImpl() const; + +public: + + /// Construct a unary instruction, given the opcode and an operand. + /// Optionally (if InstBefore is specified) insert the instruction + /// into a BasicBlock right before the specified instruction. The specified + /// Instruction is allowed to be a dereferenced end iterator. + /// + static UnaryOperator *Create(UnaryOps Op, Value *S, + const Twine &Name = Twine(), + Instruction *InsertBefore = nullptr); + + /// Construct a unary instruction, given the opcode and an operand. + /// Also automatically insert this instruction to the end of the + /// BasicBlock specified. + /// + static UnaryOperator *Create(UnaryOps Op, Value *S, + const Twine &Name, + BasicBlock *InsertAtEnd); + + /// These methods just forward to Create, and are useful when you + /// statically know what type of instruction you're going to create. These + /// helpers just save some typing. +#define HANDLE_UNARY_INST(N, OPC, CLASS) \ + static UnaryInstruction *Create##OPC(Value *V, \ + const Twine &Name = "") {\ + return Create(Instruction::OPC, V, Name);\ + } +#include "llvm/IR/Instruction.def" +#define HANDLE_UNARY_INST(N, OPC, CLASS) \ + static UnaryInstruction *Create##OPC(Value *V, \ + const Twine &Name, BasicBlock *BB) {\ + return Create(Instruction::OPC, V, Name, BB);\ + } +#include "llvm/IR/Instruction.def" +#define HANDLE_UNARY_INST(N, OPC, CLASS) \ + static UnaryInstruction *Create##OPC(Value *V, \ + const Twine &Name, Instruction *I) {\ + return Create(Instruction::OPC, V, Name, I);\ + } +#include "llvm/IR/Instruction.def" + + UnaryOps getOpcode() const { + return static_cast<UnaryOps>(Instruction::getOpcode()); + } +}; + +//===----------------------------------------------------------------------===// +// ICmpInst Class +//===----------------------------------------------------------------------===// + +/// This instruction compares its operands according to the predicate given +/// to the constructor. It only operates on integers or pointers. The operands +/// must be identical types. +/// Represent an integer comparison operator. +class ICmpInst: public CmpInst { + void AssertOK() { + assert(isIntPredicate() && + "Invalid ICmp predicate value"); + assert(getOperand(0)->getType() == getOperand(1)->getType() && + "Both operands to ICmp instruction are not of the same type!"); + // Check that the operands are the right type + assert((getOperand(0)->getType()->isIntOrIntVectorTy() || + getOperand(0)->getType()->isPtrOrPtrVectorTy()) && + "Invalid operand types for ICmp instruction"); + } + +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + /// Clone an identical ICmpInst + ICmpInst *cloneImpl() const; + +public: + /// Constructor with insert-before-instruction semantics. + ICmpInst( + Instruction *InsertBefore, ///< Where to insert + Predicate pred, ///< The predicate to use for the comparison + Value *LHS, ///< The left-hand-side of the expression + Value *RHS, ///< The right-hand-side of the expression + const Twine &NameStr = "" ///< Name of the instruction + ) : CmpInst(makeCmpResultType(LHS->getType()), + Instruction::ICmp, pred, LHS, RHS, NameStr, + InsertBefore) { +#ifndef NDEBUG + AssertOK(); +#endif + } + + /// Constructor with insert-at-end semantics. + ICmpInst( + BasicBlock &InsertAtEnd, ///< Block to insert into. + Predicate pred, ///< The predicate to use for the comparison + Value *LHS, ///< The left-hand-side of the expression + Value *RHS, ///< The right-hand-side of the expression + const Twine &NameStr = "" ///< Name of the instruction + ) : CmpInst(makeCmpResultType(LHS->getType()), + Instruction::ICmp, pred, LHS, RHS, NameStr, + &InsertAtEnd) { +#ifndef NDEBUG + AssertOK(); +#endif + } + + /// Constructor with no-insertion semantics + ICmpInst( + Predicate pred, ///< The predicate to use for the comparison + Value *LHS, ///< The left-hand-side of the expression + Value *RHS, ///< The right-hand-side of the expression + const Twine &NameStr = "" ///< Name of the instruction + ) : CmpInst(makeCmpResultType(LHS->getType()), + Instruction::ICmp, pred, LHS, RHS, NameStr) { +#ifndef NDEBUG + AssertOK(); +#endif + } + + /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc. + /// @returns the predicate that would be the result if the operand were + /// regarded as signed. + /// Return the signed version of the predicate + Predicate getSignedPredicate() const { + return getSignedPredicate(getPredicate()); + } + + /// This is a static version that you can use without an instruction. + /// Return the signed version of the predicate. + static Predicate getSignedPredicate(Predicate pred); + + /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc. + /// @returns the predicate that would be the result if the operand were + /// regarded as unsigned. + /// Return the unsigned version of the predicate + Predicate getUnsignedPredicate() const { + return getUnsignedPredicate(getPredicate()); + } + + /// This is a static version that you can use without an instruction. + /// Return the unsigned version of the predicate. + static Predicate getUnsignedPredicate(Predicate pred); + + /// Return true if this predicate is either EQ or NE. This also + /// tests for commutativity. + static bool isEquality(Predicate P) { + return P == ICMP_EQ || P == ICMP_NE; + } + + /// Return true if this predicate is either EQ or NE. This also + /// tests for commutativity. + bool isEquality() const { + return isEquality(getPredicate()); + } + + /// @returns true if the predicate of this ICmpInst is commutative + /// Determine if this relation is commutative. + bool isCommutative() const { return isEquality(); } + + /// Return true if the predicate is relational (not EQ or NE). + /// + bool isRelational() const { + return !isEquality(); + } + + /// Return true if the predicate is relational (not EQ or NE). + /// + static bool isRelational(Predicate P) { + return !isEquality(P); + } + + /// Exchange the two operands to this instruction in such a way that it does + /// not modify the semantics of the instruction. The predicate value may be + /// changed to retain the same result if the predicate is order dependent + /// (e.g. ult). + /// Swap operands and adjust predicate. + void swapOperands() { + setPredicate(getSwappedPredicate()); + Op<0>().swap(Op<1>()); + } + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == Instruction::ICmp; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } +}; + +//===----------------------------------------------------------------------===// +// FCmpInst Class +//===----------------------------------------------------------------------===// + +/// This instruction compares its operands according to the predicate given +/// to the constructor. It only operates on floating point values or packed +/// vectors of floating point values. The operands must be identical types. +/// Represents a floating point comparison operator. +class FCmpInst: public CmpInst { + void AssertOK() { + assert(isFPPredicate() && "Invalid FCmp predicate value"); + assert(getOperand(0)->getType() == getOperand(1)->getType() && + "Both operands to FCmp instruction are not of the same type!"); + // Check that the operands are the right type + assert(getOperand(0)->getType()->isFPOrFPVectorTy() && + "Invalid operand types for FCmp instruction"); + } + +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + /// Clone an identical FCmpInst + FCmpInst *cloneImpl() const; + +public: + /// Constructor with insert-before-instruction semantics. + FCmpInst( + Instruction *InsertBefore, ///< Where to insert + Predicate pred, ///< The predicate to use for the comparison + Value *LHS, ///< The left-hand-side of the expression + Value *RHS, ///< The right-hand-side of the expression + const Twine &NameStr = "" ///< Name of the instruction + ) : CmpInst(makeCmpResultType(LHS->getType()), + Instruction::FCmp, pred, LHS, RHS, NameStr, + InsertBefore) { + AssertOK(); + } + + /// Constructor with insert-at-end semantics. + FCmpInst( + BasicBlock &InsertAtEnd, ///< Block to insert into. + Predicate pred, ///< The predicate to use for the comparison + Value *LHS, ///< The left-hand-side of the expression + Value *RHS, ///< The right-hand-side of the expression + const Twine &NameStr = "" ///< Name of the instruction + ) : CmpInst(makeCmpResultType(LHS->getType()), + Instruction::FCmp, pred, LHS, RHS, NameStr, + &InsertAtEnd) { + AssertOK(); + } + + /// Constructor with no-insertion semantics + FCmpInst( + Predicate Pred, ///< The predicate to use for the comparison + Value *LHS, ///< The left-hand-side of the expression + Value *RHS, ///< The right-hand-side of the expression + const Twine &NameStr = "", ///< Name of the instruction + Instruction *FlagsSource = nullptr + ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS, + RHS, NameStr, nullptr, FlagsSource) { + AssertOK(); + } + + /// @returns true if the predicate of this instruction is EQ or NE. + /// Determine if this is an equality predicate. + static bool isEquality(Predicate Pred) { + return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ || + Pred == FCMP_UNE; + } + + /// @returns true if the predicate of this instruction is EQ or NE. + /// Determine if this is an equality predicate. + bool isEquality() const { return isEquality(getPredicate()); } + + /// @returns true if the predicate of this instruction is commutative. + /// Determine if this is a commutative predicate. + bool isCommutative() const { + return isEquality() || + getPredicate() == FCMP_FALSE || + getPredicate() == FCMP_TRUE || + getPredicate() == FCMP_ORD || + getPredicate() == FCMP_UNO; + } + + /// @returns true if the predicate is relational (not EQ or NE). + /// Determine if this a relational predicate. + bool isRelational() const { return !isEquality(); } + + /// Exchange the two operands to this instruction in such a way that it does + /// not modify the semantics of the instruction. The predicate value may be + /// changed to retain the same result if the predicate is order dependent + /// (e.g. ult). + /// Swap operands and adjust predicate. + void swapOperands() { + setPredicate(getSwappedPredicate()); + Op<0>().swap(Op<1>()); + } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == Instruction::FCmp; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } +}; + +//===----------------------------------------------------------------------===// +/// This class represents a function call, abstracting a target +/// machine's calling convention. This class uses low bit of the SubClassData +/// field to indicate whether or not this is a tail call. The rest of the bits +/// hold the calling convention of the call. +/// +class CallInst : public CallBase { + CallInst(const CallInst &CI); + + /// Construct a CallInst given a range of arguments. + /// Construct a CallInst from a range of arguments + inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, + Instruction *InsertBefore); + + inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, + const Twine &NameStr, Instruction *InsertBefore) + : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {} + + /// Construct a CallInst given a range of arguments. + /// Construct a CallInst from a range of arguments + inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, + BasicBlock *InsertAtEnd); + + explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr, + Instruction *InsertBefore); + + CallInst(FunctionType *ty, Value *F, const Twine &NameStr, + BasicBlock *InsertAtEnd); + + void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); + void init(FunctionType *FTy, Value *Func, const Twine &NameStr); + + /// Compute the number of operands to allocate. + static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) { + // We need one operand for the called function, plus the input operand + // counts provided. + return 1 + NumArgs + NumBundleInputs; + } + +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + CallInst *cloneImpl() const; + +public: + static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "", + Instruction *InsertBefore = nullptr) { + return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore); + } + + static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, + const Twine &NameStr, + Instruction *InsertBefore = nullptr) { + return new (ComputeNumOperands(Args.size())) + CallInst(Ty, Func, Args, None, NameStr, InsertBefore); + } + + static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles = None, + const Twine &NameStr = "", + Instruction *InsertBefore = nullptr) { + const int NumOperands = + ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); + const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); + + return new (NumOperands, DescriptorBytes) + CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore); + } + + static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr, + BasicBlock *InsertAtEnd) { + return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd); + } + + static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, + const Twine &NameStr, BasicBlock *InsertAtEnd) { + return new (ComputeNumOperands(Args.size())) + CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd); + } + + static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles, + const Twine &NameStr, BasicBlock *InsertAtEnd) { + const int NumOperands = + ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); + const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); + + return new (NumOperands, DescriptorBytes) + CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd); + } + + static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "", + Instruction *InsertBefore = nullptr) { + return Create(Func.getFunctionType(), Func.getCallee(), NameStr, + InsertBefore); + } + + static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles = None, + const Twine &NameStr = "", + Instruction *InsertBefore = nullptr) { + return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, + NameStr, InsertBefore); + } + + static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, + const Twine &NameStr, + Instruction *InsertBefore = nullptr) { + return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, + InsertBefore); + } + + static CallInst *Create(FunctionCallee Func, const Twine &NameStr, + BasicBlock *InsertAtEnd) { + return Create(Func.getFunctionType(), Func.getCallee(), NameStr, + InsertAtEnd); + } + + static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, + const Twine &NameStr, BasicBlock *InsertAtEnd) { + return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, + InsertAtEnd); + } + + static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles, + const Twine &NameStr, BasicBlock *InsertAtEnd) { + return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, + NameStr, InsertAtEnd); + } + + // Deprecated [opaque pointer types] + static CallInst *Create(Value *Func, const Twine &NameStr = "", + Instruction *InsertBefore = nullptr) { + return Create(cast<FunctionType>( + cast<PointerType>(Func->getType())->getElementType()), + Func, NameStr, InsertBefore); + } + + // Deprecated [opaque pointer types] + static CallInst *Create(Value *Func, ArrayRef<Value *> Args, + const Twine &NameStr, + Instruction *InsertBefore = nullptr) { + return Create(cast<FunctionType>( + cast<PointerType>(Func->getType())->getElementType()), + Func, Args, NameStr, InsertBefore); + } + + // Deprecated [opaque pointer types] + static CallInst *Create(Value *Func, ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles = None, + const Twine &NameStr = "", + Instruction *InsertBefore = nullptr) { + return Create(cast<FunctionType>( + cast<PointerType>(Func->getType())->getElementType()), + Func, Args, Bundles, NameStr, InsertBefore); + } + + // Deprecated [opaque pointer types] + static CallInst *Create(Value *Func, const Twine &NameStr, + BasicBlock *InsertAtEnd) { + return Create(cast<FunctionType>( + cast<PointerType>(Func->getType())->getElementType()), + Func, NameStr, InsertAtEnd); + } + + // Deprecated [opaque pointer types] + static CallInst *Create(Value *Func, ArrayRef<Value *> Args, + const Twine &NameStr, BasicBlock *InsertAtEnd) { + return Create(cast<FunctionType>( + cast<PointerType>(Func->getType())->getElementType()), + Func, Args, NameStr, InsertAtEnd); + } + + // Deprecated [opaque pointer types] + static CallInst *Create(Value *Func, ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles, + const Twine &NameStr, BasicBlock *InsertAtEnd) { + return Create(cast<FunctionType>( + cast<PointerType>(Func->getType())->getElementType()), + Func, Args, Bundles, NameStr, InsertAtEnd); + } + + /// Create a clone of \p CI with a different set of operand bundles and + /// insert it before \p InsertPt. + /// + /// The returned call instruction is identical \p CI in every way except that + /// the operand bundles for the new instruction are set to the operand bundles + /// in \p Bundles. + static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles, + Instruction *InsertPt = nullptr); + + /// Generate the IR for a call to malloc: + /// 1. Compute the malloc call's argument as the specified type's size, + /// possibly multiplied by the array size if the array size is not + /// constant 1. + /// 2. Call malloc with that argument. + /// 3. Bitcast the result of the malloc call to the specified type. + static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, + Type *AllocTy, Value *AllocSize, + Value *ArraySize = nullptr, + Function *MallocF = nullptr, + const Twine &Name = ""); + static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, + Type *AllocTy, Value *AllocSize, + Value *ArraySize = nullptr, + Function *MallocF = nullptr, + const Twine &Name = ""); + static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, + Type *AllocTy, Value *AllocSize, + Value *ArraySize = nullptr, + ArrayRef<OperandBundleDef> Bundles = None, + Function *MallocF = nullptr, + const Twine &Name = ""); + static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, + Type *AllocTy, Value *AllocSize, + Value *ArraySize = nullptr, + ArrayRef<OperandBundleDef> Bundles = None, + Function *MallocF = nullptr, + const Twine &Name = ""); + /// Generate the IR for a call to the builtin free function. + static Instruction *CreateFree(Value *Source, Instruction *InsertBefore); + static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd); + static Instruction *CreateFree(Value *Source, + ArrayRef<OperandBundleDef> Bundles, + Instruction *InsertBefore); + static Instruction *CreateFree(Value *Source, + ArrayRef<OperandBundleDef> Bundles, + BasicBlock *InsertAtEnd); + + // Note that 'musttail' implies 'tail'. + enum TailCallKind { + TCK_None = 0, + TCK_Tail = 1, + TCK_MustTail = 2, + TCK_NoTail = 3 + }; + TailCallKind getTailCallKind() const { + return TailCallKind(getSubclassDataFromInstruction() & 3); + } + + bool isTailCall() const { + unsigned Kind = getSubclassDataFromInstruction() & 3; + return Kind == TCK_Tail || Kind == TCK_MustTail; + } + + bool isMustTailCall() const { + return (getSubclassDataFromInstruction() & 3) == TCK_MustTail; + } + + bool isNoTailCall() const { + return (getSubclassDataFromInstruction() & 3) == TCK_NoTail; + } + + void setTailCall(bool isTC = true) { + setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) | + unsigned(isTC ? TCK_Tail : TCK_None)); + } + + void setTailCallKind(TailCallKind TCK) { + setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) | + unsigned(TCK)); + } + + /// Return true if the call can return twice + bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); } + void setCanReturnTwice() { + addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice); + } + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == Instruction::Call; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } + +private: + // Shadow Instruction::setInstructionSubclassData with a private forwarding + // method so that subclasses cannot accidentally use it. + void setInstructionSubclassData(unsigned short D) { + Instruction::setInstructionSubclassData(D); + } +}; + +CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, + BasicBlock *InsertAtEnd) + : CallBase(Ty->getReturnType(), Instruction::Call, + OperandTraits<CallBase>::op_end(this) - + (Args.size() + CountBundleInputs(Bundles) + 1), + unsigned(Args.size() + CountBundleInputs(Bundles) + 1), + InsertAtEnd) { + init(Ty, Func, Args, Bundles, NameStr); +} + +CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, + Instruction *InsertBefore) + : CallBase(Ty->getReturnType(), Instruction::Call, + OperandTraits<CallBase>::op_end(this) - + (Args.size() + CountBundleInputs(Bundles) + 1), + unsigned(Args.size() + CountBundleInputs(Bundles) + 1), + InsertBefore) { + init(Ty, Func, Args, Bundles, NameStr); +} + +//===----------------------------------------------------------------------===// +// SelectInst Class +//===----------------------------------------------------------------------===// + +/// This class represents the LLVM 'select' instruction. +/// +class SelectInst : public Instruction { + SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, + Instruction *InsertBefore) + : Instruction(S1->getType(), Instruction::Select, + &Op<0>(), 3, InsertBefore) { + init(C, S1, S2); + setName(NameStr); + } + + SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, + BasicBlock *InsertAtEnd) + : Instruction(S1->getType(), Instruction::Select, + &Op<0>(), 3, InsertAtEnd) { + init(C, S1, S2); + setName(NameStr); + } + + void init(Value *C, Value *S1, Value *S2) { + assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select"); + Op<0>() = C; + Op<1>() = S1; + Op<2>() = S2; + } + +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + SelectInst *cloneImpl() const; + +public: + static SelectInst *Create(Value *C, Value *S1, Value *S2, + const Twine &NameStr = "", + Instruction *InsertBefore = nullptr, + Instruction *MDFrom = nullptr) { + SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore); + if (MDFrom) + Sel->copyMetadata(*MDFrom); + return Sel; + } + + static SelectInst *Create(Value *C, Value *S1, Value *S2, + const Twine &NameStr, + BasicBlock *InsertAtEnd) { + return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd); + } + + const Value *getCondition() const { return Op<0>(); } + const Value *getTrueValue() const { return Op<1>(); } + const Value *getFalseValue() const { return Op<2>(); } + Value *getCondition() { return Op<0>(); } + Value *getTrueValue() { return Op<1>(); } + Value *getFalseValue() { return Op<2>(); } + + void setCondition(Value *V) { Op<0>() = V; } + void setTrueValue(Value *V) { Op<1>() = V; } + void setFalseValue(Value *V) { Op<2>() = V; } + + /// Return a string if the specified operands are invalid + /// for a select operation, otherwise return null. + static const char *areInvalidOperands(Value *Cond, Value *True, Value *False); + + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); + + OtherOps getOpcode() const { + return static_cast<OtherOps>(Instruction::getOpcode()); + } + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == Instruction::Select; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } +}; + +template <> +struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> { +}; + +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value) + +//===----------------------------------------------------------------------===// +// VAArgInst Class +//===----------------------------------------------------------------------===// + +/// This class represents the va_arg llvm instruction, which returns +/// an argument of the specified type given a va_list and increments that list +/// +class VAArgInst : public UnaryInstruction { +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + VAArgInst *cloneImpl() const; + +public: + VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "", + Instruction *InsertBefore = nullptr) + : UnaryInstruction(Ty, VAArg, List, InsertBefore) { + setName(NameStr); + } + + VAArgInst(Value *List, Type *Ty, const Twine &NameStr, + BasicBlock *InsertAtEnd) + : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) { + setName(NameStr); + } + + Value *getPointerOperand() { return getOperand(0); } + const Value *getPointerOperand() const { return getOperand(0); } + static unsigned getPointerOperandIndex() { return 0U; } + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == VAArg; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } +}; + +//===----------------------------------------------------------------------===// +// ExtractElementInst Class +//===----------------------------------------------------------------------===// + +/// This instruction extracts a single (scalar) +/// element from a VectorType value +/// +class ExtractElementInst : public Instruction { + ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "", + Instruction *InsertBefore = nullptr); + ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr, + BasicBlock *InsertAtEnd); + +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + ExtractElementInst *cloneImpl() const; + +public: + static ExtractElementInst *Create(Value *Vec, Value *Idx, + const Twine &NameStr = "", + Instruction *InsertBefore = nullptr) { + return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore); + } + + static ExtractElementInst *Create(Value *Vec, Value *Idx, + const Twine &NameStr, + BasicBlock *InsertAtEnd) { + return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd); + } + + /// Return true if an extractelement instruction can be + /// formed with the specified operands. + static bool isValidOperands(const Value *Vec, const Value *Idx); + + Value *getVectorOperand() { return Op<0>(); } + Value *getIndexOperand() { return Op<1>(); } + const Value *getVectorOperand() const { return Op<0>(); } + const Value *getIndexOperand() const { return Op<1>(); } + + VectorType *getVectorOperandType() const { + return cast<VectorType>(getVectorOperand()->getType()); + } + + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == Instruction::ExtractElement; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } +}; + +template <> +struct OperandTraits<ExtractElementInst> : + public FixedNumOperandTraits<ExtractElementInst, 2> { +}; + +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value) + +//===----------------------------------------------------------------------===// +// InsertElementInst Class +//===----------------------------------------------------------------------===// + +/// This instruction inserts a single (scalar) +/// element into a VectorType value +/// +class InsertElementInst : public Instruction { + InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, + const Twine &NameStr = "", + Instruction *InsertBefore = nullptr); + InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr, + BasicBlock *InsertAtEnd); + +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + InsertElementInst *cloneImpl() const; + +public: + static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, + const Twine &NameStr = "", + Instruction *InsertBefore = nullptr) { + return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore); + } + + static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, + const Twine &NameStr, + BasicBlock *InsertAtEnd) { + return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd); + } + + /// Return true if an insertelement instruction can be + /// formed with the specified operands. + static bool isValidOperands(const Value *Vec, const Value *NewElt, + const Value *Idx); + + /// Overload to return most specific vector type. + /// + VectorType *getType() const { + return cast<VectorType>(Instruction::getType()); + } + + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == Instruction::InsertElement; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } +}; + +template <> +struct OperandTraits<InsertElementInst> : + public FixedNumOperandTraits<InsertElementInst, 3> { +}; + +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value) + +//===----------------------------------------------------------------------===// +// ShuffleVectorInst Class +//===----------------------------------------------------------------------===// + +/// This instruction constructs a fixed permutation of two +/// input vectors. +/// +class ShuffleVectorInst : public Instruction { +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + ShuffleVectorInst *cloneImpl() const; + +public: + ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, + const Twine &NameStr = "", + Instruction *InsertBefor = nullptr); + ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, + const Twine &NameStr, BasicBlock *InsertAtEnd); + + // allocate space for exactly three operands + void *operator new(size_t s) { + return User::operator new(s, 3); + } + + /// Return true if a shufflevector instruction can be + /// formed with the specified operands. + static bool isValidOperands(const Value *V1, const Value *V2, + const Value *Mask); + + /// Overload to return most specific vector type. + /// + VectorType *getType() const { + return cast<VectorType>(Instruction::getType()); + } + + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); + + Constant *getMask() const { + return cast<Constant>(getOperand(2)); + } + + /// Return the shuffle mask value for the specified element of the mask. + /// Return -1 if the element is undef. + static int getMaskValue(const Constant *Mask, unsigned Elt); + + /// Return the shuffle mask value of this instruction for the given element + /// index. Return -1 if the element is undef. + int getMaskValue(unsigned Elt) const { + return getMaskValue(getMask(), Elt); + } + + /// Convert the input shuffle mask operand to a vector of integers. Undefined + /// elements of the mask are returned as -1. + static void getShuffleMask(const Constant *Mask, + SmallVectorImpl<int> &Result); + + /// Return the mask for this instruction as a vector of integers. Undefined + /// elements of the mask are returned as -1. + void getShuffleMask(SmallVectorImpl<int> &Result) const { + return getShuffleMask(getMask(), Result); + } + + SmallVector<int, 16> getShuffleMask() const { + SmallVector<int, 16> Mask; + getShuffleMask(Mask); + return Mask; + } + + /// Return true if this shuffle returns a vector with a different number of + /// elements than its source vectors. + /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3> + /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5> + bool changesLength() const { + unsigned NumSourceElts = Op<0>()->getType()->getVectorNumElements(); + unsigned NumMaskElts = getMask()->getType()->getVectorNumElements(); + return NumSourceElts != NumMaskElts; + } + + /// Return true if this shuffle returns a vector with a greater number of + /// elements than its source vectors. + /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3> + bool increasesLength() const { + unsigned NumSourceElts = Op<0>()->getType()->getVectorNumElements(); + unsigned NumMaskElts = getMask()->getType()->getVectorNumElements(); + return NumSourceElts < NumMaskElts; + } + + /// Return true if this shuffle mask chooses elements from exactly one source + /// vector. + /// Example: <7,5,undef,7> + /// This assumes that vector operands are the same length as the mask. + static bool isSingleSourceMask(ArrayRef<int> Mask); + static bool isSingleSourceMask(const Constant *Mask) { + assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); + SmallVector<int, 16> MaskAsInts; + getShuffleMask(Mask, MaskAsInts); + return isSingleSourceMask(MaskAsInts); + } + + /// Return true if this shuffle chooses elements from exactly one source + /// vector without changing the length of that vector. + /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3> + /// TODO: Optionally allow length-changing shuffles. + bool isSingleSource() const { + return !changesLength() && isSingleSourceMask(getMask()); + } + + /// Return true if this shuffle mask chooses elements from exactly one source + /// vector without lane crossings. A shuffle using this mask is not + /// necessarily a no-op because it may change the number of elements from its + /// input vectors or it may provide demanded bits knowledge via undef lanes. + /// Example: <undef,undef,2,3> + static bool isIdentityMask(ArrayRef<int> Mask); + static bool isIdentityMask(const Constant *Mask) { + assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); + SmallVector<int, 16> MaskAsInts; + getShuffleMask(Mask, MaskAsInts); + return isIdentityMask(MaskAsInts); + } + + /// Return true if this shuffle chooses elements from exactly one source + /// vector without lane crossings and does not change the number of elements + /// from its input vectors. + /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef> + bool isIdentity() const { + return !changesLength() && isIdentityMask(getShuffleMask()); + } + + /// Return true if this shuffle lengthens exactly one source vector with + /// undefs in the high elements. + bool isIdentityWithPadding() const; + + /// Return true if this shuffle extracts the first N elements of exactly one + /// source vector. + bool isIdentityWithExtract() const; + + /// Return true if this shuffle concatenates its 2 source vectors. This + /// returns false if either input is undefined. In that case, the shuffle is + /// is better classified as an identity with padding operation. + bool isConcat() const; + + /// Return true if this shuffle mask chooses elements from its source vectors + /// without lane crossings. A shuffle using this mask would be + /// equivalent to a vector select with a constant condition operand. + /// Example: <4,1,6,undef> + /// This returns false if the mask does not choose from both input vectors. + /// In that case, the shuffle is better classified as an identity shuffle. + /// This assumes that vector operands are the same length as the mask + /// (a length-changing shuffle can never be equivalent to a vector select). + static bool isSelectMask(ArrayRef<int> Mask); + static bool isSelectMask(const Constant *Mask) { + assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); + SmallVector<int, 16> MaskAsInts; + getShuffleMask(Mask, MaskAsInts); + return isSelectMask(MaskAsInts); + } + + /// Return true if this shuffle chooses elements from its source vectors + /// without lane crossings and all operands have the same number of elements. + /// In other words, this shuffle is equivalent to a vector select with a + /// constant condition operand. + /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3> + /// This returns false if the mask does not choose from both input vectors. + /// In that case, the shuffle is better classified as an identity shuffle. + /// TODO: Optionally allow length-changing shuffles. + bool isSelect() const { + return !changesLength() && isSelectMask(getMask()); + } + + /// Return true if this shuffle mask swaps the order of elements from exactly + /// one source vector. + /// Example: <7,6,undef,4> + /// This assumes that vector operands are the same length as the mask. + static bool isReverseMask(ArrayRef<int> Mask); + static bool isReverseMask(const Constant *Mask) { + assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); + SmallVector<int, 16> MaskAsInts; + getShuffleMask(Mask, MaskAsInts); + return isReverseMask(MaskAsInts); + } + + /// Return true if this shuffle swaps the order of elements from exactly + /// one source vector. + /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef> + /// TODO: Optionally allow length-changing shuffles. + bool isReverse() const { + return !changesLength() && isReverseMask(getMask()); + } + + /// Return true if this shuffle mask chooses all elements with the same value + /// as the first element of exactly one source vector. + /// Example: <4,undef,undef,4> + /// This assumes that vector operands are the same length as the mask. + static bool isZeroEltSplatMask(ArrayRef<int> Mask); + static bool isZeroEltSplatMask(const Constant *Mask) { + assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); + SmallVector<int, 16> MaskAsInts; + getShuffleMask(Mask, MaskAsInts); + return isZeroEltSplatMask(MaskAsInts); + } + + /// Return true if all elements of this shuffle are the same value as the + /// first element of exactly one source vector without changing the length + /// of that vector. + /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0> + /// TODO: Optionally allow length-changing shuffles. + /// TODO: Optionally allow splats from other elements. + bool isZeroEltSplat() const { + return !changesLength() && isZeroEltSplatMask(getMask()); + } + + /// Return true if this shuffle mask is a transpose mask. + /// Transpose vector masks transpose a 2xn matrix. They read corresponding + /// even- or odd-numbered vector elements from two n-dimensional source + /// vectors and write each result into consecutive elements of an + /// n-dimensional destination vector. Two shuffles are necessary to complete + /// the transpose, one for the even elements and another for the odd elements. + /// This description closely follows how the TRN1 and TRN2 AArch64 + /// instructions operate. + /// + /// For example, a simple 2x2 matrix can be transposed with: + /// + /// ; Original matrix + /// m0 = < a, b > + /// m1 = < c, d > + /// + /// ; Transposed matrix + /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 > + /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 > + /// + /// For matrices having greater than n columns, the resulting nx2 transposed + /// matrix is stored in two result vectors such that one vector contains + /// interleaved elements from all the even-numbered rows and the other vector + /// contains interleaved elements from all the odd-numbered rows. For example, + /// a 2x4 matrix can be transposed with: + /// + /// ; Original matrix + /// m0 = < a, b, c, d > + /// m1 = < e, f, g, h > + /// + /// ; Transposed matrix + /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 > + /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 > + static bool isTransposeMask(ArrayRef<int> Mask); + static bool isTransposeMask(const Constant *Mask) { + assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); + SmallVector<int, 16> MaskAsInts; + getShuffleMask(Mask, MaskAsInts); + return isTransposeMask(MaskAsInts); + } + + /// Return true if this shuffle transposes the elements of its inputs without + /// changing the length of the vectors. This operation may also be known as a + /// merge or interleave. See the description for isTransposeMask() for the + /// exact specification. + /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6> + bool isTranspose() const { + return !changesLength() && isTransposeMask(getMask()); + } + + /// Return true if this shuffle mask is an extract subvector mask. + /// A valid extract subvector mask returns a smaller vector from a single + /// source operand. The base extraction index is returned as well. + static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts, + int &Index); + static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts, + int &Index) { + assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); + SmallVector<int, 16> MaskAsInts; + getShuffleMask(Mask, MaskAsInts); + return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index); + } + + /// Return true if this shuffle mask is an extract subvector mask. + bool isExtractSubvectorMask(int &Index) const { + int NumSrcElts = Op<0>()->getType()->getVectorNumElements(); + return isExtractSubvectorMask(getMask(), NumSrcElts, Index); + } + + /// Change values in a shuffle permute mask assuming the two vector operands + /// of length InVecNumElts have swapped position. + static void commuteShuffleMask(MutableArrayRef<int> Mask, + unsigned InVecNumElts) { + for (int &Idx : Mask) { + if (Idx == -1) + continue; + Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts; + assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 && + "shufflevector mask index out of range"); + } + } + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == Instruction::ShuffleVector; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } +}; + +template <> +struct OperandTraits<ShuffleVectorInst> : + public FixedNumOperandTraits<ShuffleVectorInst, 3> { +}; + +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value) + +//===----------------------------------------------------------------------===// +// ExtractValueInst Class +//===----------------------------------------------------------------------===// + +/// This instruction extracts a struct member or array +/// element value from an aggregate value. +/// +class ExtractValueInst : public UnaryInstruction { + SmallVector<unsigned, 4> Indices; + + ExtractValueInst(const ExtractValueInst &EVI); + + /// Constructors - Create a extractvalue instruction with a base aggregate + /// value and a list of indices. The first ctor can optionally insert before + /// an existing instruction, the second appends the new instruction to the + /// specified BasicBlock. + inline ExtractValueInst(Value *Agg, + ArrayRef<unsigned> Idxs, + const Twine &NameStr, + Instruction *InsertBefore); + inline ExtractValueInst(Value *Agg, + ArrayRef<unsigned> Idxs, + const Twine &NameStr, BasicBlock *InsertAtEnd); + + void init(ArrayRef<unsigned> Idxs, const Twine &NameStr); + +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + ExtractValueInst *cloneImpl() const; + +public: + static ExtractValueInst *Create(Value *Agg, + ArrayRef<unsigned> Idxs, + const Twine &NameStr = "", + Instruction *InsertBefore = nullptr) { + return new + ExtractValueInst(Agg, Idxs, NameStr, InsertBefore); + } + + static ExtractValueInst *Create(Value *Agg, + ArrayRef<unsigned> Idxs, + const Twine &NameStr, + BasicBlock *InsertAtEnd) { + return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd); + } + + /// Returns the type of the element that would be extracted + /// with an extractvalue instruction with the specified parameters. + /// + /// Null is returned if the indices are invalid for the specified type. + static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs); + + using idx_iterator = const unsigned*; + + inline idx_iterator idx_begin() const { return Indices.begin(); } + inline idx_iterator idx_end() const { return Indices.end(); } + inline iterator_range<idx_iterator> indices() const { + return make_range(idx_begin(), idx_end()); + } + + Value *getAggregateOperand() { + return getOperand(0); + } + const Value *getAggregateOperand() const { + return getOperand(0); + } + static unsigned getAggregateOperandIndex() { + return 0U; // get index for modifying correct operand + } + + ArrayRef<unsigned> getIndices() const { + return Indices; + } + + unsigned getNumIndices() const { + return (unsigned)Indices.size(); + } + + bool hasIndices() const { + return true; + } + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == Instruction::ExtractValue; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } +}; + +ExtractValueInst::ExtractValueInst(Value *Agg, + ArrayRef<unsigned> Idxs, + const Twine &NameStr, + Instruction *InsertBefore) + : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), + ExtractValue, Agg, InsertBefore) { + init(Idxs, NameStr); +} + +ExtractValueInst::ExtractValueInst(Value *Agg, + ArrayRef<unsigned> Idxs, + const Twine &NameStr, + BasicBlock *InsertAtEnd) + : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), + ExtractValue, Agg, InsertAtEnd) { + init(Idxs, NameStr); +} + +//===----------------------------------------------------------------------===// +// InsertValueInst Class +//===----------------------------------------------------------------------===// + +/// This instruction inserts a struct field of array element +/// value into an aggregate value. +/// +class InsertValueInst : public Instruction { + SmallVector<unsigned, 4> Indices; + + InsertValueInst(const InsertValueInst &IVI); + + /// Constructors - Create a insertvalue instruction with a base aggregate + /// value, a value to insert, and a list of indices. The first ctor can + /// optionally insert before an existing instruction, the second appends + /// the new instruction to the specified BasicBlock. + inline InsertValueInst(Value *Agg, Value *Val, + ArrayRef<unsigned> Idxs, + const Twine &NameStr, + Instruction *InsertBefore); + inline InsertValueInst(Value *Agg, Value *Val, + ArrayRef<unsigned> Idxs, + const Twine &NameStr, BasicBlock *InsertAtEnd); + + /// Constructors - These two constructors are convenience methods because one + /// and two index insertvalue instructions are so common. + InsertValueInst(Value *Agg, Value *Val, unsigned Idx, + const Twine &NameStr = "", + Instruction *InsertBefore = nullptr); + InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr, + BasicBlock *InsertAtEnd); + + void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, + const Twine &NameStr); + +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + InsertValueInst *cloneImpl() const; + +public: + // allocate space for exactly two operands + void *operator new(size_t s) { + return User::operator new(s, 2); + } + + static InsertValueInst *Create(Value *Agg, Value *Val, + ArrayRef<unsigned> Idxs, + const Twine &NameStr = "", + Instruction *InsertBefore = nullptr) { + return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore); + } + + static InsertValueInst *Create(Value *Agg, Value *Val, + ArrayRef<unsigned> Idxs, + const Twine &NameStr, + BasicBlock *InsertAtEnd) { + return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd); + } + + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); + + using idx_iterator = const unsigned*; + + inline idx_iterator idx_begin() const { return Indices.begin(); } + inline idx_iterator idx_end() const { return Indices.end(); } + inline iterator_range<idx_iterator> indices() const { + return make_range(idx_begin(), idx_end()); + } + + Value *getAggregateOperand() { + return getOperand(0); + } + const Value *getAggregateOperand() const { + return getOperand(0); + } + static unsigned getAggregateOperandIndex() { + return 0U; // get index for modifying correct operand + } + + Value *getInsertedValueOperand() { + return getOperand(1); + } + const Value *getInsertedValueOperand() const { + return getOperand(1); + } + static unsigned getInsertedValueOperandIndex() { + return 1U; // get index for modifying correct operand + } + + ArrayRef<unsigned> getIndices() const { + return Indices; + } + + unsigned getNumIndices() const { + return (unsigned)Indices.size(); + } + + bool hasIndices() const { + return true; + } + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == Instruction::InsertValue; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } +}; + +template <> +struct OperandTraits<InsertValueInst> : + public FixedNumOperandTraits<InsertValueInst, 2> { +}; + +InsertValueInst::InsertValueInst(Value *Agg, + Value *Val, + ArrayRef<unsigned> Idxs, + const Twine &NameStr, + Instruction *InsertBefore) + : Instruction(Agg->getType(), InsertValue, + OperandTraits<InsertValueInst>::op_begin(this), + 2, InsertBefore) { + init(Agg, Val, Idxs, NameStr); +} + +InsertValueInst::InsertValueInst(Value *Agg, + Value *Val, + ArrayRef<unsigned> Idxs, + const Twine &NameStr, + BasicBlock *InsertAtEnd) + : Instruction(Agg->getType(), InsertValue, + OperandTraits<InsertValueInst>::op_begin(this), + 2, InsertAtEnd) { + init(Agg, Val, Idxs, NameStr); +} + +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value) + +//===----------------------------------------------------------------------===// +// PHINode Class +//===----------------------------------------------------------------------===// + +// PHINode - The PHINode class is used to represent the magical mystical PHI +// node, that can not exist in nature, but can be synthesized in a computer +// scientist's overactive imagination. +// +class PHINode : public Instruction { + /// The number of operands actually allocated. NumOperands is + /// the number actually in use. + unsigned ReservedSpace; + + PHINode(const PHINode &PN); + + explicit PHINode(Type *Ty, unsigned NumReservedValues, + const Twine &NameStr = "", + Instruction *InsertBefore = nullptr) + : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore), + ReservedSpace(NumReservedValues) { + setName(NameStr); + allocHungoffUses(ReservedSpace); + } + + PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr, + BasicBlock *InsertAtEnd) + : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd), + ReservedSpace(NumReservedValues) { + setName(NameStr); + allocHungoffUses(ReservedSpace); + } + +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + PHINode *cloneImpl() const; + + // allocHungoffUses - this is more complicated than the generic + // User::allocHungoffUses, because we have to allocate Uses for the incoming + // values and pointers to the incoming blocks, all in one allocation. + void allocHungoffUses(unsigned N) { + User::allocHungoffUses(N, /* IsPhi */ true); + } + +public: + /// Constructors - NumReservedValues is a hint for the number of incoming + /// edges that this phi node will have (use 0 if you really have no idea). + static PHINode *Create(Type *Ty, unsigned NumReservedValues, + const Twine &NameStr = "", + Instruction *InsertBefore = nullptr) { + return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore); + } + + static PHINode *Create(Type *Ty, unsigned NumReservedValues, + const Twine &NameStr, BasicBlock *InsertAtEnd) { + return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd); + } + + /// Provide fast operand accessors + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); + + // Block iterator interface. This provides access to the list of incoming + // basic blocks, which parallels the list of incoming values. + + using block_iterator = BasicBlock **; + using const_block_iterator = BasicBlock * const *; + + block_iterator block_begin() { + Use::UserRef *ref = + reinterpret_cast<Use::UserRef*>(op_begin() + ReservedSpace); + return reinterpret_cast<block_iterator>(ref + 1); + } + + const_block_iterator block_begin() const { + const Use::UserRef *ref = + reinterpret_cast<const Use::UserRef*>(op_begin() + ReservedSpace); + return reinterpret_cast<const_block_iterator>(ref + 1); + } + + block_iterator block_end() { + return block_begin() + getNumOperands(); + } + + const_block_iterator block_end() const { + return block_begin() + getNumOperands(); + } + + iterator_range<block_iterator> blocks() { + return make_range(block_begin(), block_end()); + } + + iterator_range<const_block_iterator> blocks() const { + return make_range(block_begin(), block_end()); + } + + op_range incoming_values() { return operands(); } + + const_op_range incoming_values() const { return operands(); } + + /// Return the number of incoming edges + /// + unsigned getNumIncomingValues() const { return getNumOperands(); } + + /// Return incoming value number x + /// + Value *getIncomingValue(unsigned i) const { + return getOperand(i); + } + void setIncomingValue(unsigned i, Value *V) { + assert(V && "PHI node got a null value!"); + assert(getType() == V->getType() && + "All operands to PHI node must be the same type as the PHI node!"); + setOperand(i, V); + } + + static unsigned getOperandNumForIncomingValue(unsigned i) { + return i; + } + + static unsigned getIncomingValueNumForOperand(unsigned i) { + return i; + } + + /// Return incoming basic block number @p i. + /// + BasicBlock *getIncomingBlock(unsigned i) const { + return block_begin()[i]; + } + + /// Return incoming basic block corresponding + /// to an operand of the PHI. + /// + BasicBlock *getIncomingBlock(const Use &U) const { + assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?"); + return getIncomingBlock(unsigned(&U - op_begin())); + } + + /// Return incoming basic block corresponding + /// to value use iterator. + /// + BasicBlock *getIncomingBlock(Value::const_user_iterator I) const { + return getIncomingBlock(I.getUse()); + } + + void setIncomingBlock(unsigned i, BasicBlock *BB) { + assert(BB && "PHI node got a null basic block!"); + block_begin()[i] = BB; + } + + /// Add an incoming value to the end of the PHI list + /// + void addIncoming(Value *V, BasicBlock *BB) { + if (getNumOperands() == ReservedSpace) + growOperands(); // Get more space! + // Initialize some new operands. + setNumHungOffUseOperands(getNumOperands() + 1); + setIncomingValue(getNumOperands() - 1, V); + setIncomingBlock(getNumOperands() - 1, BB); + } + + /// Remove an incoming value. This is useful if a + /// predecessor basic block is deleted. The value removed is returned. + /// + /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty + /// is true), the PHI node is destroyed and any uses of it are replaced with + /// dummy values. The only time there should be zero incoming values to a PHI + /// node is when the block is dead, so this strategy is sound. + /// + Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true); + + Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) { + int Idx = getBasicBlockIndex(BB); + assert(Idx >= 0 && "Invalid basic block argument to remove!"); + return removeIncomingValue(Idx, DeletePHIIfEmpty); + } + + /// Return the first index of the specified basic + /// block in the value list for this PHI. Returns -1 if no instance. + /// + int getBasicBlockIndex(const BasicBlock *BB) const { + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + if (block_begin()[i] == BB) + return i; + return -1; + } + + Value *getIncomingValueForBlock(const BasicBlock *BB) const { + int Idx = getBasicBlockIndex(BB); + assert(Idx >= 0 && "Invalid basic block argument!"); + return getIncomingValue(Idx); + } + + /// If the specified PHI node always merges together the + /// same value, return the value, otherwise return null. + Value *hasConstantValue() const; + + /// Whether the specified PHI node always merges + /// together the same value, assuming undefs are equal to a unique + /// non-undef value. + bool hasConstantOrUndefValue() const; + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == Instruction::PHI; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } + +private: + void growOperands(); +}; + +template <> +struct OperandTraits<PHINode> : public HungoffOperandTraits<2> { +}; + +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value) + +//===----------------------------------------------------------------------===// +// LandingPadInst Class +//===----------------------------------------------------------------------===// + +//===--------------------------------------------------------------------------- +/// The landingpad instruction holds all of the information +/// necessary to generate correct exception handling. The landingpad instruction +/// cannot be moved from the top of a landing pad block, which itself is +/// accessible only from the 'unwind' edge of an invoke. This uses the +/// SubclassData field in Value to store whether or not the landingpad is a +/// cleanup. +/// +class LandingPadInst : public Instruction { + /// The number of operands actually allocated. NumOperands is + /// the number actually in use. + unsigned ReservedSpace; + + LandingPadInst(const LandingPadInst &LP); + +public: + enum ClauseType { Catch, Filter }; + +private: + explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, + const Twine &NameStr, Instruction *InsertBefore); + explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, + const Twine &NameStr, BasicBlock *InsertAtEnd); + + // Allocate space for exactly zero operands. + void *operator new(size_t s) { + return User::operator new(s); + } + + void growOperands(unsigned Size); + void init(unsigned NumReservedValues, const Twine &NameStr); + +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + LandingPadInst *cloneImpl() const; + +public: + /// Constructors - NumReservedClauses is a hint for the number of incoming + /// clauses that this landingpad will have (use 0 if you really have no idea). + static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, + const Twine &NameStr = "", + Instruction *InsertBefore = nullptr); + static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, + const Twine &NameStr, BasicBlock *InsertAtEnd); + + /// Provide fast operand accessors + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); + + /// Return 'true' if this landingpad instruction is a + /// cleanup. I.e., it should be run when unwinding even if its landing pad + /// doesn't catch the exception. + bool isCleanup() const { return getSubclassDataFromInstruction() & 1; } + + /// Indicate that this landingpad instruction is a cleanup. + void setCleanup(bool V) { + setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | + (V ? 1 : 0)); + } + + /// Add a catch or filter clause to the landing pad. + void addClause(Constant *ClauseVal); + + /// Get the value of the clause at index Idx. Use isCatch/isFilter to + /// determine what type of clause this is. + Constant *getClause(unsigned Idx) const { + return cast<Constant>(getOperandList()[Idx]); + } + + /// Return 'true' if the clause and index Idx is a catch clause. + bool isCatch(unsigned Idx) const { + return !isa<ArrayType>(getOperandList()[Idx]->getType()); + } + + /// Return 'true' if the clause and index Idx is a filter clause. + bool isFilter(unsigned Idx) const { + return isa<ArrayType>(getOperandList()[Idx]->getType()); + } + + /// Get the number of clauses for this landing pad. + unsigned getNumClauses() const { return getNumOperands(); } + + /// Grow the size of the operand list to accommodate the new + /// number of clauses. + void reserveClauses(unsigned Size) { growOperands(Size); } + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == Instruction::LandingPad; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } +}; + +template <> +struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> { +}; + +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value) + +//===----------------------------------------------------------------------===// +// ReturnInst Class +//===----------------------------------------------------------------------===// + +//===--------------------------------------------------------------------------- +/// Return a value (possibly void), from a function. Execution +/// does not continue in this function any longer. +/// +class ReturnInst : public Instruction { + ReturnInst(const ReturnInst &RI); + +private: + // ReturnInst constructors: + // ReturnInst() - 'ret void' instruction + // ReturnInst( null) - 'ret void' instruction + // ReturnInst(Value* X) - 'ret X' instruction + // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I + // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I + // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B + // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B + // + // NOTE: If the Value* passed is of type void then the constructor behaves as + // if it was passed NULL. + explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr, + Instruction *InsertBefore = nullptr); + ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd); + explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd); + +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + ReturnInst *cloneImpl() const; + +public: + static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr, + Instruction *InsertBefore = nullptr) { + return new(!!retVal) ReturnInst(C, retVal, InsertBefore); + } + + static ReturnInst* Create(LLVMContext &C, Value *retVal, + BasicBlock *InsertAtEnd) { + return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd); + } + + static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) { + return new(0) ReturnInst(C, InsertAtEnd); + } + + /// Provide fast operand accessors + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); + + /// Convenience accessor. Returns null if there is no return value. + Value *getReturnValue() const { + return getNumOperands() != 0 ? getOperand(0) : nullptr; + } + + unsigned getNumSuccessors() const { return 0; } + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return (I->getOpcode() == Instruction::Ret); + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } + +private: + BasicBlock *getSuccessor(unsigned idx) const { + llvm_unreachable("ReturnInst has no successors!"); + } + + void setSuccessor(unsigned idx, BasicBlock *B) { + llvm_unreachable("ReturnInst has no successors!"); + } +}; + +template <> +struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> { +}; + +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value) + +//===----------------------------------------------------------------------===// +// BranchInst Class +//===----------------------------------------------------------------------===// + +//===--------------------------------------------------------------------------- +/// Conditional or Unconditional Branch instruction. +/// +class BranchInst : public Instruction { + /// Ops list - Branches are strange. The operands are ordered: + /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because + /// they don't have to check for cond/uncond branchness. These are mostly + /// accessed relative from op_end(). + BranchInst(const BranchInst &BI); + // BranchInst constructors (where {B, T, F} are blocks, and C is a condition): + // BranchInst(BB *B) - 'br B' + // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F' + // BranchInst(BB* B, Inst *I) - 'br B' insert before I + // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I + // BranchInst(BB* B, BB *I) - 'br B' insert at end + // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end + explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr); + BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, + Instruction *InsertBefore = nullptr); + BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd); + BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, + BasicBlock *InsertAtEnd); + + void AssertOK(); + +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + BranchInst *cloneImpl() const; + +public: + /// Iterator type that casts an operand to a basic block. + /// + /// This only makes sense because the successors are stored as adjacent + /// operands for branch instructions. + struct succ_op_iterator + : iterator_adaptor_base<succ_op_iterator, value_op_iterator, + std::random_access_iterator_tag, BasicBlock *, + ptrdiff_t, BasicBlock *, BasicBlock *> { + explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {} + + BasicBlock *operator*() const { return cast<BasicBlock>(*I); } + BasicBlock *operator->() const { return operator*(); } + }; + + /// The const version of `succ_op_iterator`. + struct const_succ_op_iterator + : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator, + std::random_access_iterator_tag, + const BasicBlock *, ptrdiff_t, const BasicBlock *, + const BasicBlock *> { + explicit const_succ_op_iterator(const_value_op_iterator I) + : iterator_adaptor_base(I) {} + + const BasicBlock *operator*() const { return cast<BasicBlock>(*I); } + const BasicBlock *operator->() const { return operator*(); } + }; + + static BranchInst *Create(BasicBlock *IfTrue, + Instruction *InsertBefore = nullptr) { + return new(1) BranchInst(IfTrue, InsertBefore); + } + + static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, + Value *Cond, Instruction *InsertBefore = nullptr) { + return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore); + } + + static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) { + return new(1) BranchInst(IfTrue, InsertAtEnd); + } + + static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, + Value *Cond, BasicBlock *InsertAtEnd) { + return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd); + } + + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); + + bool isUnconditional() const { return getNumOperands() == 1; } + bool isConditional() const { return getNumOperands() == 3; } + + Value *getCondition() const { + assert(isConditional() && "Cannot get condition of an uncond branch!"); + return Op<-3>(); + } + + void setCondition(Value *V) { + assert(isConditional() && "Cannot set condition of unconditional branch!"); + Op<-3>() = V; + } + + unsigned getNumSuccessors() const { return 1+isConditional(); } + + BasicBlock *getSuccessor(unsigned i) const { + assert(i < getNumSuccessors() && "Successor # out of range for Branch!"); + return cast_or_null<BasicBlock>((&Op<-1>() - i)->get()); + } + + void setSuccessor(unsigned idx, BasicBlock *NewSucc) { + assert(idx < getNumSuccessors() && "Successor # out of range for Branch!"); + *(&Op<-1>() - idx) = NewSucc; + } + + /// Swap the successors of this branch instruction. + /// + /// Swaps the successors of the branch instruction. This also swaps any + /// branch weight metadata associated with the instruction so that it + /// continues to map correctly to each operand. + void swapSuccessors(); + + iterator_range<succ_op_iterator> successors() { + return make_range( + succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)), + succ_op_iterator(value_op_end())); + } + + iterator_range<const_succ_op_iterator> successors() const { + return make_range(const_succ_op_iterator( + std::next(value_op_begin(), isConditional() ? 1 : 0)), + const_succ_op_iterator(value_op_end())); + } + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return (I->getOpcode() == Instruction::Br); + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } +}; + +template <> +struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> { +}; + +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value) + +//===----------------------------------------------------------------------===// +// SwitchInst Class +//===----------------------------------------------------------------------===// + +//===--------------------------------------------------------------------------- +/// Multiway switch +/// +class SwitchInst : public Instruction { + unsigned ReservedSpace; + + // Operand[0] = Value to switch on + // Operand[1] = Default basic block destination + // Operand[2n ] = Value to match + // Operand[2n+1] = BasicBlock to go to on match + SwitchInst(const SwitchInst &SI); + + /// Create a new switch instruction, specifying a value to switch on and a + /// default destination. The number of additional cases can be specified here + /// to make memory allocation more efficient. This constructor can also + /// auto-insert before another instruction. + SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, + Instruction *InsertBefore); + + /// Create a new switch instruction, specifying a value to switch on and a + /// default destination. The number of additional cases can be specified here + /// to make memory allocation more efficient. This constructor also + /// auto-inserts at the end of the specified BasicBlock. + SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, + BasicBlock *InsertAtEnd); + + // allocate space for exactly zero operands + void *operator new(size_t s) { + return User::operator new(s); + } + + void init(Value *Value, BasicBlock *Default, unsigned NumReserved); + void growOperands(); + +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + SwitchInst *cloneImpl() const; + +public: + // -2 + static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1); + + template <typename CaseHandleT> class CaseIteratorImpl; + + /// A handle to a particular switch case. It exposes a convenient interface + /// to both the case value and the successor block. + /// + /// We define this as a template and instantiate it to form both a const and + /// non-const handle. + template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT> + class CaseHandleImpl { + // Directly befriend both const and non-const iterators. + friend class SwitchInst::CaseIteratorImpl< + CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>; + + protected: + // Expose the switch type we're parameterized with to the iterator. + using SwitchInstType = SwitchInstT; + + SwitchInstT *SI; + ptrdiff_t Index; + + CaseHandleImpl() = default; + CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {} + + public: + /// Resolves case value for current case. + ConstantIntT *getCaseValue() const { + assert((unsigned)Index < SI->getNumCases() && + "Index out the number of cases."); + return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2)); + } + + /// Resolves successor for current case. + BasicBlockT *getCaseSuccessor() const { + assert(((unsigned)Index < SI->getNumCases() || + (unsigned)Index == DefaultPseudoIndex) && + "Index out the number of cases."); + return SI->getSuccessor(getSuccessorIndex()); + } + + /// Returns number of current case. + unsigned getCaseIndex() const { return Index; } + + /// Returns successor index for current case successor. + unsigned getSuccessorIndex() const { + assert(((unsigned)Index == DefaultPseudoIndex || + (unsigned)Index < SI->getNumCases()) && + "Index out the number of cases."); + return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0; + } + + bool operator==(const CaseHandleImpl &RHS) const { + assert(SI == RHS.SI && "Incompatible operators."); + return Index == RHS.Index; + } + }; + + using ConstCaseHandle = + CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>; + + class CaseHandle + : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> { + friend class SwitchInst::CaseIteratorImpl<CaseHandle>; + + public: + CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {} + + /// Sets the new value for current case. + void setValue(ConstantInt *V) { + assert((unsigned)Index < SI->getNumCases() && + "Index out the number of cases."); + SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V)); + } + + /// Sets the new successor for current case. + void setSuccessor(BasicBlock *S) { + SI->setSuccessor(getSuccessorIndex(), S); + } + }; + + template <typename CaseHandleT> + class CaseIteratorImpl + : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>, + std::random_access_iterator_tag, + CaseHandleT> { + using SwitchInstT = typename CaseHandleT::SwitchInstType; + + CaseHandleT Case; + + public: + /// Default constructed iterator is in an invalid state until assigned to + /// a case for a particular switch. + CaseIteratorImpl() = default; + + /// Initializes case iterator for given SwitchInst and for given + /// case number. + CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {} + + /// Initializes case iterator for given SwitchInst and for given + /// successor index. + static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI, + unsigned SuccessorIndex) { + assert(SuccessorIndex < SI->getNumSuccessors() && + "Successor index # out of range!"); + return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1) + : CaseIteratorImpl(SI, DefaultPseudoIndex); + } + + /// Support converting to the const variant. This will be a no-op for const + /// variant. + operator CaseIteratorImpl<ConstCaseHandle>() const { + return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index); + } + + CaseIteratorImpl &operator+=(ptrdiff_t N) { + // Check index correctness after addition. + // Note: Index == getNumCases() means end(). + assert(Case.Index + N >= 0 && + (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && + "Case.Index out the number of cases."); + Case.Index += N; + return *this; + } + CaseIteratorImpl &operator-=(ptrdiff_t N) { + // Check index correctness after subtraction. + // Note: Case.Index == getNumCases() means end(). + assert(Case.Index - N >= 0 && + (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && + "Case.Index out the number of cases."); + Case.Index -= N; + return *this; + } + ptrdiff_t operator-(const CaseIteratorImpl &RHS) const { + assert(Case.SI == RHS.Case.SI && "Incompatible operators."); + return Case.Index - RHS.Case.Index; + } + bool operator==(const CaseIteratorImpl &RHS) const { + return Case == RHS.Case; + } + bool operator<(const CaseIteratorImpl &RHS) const { + assert(Case.SI == RHS.Case.SI && "Incompatible operators."); + return Case.Index < RHS.Case.Index; + } + CaseHandleT &operator*() { return Case; } + const CaseHandleT &operator*() const { return Case; } + }; + + using CaseIt = CaseIteratorImpl<CaseHandle>; + using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>; + + static SwitchInst *Create(Value *Value, BasicBlock *Default, + unsigned NumCases, + Instruction *InsertBefore = nullptr) { + return new SwitchInst(Value, Default, NumCases, InsertBefore); + } + + static SwitchInst *Create(Value *Value, BasicBlock *Default, + unsigned NumCases, BasicBlock *InsertAtEnd) { + return new SwitchInst(Value, Default, NumCases, InsertAtEnd); + } + + /// Provide fast operand accessors + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); + + // Accessor Methods for Switch stmt + Value *getCondition() const { return getOperand(0); } + void setCondition(Value *V) { setOperand(0, V); } + + BasicBlock *getDefaultDest() const { + return cast<BasicBlock>(getOperand(1)); + } + + void setDefaultDest(BasicBlock *DefaultCase) { + setOperand(1, reinterpret_cast<Value*>(DefaultCase)); + } + + /// Return the number of 'cases' in this switch instruction, excluding the + /// default case. + unsigned getNumCases() const { + return getNumOperands()/2 - 1; + } + + /// Returns a read/write iterator that points to the first case in the + /// SwitchInst. + CaseIt case_begin() { + return CaseIt(this, 0); + } + + /// Returns a read-only iterator that points to the first case in the + /// SwitchInst. + ConstCaseIt case_begin() const { + return ConstCaseIt(this, 0); + } + + /// Returns a read/write iterator that points one past the last in the + /// SwitchInst. + CaseIt case_end() { + return CaseIt(this, getNumCases()); + } + + /// Returns a read-only iterator that points one past the last in the + /// SwitchInst. + ConstCaseIt case_end() const { + return ConstCaseIt(this, getNumCases()); + } + + /// Iteration adapter for range-for loops. + iterator_range<CaseIt> cases() { + return make_range(case_begin(), case_end()); + } + + /// Constant iteration adapter for range-for loops. + iterator_range<ConstCaseIt> cases() const { + return make_range(case_begin(), case_end()); + } + + /// Returns an iterator that points to the default case. + /// Note: this iterator allows to resolve successor only. Attempt + /// to resolve case value causes an assertion. + /// Also note, that increment and decrement also causes an assertion and + /// makes iterator invalid. + CaseIt case_default() { + return CaseIt(this, DefaultPseudoIndex); + } + ConstCaseIt case_default() const { + return ConstCaseIt(this, DefaultPseudoIndex); + } + + /// Search all of the case values for the specified constant. If it is + /// explicitly handled, return the case iterator of it, otherwise return + /// default case iterator to indicate that it is handled by the default + /// handler. + CaseIt findCaseValue(const ConstantInt *C) { + CaseIt I = llvm::find_if( + cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; }); + if (I != case_end()) + return I; + + return case_default(); + } + ConstCaseIt findCaseValue(const ConstantInt *C) const { + ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) { + return Case.getCaseValue() == C; + }); + if (I != case_end()) + return I; + + return case_default(); + } + + /// Finds the unique case value for a given successor. Returns null if the + /// successor is not found, not unique, or is the default case. + ConstantInt *findCaseDest(BasicBlock *BB) { + if (BB == getDefaultDest()) + return nullptr; + + ConstantInt *CI = nullptr; + for (auto Case : cases()) { + if (Case.getCaseSuccessor() != BB) + continue; + + if (CI) + return nullptr; // Multiple cases lead to BB. + + CI = Case.getCaseValue(); + } + + return CI; + } + + /// Add an entry to the switch instruction. + /// Note: + /// This action invalidates case_end(). Old case_end() iterator will + /// point to the added case. + void addCase(ConstantInt *OnVal, BasicBlock *Dest); + + /// This method removes the specified case and its successor from the switch + /// instruction. Note that this operation may reorder the remaining cases at + /// index idx and above. + /// Note: + /// This action invalidates iterators for all cases following the one removed, + /// including the case_end() iterator. It returns an iterator for the next + /// case. + CaseIt removeCase(CaseIt I); + + unsigned getNumSuccessors() const { return getNumOperands()/2; } + BasicBlock *getSuccessor(unsigned idx) const { + assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!"); + return cast<BasicBlock>(getOperand(idx*2+1)); + } + void setSuccessor(unsigned idx, BasicBlock *NewSucc) { + assert(idx < getNumSuccessors() && "Successor # out of range for switch!"); + setOperand(idx * 2 + 1, NewSucc); + } + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == Instruction::Switch; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } +}; + +template <> +struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> { +}; + +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value) + +//===----------------------------------------------------------------------===// +// IndirectBrInst Class +//===----------------------------------------------------------------------===// + +//===--------------------------------------------------------------------------- +/// Indirect Branch Instruction. +/// +class IndirectBrInst : public Instruction { + unsigned ReservedSpace; + + // Operand[0] = Address to jump to + // Operand[n+1] = n-th destination + IndirectBrInst(const IndirectBrInst &IBI); + + /// Create a new indirectbr instruction, specifying an + /// Address to jump to. The number of expected destinations can be specified + /// here to make memory allocation more efficient. This constructor can also + /// autoinsert before another instruction. + IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore); + + /// Create a new indirectbr instruction, specifying an + /// Address to jump to. The number of expected destinations can be specified + /// here to make memory allocation more efficient. This constructor also + /// autoinserts at the end of the specified BasicBlock. + IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd); + + // allocate space for exactly zero operands + void *operator new(size_t s) { + return User::operator new(s); + } + + void init(Value *Address, unsigned NumDests); + void growOperands(); + +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + IndirectBrInst *cloneImpl() const; + +public: + /// Iterator type that casts an operand to a basic block. + /// + /// This only makes sense because the successors are stored as adjacent + /// operands for indirectbr instructions. + struct succ_op_iterator + : iterator_adaptor_base<succ_op_iterator, value_op_iterator, + std::random_access_iterator_tag, BasicBlock *, + ptrdiff_t, BasicBlock *, BasicBlock *> { + explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {} + + BasicBlock *operator*() const { return cast<BasicBlock>(*I); } + BasicBlock *operator->() const { return operator*(); } + }; + + /// The const version of `succ_op_iterator`. + struct const_succ_op_iterator + : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator, + std::random_access_iterator_tag, + const BasicBlock *, ptrdiff_t, const BasicBlock *, + const BasicBlock *> { + explicit const_succ_op_iterator(const_value_op_iterator I) + : iterator_adaptor_base(I) {} + + const BasicBlock *operator*() const { return cast<BasicBlock>(*I); } + const BasicBlock *operator->() const { return operator*(); } + }; + + static IndirectBrInst *Create(Value *Address, unsigned NumDests, + Instruction *InsertBefore = nullptr) { + return new IndirectBrInst(Address, NumDests, InsertBefore); + } + + static IndirectBrInst *Create(Value *Address, unsigned NumDests, + BasicBlock *InsertAtEnd) { + return new IndirectBrInst(Address, NumDests, InsertAtEnd); + } + + /// Provide fast operand accessors. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); + + // Accessor Methods for IndirectBrInst instruction. + Value *getAddress() { return getOperand(0); } + const Value *getAddress() const { return getOperand(0); } + void setAddress(Value *V) { setOperand(0, V); } + + /// return the number of possible destinations in this + /// indirectbr instruction. + unsigned getNumDestinations() const { return getNumOperands()-1; } + + /// Return the specified destination. + BasicBlock *getDestination(unsigned i) { return getSuccessor(i); } + const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); } + + /// Add a destination. + /// + void addDestination(BasicBlock *Dest); + + /// This method removes the specified successor from the + /// indirectbr instruction. + void removeDestination(unsigned i); + + unsigned getNumSuccessors() const { return getNumOperands()-1; } + BasicBlock *getSuccessor(unsigned i) const { + return cast<BasicBlock>(getOperand(i+1)); + } + void setSuccessor(unsigned i, BasicBlock *NewSucc) { + setOperand(i + 1, NewSucc); + } + + iterator_range<succ_op_iterator> successors() { + return make_range(succ_op_iterator(std::next(value_op_begin())), + succ_op_iterator(value_op_end())); + } + + iterator_range<const_succ_op_iterator> successors() const { + return make_range(const_succ_op_iterator(std::next(value_op_begin())), + const_succ_op_iterator(value_op_end())); + } + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == Instruction::IndirectBr; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } +}; + +template <> +struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> { +}; + +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value) + +//===----------------------------------------------------------------------===// +// InvokeInst Class +//===----------------------------------------------------------------------===// + +/// Invoke instruction. The SubclassData field is used to hold the +/// calling convention of the call. +/// +class InvokeInst : public CallBase { + /// The number of operands for this call beyond the called function, + /// arguments, and operand bundles. + static constexpr int NumExtraOperands = 2; + + /// The index from the end of the operand array to the normal destination. + static constexpr int NormalDestOpEndIdx = -3; + + /// The index from the end of the operand array to the unwind destination. + static constexpr int UnwindDestOpEndIdx = -2; + + InvokeInst(const InvokeInst &BI); + + /// Construct an InvokeInst given a range of arguments. + /// + /// Construct an InvokeInst from a range of arguments + inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, + BasicBlock *IfException, ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles, int NumOperands, + const Twine &NameStr, Instruction *InsertBefore); + + inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, + BasicBlock *IfException, ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles, int NumOperands, + const Twine &NameStr, BasicBlock *InsertAtEnd); + + void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, + BasicBlock *IfException, ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); + + /// Compute the number of operands to allocate. + static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) { + // We need one operand for the called function, plus our extra operands and + // the input operand counts provided. + return 1 + NumExtraOperands + NumArgs + NumBundleInputs; + } + +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + InvokeInst *cloneImpl() const; + +public: + static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, + BasicBlock *IfException, ArrayRef<Value *> Args, + const Twine &NameStr, + Instruction *InsertBefore = nullptr) { + int NumOperands = ComputeNumOperands(Args.size()); + return new (NumOperands) + InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands, + NameStr, InsertBefore); + } + + static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, + BasicBlock *IfException, ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles = None, + const Twine &NameStr = "", + Instruction *InsertBefore = nullptr) { + int NumOperands = + ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); + unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); + + return new (NumOperands, DescriptorBytes) + InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands, + NameStr, InsertBefore); + } + + static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, + BasicBlock *IfException, ArrayRef<Value *> Args, + const Twine &NameStr, BasicBlock *InsertAtEnd) { + int NumOperands = ComputeNumOperands(Args.size()); + return new (NumOperands) + InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands, + NameStr, InsertAtEnd); + } + + static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, + BasicBlock *IfException, ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles, + const Twine &NameStr, BasicBlock *InsertAtEnd) { + int NumOperands = + ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); + unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); + + return new (NumOperands, DescriptorBytes) + InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands, + NameStr, InsertAtEnd); + } + + static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, + BasicBlock *IfException, ArrayRef<Value *> Args, + const Twine &NameStr, + Instruction *InsertBefore = nullptr) { + return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, + IfException, Args, None, NameStr, InsertBefore); + } + + static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, + BasicBlock *IfException, ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles = None, + const Twine &NameStr = "", + Instruction *InsertBefore = nullptr) { + return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, + IfException, Args, Bundles, NameStr, InsertBefore); + } + + static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, + BasicBlock *IfException, ArrayRef<Value *> Args, + const Twine &NameStr, BasicBlock *InsertAtEnd) { + return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, + IfException, Args, NameStr, InsertAtEnd); + } + + static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, + BasicBlock *IfException, ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles, + const Twine &NameStr, BasicBlock *InsertAtEnd) { + return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, + IfException, Args, Bundles, NameStr, InsertAtEnd); + } + + // Deprecated [opaque pointer types] + static InvokeInst *Create(Value *Func, BasicBlock *IfNormal, + BasicBlock *IfException, ArrayRef<Value *> Args, + const Twine &NameStr, + Instruction *InsertBefore = nullptr) { + return Create(cast<FunctionType>( + cast<PointerType>(Func->getType())->getElementType()), + Func, IfNormal, IfException, Args, None, NameStr, + InsertBefore); + } + + // Deprecated [opaque pointer types] + static InvokeInst *Create(Value *Func, BasicBlock *IfNormal, + BasicBlock *IfException, ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles = None, + const Twine &NameStr = "", + Instruction *InsertBefore = nullptr) { + return Create(cast<FunctionType>( + cast<PointerType>(Func->getType())->getElementType()), + Func, IfNormal, IfException, Args, Bundles, NameStr, + InsertBefore); + } + + // Deprecated [opaque pointer types] + static InvokeInst *Create(Value *Func, BasicBlock *IfNormal, + BasicBlock *IfException, ArrayRef<Value *> Args, + const Twine &NameStr, BasicBlock *InsertAtEnd) { + return Create(cast<FunctionType>( + cast<PointerType>(Func->getType())->getElementType()), + Func, IfNormal, IfException, Args, NameStr, InsertAtEnd); + } + + // Deprecated [opaque pointer types] + static InvokeInst *Create(Value *Func, BasicBlock *IfNormal, + BasicBlock *IfException, ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles, + const Twine &NameStr, BasicBlock *InsertAtEnd) { + return Create(cast<FunctionType>( + cast<PointerType>(Func->getType())->getElementType()), + Func, IfNormal, IfException, Args, Bundles, NameStr, + InsertAtEnd); + } + + /// Create a clone of \p II with a different set of operand bundles and + /// insert it before \p InsertPt. + /// + /// The returned invoke instruction is identical to \p II in every way except + /// that the operand bundles for the new instruction are set to the operand + /// bundles in \p Bundles. + static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles, + Instruction *InsertPt = nullptr); + + /// Determine if the call should not perform indirect branch tracking. + bool doesNoCfCheck() const { return hasFnAttr(Attribute::NoCfCheck); } + + /// Determine if the call cannot unwind. + bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); } + void setDoesNotThrow() { + addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind); + } + + // get*Dest - Return the destination basic blocks... + BasicBlock *getNormalDest() const { + return cast<BasicBlock>(Op<NormalDestOpEndIdx>()); + } + BasicBlock *getUnwindDest() const { + return cast<BasicBlock>(Op<UnwindDestOpEndIdx>()); + } + void setNormalDest(BasicBlock *B) { + Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B); + } + void setUnwindDest(BasicBlock *B) { + Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B); + } + + /// Get the landingpad instruction from the landing pad + /// block (the unwind destination). + LandingPadInst *getLandingPadInst() const; + + BasicBlock *getSuccessor(unsigned i) const { + assert(i < 2 && "Successor # out of range for invoke!"); + return i == 0 ? getNormalDest() : getUnwindDest(); + } + + void setSuccessor(unsigned i, BasicBlock *NewSucc) { + assert(i < 2 && "Successor # out of range for invoke!"); + if (i == 0) + setNormalDest(NewSucc); + else + setUnwindDest(NewSucc); + } + + unsigned getNumSuccessors() const { return 2; } + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return (I->getOpcode() == Instruction::Invoke); + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } + +private: + + // Shadow Instruction::setInstructionSubclassData with a private forwarding + // method so that subclasses cannot accidentally use it. + void setInstructionSubclassData(unsigned short D) { + Instruction::setInstructionSubclassData(D); + } +}; + +InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, + BasicBlock *IfException, ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles, int NumOperands, + const Twine &NameStr, Instruction *InsertBefore) + : CallBase(Ty->getReturnType(), Instruction::Invoke, + OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, + InsertBefore) { + init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr); +} + +InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, + BasicBlock *IfException, ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles, int NumOperands, + const Twine &NameStr, BasicBlock *InsertAtEnd) + : CallBase(Ty->getReturnType(), Instruction::Invoke, + OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, + InsertAtEnd) { + init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr); +} + +//===----------------------------------------------------------------------===// +// CallBrInst Class +//===----------------------------------------------------------------------===// + +/// CallBr instruction, tracking function calls that may not return control but +/// instead transfer it to a third location. The SubclassData field is used to +/// hold the calling convention of the call. +/// +class CallBrInst : public CallBase { + + unsigned NumIndirectDests; + + CallBrInst(const CallBrInst &BI); + + /// Construct a CallBrInst given a range of arguments. + /// + /// Construct a CallBrInst from a range of arguments + inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, + ArrayRef<BasicBlock *> IndirectDests, + ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles, int NumOperands, + const Twine &NameStr, Instruction *InsertBefore); + + inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, + ArrayRef<BasicBlock *> IndirectDests, + ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles, int NumOperands, + const Twine &NameStr, BasicBlock *InsertAtEnd); + + void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest, + ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); + + /// Compute the number of operands to allocate. + static int ComputeNumOperands(int NumArgs, int NumIndirectDests, + int NumBundleInputs = 0) { + // We need one operand for the called function, plus our extra operands and + // the input operand counts provided. + return 2 + NumIndirectDests + NumArgs + NumBundleInputs; + } + +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + CallBrInst *cloneImpl() const; + +public: + static CallBrInst *Create(FunctionType *Ty, Value *Func, + BasicBlock *DefaultDest, + ArrayRef<BasicBlock *> IndirectDests, + ArrayRef<Value *> Args, const Twine &NameStr, + Instruction *InsertBefore = nullptr) { + int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size()); + return new (NumOperands) + CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None, + NumOperands, NameStr, InsertBefore); + } + + static CallBrInst *Create(FunctionType *Ty, Value *Func, + BasicBlock *DefaultDest, + ArrayRef<BasicBlock *> IndirectDests, + ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles = None, + const Twine &NameStr = "", + Instruction *InsertBefore = nullptr) { + int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(), + CountBundleInputs(Bundles)); + unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); + + return new (NumOperands, DescriptorBytes) + CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, + NumOperands, NameStr, InsertBefore); + } + + static CallBrInst *Create(FunctionType *Ty, Value *Func, + BasicBlock *DefaultDest, + ArrayRef<BasicBlock *> IndirectDests, + ArrayRef<Value *> Args, const Twine &NameStr, + BasicBlock *InsertAtEnd) { + int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size()); + return new (NumOperands) + CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None, + NumOperands, NameStr, InsertAtEnd); + } + + static CallBrInst *Create(FunctionType *Ty, Value *Func, + BasicBlock *DefaultDest, + ArrayRef<BasicBlock *> IndirectDests, + ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles, + const Twine &NameStr, BasicBlock *InsertAtEnd) { + int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(), + CountBundleInputs(Bundles)); + unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); + + return new (NumOperands, DescriptorBytes) + CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, + NumOperands, NameStr, InsertAtEnd); + } + + static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, + ArrayRef<BasicBlock *> IndirectDests, + ArrayRef<Value *> Args, const Twine &NameStr, + Instruction *InsertBefore = nullptr) { + return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, + IndirectDests, Args, NameStr, InsertBefore); + } + + static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, + ArrayRef<BasicBlock *> IndirectDests, + ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles = None, + const Twine &NameStr = "", + Instruction *InsertBefore = nullptr) { + return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, + IndirectDests, Args, Bundles, NameStr, InsertBefore); + } + + static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, + ArrayRef<BasicBlock *> IndirectDests, + ArrayRef<Value *> Args, const Twine &NameStr, + BasicBlock *InsertAtEnd) { + return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, + IndirectDests, Args, NameStr, InsertAtEnd); + } + + static CallBrInst *Create(FunctionCallee Func, + BasicBlock *DefaultDest, + ArrayRef<BasicBlock *> IndirectDests, + ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles, + const Twine &NameStr, BasicBlock *InsertAtEnd) { + return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, + IndirectDests, Args, Bundles, NameStr, InsertAtEnd); + } + + /// Create a clone of \p CBI with a different set of operand bundles and + /// insert it before \p InsertPt. + /// + /// The returned callbr instruction is identical to \p CBI in every way + /// except that the operand bundles for the new instruction are set to the + /// operand bundles in \p Bundles. + static CallBrInst *Create(CallBrInst *CBI, + ArrayRef<OperandBundleDef> Bundles, + Instruction *InsertPt = nullptr); + + /// Return the number of callbr indirect dest labels. + /// + unsigned getNumIndirectDests() const { return NumIndirectDests; } + + /// getIndirectDestLabel - Return the i-th indirect dest label. + /// + Value *getIndirectDestLabel(unsigned i) const { + assert(i < getNumIndirectDests() && "Out of bounds!"); + return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() + + 1); + } + + Value *getIndirectDestLabelUse(unsigned i) const { + assert(i < getNumIndirectDests() && "Out of bounds!"); + return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() + + 1); + } + + // Return the destination basic blocks... + BasicBlock *getDefaultDest() const { + return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1)); + } + BasicBlock *getIndirectDest(unsigned i) const { + return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i)); + } + SmallVector<BasicBlock *, 16> getIndirectDests() const { + SmallVector<BasicBlock *, 16> IndirectDests; + for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i) + IndirectDests.push_back(getIndirectDest(i)); + return IndirectDests; + } + void setDefaultDest(BasicBlock *B) { + *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B); + } + void setIndirectDest(unsigned i, BasicBlock *B) { + *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B); + } + + BasicBlock *getSuccessor(unsigned i) const { + assert(i < getNumSuccessors() + 1 && + "Successor # out of range for callbr!"); + return i == 0 ? getDefaultDest() : getIndirectDest(i - 1); + } + + void setSuccessor(unsigned idx, BasicBlock *NewSucc) { + assert(idx < getNumIndirectDests() + 1 && + "Successor # out of range for callbr!"); + *(&Op<-1>() - getNumIndirectDests() -1 + idx) = + reinterpret_cast<Value *>(NewSucc); + } + + unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; } + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return (I->getOpcode() == Instruction::CallBr); + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } + +private: + + // Shadow Instruction::setInstructionSubclassData with a private forwarding + // method so that subclasses cannot accidentally use it. + void setInstructionSubclassData(unsigned short D) { + Instruction::setInstructionSubclassData(D); + } +}; + +CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, + ArrayRef<BasicBlock *> IndirectDests, + ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles, int NumOperands, + const Twine &NameStr, Instruction *InsertBefore) + : CallBase(Ty->getReturnType(), Instruction::CallBr, + OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, + InsertBefore) { + init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr); +} + +CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, + ArrayRef<BasicBlock *> IndirectDests, + ArrayRef<Value *> Args, + ArrayRef<OperandBundleDef> Bundles, int NumOperands, + const Twine &NameStr, BasicBlock *InsertAtEnd) + : CallBase( + cast<FunctionType>( + cast<PointerType>(Func->getType())->getElementType()) + ->getReturnType(), + Instruction::CallBr, + OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, + InsertAtEnd) { + init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr); +} + +//===----------------------------------------------------------------------===// +// ResumeInst Class +//===----------------------------------------------------------------------===// + +//===--------------------------------------------------------------------------- +/// Resume the propagation of an exception. +/// +class ResumeInst : public Instruction { + ResumeInst(const ResumeInst &RI); + + explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr); + ResumeInst(Value *Exn, BasicBlock *InsertAtEnd); + +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + ResumeInst *cloneImpl() const; + +public: + static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) { + return new(1) ResumeInst(Exn, InsertBefore); + } + + static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) { + return new(1) ResumeInst(Exn, InsertAtEnd); + } + + /// Provide fast operand accessors + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); + + /// Convenience accessor. + Value *getValue() const { return Op<0>(); } + + unsigned getNumSuccessors() const { return 0; } + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == Instruction::Resume; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } + +private: + BasicBlock *getSuccessor(unsigned idx) const { + llvm_unreachable("ResumeInst has no successors!"); + } + + void setSuccessor(unsigned idx, BasicBlock *NewSucc) { + llvm_unreachable("ResumeInst has no successors!"); + } +}; + +template <> +struct OperandTraits<ResumeInst> : + public FixedNumOperandTraits<ResumeInst, 1> { +}; + +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value) + +//===----------------------------------------------------------------------===// +// CatchSwitchInst Class +//===----------------------------------------------------------------------===// +class CatchSwitchInst : public Instruction { + /// The number of operands actually allocated. NumOperands is + /// the number actually in use. + unsigned ReservedSpace; + + // Operand[0] = Outer scope + // Operand[1] = Unwind block destination + // Operand[n] = BasicBlock to go to on match + CatchSwitchInst(const CatchSwitchInst &CSI); + + /// Create a new switch instruction, specifying a + /// default destination. The number of additional handlers can be specified + /// here to make memory allocation more efficient. + /// This constructor can also autoinsert before another instruction. + CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, + unsigned NumHandlers, const Twine &NameStr, + Instruction *InsertBefore); + + /// Create a new switch instruction, specifying a + /// default destination. The number of additional handlers can be specified + /// here to make memory allocation more efficient. + /// This constructor also autoinserts at the end of the specified BasicBlock. + CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, + unsigned NumHandlers, const Twine &NameStr, + BasicBlock *InsertAtEnd); + + // allocate space for exactly zero operands + void *operator new(size_t s) { return User::operator new(s); } + + void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved); + void growOperands(unsigned Size); + +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + CatchSwitchInst *cloneImpl() const; + +public: + static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest, + unsigned NumHandlers, + const Twine &NameStr = "", + Instruction *InsertBefore = nullptr) { + return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr, + InsertBefore); + } + + static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest, + unsigned NumHandlers, const Twine &NameStr, + BasicBlock *InsertAtEnd) { + return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr, + InsertAtEnd); + } + + /// Provide fast operand accessors + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); + + // Accessor Methods for CatchSwitch stmt + Value *getParentPad() const { return getOperand(0); } + void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); } + + // Accessor Methods for CatchSwitch stmt + bool hasUnwindDest() const { return getSubclassDataFromInstruction() & 1; } + bool unwindsToCaller() const { return !hasUnwindDest(); } + BasicBlock *getUnwindDest() const { + if (hasUnwindDest()) + return cast<BasicBlock>(getOperand(1)); + return nullptr; + } + void setUnwindDest(BasicBlock *UnwindDest) { + assert(UnwindDest); + assert(hasUnwindDest()); + setOperand(1, UnwindDest); + } + + /// return the number of 'handlers' in this catchswitch + /// instruction, except the default handler + unsigned getNumHandlers() const { + if (hasUnwindDest()) + return getNumOperands() - 2; + return getNumOperands() - 1; + } + +private: + static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); } + static const BasicBlock *handler_helper(const Value *V) { + return cast<BasicBlock>(V); + } + +public: + using DerefFnTy = BasicBlock *(*)(Value *); + using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>; + using handler_range = iterator_range<handler_iterator>; + using ConstDerefFnTy = const BasicBlock *(*)(const Value *); + using const_handler_iterator = + mapped_iterator<const_op_iterator, ConstDerefFnTy>; + using const_handler_range = iterator_range<const_handler_iterator>; + + /// Returns an iterator that points to the first handler in CatchSwitchInst. + handler_iterator handler_begin() { + op_iterator It = op_begin() + 1; + if (hasUnwindDest()) + ++It; + return handler_iterator(It, DerefFnTy(handler_helper)); + } + + /// Returns an iterator that points to the first handler in the + /// CatchSwitchInst. + const_handler_iterator handler_begin() const { + const_op_iterator It = op_begin() + 1; + if (hasUnwindDest()) + ++It; + return const_handler_iterator(It, ConstDerefFnTy(handler_helper)); + } + + /// Returns a read-only iterator that points one past the last + /// handler in the CatchSwitchInst. + handler_iterator handler_end() { + return handler_iterator(op_end(), DerefFnTy(handler_helper)); + } + + /// Returns an iterator that points one past the last handler in the + /// CatchSwitchInst. + const_handler_iterator handler_end() const { + return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper)); + } + + /// iteration adapter for range-for loops. + handler_range handlers() { + return make_range(handler_begin(), handler_end()); + } + + /// iteration adapter for range-for loops. + const_handler_range handlers() const { + return make_range(handler_begin(), handler_end()); + } + + /// Add an entry to the switch instruction... + /// Note: + /// This action invalidates handler_end(). Old handler_end() iterator will + /// point to the added handler. + void addHandler(BasicBlock *Dest); + + void removeHandler(handler_iterator HI); + + unsigned getNumSuccessors() const { return getNumOperands() - 1; } + BasicBlock *getSuccessor(unsigned Idx) const { + assert(Idx < getNumSuccessors() && + "Successor # out of range for catchswitch!"); + return cast<BasicBlock>(getOperand(Idx + 1)); + } + void setSuccessor(unsigned Idx, BasicBlock *NewSucc) { + assert(Idx < getNumSuccessors() && + "Successor # out of range for catchswitch!"); + setOperand(Idx + 1, NewSucc); + } + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == Instruction::CatchSwitch; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } +}; + +template <> +struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {}; + +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value) + +//===----------------------------------------------------------------------===// +// CleanupPadInst Class +//===----------------------------------------------------------------------===// +class CleanupPadInst : public FuncletPadInst { +private: + explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args, + unsigned Values, const Twine &NameStr, + Instruction *InsertBefore) + : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values, + NameStr, InsertBefore) {} + explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args, + unsigned Values, const Twine &NameStr, + BasicBlock *InsertAtEnd) + : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values, + NameStr, InsertAtEnd) {} + +public: + static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None, + const Twine &NameStr = "", + Instruction *InsertBefore = nullptr) { + unsigned Values = 1 + Args.size(); + return new (Values) + CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore); + } + + static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args, + const Twine &NameStr, BasicBlock *InsertAtEnd) { + unsigned Values = 1 + Args.size(); + return new (Values) + CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd); + } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == Instruction::CleanupPad; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } +}; + +//===----------------------------------------------------------------------===// +// CatchPadInst Class +//===----------------------------------------------------------------------===// +class CatchPadInst : public FuncletPadInst { +private: + explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args, + unsigned Values, const Twine &NameStr, + Instruction *InsertBefore) + : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values, + NameStr, InsertBefore) {} + explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args, + unsigned Values, const Twine &NameStr, + BasicBlock *InsertAtEnd) + : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values, + NameStr, InsertAtEnd) {} + +public: + static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args, + const Twine &NameStr = "", + Instruction *InsertBefore = nullptr) { + unsigned Values = 1 + Args.size(); + return new (Values) + CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore); + } + + static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args, + const Twine &NameStr, BasicBlock *InsertAtEnd) { + unsigned Values = 1 + Args.size(); + return new (Values) + CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd); + } + + /// Convenience accessors + CatchSwitchInst *getCatchSwitch() const { + return cast<CatchSwitchInst>(Op<-1>()); + } + void setCatchSwitch(Value *CatchSwitch) { + assert(CatchSwitch); + Op<-1>() = CatchSwitch; + } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == Instruction::CatchPad; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } +}; + +//===----------------------------------------------------------------------===// +// CatchReturnInst Class +//===----------------------------------------------------------------------===// + +class CatchReturnInst : public Instruction { + CatchReturnInst(const CatchReturnInst &RI); + CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore); + CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd); + + void init(Value *CatchPad, BasicBlock *BB); + +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + CatchReturnInst *cloneImpl() const; + +public: + static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB, + Instruction *InsertBefore = nullptr) { + assert(CatchPad); + assert(BB); + return new (2) CatchReturnInst(CatchPad, BB, InsertBefore); + } + + static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB, + BasicBlock *InsertAtEnd) { + assert(CatchPad); + assert(BB); + return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd); + } + + /// Provide fast operand accessors + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); + + /// Convenience accessors. + CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); } + void setCatchPad(CatchPadInst *CatchPad) { + assert(CatchPad); + Op<0>() = CatchPad; + } + + BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); } + void setSuccessor(BasicBlock *NewSucc) { + assert(NewSucc); + Op<1>() = NewSucc; + } + unsigned getNumSuccessors() const { return 1; } + + /// Get the parentPad of this catchret's catchpad's catchswitch. + /// The successor block is implicitly a member of this funclet. + Value *getCatchSwitchParentPad() const { + return getCatchPad()->getCatchSwitch()->getParentPad(); + } + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return (I->getOpcode() == Instruction::CatchRet); + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } + +private: + BasicBlock *getSuccessor(unsigned Idx) const { + assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!"); + return getSuccessor(); + } + + void setSuccessor(unsigned Idx, BasicBlock *B) { + assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!"); + setSuccessor(B); + } +}; + +template <> +struct OperandTraits<CatchReturnInst> + : public FixedNumOperandTraits<CatchReturnInst, 2> {}; + +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value) + +//===----------------------------------------------------------------------===// +// CleanupReturnInst Class +//===----------------------------------------------------------------------===// + +class CleanupReturnInst : public Instruction { +private: + CleanupReturnInst(const CleanupReturnInst &RI); + CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values, + Instruction *InsertBefore = nullptr); + CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values, + BasicBlock *InsertAtEnd); + + void init(Value *CleanupPad, BasicBlock *UnwindBB); + +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + CleanupReturnInst *cloneImpl() const; + +public: + static CleanupReturnInst *Create(Value *CleanupPad, + BasicBlock *UnwindBB = nullptr, + Instruction *InsertBefore = nullptr) { + assert(CleanupPad); + unsigned Values = 1; + if (UnwindBB) + ++Values; + return new (Values) + CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore); + } + + static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB, + BasicBlock *InsertAtEnd) { + assert(CleanupPad); + unsigned Values = 1; + if (UnwindBB) + ++Values; + return new (Values) + CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd); + } + + /// Provide fast operand accessors + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); + + bool hasUnwindDest() const { return getSubclassDataFromInstruction() & 1; } + bool unwindsToCaller() const { return !hasUnwindDest(); } + + /// Convenience accessor. + CleanupPadInst *getCleanupPad() const { + return cast<CleanupPadInst>(Op<0>()); + } + void setCleanupPad(CleanupPadInst *CleanupPad) { + assert(CleanupPad); + Op<0>() = CleanupPad; + } + + unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; } + + BasicBlock *getUnwindDest() const { + return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr; + } + void setUnwindDest(BasicBlock *NewDest) { + assert(NewDest); + assert(hasUnwindDest()); + Op<1>() = NewDest; + } + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return (I->getOpcode() == Instruction::CleanupRet); + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } + +private: + BasicBlock *getSuccessor(unsigned Idx) const { + assert(Idx == 0); + return getUnwindDest(); + } + + void setSuccessor(unsigned Idx, BasicBlock *B) { + assert(Idx == 0); + setUnwindDest(B); + } + + // Shadow Instruction::setInstructionSubclassData with a private forwarding + // method so that subclasses cannot accidentally use it. + void setInstructionSubclassData(unsigned short D) { + Instruction::setInstructionSubclassData(D); + } +}; + +template <> +struct OperandTraits<CleanupReturnInst> + : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {}; + +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value) + +//===----------------------------------------------------------------------===// +// UnreachableInst Class +//===----------------------------------------------------------------------===// + +//===--------------------------------------------------------------------------- +/// This function has undefined behavior. In particular, the +/// presence of this instruction indicates some higher level knowledge that the +/// end of the block cannot be reached. +/// +class UnreachableInst : public Instruction { +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + UnreachableInst *cloneImpl() const; + +public: + explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr); + explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd); + + // allocate space for exactly zero operands + void *operator new(size_t s) { + return User::operator new(s, 0); + } + + unsigned getNumSuccessors() const { return 0; } + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == Instruction::Unreachable; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } + +private: + BasicBlock *getSuccessor(unsigned idx) const { + llvm_unreachable("UnreachableInst has no successors!"); + } + + void setSuccessor(unsigned idx, BasicBlock *B) { + llvm_unreachable("UnreachableInst has no successors!"); + } +}; + +//===----------------------------------------------------------------------===// +// TruncInst Class +//===----------------------------------------------------------------------===// + +/// This class represents a truncation of integer types. +class TruncInst : public CastInst { +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + /// Clone an identical TruncInst + TruncInst *cloneImpl() const; + +public: + /// Constructor with insert-before-instruction semantics + TruncInst( + Value *S, ///< The value to be truncated + Type *Ty, ///< The (smaller) type to truncate to + const Twine &NameStr = "", ///< A name for the new instruction + Instruction *InsertBefore = nullptr ///< Where to insert the new instruction + ); + + /// Constructor with insert-at-end-of-block semantics + TruncInst( + Value *S, ///< The value to be truncated + Type *Ty, ///< The (smaller) type to truncate to + const Twine &NameStr, ///< A name for the new instruction + BasicBlock *InsertAtEnd ///< The block to insert the instruction into + ); + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == Trunc; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } +}; + +//===----------------------------------------------------------------------===// +// ZExtInst Class +//===----------------------------------------------------------------------===// + +/// This class represents zero extension of integer types. +class ZExtInst : public CastInst { +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + /// Clone an identical ZExtInst + ZExtInst *cloneImpl() const; + +public: + /// Constructor with insert-before-instruction semantics + ZExtInst( + Value *S, ///< The value to be zero extended + Type *Ty, ///< The type to zero extend to + const Twine &NameStr = "", ///< A name for the new instruction + Instruction *InsertBefore = nullptr ///< Where to insert the new instruction + ); + + /// Constructor with insert-at-end semantics. + ZExtInst( + Value *S, ///< The value to be zero extended + Type *Ty, ///< The type to zero extend to + const Twine &NameStr, ///< A name for the new instruction + BasicBlock *InsertAtEnd ///< The block to insert the instruction into + ); + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == ZExt; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } +}; + +//===----------------------------------------------------------------------===// +// SExtInst Class +//===----------------------------------------------------------------------===// + +/// This class represents a sign extension of integer types. +class SExtInst : public CastInst { +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + /// Clone an identical SExtInst + SExtInst *cloneImpl() const; + +public: + /// Constructor with insert-before-instruction semantics + SExtInst( + Value *S, ///< The value to be sign extended + Type *Ty, ///< The type to sign extend to + const Twine &NameStr = "", ///< A name for the new instruction + Instruction *InsertBefore = nullptr ///< Where to insert the new instruction + ); + + /// Constructor with insert-at-end-of-block semantics + SExtInst( + Value *S, ///< The value to be sign extended + Type *Ty, ///< The type to sign extend to + const Twine &NameStr, ///< A name for the new instruction + BasicBlock *InsertAtEnd ///< The block to insert the instruction into + ); + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == SExt; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } +}; + +//===----------------------------------------------------------------------===// +// FPTruncInst Class +//===----------------------------------------------------------------------===// + +/// This class represents a truncation of floating point types. +class FPTruncInst : public CastInst { +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + /// Clone an identical FPTruncInst + FPTruncInst *cloneImpl() const; + +public: + /// Constructor with insert-before-instruction semantics + FPTruncInst( + Value *S, ///< The value to be truncated + Type *Ty, ///< The type to truncate to + const Twine &NameStr = "", ///< A name for the new instruction + Instruction *InsertBefore = nullptr ///< Where to insert the new instruction + ); + + /// Constructor with insert-before-instruction semantics + FPTruncInst( + Value *S, ///< The value to be truncated + Type *Ty, ///< The type to truncate to + const Twine &NameStr, ///< A name for the new instruction + BasicBlock *InsertAtEnd ///< The block to insert the instruction into + ); + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == FPTrunc; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } +}; + +//===----------------------------------------------------------------------===// +// FPExtInst Class +//===----------------------------------------------------------------------===// + +/// This class represents an extension of floating point types. +class FPExtInst : public CastInst { +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + /// Clone an identical FPExtInst + FPExtInst *cloneImpl() const; + +public: + /// Constructor with insert-before-instruction semantics + FPExtInst( + Value *S, ///< The value to be extended + Type *Ty, ///< The type to extend to + const Twine &NameStr = "", ///< A name for the new instruction + Instruction *InsertBefore = nullptr ///< Where to insert the new instruction + ); + + /// Constructor with insert-at-end-of-block semantics + FPExtInst( + Value *S, ///< The value to be extended + Type *Ty, ///< The type to extend to + const Twine &NameStr, ///< A name for the new instruction + BasicBlock *InsertAtEnd ///< The block to insert the instruction into + ); + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == FPExt; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } +}; + +//===----------------------------------------------------------------------===// +// UIToFPInst Class +//===----------------------------------------------------------------------===// + +/// This class represents a cast unsigned integer to floating point. +class UIToFPInst : public CastInst { +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + /// Clone an identical UIToFPInst + UIToFPInst *cloneImpl() const; + +public: + /// Constructor with insert-before-instruction semantics + UIToFPInst( + Value *S, ///< The value to be converted + Type *Ty, ///< The type to convert to + const Twine &NameStr = "", ///< A name for the new instruction + Instruction *InsertBefore = nullptr ///< Where to insert the new instruction + ); + + /// Constructor with insert-at-end-of-block semantics + UIToFPInst( + Value *S, ///< The value to be converted + Type *Ty, ///< The type to convert to + const Twine &NameStr, ///< A name for the new instruction + BasicBlock *InsertAtEnd ///< The block to insert the instruction into + ); + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == UIToFP; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } +}; + +//===----------------------------------------------------------------------===// +// SIToFPInst Class +//===----------------------------------------------------------------------===// + +/// This class represents a cast from signed integer to floating point. +class SIToFPInst : public CastInst { +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + /// Clone an identical SIToFPInst + SIToFPInst *cloneImpl() const; + +public: + /// Constructor with insert-before-instruction semantics + SIToFPInst( + Value *S, ///< The value to be converted + Type *Ty, ///< The type to convert to + const Twine &NameStr = "", ///< A name for the new instruction + Instruction *InsertBefore = nullptr ///< Where to insert the new instruction + ); + + /// Constructor with insert-at-end-of-block semantics + SIToFPInst( + Value *S, ///< The value to be converted + Type *Ty, ///< The type to convert to + const Twine &NameStr, ///< A name for the new instruction + BasicBlock *InsertAtEnd ///< The block to insert the instruction into + ); + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == SIToFP; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } +}; + +//===----------------------------------------------------------------------===// +// FPToUIInst Class +//===----------------------------------------------------------------------===// + +/// This class represents a cast from floating point to unsigned integer +class FPToUIInst : public CastInst { +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + /// Clone an identical FPToUIInst + FPToUIInst *cloneImpl() const; + +public: + /// Constructor with insert-before-instruction semantics + FPToUIInst( + Value *S, ///< The value to be converted + Type *Ty, ///< The type to convert to + const Twine &NameStr = "", ///< A name for the new instruction + Instruction *InsertBefore = nullptr ///< Where to insert the new instruction + ); + + /// Constructor with insert-at-end-of-block semantics + FPToUIInst( + Value *S, ///< The value to be converted + Type *Ty, ///< The type to convert to + const Twine &NameStr, ///< A name for the new instruction + BasicBlock *InsertAtEnd ///< Where to insert the new instruction + ); + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == FPToUI; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } +}; + +//===----------------------------------------------------------------------===// +// FPToSIInst Class +//===----------------------------------------------------------------------===// + +/// This class represents a cast from floating point to signed integer. +class FPToSIInst : public CastInst { +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + /// Clone an identical FPToSIInst + FPToSIInst *cloneImpl() const; + +public: + /// Constructor with insert-before-instruction semantics + FPToSIInst( + Value *S, ///< The value to be converted + Type *Ty, ///< The type to convert to + const Twine &NameStr = "", ///< A name for the new instruction + Instruction *InsertBefore = nullptr ///< Where to insert the new instruction + ); + + /// Constructor with insert-at-end-of-block semantics + FPToSIInst( + Value *S, ///< The value to be converted + Type *Ty, ///< The type to convert to + const Twine &NameStr, ///< A name for the new instruction + BasicBlock *InsertAtEnd ///< The block to insert the instruction into + ); + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == FPToSI; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } +}; + +//===----------------------------------------------------------------------===// +// IntToPtrInst Class +//===----------------------------------------------------------------------===// + +/// This class represents a cast from an integer to a pointer. +class IntToPtrInst : public CastInst { +public: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + /// Constructor with insert-before-instruction semantics + IntToPtrInst( + Value *S, ///< The value to be converted + Type *Ty, ///< The type to convert to + const Twine &NameStr = "", ///< A name for the new instruction + Instruction *InsertBefore = nullptr ///< Where to insert the new instruction + ); + + /// Constructor with insert-at-end-of-block semantics + IntToPtrInst( + Value *S, ///< The value to be converted + Type *Ty, ///< The type to convert to + const Twine &NameStr, ///< A name for the new instruction + BasicBlock *InsertAtEnd ///< The block to insert the instruction into + ); + + /// Clone an identical IntToPtrInst. + IntToPtrInst *cloneImpl() const; + + /// Returns the address space of this instruction's pointer type. + unsigned getAddressSpace() const { + return getType()->getPointerAddressSpace(); + } + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == IntToPtr; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } +}; + +//===----------------------------------------------------------------------===// +// PtrToIntInst Class +//===----------------------------------------------------------------------===// + +/// This class represents a cast from a pointer to an integer. +class PtrToIntInst : public CastInst { +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + /// Clone an identical PtrToIntInst. + PtrToIntInst *cloneImpl() const; + +public: + /// Constructor with insert-before-instruction semantics + PtrToIntInst( + Value *S, ///< The value to be converted + Type *Ty, ///< The type to convert to + const Twine &NameStr = "", ///< A name for the new instruction + Instruction *InsertBefore = nullptr ///< Where to insert the new instruction + ); + + /// Constructor with insert-at-end-of-block semantics + PtrToIntInst( + Value *S, ///< The value to be converted + Type *Ty, ///< The type to convert to + const Twine &NameStr, ///< A name for the new instruction + BasicBlock *InsertAtEnd ///< The block to insert the instruction into + ); + + /// Gets the pointer operand. + Value *getPointerOperand() { return getOperand(0); } + /// Gets the pointer operand. + const Value *getPointerOperand() const { return getOperand(0); } + /// Gets the operand index of the pointer operand. + static unsigned getPointerOperandIndex() { return 0U; } + + /// Returns the address space of the pointer operand. + unsigned getPointerAddressSpace() const { + return getPointerOperand()->getType()->getPointerAddressSpace(); + } + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == PtrToInt; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } +}; + +//===----------------------------------------------------------------------===// +// BitCastInst Class +//===----------------------------------------------------------------------===// + +/// This class represents a no-op cast from one type to another. +class BitCastInst : public CastInst { +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + /// Clone an identical BitCastInst. + BitCastInst *cloneImpl() const; + +public: + /// Constructor with insert-before-instruction semantics + BitCastInst( + Value *S, ///< The value to be casted + Type *Ty, ///< The type to casted to + const Twine &NameStr = "", ///< A name for the new instruction + Instruction *InsertBefore = nullptr ///< Where to insert the new instruction + ); + + /// Constructor with insert-at-end-of-block semantics + BitCastInst( + Value *S, ///< The value to be casted + Type *Ty, ///< The type to casted to + const Twine &NameStr, ///< A name for the new instruction + BasicBlock *InsertAtEnd ///< The block to insert the instruction into + ); + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == BitCast; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } +}; + +//===----------------------------------------------------------------------===// +// AddrSpaceCastInst Class +//===----------------------------------------------------------------------===// + +/// This class represents a conversion between pointers from one address space +/// to another. +class AddrSpaceCastInst : public CastInst { +protected: + // Note: Instruction needs to be a friend here to call cloneImpl. + friend class Instruction; + + /// Clone an identical AddrSpaceCastInst. + AddrSpaceCastInst *cloneImpl() const; + +public: + /// Constructor with insert-before-instruction semantics + AddrSpaceCastInst( + Value *S, ///< The value to be casted + Type *Ty, ///< The type to casted to + const Twine &NameStr = "", ///< A name for the new instruction + Instruction *InsertBefore = nullptr ///< Where to insert the new instruction + ); + + /// Constructor with insert-at-end-of-block semantics + AddrSpaceCastInst( + Value *S, ///< The value to be casted + Type *Ty, ///< The type to casted to + const Twine &NameStr, ///< A name for the new instruction + BasicBlock *InsertAtEnd ///< The block to insert the instruction into + ); + + // Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const Instruction *I) { + return I->getOpcode() == AddrSpaceCast; + } + static bool classof(const Value *V) { + return isa<Instruction>(V) && classof(cast<Instruction>(V)); + } + + /// Gets the pointer operand. + Value *getPointerOperand() { + return getOperand(0); + } + + /// Gets the pointer operand. + const Value *getPointerOperand() const { + return getOperand(0); + } + + /// Gets the operand index of the pointer operand. + static unsigned getPointerOperandIndex() { + return 0U; + } + + /// Returns the address space of the pointer operand. + unsigned getSrcAddressSpace() const { + return getPointerOperand()->getType()->getPointerAddressSpace(); + } + + /// Returns the address space of the result. + unsigned getDestAddressSpace() const { + return getType()->getPointerAddressSpace(); + } +}; + +/// A helper function that returns the pointer operand of a load or store +/// instruction. Returns nullptr if not load or store. +inline Value *getLoadStorePointerOperand(Value *V) { + if (auto *Load = dyn_cast<LoadInst>(V)) + return Load->getPointerOperand(); + if (auto *Store = dyn_cast<StoreInst>(V)) + return Store->getPointerOperand(); + return nullptr; +} + +/// A helper function that returns the pointer operand of a load, store +/// or GEP instruction. Returns nullptr if not load, store, or GEP. +inline Value *getPointerOperand(Value *V) { + if (auto *Ptr = getLoadStorePointerOperand(V)) + return Ptr; + if (auto *Gep = dyn_cast<GetElementPtrInst>(V)) + return Gep->getPointerOperand(); + return nullptr; +} + +/// A helper function that returns the alignment of load or store instruction. +inline unsigned getLoadStoreAlignment(Value *I) { + assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && + "Expected Load or Store instruction"); + if (auto *LI = dyn_cast<LoadInst>(I)) + return LI->getAlignment(); + return cast<StoreInst>(I)->getAlignment(); +} + +/// A helper function that returns the address space of the pointer operand of +/// load or store instruction. +inline unsigned getLoadStoreAddressSpace(Value *I) { + assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && + "Expected Load or Store instruction"); + if (auto *LI = dyn_cast<LoadInst>(I)) + return LI->getPointerAddressSpace(); + return cast<StoreInst>(I)->getPointerAddressSpace(); +} + +} // end namespace llvm + +#endif // LLVM_IR_INSTRUCTIONS_H |
