diff options
Diffstat (limited to 'clang-r353983/include/llvm/IR/PassManager.h')
| -rw-r--r-- | clang-r353983/include/llvm/IR/PassManager.h | 1442 |
1 files changed, 1442 insertions, 0 deletions
diff --git a/clang-r353983/include/llvm/IR/PassManager.h b/clang-r353983/include/llvm/IR/PassManager.h new file mode 100644 index 00000000..47bad5b2 --- /dev/null +++ b/clang-r353983/include/llvm/IR/PassManager.h @@ -0,0 +1,1442 @@ +//===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +/// \file +/// +/// This header defines various interfaces for pass management in LLVM. There +/// is no "pass" interface in LLVM per se. Instead, an instance of any class +/// which supports a method to 'run' it over a unit of IR can be used as +/// a pass. A pass manager is generally a tool to collect a sequence of passes +/// which run over a particular IR construct, and run each of them in sequence +/// over each such construct in the containing IR construct. As there is no +/// containing IR construct for a Module, a manager for passes over modules +/// forms the base case which runs its managed passes in sequence over the +/// single module provided. +/// +/// The core IR library provides managers for running passes over +/// modules and functions. +/// +/// * FunctionPassManager can run over a Module, runs each pass over +/// a Function. +/// * ModulePassManager must be directly run, runs each pass over the Module. +/// +/// Note that the implementations of the pass managers use concept-based +/// polymorphism as outlined in the "Value Semantics and Concept-based +/// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base +/// Class of Evil") by Sean Parent: +/// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations +/// * http://www.youtube.com/watch?v=_BpMYeUFXv8 +/// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil +/// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_IR_PASSMANAGER_H +#define LLVM_IR_PASSMANAGER_H + +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/TinyPtrVector.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/PassInstrumentation.h" +#include "llvm/IR/PassManagerInternal.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/TypeName.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <cstring> +#include <iterator> +#include <list> +#include <memory> +#include <tuple> +#include <type_traits> +#include <utility> +#include <vector> + +namespace llvm { + +/// A special type used by analysis passes to provide an address that +/// identifies that particular analysis pass type. +/// +/// Analysis passes should have a static data member of this type and derive +/// from the \c AnalysisInfoMixin to get a static ID method used to identify +/// the analysis in the pass management infrastructure. +struct alignas(8) AnalysisKey {}; + +/// A special type used to provide an address that identifies a set of related +/// analyses. These sets are primarily used below to mark sets of analyses as +/// preserved. +/// +/// For example, a transformation can indicate that it preserves the CFG of a +/// function by preserving the appropriate AnalysisSetKey. An analysis that +/// depends only on the CFG can then check if that AnalysisSetKey is preserved; +/// if it is, the analysis knows that it itself is preserved. +struct alignas(8) AnalysisSetKey {}; + +/// This templated class represents "all analyses that operate over \<a +/// particular IR unit\>" (e.g. a Function or a Module) in instances of +/// PreservedAnalysis. +/// +/// This lets a transformation say e.g. "I preserved all function analyses". +/// +/// Note that you must provide an explicit instantiation declaration and +/// definition for this template in order to get the correct behavior on +/// Windows. Otherwise, the address of SetKey will not be stable. +template <typename IRUnitT> class AllAnalysesOn { +public: + static AnalysisSetKey *ID() { return &SetKey; } + +private: + static AnalysisSetKey SetKey; +}; + +template <typename IRUnitT> AnalysisSetKey AllAnalysesOn<IRUnitT>::SetKey; + +extern template class AllAnalysesOn<Module>; +extern template class AllAnalysesOn<Function>; + +/// Represents analyses that only rely on functions' control flow. +/// +/// This can be used with \c PreservedAnalyses to mark the CFG as preserved and +/// to query whether it has been preserved. +/// +/// The CFG of a function is defined as the set of basic blocks and the edges +/// between them. Changing the set of basic blocks in a function is enough to +/// mutate the CFG. Mutating the condition of a branch or argument of an +/// invoked function does not mutate the CFG, but changing the successor labels +/// of those instructions does. +class CFGAnalyses { +public: + static AnalysisSetKey *ID() { return &SetKey; } + +private: + static AnalysisSetKey SetKey; +}; + +/// A set of analyses that are preserved following a run of a transformation +/// pass. +/// +/// Transformation passes build and return these objects to communicate which +/// analyses are still valid after the transformation. For most passes this is +/// fairly simple: if they don't change anything all analyses are preserved, +/// otherwise only a short list of analyses that have been explicitly updated +/// are preserved. +/// +/// This class also lets transformation passes mark abstract *sets* of analyses +/// as preserved. A transformation that (say) does not alter the CFG can +/// indicate such by marking a particular AnalysisSetKey as preserved, and +/// then analyses can query whether that AnalysisSetKey is preserved. +/// +/// Finally, this class can represent an "abandoned" analysis, which is +/// not preserved even if it would be covered by some abstract set of analyses. +/// +/// Given a `PreservedAnalyses` object, an analysis will typically want to +/// figure out whether it is preserved. In the example below, MyAnalysisType is +/// preserved if it's not abandoned, and (a) it's explicitly marked as +/// preserved, (b), the set AllAnalysesOn<MyIRUnit> is preserved, or (c) both +/// AnalysisSetA and AnalysisSetB are preserved. +/// +/// ``` +/// auto PAC = PA.getChecker<MyAnalysisType>(); +/// if (PAC.preserved() || PAC.preservedSet<AllAnalysesOn<MyIRUnit>>() || +/// (PAC.preservedSet<AnalysisSetA>() && +/// PAC.preservedSet<AnalysisSetB>())) { +/// // The analysis has been successfully preserved ... +/// } +/// ``` +class PreservedAnalyses { +public: + /// Convenience factory function for the empty preserved set. + static PreservedAnalyses none() { return PreservedAnalyses(); } + + /// Construct a special preserved set that preserves all passes. + static PreservedAnalyses all() { + PreservedAnalyses PA; + PA.PreservedIDs.insert(&AllAnalysesKey); + return PA; + } + + /// Construct a preserved analyses object with a single preserved set. + template <typename AnalysisSetT> + static PreservedAnalyses allInSet() { + PreservedAnalyses PA; + PA.preserveSet<AnalysisSetT>(); + return PA; + } + + /// Mark an analysis as preserved. + template <typename AnalysisT> void preserve() { preserve(AnalysisT::ID()); } + + /// Given an analysis's ID, mark the analysis as preserved, adding it + /// to the set. + void preserve(AnalysisKey *ID) { + // Clear this ID from the explicit not-preserved set if present. + NotPreservedAnalysisIDs.erase(ID); + + // If we're not already preserving all analyses (other than those in + // NotPreservedAnalysisIDs). + if (!areAllPreserved()) + PreservedIDs.insert(ID); + } + + /// Mark an analysis set as preserved. + template <typename AnalysisSetT> void preserveSet() { + preserveSet(AnalysisSetT::ID()); + } + + /// Mark an analysis set as preserved using its ID. + void preserveSet(AnalysisSetKey *ID) { + // If we're not already in the saturated 'all' state, add this set. + if (!areAllPreserved()) + PreservedIDs.insert(ID); + } + + /// Mark an analysis as abandoned. + /// + /// An abandoned analysis is not preserved, even if it is nominally covered + /// by some other set or was previously explicitly marked as preserved. + /// + /// Note that you can only abandon a specific analysis, not a *set* of + /// analyses. + template <typename AnalysisT> void abandon() { abandon(AnalysisT::ID()); } + + /// Mark an analysis as abandoned using its ID. + /// + /// An abandoned analysis is not preserved, even if it is nominally covered + /// by some other set or was previously explicitly marked as preserved. + /// + /// Note that you can only abandon a specific analysis, not a *set* of + /// analyses. + void abandon(AnalysisKey *ID) { + PreservedIDs.erase(ID); + NotPreservedAnalysisIDs.insert(ID); + } + + /// Intersect this set with another in place. + /// + /// This is a mutating operation on this preserved set, removing all + /// preserved passes which are not also preserved in the argument. + void intersect(const PreservedAnalyses &Arg) { + if (Arg.areAllPreserved()) + return; + if (areAllPreserved()) { + *this = Arg; + return; + } + // The intersection requires the *union* of the explicitly not-preserved + // IDs and the *intersection* of the preserved IDs. + for (auto ID : Arg.NotPreservedAnalysisIDs) { + PreservedIDs.erase(ID); + NotPreservedAnalysisIDs.insert(ID); + } + for (auto ID : PreservedIDs) + if (!Arg.PreservedIDs.count(ID)) + PreservedIDs.erase(ID); + } + + /// Intersect this set with a temporary other set in place. + /// + /// This is a mutating operation on this preserved set, removing all + /// preserved passes which are not also preserved in the argument. + void intersect(PreservedAnalyses &&Arg) { + if (Arg.areAllPreserved()) + return; + if (areAllPreserved()) { + *this = std::move(Arg); + return; + } + // The intersection requires the *union* of the explicitly not-preserved + // IDs and the *intersection* of the preserved IDs. + for (auto ID : Arg.NotPreservedAnalysisIDs) { + PreservedIDs.erase(ID); + NotPreservedAnalysisIDs.insert(ID); + } + for (auto ID : PreservedIDs) + if (!Arg.PreservedIDs.count(ID)) + PreservedIDs.erase(ID); + } + + /// A checker object that makes it easy to query for whether an analysis or + /// some set covering it is preserved. + class PreservedAnalysisChecker { + friend class PreservedAnalyses; + + const PreservedAnalyses &PA; + AnalysisKey *const ID; + const bool IsAbandoned; + + /// A PreservedAnalysisChecker is tied to a particular Analysis because + /// `preserved()` and `preservedSet()` both return false if the Analysis + /// was abandoned. + PreservedAnalysisChecker(const PreservedAnalyses &PA, AnalysisKey *ID) + : PA(PA), ID(ID), IsAbandoned(PA.NotPreservedAnalysisIDs.count(ID)) {} + + public: + /// Returns true if the checker's analysis was not abandoned and either + /// - the analysis is explicitly preserved or + /// - all analyses are preserved. + bool preserved() { + return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) || + PA.PreservedIDs.count(ID)); + } + + /// Returns true if the checker's analysis was not abandoned and either + /// - \p AnalysisSetT is explicitly preserved or + /// - all analyses are preserved. + template <typename AnalysisSetT> bool preservedSet() { + AnalysisSetKey *SetID = AnalysisSetT::ID(); + return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) || + PA.PreservedIDs.count(SetID)); + } + }; + + /// Build a checker for this `PreservedAnalyses` and the specified analysis + /// type. + /// + /// You can use the returned object to query whether an analysis was + /// preserved. See the example in the comment on `PreservedAnalysis`. + template <typename AnalysisT> PreservedAnalysisChecker getChecker() const { + return PreservedAnalysisChecker(*this, AnalysisT::ID()); + } + + /// Build a checker for this `PreservedAnalyses` and the specified analysis + /// ID. + /// + /// You can use the returned object to query whether an analysis was + /// preserved. See the example in the comment on `PreservedAnalysis`. + PreservedAnalysisChecker getChecker(AnalysisKey *ID) const { + return PreservedAnalysisChecker(*this, ID); + } + + /// Test whether all analyses are preserved (and none are abandoned). + /// + /// This is used primarily to optimize for the common case of a transformation + /// which makes no changes to the IR. + bool areAllPreserved() const { + return NotPreservedAnalysisIDs.empty() && + PreservedIDs.count(&AllAnalysesKey); + } + + /// Directly test whether a set of analyses is preserved. + /// + /// This is only true when no analyses have been explicitly abandoned. + template <typename AnalysisSetT> bool allAnalysesInSetPreserved() const { + return allAnalysesInSetPreserved(AnalysisSetT::ID()); + } + + /// Directly test whether a set of analyses is preserved. + /// + /// This is only true when no analyses have been explicitly abandoned. + bool allAnalysesInSetPreserved(AnalysisSetKey *SetID) const { + return NotPreservedAnalysisIDs.empty() && + (PreservedIDs.count(&AllAnalysesKey) || PreservedIDs.count(SetID)); + } + +private: + /// A special key used to indicate all analyses. + static AnalysisSetKey AllAnalysesKey; + + /// The IDs of analyses and analysis sets that are preserved. + SmallPtrSet<void *, 2> PreservedIDs; + + /// The IDs of explicitly not-preserved analyses. + /// + /// If an analysis in this set is covered by a set in `PreservedIDs`, we + /// consider it not-preserved. That is, `NotPreservedAnalysisIDs` always + /// "wins" over analysis sets in `PreservedIDs`. + /// + /// Also, a given ID should never occur both here and in `PreservedIDs`. + SmallPtrSet<AnalysisKey *, 2> NotPreservedAnalysisIDs; +}; + +// Forward declare the analysis manager template. +template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager; + +/// A CRTP mix-in to automatically provide informational APIs needed for +/// passes. +/// +/// This provides some boilerplate for types that are passes. +template <typename DerivedT> struct PassInfoMixin { + /// Gets the name of the pass we are mixed into. + static StringRef name() { + static_assert(std::is_base_of<PassInfoMixin, DerivedT>::value, + "Must pass the derived type as the template argument!"); + StringRef Name = getTypeName<DerivedT>(); + if (Name.startswith("llvm::")) + Name = Name.drop_front(strlen("llvm::")); + return Name; + } +}; + +/// A CRTP mix-in that provides informational APIs needed for analysis passes. +/// +/// This provides some boilerplate for types that are analysis passes. It +/// automatically mixes in \c PassInfoMixin. +template <typename DerivedT> +struct AnalysisInfoMixin : PassInfoMixin<DerivedT> { + /// Returns an opaque, unique ID for this analysis type. + /// + /// This ID is a pointer type that is guaranteed to be 8-byte aligned and thus + /// suitable for use in sets, maps, and other data structures that use the low + /// bits of pointers. + /// + /// Note that this requires the derived type provide a static \c AnalysisKey + /// member called \c Key. + /// + /// FIXME: The only reason the mixin type itself can't declare the Key value + /// is that some compilers cannot correctly unique a templated static variable + /// so it has the same addresses in each instantiation. The only currently + /// known platform with this limitation is Windows DLL builds, specifically + /// building each part of LLVM as a DLL. If we ever remove that build + /// configuration, this mixin can provide the static key as well. + static AnalysisKey *ID() { + static_assert(std::is_base_of<AnalysisInfoMixin, DerivedT>::value, + "Must pass the derived type as the template argument!"); + return &DerivedT::Key; + } +}; + +namespace detail { + +/// Actual unpacker of extra arguments in getAnalysisResult, +/// passes only those tuple arguments that are mentioned in index_sequence. +template <typename PassT, typename IRUnitT, typename AnalysisManagerT, + typename... ArgTs, size_t... Ns> +typename PassT::Result +getAnalysisResultUnpackTuple(AnalysisManagerT &AM, IRUnitT &IR, + std::tuple<ArgTs...> Args, + llvm::index_sequence<Ns...>) { + (void)Args; + return AM.template getResult<PassT>(IR, std::get<Ns>(Args)...); +} + +/// Helper for *partial* unpacking of extra arguments in getAnalysisResult. +/// +/// Arguments passed in tuple come from PassManager, so they might have extra +/// arguments after those AnalysisManager's ExtraArgTs ones that we need to +/// pass to getResult. +template <typename PassT, typename IRUnitT, typename... AnalysisArgTs, + typename... MainArgTs> +typename PassT::Result +getAnalysisResult(AnalysisManager<IRUnitT, AnalysisArgTs...> &AM, IRUnitT &IR, + std::tuple<MainArgTs...> Args) { + return (getAnalysisResultUnpackTuple< + PassT, IRUnitT>)(AM, IR, Args, + llvm::index_sequence_for<AnalysisArgTs...>{}); +} + +} // namespace detail + +// Forward declare the pass instrumentation analysis explicitly queried in +// generic PassManager code. +// FIXME: figure out a way to move PassInstrumentationAnalysis into its own +// header. +class PassInstrumentationAnalysis; + +/// Manages a sequence of passes over a particular unit of IR. +/// +/// A pass manager contains a sequence of passes to run over a particular unit +/// of IR (e.g. Functions, Modules). It is itself a valid pass over that unit of +/// IR, and when run over some given IR will run each of its contained passes in +/// sequence. Pass managers are the primary and most basic building block of a +/// pass pipeline. +/// +/// When you run a pass manager, you provide an \c AnalysisManager<IRUnitT> +/// argument. The pass manager will propagate that analysis manager to each +/// pass it runs, and will call the analysis manager's invalidation routine with +/// the PreservedAnalyses of each pass it runs. +template <typename IRUnitT, + typename AnalysisManagerT = AnalysisManager<IRUnitT>, + typename... ExtraArgTs> +class PassManager : public PassInfoMixin< + PassManager<IRUnitT, AnalysisManagerT, ExtraArgTs...>> { +public: + /// Construct a pass manager. + /// + /// If \p DebugLogging is true, we'll log our progress to llvm::dbgs(). + explicit PassManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {} + + // FIXME: These are equivalent to the default move constructor/move + // assignment. However, using = default triggers linker errors due to the + // explicit instantiations below. Find away to use the default and remove the + // duplicated code here. + PassManager(PassManager &&Arg) + : Passes(std::move(Arg.Passes)), + DebugLogging(std::move(Arg.DebugLogging)) {} + + PassManager &operator=(PassManager &&RHS) { + Passes = std::move(RHS.Passes); + DebugLogging = std::move(RHS.DebugLogging); + return *this; + } + + /// Run all of the passes in this manager over the given unit of IR. + /// ExtraArgs are passed to each pass. + PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM, + ExtraArgTs... ExtraArgs) { + PreservedAnalyses PA = PreservedAnalyses::all(); + + // Request PassInstrumentation from analysis manager, will use it to run + // instrumenting callbacks for the passes later. + // Here we use std::tuple wrapper over getResult which helps to extract + // AnalysisManager's arguments out of the whole ExtraArgs set. + PassInstrumentation PI = + detail::getAnalysisResult<PassInstrumentationAnalysis>( + AM, IR, std::tuple<ExtraArgTs...>(ExtraArgs...)); + + if (DebugLogging) + dbgs() << "Starting " << getTypeName<IRUnitT>() << " pass manager run.\n"; + + for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) { + auto *P = Passes[Idx].get(); + if (DebugLogging) + dbgs() << "Running pass: " << P->name() << " on " << IR.getName() + << "\n"; + + // Check the PassInstrumentation's BeforePass callbacks before running the + // pass, skip its execution completely if asked to (callback returns + // false). + if (!PI.runBeforePass<IRUnitT>(*P, IR)) + continue; + + PreservedAnalyses PassPA = P->run(IR, AM, ExtraArgs...); + + // Call onto PassInstrumentation's AfterPass callbacks immediately after + // running the pass. + PI.runAfterPass<IRUnitT>(*P, IR); + + // Update the analysis manager as each pass runs and potentially + // invalidates analyses. + AM.invalidate(IR, PassPA); + + // Finally, intersect the preserved analyses to compute the aggregate + // preserved set for this pass manager. + PA.intersect(std::move(PassPA)); + + // FIXME: Historically, the pass managers all called the LLVM context's + // yield function here. We don't have a generic way to acquire the + // context and it isn't yet clear what the right pattern is for yielding + // in the new pass manager so it is currently omitted. + //IR.getContext().yield(); + } + + // Invalidation was handled after each pass in the above loop for the + // current unit of IR. Therefore, the remaining analysis results in the + // AnalysisManager are preserved. We mark this with a set so that we don't + // need to inspect each one individually. + PA.preserveSet<AllAnalysesOn<IRUnitT>>(); + + if (DebugLogging) + dbgs() << "Finished " << getTypeName<IRUnitT>() << " pass manager run.\n"; + + return PA; + } + + template <typename PassT> void addPass(PassT Pass) { + using PassModelT = + detail::PassModel<IRUnitT, PassT, PreservedAnalyses, AnalysisManagerT, + ExtraArgTs...>; + + Passes.emplace_back(new PassModelT(std::move(Pass))); + } + +private: + using PassConceptT = + detail::PassConcept<IRUnitT, AnalysisManagerT, ExtraArgTs...>; + + std::vector<std::unique_ptr<PassConceptT>> Passes; + + /// Flag indicating whether we should do debug logging. + bool DebugLogging; +}; + +extern template class PassManager<Module>; + +/// Convenience typedef for a pass manager over modules. +using ModulePassManager = PassManager<Module>; + +extern template class PassManager<Function>; + +/// Convenience typedef for a pass manager over functions. +using FunctionPassManager = PassManager<Function>; + +/// Pseudo-analysis pass that exposes the \c PassInstrumentation to pass +/// managers. Goes before AnalysisManager definition to provide its +/// internals (e.g PassInstrumentationAnalysis::ID) for use there if needed. +/// FIXME: figure out a way to move PassInstrumentationAnalysis into its own +/// header. +class PassInstrumentationAnalysis + : public AnalysisInfoMixin<PassInstrumentationAnalysis> { + friend AnalysisInfoMixin<PassInstrumentationAnalysis>; + static AnalysisKey Key; + + PassInstrumentationCallbacks *Callbacks; + +public: + /// PassInstrumentationCallbacks object is shared, owned by something else, + /// not this analysis. + PassInstrumentationAnalysis(PassInstrumentationCallbacks *Callbacks = nullptr) + : Callbacks(Callbacks) {} + + using Result = PassInstrumentation; + + template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs> + Result run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) { + return PassInstrumentation(Callbacks); + } +}; + +/// A container for analyses that lazily runs them and caches their +/// results. +/// +/// This class can manage analyses for any IR unit where the address of the IR +/// unit sufficies as its identity. +template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager { +public: + class Invalidator; + +private: + // Now that we've defined our invalidator, we can define the concept types. + using ResultConceptT = + detail::AnalysisResultConcept<IRUnitT, PreservedAnalyses, Invalidator>; + using PassConceptT = + detail::AnalysisPassConcept<IRUnitT, PreservedAnalyses, Invalidator, + ExtraArgTs...>; + + /// List of analysis pass IDs and associated concept pointers. + /// + /// Requires iterators to be valid across appending new entries and arbitrary + /// erases. Provides the analysis ID to enable finding iterators to a given + /// entry in maps below, and provides the storage for the actual result + /// concept. + using AnalysisResultListT = + std::list<std::pair<AnalysisKey *, std::unique_ptr<ResultConceptT>>>; + + /// Map type from IRUnitT pointer to our custom list type. + using AnalysisResultListMapT = DenseMap<IRUnitT *, AnalysisResultListT>; + + /// Map type from a pair of analysis ID and IRUnitT pointer to an + /// iterator into a particular result list (which is where the actual analysis + /// result is stored). + using AnalysisResultMapT = + DenseMap<std::pair<AnalysisKey *, IRUnitT *>, + typename AnalysisResultListT::iterator>; + +public: + /// API to communicate dependencies between analyses during invalidation. + /// + /// When an analysis result embeds handles to other analysis results, it + /// needs to be invalidated both when its own information isn't preserved and + /// when any of its embedded analysis results end up invalidated. We pass an + /// \c Invalidator object as an argument to \c invalidate() in order to let + /// the analysis results themselves define the dependency graph on the fly. + /// This lets us avoid building building an explicit representation of the + /// dependencies between analysis results. + class Invalidator { + public: + /// Trigger the invalidation of some other analysis pass if not already + /// handled and return whether it was in fact invalidated. + /// + /// This is expected to be called from within a given analysis result's \c + /// invalidate method to trigger a depth-first walk of all inter-analysis + /// dependencies. The same \p IR unit and \p PA passed to that result's \c + /// invalidate method should in turn be provided to this routine. + /// + /// The first time this is called for a given analysis pass, it will call + /// the corresponding result's \c invalidate method. Subsequent calls will + /// use a cache of the results of that initial call. It is an error to form + /// cyclic dependencies between analysis results. + /// + /// This returns true if the given analysis's result is invalid. Any + /// dependecies on it will become invalid as a result. + template <typename PassT> + bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA) { + using ResultModelT = + detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result, + PreservedAnalyses, Invalidator>; + + return invalidateImpl<ResultModelT>(PassT::ID(), IR, PA); + } + + /// A type-erased variant of the above invalidate method with the same core + /// API other than passing an analysis ID rather than an analysis type + /// parameter. + /// + /// This is sadly less efficient than the above routine, which leverages + /// the type parameter to avoid the type erasure overhead. + bool invalidate(AnalysisKey *ID, IRUnitT &IR, const PreservedAnalyses &PA) { + return invalidateImpl<>(ID, IR, PA); + } + + private: + friend class AnalysisManager; + + template <typename ResultT = ResultConceptT> + bool invalidateImpl(AnalysisKey *ID, IRUnitT &IR, + const PreservedAnalyses &PA) { + // If we've already visited this pass, return true if it was invalidated + // and false otherwise. + auto IMapI = IsResultInvalidated.find(ID); + if (IMapI != IsResultInvalidated.end()) + return IMapI->second; + + // Otherwise look up the result object. + auto RI = Results.find({ID, &IR}); + assert(RI != Results.end() && + "Trying to invalidate a dependent result that isn't in the " + "manager's cache is always an error, likely due to a stale result " + "handle!"); + + auto &Result = static_cast<ResultT &>(*RI->second->second); + + // Insert into the map whether the result should be invalidated and return + // that. Note that we cannot reuse IMapI and must do a fresh insert here, + // as calling invalidate could (recursively) insert things into the map, + // making any iterator or reference invalid. + bool Inserted; + std::tie(IMapI, Inserted) = + IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, *this)}); + (void)Inserted; + assert(Inserted && "Should not have already inserted this ID, likely " + "indicates a dependency cycle!"); + return IMapI->second; + } + + Invalidator(SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated, + const AnalysisResultMapT &Results) + : IsResultInvalidated(IsResultInvalidated), Results(Results) {} + + SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated; + const AnalysisResultMapT &Results; + }; + + /// Construct an empty analysis manager. + /// + /// If \p DebugLogging is true, we'll log our progress to llvm::dbgs(). + AnalysisManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {} + AnalysisManager(AnalysisManager &&) = default; + AnalysisManager &operator=(AnalysisManager &&) = default; + + /// Returns true if the analysis manager has an empty results cache. + bool empty() const { + assert(AnalysisResults.empty() == AnalysisResultLists.empty() && + "The storage and index of analysis results disagree on how many " + "there are!"); + return AnalysisResults.empty(); + } + + /// Clear any cached analysis results for a single unit of IR. + /// + /// This doesn't invalidate, but instead simply deletes, the relevant results. + /// It is useful when the IR is being removed and we want to clear out all the + /// memory pinned for it. + void clear(IRUnitT &IR, llvm::StringRef Name) { + if (DebugLogging) + dbgs() << "Clearing all analysis results for: " << Name << "\n"; + + auto ResultsListI = AnalysisResultLists.find(&IR); + if (ResultsListI == AnalysisResultLists.end()) + return; + // Delete the map entries that point into the results list. + for (auto &IDAndResult : ResultsListI->second) + AnalysisResults.erase({IDAndResult.first, &IR}); + + // And actually destroy and erase the results associated with this IR. + AnalysisResultLists.erase(ResultsListI); + } + + /// Clear all analysis results cached by this AnalysisManager. + /// + /// Like \c clear(IRUnitT&), this doesn't invalidate the results; it simply + /// deletes them. This lets you clean up the AnalysisManager when the set of + /// IR units itself has potentially changed, and thus we can't even look up a + /// a result and invalidate/clear it directly. + void clear() { + AnalysisResults.clear(); + AnalysisResultLists.clear(); + } + + /// Get the result of an analysis pass for a given IR unit. + /// + /// Runs the analysis if a cached result is not available. + template <typename PassT> + typename PassT::Result &getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs) { + assert(AnalysisPasses.count(PassT::ID()) && + "This analysis pass was not registered prior to being queried"); + ResultConceptT &ResultConcept = + getResultImpl(PassT::ID(), IR, ExtraArgs...); + + using ResultModelT = + detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result, + PreservedAnalyses, Invalidator>; + + return static_cast<ResultModelT &>(ResultConcept).Result; + } + + /// Get the cached result of an analysis pass for a given IR unit. + /// + /// This method never runs the analysis. + /// + /// \returns null if there is no cached result. + template <typename PassT> + typename PassT::Result *getCachedResult(IRUnitT &IR) const { + assert(AnalysisPasses.count(PassT::ID()) && + "This analysis pass was not registered prior to being queried"); + + ResultConceptT *ResultConcept = getCachedResultImpl(PassT::ID(), IR); + if (!ResultConcept) + return nullptr; + + using ResultModelT = + detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result, + PreservedAnalyses, Invalidator>; + + return &static_cast<ResultModelT *>(ResultConcept)->Result; + } + + /// Register an analysis pass with the manager. + /// + /// The parameter is a callable whose result is an analysis pass. This allows + /// passing in a lambda to construct the analysis. + /// + /// The analysis type to register is the type returned by calling the \c + /// PassBuilder argument. If that type has already been registered, then the + /// argument will not be called and this function will return false. + /// Otherwise, we register the analysis returned by calling \c PassBuilder(), + /// and this function returns true. + /// + /// (Note: Although the return value of this function indicates whether or not + /// an analysis was previously registered, there intentionally isn't a way to + /// query this directly. Instead, you should just register all the analyses + /// you might want and let this class run them lazily. This idiom lets us + /// minimize the number of times we have to look up analyses in our + /// hashtable.) + template <typename PassBuilderT> + bool registerPass(PassBuilderT &&PassBuilder) { + using PassT = decltype(PassBuilder()); + using PassModelT = + detail::AnalysisPassModel<IRUnitT, PassT, PreservedAnalyses, + Invalidator, ExtraArgTs...>; + + auto &PassPtr = AnalysisPasses[PassT::ID()]; + if (PassPtr) + // Already registered this pass type! + return false; + + // Construct a new model around the instance returned by the builder. + PassPtr.reset(new PassModelT(PassBuilder())); + return true; + } + + /// Invalidate a specific analysis pass for an IR module. + /// + /// Note that the analysis result can disregard invalidation, if it determines + /// it is in fact still valid. + template <typename PassT> void invalidate(IRUnitT &IR) { + assert(AnalysisPasses.count(PassT::ID()) && + "This analysis pass was not registered prior to being invalidated"); + invalidateImpl(PassT::ID(), IR); + } + + /// Invalidate cached analyses for an IR unit. + /// + /// Walk through all of the analyses pertaining to this unit of IR and + /// invalidate them, unless they are preserved by the PreservedAnalyses set. + void invalidate(IRUnitT &IR, const PreservedAnalyses &PA) { + // We're done if all analyses on this IR unit are preserved. + if (PA.allAnalysesInSetPreserved<AllAnalysesOn<IRUnitT>>()) + return; + + if (DebugLogging) + dbgs() << "Invalidating all non-preserved analyses for: " << IR.getName() + << "\n"; + + // Track whether each analysis's result is invalidated in + // IsResultInvalidated. + SmallDenseMap<AnalysisKey *, bool, 8> IsResultInvalidated; + Invalidator Inv(IsResultInvalidated, AnalysisResults); + AnalysisResultListT &ResultsList = AnalysisResultLists[&IR]; + for (auto &AnalysisResultPair : ResultsList) { + // This is basically the same thing as Invalidator::invalidate, but we + // can't call it here because we're operating on the type-erased result. + // Moreover if we instead called invalidate() directly, it would do an + // unnecessary look up in ResultsList. + AnalysisKey *ID = AnalysisResultPair.first; + auto &Result = *AnalysisResultPair.second; + + auto IMapI = IsResultInvalidated.find(ID); + if (IMapI != IsResultInvalidated.end()) + // This result was already handled via the Invalidator. + continue; + + // Try to invalidate the result, giving it the Invalidator so it can + // recursively query for any dependencies it has and record the result. + // Note that we cannot reuse 'IMapI' here or pre-insert the ID, as + // Result.invalidate may insert things into the map, invalidating our + // iterator. + bool Inserted = + IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, Inv)}) + .second; + (void)Inserted; + assert(Inserted && "Should never have already inserted this ID, likely " + "indicates a cycle!"); + } + + // Now erase the results that were marked above as invalidated. + if (!IsResultInvalidated.empty()) { + for (auto I = ResultsList.begin(), E = ResultsList.end(); I != E;) { + AnalysisKey *ID = I->first; + if (!IsResultInvalidated.lookup(ID)) { + ++I; + continue; + } + + if (DebugLogging) + dbgs() << "Invalidating analysis: " << this->lookUpPass(ID).name() + << " on " << IR.getName() << "\n"; + + I = ResultsList.erase(I); + AnalysisResults.erase({ID, &IR}); + } + } + + if (ResultsList.empty()) + AnalysisResultLists.erase(&IR); + } + +private: + /// Look up a registered analysis pass. + PassConceptT &lookUpPass(AnalysisKey *ID) { + typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(ID); + assert(PI != AnalysisPasses.end() && + "Analysis passes must be registered prior to being queried!"); + return *PI->second; + } + + /// Look up a registered analysis pass. + const PassConceptT &lookUpPass(AnalysisKey *ID) const { + typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(ID); + assert(PI != AnalysisPasses.end() && + "Analysis passes must be registered prior to being queried!"); + return *PI->second; + } + + /// Get an analysis result, running the pass if necessary. + ResultConceptT &getResultImpl(AnalysisKey *ID, IRUnitT &IR, + ExtraArgTs... ExtraArgs) { + typename AnalysisResultMapT::iterator RI; + bool Inserted; + std::tie(RI, Inserted) = AnalysisResults.insert(std::make_pair( + std::make_pair(ID, &IR), typename AnalysisResultListT::iterator())); + + // If we don't have a cached result for this function, look up the pass and + // run it to produce a result, which we then add to the cache. + if (Inserted) { + auto &P = this->lookUpPass(ID); + if (DebugLogging) + dbgs() << "Running analysis: " << P.name() << " on " << IR.getName() + << "\n"; + + PassInstrumentation PI; + if (ID != PassInstrumentationAnalysis::ID()) { + PI = getResult<PassInstrumentationAnalysis>(IR, ExtraArgs...); + PI.runBeforeAnalysis(P, IR); + } + + AnalysisResultListT &ResultList = AnalysisResultLists[&IR]; + ResultList.emplace_back(ID, P.run(IR, *this, ExtraArgs...)); + + PI.runAfterAnalysis(P, IR); + + // P.run may have inserted elements into AnalysisResults and invalidated + // RI. + RI = AnalysisResults.find({ID, &IR}); + assert(RI != AnalysisResults.end() && "we just inserted it!"); + + RI->second = std::prev(ResultList.end()); + } + + return *RI->second->second; + } + + /// Get a cached analysis result or return null. + ResultConceptT *getCachedResultImpl(AnalysisKey *ID, IRUnitT &IR) const { + typename AnalysisResultMapT::const_iterator RI = + AnalysisResults.find({ID, &IR}); + return RI == AnalysisResults.end() ? nullptr : &*RI->second->second; + } + + /// Invalidate a function pass result. + void invalidateImpl(AnalysisKey *ID, IRUnitT &IR) { + typename AnalysisResultMapT::iterator RI = + AnalysisResults.find({ID, &IR}); + if (RI == AnalysisResults.end()) + return; + + if (DebugLogging) + dbgs() << "Invalidating analysis: " << this->lookUpPass(ID).name() + << " on " << IR.getName() << "\n"; + AnalysisResultLists[&IR].erase(RI->second); + AnalysisResults.erase(RI); + } + + /// Map type from module analysis pass ID to pass concept pointer. + using AnalysisPassMapT = + DenseMap<AnalysisKey *, std::unique_ptr<PassConceptT>>; + + /// Collection of module analysis passes, indexed by ID. + AnalysisPassMapT AnalysisPasses; + + /// Map from function to a list of function analysis results. + /// + /// Provides linear time removal of all analysis results for a function and + /// the ultimate storage for a particular cached analysis result. + AnalysisResultListMapT AnalysisResultLists; + + /// Map from an analysis ID and function to a particular cached + /// analysis result. + AnalysisResultMapT AnalysisResults; + + /// Indicates whether we log to \c llvm::dbgs(). + bool DebugLogging; +}; + +extern template class AnalysisManager<Module>; + +/// Convenience typedef for the Module analysis manager. +using ModuleAnalysisManager = AnalysisManager<Module>; + +extern template class AnalysisManager<Function>; + +/// Convenience typedef for the Function analysis manager. +using FunctionAnalysisManager = AnalysisManager<Function>; + +/// An analysis over an "outer" IR unit that provides access to an +/// analysis manager over an "inner" IR unit. The inner unit must be contained +/// in the outer unit. +/// +/// For example, InnerAnalysisManagerProxy<FunctionAnalysisManager, Module> is +/// an analysis over Modules (the "outer" unit) that provides access to a +/// Function analysis manager. The FunctionAnalysisManager is the "inner" +/// manager being proxied, and Functions are the "inner" unit. The inner/outer +/// relationship is valid because each Function is contained in one Module. +/// +/// If you're (transitively) within a pass manager for an IR unit U that +/// contains IR unit V, you should never use an analysis manager over V, except +/// via one of these proxies. +/// +/// Note that the proxy's result is a move-only RAII object. The validity of +/// the analyses in the inner analysis manager is tied to its lifetime. +template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs> +class InnerAnalysisManagerProxy + : public AnalysisInfoMixin< + InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>> { +public: + class Result { + public: + explicit Result(AnalysisManagerT &InnerAM) : InnerAM(&InnerAM) {} + + Result(Result &&Arg) : InnerAM(std::move(Arg.InnerAM)) { + // We have to null out the analysis manager in the moved-from state + // because we are taking ownership of the responsibilty to clear the + // analysis state. + Arg.InnerAM = nullptr; + } + + ~Result() { + // InnerAM is cleared in a moved from state where there is nothing to do. + if (!InnerAM) + return; + + // Clear out the analysis manager if we're being destroyed -- it means we + // didn't even see an invalidate call when we got invalidated. + InnerAM->clear(); + } + + Result &operator=(Result &&RHS) { + InnerAM = RHS.InnerAM; + // We have to null out the analysis manager in the moved-from state + // because we are taking ownership of the responsibilty to clear the + // analysis state. + RHS.InnerAM = nullptr; + return *this; + } + + /// Accessor for the analysis manager. + AnalysisManagerT &getManager() { return *InnerAM; } + + /// Handler for invalidation of the outer IR unit, \c IRUnitT. + /// + /// If the proxy analysis itself is not preserved, we assume that the set of + /// inner IR objects contained in IRUnit may have changed. In this case, + /// we have to call \c clear() on the inner analysis manager, as it may now + /// have stale pointers to its inner IR objects. + /// + /// Regardless of whether the proxy analysis is marked as preserved, all of + /// the analyses in the inner analysis manager are potentially invalidated + /// based on the set of preserved analyses. + bool invalidate( + IRUnitT &IR, const PreservedAnalyses &PA, + typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv); + + private: + AnalysisManagerT *InnerAM; + }; + + explicit InnerAnalysisManagerProxy(AnalysisManagerT &InnerAM) + : InnerAM(&InnerAM) {} + + /// Run the analysis pass and create our proxy result object. + /// + /// This doesn't do any interesting work; it is primarily used to insert our + /// proxy result object into the outer analysis cache so that we can proxy + /// invalidation to the inner analysis manager. + Result run(IRUnitT &IR, AnalysisManager<IRUnitT, ExtraArgTs...> &AM, + ExtraArgTs...) { + return Result(*InnerAM); + } + +private: + friend AnalysisInfoMixin< + InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>>; + + static AnalysisKey Key; + + AnalysisManagerT *InnerAM; +}; + +template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs> +AnalysisKey + InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key; + +/// Provide the \c FunctionAnalysisManager to \c Module proxy. +using FunctionAnalysisManagerModuleProxy = + InnerAnalysisManagerProxy<FunctionAnalysisManager, Module>; + +/// Specialization of the invalidate method for the \c +/// FunctionAnalysisManagerModuleProxy's result. +template <> +bool FunctionAnalysisManagerModuleProxy::Result::invalidate( + Module &M, const PreservedAnalyses &PA, + ModuleAnalysisManager::Invalidator &Inv); + +// Ensure the \c FunctionAnalysisManagerModuleProxy is provided as an extern +// template. +extern template class InnerAnalysisManagerProxy<FunctionAnalysisManager, + Module>; + +/// An analysis over an "inner" IR unit that provides access to an +/// analysis manager over a "outer" IR unit. The inner unit must be contained +/// in the outer unit. +/// +/// For example OuterAnalysisManagerProxy<ModuleAnalysisManager, Function> is an +/// analysis over Functions (the "inner" unit) which provides access to a Module +/// analysis manager. The ModuleAnalysisManager is the "outer" manager being +/// proxied, and Modules are the "outer" IR unit. The inner/outer relationship +/// is valid because each Function is contained in one Module. +/// +/// This proxy only exposes the const interface of the outer analysis manager, +/// to indicate that you cannot cause an outer analysis to run from within an +/// inner pass. Instead, you must rely on the \c getCachedResult API. +/// +/// This proxy doesn't manage invalidation in any way -- that is handled by the +/// recursive return path of each layer of the pass manager. A consequence of +/// this is the outer analyses may be stale. We invalidate the outer analyses +/// only when we're done running passes over the inner IR units. +template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs> +class OuterAnalysisManagerProxy + : public AnalysisInfoMixin< + OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>> { +public: + /// Result proxy object for \c OuterAnalysisManagerProxy. + class Result { + public: + explicit Result(const AnalysisManagerT &AM) : AM(&AM) {} + + const AnalysisManagerT &getManager() const { return *AM; } + + /// When invalidation occurs, remove any registered invalidation events. + bool invalidate( + IRUnitT &IRUnit, const PreservedAnalyses &PA, + typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv) { + // Loop over the set of registered outer invalidation mappings and if any + // of them map to an analysis that is now invalid, clear it out. + SmallVector<AnalysisKey *, 4> DeadKeys; + for (auto &KeyValuePair : OuterAnalysisInvalidationMap) { + AnalysisKey *OuterID = KeyValuePair.first; + auto &InnerIDs = KeyValuePair.second; + InnerIDs.erase(llvm::remove_if(InnerIDs, [&](AnalysisKey *InnerID) { + return Inv.invalidate(InnerID, IRUnit, PA); }), + InnerIDs.end()); + if (InnerIDs.empty()) + DeadKeys.push_back(OuterID); + } + + for (auto OuterID : DeadKeys) + OuterAnalysisInvalidationMap.erase(OuterID); + + // The proxy itself remains valid regardless of anything else. + return false; + } + + /// Register a deferred invalidation event for when the outer analysis + /// manager processes its invalidations. + template <typename OuterAnalysisT, typename InvalidatedAnalysisT> + void registerOuterAnalysisInvalidation() { + AnalysisKey *OuterID = OuterAnalysisT::ID(); + AnalysisKey *InvalidatedID = InvalidatedAnalysisT::ID(); + + auto &InvalidatedIDList = OuterAnalysisInvalidationMap[OuterID]; + // Note, this is a linear scan. If we end up with large numbers of + // analyses that all trigger invalidation on the same outer analysis, + // this entire system should be changed to some other deterministic + // data structure such as a `SetVector` of a pair of pointers. + auto InvalidatedIt = std::find(InvalidatedIDList.begin(), + InvalidatedIDList.end(), InvalidatedID); + if (InvalidatedIt == InvalidatedIDList.end()) + InvalidatedIDList.push_back(InvalidatedID); + } + + /// Access the map from outer analyses to deferred invalidation requiring + /// analyses. + const SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2> & + getOuterInvalidations() const { + return OuterAnalysisInvalidationMap; + } + + private: + const AnalysisManagerT *AM; + + /// A map from an outer analysis ID to the set of this IR-unit's analyses + /// which need to be invalidated. + SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2> + OuterAnalysisInvalidationMap; + }; + + OuterAnalysisManagerProxy(const AnalysisManagerT &AM) : AM(&AM) {} + + /// Run the analysis pass and create our proxy result object. + /// Nothing to see here, it just forwards the \c AM reference into the + /// result. + Result run(IRUnitT &, AnalysisManager<IRUnitT, ExtraArgTs...> &, + ExtraArgTs...) { + return Result(*AM); + } + +private: + friend AnalysisInfoMixin< + OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>>; + + static AnalysisKey Key; + + const AnalysisManagerT *AM; +}; + +template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs> +AnalysisKey + OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key; + +extern template class OuterAnalysisManagerProxy<ModuleAnalysisManager, + Function>; +/// Provide the \c ModuleAnalysisManager to \c Function proxy. +using ModuleAnalysisManagerFunctionProxy = + OuterAnalysisManagerProxy<ModuleAnalysisManager, Function>; + +/// Trivial adaptor that maps from a module to its functions. +/// +/// Designed to allow composition of a FunctionPass(Manager) and +/// a ModulePassManager, by running the FunctionPass(Manager) over every +/// function in the module. +/// +/// Function passes run within this adaptor can rely on having exclusive access +/// to the function they are run over. They should not read or modify any other +/// functions! Other threads or systems may be manipulating other functions in +/// the module, and so their state should never be relied on. +/// FIXME: Make the above true for all of LLVM's actual passes, some still +/// violate this principle. +/// +/// Function passes can also read the module containing the function, but they +/// should not modify that module outside of the use lists of various globals. +/// For example, a function pass is not permitted to add functions to the +/// module. +/// FIXME: Make the above true for all of LLVM's actual passes, some still +/// violate this principle. +/// +/// Note that although function passes can access module analyses, module +/// analyses are not invalidated while the function passes are running, so they +/// may be stale. Function analyses will not be stale. +template <typename FunctionPassT> +class ModuleToFunctionPassAdaptor + : public PassInfoMixin<ModuleToFunctionPassAdaptor<FunctionPassT>> { +public: + explicit ModuleToFunctionPassAdaptor(FunctionPassT Pass) + : Pass(std::move(Pass)) {} + + /// Runs the function pass across every function in the module. + PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM) { + FunctionAnalysisManager &FAM = + AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); + + // Request PassInstrumentation from analysis manager, will use it to run + // instrumenting callbacks for the passes later. + PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(M); + + PreservedAnalyses PA = PreservedAnalyses::all(); + for (Function &F : M) { + if (F.isDeclaration()) + continue; + + // Check the PassInstrumentation's BeforePass callbacks before running the + // pass, skip its execution completely if asked to (callback returns + // false). + if (!PI.runBeforePass<Function>(Pass, F)) + continue; + PreservedAnalyses PassPA = Pass.run(F, FAM); + + PI.runAfterPass(Pass, F); + + // We know that the function pass couldn't have invalidated any other + // function's analyses (that's the contract of a function pass), so + // directly handle the function analysis manager's invalidation here. + FAM.invalidate(F, PassPA); + + // Then intersect the preserved set so that invalidation of module + // analyses will eventually occur when the module pass completes. + PA.intersect(std::move(PassPA)); + } + + // The FunctionAnalysisManagerModuleProxy is preserved because (we assume) + // the function passes we ran didn't add or remove any functions. + // + // We also preserve all analyses on Functions, because we did all the + // invalidation we needed to do above. + PA.preserveSet<AllAnalysesOn<Function>>(); + PA.preserve<FunctionAnalysisManagerModuleProxy>(); + return PA; + } + +private: + FunctionPassT Pass; +}; + +/// A function to deduce a function pass type and wrap it in the +/// templated adaptor. +template <typename FunctionPassT> +ModuleToFunctionPassAdaptor<FunctionPassT> +createModuleToFunctionPassAdaptor(FunctionPassT Pass) { + return ModuleToFunctionPassAdaptor<FunctionPassT>(std::move(Pass)); +} + +/// A utility pass template to force an analysis result to be available. +/// +/// If there are extra arguments at the pass's run level there may also be +/// extra arguments to the analysis manager's \c getResult routine. We can't +/// guess how to effectively map the arguments from one to the other, and so +/// this specialization just ignores them. +/// +/// Specific patterns of run-method extra arguments and analysis manager extra +/// arguments will have to be defined as appropriate specializations. +template <typename AnalysisT, typename IRUnitT, + typename AnalysisManagerT = AnalysisManager<IRUnitT>, + typename... ExtraArgTs> +struct RequireAnalysisPass + : PassInfoMixin<RequireAnalysisPass<AnalysisT, IRUnitT, AnalysisManagerT, + ExtraArgTs...>> { + /// Run this pass over some unit of IR. + /// + /// This pass can be run over any unit of IR and use any analysis manager + /// provided they satisfy the basic API requirements. When this pass is + /// created, these methods can be instantiated to satisfy whatever the + /// context requires. + PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, + ExtraArgTs &&... Args) { + (void)AM.template getResult<AnalysisT>(Arg, + std::forward<ExtraArgTs>(Args)...); + + return PreservedAnalyses::all(); + } +}; + +/// A no-op pass template which simply forces a specific analysis result +/// to be invalidated. +template <typename AnalysisT> +struct InvalidateAnalysisPass + : PassInfoMixin<InvalidateAnalysisPass<AnalysisT>> { + /// Run this pass over some unit of IR. + /// + /// This pass can be run over any unit of IR and use any analysis manager, + /// provided they satisfy the basic API requirements. When this pass is + /// created, these methods can be instantiated to satisfy whatever the + /// context requires. + template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs> + PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, ExtraArgTs &&...) { + auto PA = PreservedAnalyses::all(); + PA.abandon<AnalysisT>(); + return PA; + } +}; + +/// A utility pass that does nothing, but preserves no analyses. +/// +/// Because this preserves no analyses, any analysis passes queried after this +/// pass runs will recompute fresh results. +struct InvalidateAllAnalysesPass : PassInfoMixin<InvalidateAllAnalysesPass> { + /// Run this pass over some unit of IR. + template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs> + PreservedAnalyses run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) { + return PreservedAnalyses::none(); + } +}; + +/// A utility pass template that simply runs another pass multiple times. +/// +/// This can be useful when debugging or testing passes. It also serves as an +/// example of how to extend the pass manager in ways beyond composition. +template <typename PassT> +class RepeatedPass : public PassInfoMixin<RepeatedPass<PassT>> { +public: + RepeatedPass(int Count, PassT P) : Count(Count), P(std::move(P)) {} + + template <typename IRUnitT, typename AnalysisManagerT, typename... Ts> + PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM, Ts &&... Args) { + + // Request PassInstrumentation from analysis manager, will use it to run + // instrumenting callbacks for the passes later. + // Here we use std::tuple wrapper over getResult which helps to extract + // AnalysisManager's arguments out of the whole Args set. + PassInstrumentation PI = + detail::getAnalysisResult<PassInstrumentationAnalysis>( + AM, IR, std::tuple<Ts...>(Args...)); + + auto PA = PreservedAnalyses::all(); + for (int i = 0; i < Count; ++i) { + // Check the PassInstrumentation's BeforePass callbacks before running the + // pass, skip its execution completely if asked to (callback returns + // false). + if (!PI.runBeforePass<IRUnitT>(P, IR)) + continue; + PA.intersect(P.run(IR, AM, std::forward<Ts>(Args)...)); + PI.runAfterPass(P, IR); + } + return PA; + } + +private: + int Count; + PassT P; +}; + +template <typename PassT> +RepeatedPass<PassT> createRepeatedPass(int Count, PassT P) { + return RepeatedPass<PassT>(Count, std::move(P)); +} + +} // end namespace llvm + +#endif // LLVM_IR_PASSMANAGER_H |
