diff options
Diffstat (limited to 'clang-r353983/include/llvm/IR/PatternMatch.h')
| -rw-r--r-- | clang-r353983/include/llvm/IR/PatternMatch.h | 1770 |
1 files changed, 1770 insertions, 0 deletions
diff --git a/clang-r353983/include/llvm/IR/PatternMatch.h b/clang-r353983/include/llvm/IR/PatternMatch.h new file mode 100644 index 00000000..6c51d487 --- /dev/null +++ b/clang-r353983/include/llvm/IR/PatternMatch.h @@ -0,0 +1,1770 @@ +//===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file provides a simple and efficient mechanism for performing general +// tree-based pattern matches on the LLVM IR. The power of these routines is +// that it allows you to write concise patterns that are expressive and easy to +// understand. The other major advantage of this is that it allows you to +// trivially capture/bind elements in the pattern to variables. For example, +// you can do something like this: +// +// Value *Exp = ... +// Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2) +// if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)), +// m_And(m_Value(Y), m_ConstantInt(C2))))) { +// ... Pattern is matched and variables are bound ... +// } +// +// This is primarily useful to things like the instruction combiner, but can +// also be useful for static analysis tools or code generators. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_IR_PATTERNMATCH_H +#define LLVM_IR_PATTERNMATCH_H + +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/APInt.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/Value.h" +#include "llvm/Support/Casting.h" +#include <cstdint> + +namespace llvm { +namespace PatternMatch { + +template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) { + return const_cast<Pattern &>(P).match(V); +} + +template <typename SubPattern_t> struct OneUse_match { + SubPattern_t SubPattern; + + OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {} + + template <typename OpTy> bool match(OpTy *V) { + return V->hasOneUse() && SubPattern.match(V); + } +}; + +template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) { + return SubPattern; +} + +template <typename Class> struct class_match { + template <typename ITy> bool match(ITy *V) { return isa<Class>(V); } +}; + +/// Match an arbitrary value and ignore it. +inline class_match<Value> m_Value() { return class_match<Value>(); } + +/// Match an arbitrary binary operation and ignore it. +inline class_match<BinaryOperator> m_BinOp() { + return class_match<BinaryOperator>(); +} + +/// Matches any compare instruction and ignore it. +inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); } + +/// Match an arbitrary ConstantInt and ignore it. +inline class_match<ConstantInt> m_ConstantInt() { + return class_match<ConstantInt>(); +} + +/// Match an arbitrary undef constant. +inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); } + +/// Match an arbitrary Constant and ignore it. +inline class_match<Constant> m_Constant() { return class_match<Constant>(); } + +/// Matching combinators +template <typename LTy, typename RTy> struct match_combine_or { + LTy L; + RTy R; + + match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} + + template <typename ITy> bool match(ITy *V) { + if (L.match(V)) + return true; + if (R.match(V)) + return true; + return false; + } +}; + +template <typename LTy, typename RTy> struct match_combine_and { + LTy L; + RTy R; + + match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} + + template <typename ITy> bool match(ITy *V) { + if (L.match(V)) + if (R.match(V)) + return true; + return false; + } +}; + +/// Combine two pattern matchers matching L || R +template <typename LTy, typename RTy> +inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) { + return match_combine_or<LTy, RTy>(L, R); +} + +/// Combine two pattern matchers matching L && R +template <typename LTy, typename RTy> +inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) { + return match_combine_and<LTy, RTy>(L, R); +} + +struct apint_match { + const APInt *&Res; + + apint_match(const APInt *&R) : Res(R) {} + + template <typename ITy> bool match(ITy *V) { + if (auto *CI = dyn_cast<ConstantInt>(V)) { + Res = &CI->getValue(); + return true; + } + if (V->getType()->isVectorTy()) + if (const auto *C = dyn_cast<Constant>(V)) + if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) { + Res = &CI->getValue(); + return true; + } + return false; + } +}; +// Either constexpr if or renaming ConstantFP::getValueAPF to +// ConstantFP::getValue is needed to do it via single template +// function for both apint/apfloat. +struct apfloat_match { + const APFloat *&Res; + apfloat_match(const APFloat *&R) : Res(R) {} + template <typename ITy> bool match(ITy *V) { + if (auto *CI = dyn_cast<ConstantFP>(V)) { + Res = &CI->getValueAPF(); + return true; + } + if (V->getType()->isVectorTy()) + if (const auto *C = dyn_cast<Constant>(V)) + if (auto *CI = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) { + Res = &CI->getValueAPF(); + return true; + } + return false; + } +}; + +/// Match a ConstantInt or splatted ConstantVector, binding the +/// specified pointer to the contained APInt. +inline apint_match m_APInt(const APInt *&Res) { return Res; } + +/// Match a ConstantFP or splatted ConstantVector, binding the +/// specified pointer to the contained APFloat. +inline apfloat_match m_APFloat(const APFloat *&Res) { return Res; } + +template <int64_t Val> struct constantint_match { + template <typename ITy> bool match(ITy *V) { + if (const auto *CI = dyn_cast<ConstantInt>(V)) { + const APInt &CIV = CI->getValue(); + if (Val >= 0) + return CIV == static_cast<uint64_t>(Val); + // If Val is negative, and CI is shorter than it, truncate to the right + // number of bits. If it is larger, then we have to sign extend. Just + // compare their negated values. + return -CIV == -Val; + } + return false; + } +}; + +/// Match a ConstantInt with a specific value. +template <int64_t Val> inline constantint_match<Val> m_ConstantInt() { + return constantint_match<Val>(); +} + +/// This helper class is used to match scalar and vector integer constants that +/// satisfy a specified predicate. +/// For vector constants, undefined elements are ignored. +template <typename Predicate> struct cst_pred_ty : public Predicate { + template <typename ITy> bool match(ITy *V) { + if (const auto *CI = dyn_cast<ConstantInt>(V)) + return this->isValue(CI->getValue()); + if (V->getType()->isVectorTy()) { + if (const auto *C = dyn_cast<Constant>(V)) { + if (const auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) + return this->isValue(CI->getValue()); + + // Non-splat vector constant: check each element for a match. + unsigned NumElts = V->getType()->getVectorNumElements(); + assert(NumElts != 0 && "Constant vector with no elements?"); + bool HasNonUndefElements = false; + for (unsigned i = 0; i != NumElts; ++i) { + Constant *Elt = C->getAggregateElement(i); + if (!Elt) + return false; + if (isa<UndefValue>(Elt)) + continue; + auto *CI = dyn_cast<ConstantInt>(Elt); + if (!CI || !this->isValue(CI->getValue())) + return false; + HasNonUndefElements = true; + } + return HasNonUndefElements; + } + } + return false; + } +}; + +/// This helper class is used to match scalar and vector constants that +/// satisfy a specified predicate, and bind them to an APInt. +template <typename Predicate> struct api_pred_ty : public Predicate { + const APInt *&Res; + + api_pred_ty(const APInt *&R) : Res(R) {} + + template <typename ITy> bool match(ITy *V) { + if (const auto *CI = dyn_cast<ConstantInt>(V)) + if (this->isValue(CI->getValue())) { + Res = &CI->getValue(); + return true; + } + if (V->getType()->isVectorTy()) + if (const auto *C = dyn_cast<Constant>(V)) + if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) + if (this->isValue(CI->getValue())) { + Res = &CI->getValue(); + return true; + } + + return false; + } +}; + +/// This helper class is used to match scalar and vector floating-point +/// constants that satisfy a specified predicate. +/// For vector constants, undefined elements are ignored. +template <typename Predicate> struct cstfp_pred_ty : public Predicate { + template <typename ITy> bool match(ITy *V) { + if (const auto *CF = dyn_cast<ConstantFP>(V)) + return this->isValue(CF->getValueAPF()); + if (V->getType()->isVectorTy()) { + if (const auto *C = dyn_cast<Constant>(V)) { + if (const auto *CF = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) + return this->isValue(CF->getValueAPF()); + + // Non-splat vector constant: check each element for a match. + unsigned NumElts = V->getType()->getVectorNumElements(); + assert(NumElts != 0 && "Constant vector with no elements?"); + bool HasNonUndefElements = false; + for (unsigned i = 0; i != NumElts; ++i) { + Constant *Elt = C->getAggregateElement(i); + if (!Elt) + return false; + if (isa<UndefValue>(Elt)) + continue; + auto *CF = dyn_cast<ConstantFP>(Elt); + if (!CF || !this->isValue(CF->getValueAPF())) + return false; + HasNonUndefElements = true; + } + return HasNonUndefElements; + } + } + return false; + } +}; + +/////////////////////////////////////////////////////////////////////////////// +// +// Encapsulate constant value queries for use in templated predicate matchers. +// This allows checking if constants match using compound predicates and works +// with vector constants, possibly with relaxed constraints. For example, ignore +// undef values. +// +/////////////////////////////////////////////////////////////////////////////// + +struct is_all_ones { + bool isValue(const APInt &C) { return C.isAllOnesValue(); } +}; +/// Match an integer or vector with all bits set. +/// For vectors, this includes constants with undefined elements. +inline cst_pred_ty<is_all_ones> m_AllOnes() { + return cst_pred_ty<is_all_ones>(); +} + +struct is_maxsignedvalue { + bool isValue(const APInt &C) { return C.isMaxSignedValue(); } +}; +/// Match an integer or vector with values having all bits except for the high +/// bit set (0x7f...). +/// For vectors, this includes constants with undefined elements. +inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() { + return cst_pred_ty<is_maxsignedvalue>(); +} +inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) { + return V; +} + +struct is_negative { + bool isValue(const APInt &C) { return C.isNegative(); } +}; +/// Match an integer or vector of negative values. +/// For vectors, this includes constants with undefined elements. +inline cst_pred_ty<is_negative> m_Negative() { + return cst_pred_ty<is_negative>(); +} +inline api_pred_ty<is_negative> m_Negative(const APInt *&V) { + return V; +} + +struct is_nonnegative { + bool isValue(const APInt &C) { return C.isNonNegative(); } +}; +/// Match an integer or vector of nonnegative values. +/// For vectors, this includes constants with undefined elements. +inline cst_pred_ty<is_nonnegative> m_NonNegative() { + return cst_pred_ty<is_nonnegative>(); +} +inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) { + return V; +} + +struct is_one { + bool isValue(const APInt &C) { return C.isOneValue(); } +}; +/// Match an integer 1 or a vector with all elements equal to 1. +/// For vectors, this includes constants with undefined elements. +inline cst_pred_ty<is_one> m_One() { + return cst_pred_ty<is_one>(); +} + +struct is_zero_int { + bool isValue(const APInt &C) { return C.isNullValue(); } +}; +/// Match an integer 0 or a vector with all elements equal to 0. +/// For vectors, this includes constants with undefined elements. +inline cst_pred_ty<is_zero_int> m_ZeroInt() { + return cst_pred_ty<is_zero_int>(); +} + +struct is_zero { + template <typename ITy> bool match(ITy *V) { + auto *C = dyn_cast<Constant>(V); + return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C)); + } +}; +/// Match any null constant or a vector with all elements equal to 0. +/// For vectors, this includes constants with undefined elements. +inline is_zero m_Zero() { + return is_zero(); +} + +struct is_power2 { + bool isValue(const APInt &C) { return C.isPowerOf2(); } +}; +/// Match an integer or vector power-of-2. +/// For vectors, this includes constants with undefined elements. +inline cst_pred_ty<is_power2> m_Power2() { + return cst_pred_ty<is_power2>(); +} +inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { + return V; +} + +struct is_power2_or_zero { + bool isValue(const APInt &C) { return !C || C.isPowerOf2(); } +}; +/// Match an integer or vector of 0 or power-of-2 values. +/// For vectors, this includes constants with undefined elements. +inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() { + return cst_pred_ty<is_power2_or_zero>(); +} +inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) { + return V; +} + +struct is_sign_mask { + bool isValue(const APInt &C) { return C.isSignMask(); } +}; +/// Match an integer or vector with only the sign bit(s) set. +/// For vectors, this includes constants with undefined elements. +inline cst_pred_ty<is_sign_mask> m_SignMask() { + return cst_pred_ty<is_sign_mask>(); +} + +struct is_lowbit_mask { + bool isValue(const APInt &C) { return C.isMask(); } +}; +/// Match an integer or vector with only the low bit(s) set. +/// For vectors, this includes constants with undefined elements. +inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() { + return cst_pred_ty<is_lowbit_mask>(); +} + +struct is_nan { + bool isValue(const APFloat &C) { return C.isNaN(); } +}; +/// Match an arbitrary NaN constant. This includes quiet and signalling nans. +/// For vectors, this includes constants with undefined elements. +inline cstfp_pred_ty<is_nan> m_NaN() { + return cstfp_pred_ty<is_nan>(); +} + +struct is_any_zero_fp { + bool isValue(const APFloat &C) { return C.isZero(); } +}; +/// Match a floating-point negative zero or positive zero. +/// For vectors, this includes constants with undefined elements. +inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() { + return cstfp_pred_ty<is_any_zero_fp>(); +} + +struct is_pos_zero_fp { + bool isValue(const APFloat &C) { return C.isPosZero(); } +}; +/// Match a floating-point positive zero. +/// For vectors, this includes constants with undefined elements. +inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() { + return cstfp_pred_ty<is_pos_zero_fp>(); +} + +struct is_neg_zero_fp { + bool isValue(const APFloat &C) { return C.isNegZero(); } +}; +/// Match a floating-point negative zero. +/// For vectors, this includes constants with undefined elements. +inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() { + return cstfp_pred_ty<is_neg_zero_fp>(); +} + +/////////////////////////////////////////////////////////////////////////////// + +template <typename Class> struct bind_ty { + Class *&VR; + + bind_ty(Class *&V) : VR(V) {} + + template <typename ITy> bool match(ITy *V) { + if (auto *CV = dyn_cast<Class>(V)) { + VR = CV; + return true; + } + return false; + } +}; + +/// Match a value, capturing it if we match. +inline bind_ty<Value> m_Value(Value *&V) { return V; } +inline bind_ty<const Value> m_Value(const Value *&V) { return V; } + +/// Match an instruction, capturing it if we match. +inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; } +/// Match a binary operator, capturing it if we match. +inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; } + +/// Match a ConstantInt, capturing the value if we match. +inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; } + +/// Match a Constant, capturing the value if we match. +inline bind_ty<Constant> m_Constant(Constant *&C) { return C; } + +/// Match a ConstantFP, capturing the value if we match. +inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; } + +/// Match a specified Value*. +struct specificval_ty { + const Value *Val; + + specificval_ty(const Value *V) : Val(V) {} + + template <typename ITy> bool match(ITy *V) { return V == Val; } +}; + +/// Match if we have a specific specified value. +inline specificval_ty m_Specific(const Value *V) { return V; } + +/// Stores a reference to the Value *, not the Value * itself, +/// thus can be used in commutative matchers. +template <typename Class> struct deferredval_ty { + Class *const &Val; + + deferredval_ty(Class *const &V) : Val(V) {} + + template <typename ITy> bool match(ITy *const V) { return V == Val; } +}; + +/// A commutative-friendly version of m_Specific(). +inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; } +inline deferredval_ty<const Value> m_Deferred(const Value *const &V) { + return V; +} + +/// Match a specified floating point value or vector of all elements of +/// that value. +struct specific_fpval { + double Val; + + specific_fpval(double V) : Val(V) {} + + template <typename ITy> bool match(ITy *V) { + if (const auto *CFP = dyn_cast<ConstantFP>(V)) + return CFP->isExactlyValue(Val); + if (V->getType()->isVectorTy()) + if (const auto *C = dyn_cast<Constant>(V)) + if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) + return CFP->isExactlyValue(Val); + return false; + } +}; + +/// Match a specific floating point value or vector with all elements +/// equal to the value. +inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); } + +/// Match a float 1.0 or vector with all elements equal to 1.0. +inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); } + +struct bind_const_intval_ty { + uint64_t &VR; + + bind_const_intval_ty(uint64_t &V) : VR(V) {} + + template <typename ITy> bool match(ITy *V) { + if (const auto *CV = dyn_cast<ConstantInt>(V)) + if (CV->getValue().ule(UINT64_MAX)) { + VR = CV->getZExtValue(); + return true; + } + return false; + } +}; + +/// Match a specified integer value or vector of all elements of that +// value. +struct specific_intval { + uint64_t Val; + + specific_intval(uint64_t V) : Val(V) {} + + template <typename ITy> bool match(ITy *V) { + const auto *CI = dyn_cast<ConstantInt>(V); + if (!CI && V->getType()->isVectorTy()) + if (const auto *C = dyn_cast<Constant>(V)) + CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()); + + return CI && CI->getValue() == Val; + } +}; + +/// Match a specific integer value or vector with all elements equal to +/// the value. +inline specific_intval m_SpecificInt(uint64_t V) { return specific_intval(V); } + +/// Match a ConstantInt and bind to its value. This does not match +/// ConstantInts wider than 64-bits. +inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; } + +//===----------------------------------------------------------------------===// +// Matcher for any binary operator. +// +template <typename LHS_t, typename RHS_t, bool Commutable = false> +struct AnyBinaryOp_match { + LHS_t L; + RHS_t R; + + // The evaluation order is always stable, regardless of Commutability. + // The LHS is always matched first. + AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} + + template <typename OpTy> bool match(OpTy *V) { + if (auto *I = dyn_cast<BinaryOperator>(V)) + return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || + (Commutable && L.match(I->getOperand(1)) && + R.match(I->getOperand(0))); + return false; + } +}; + +template <typename LHS, typename RHS> +inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) { + return AnyBinaryOp_match<LHS, RHS>(L, R); +} + +//===----------------------------------------------------------------------===// +// Matchers for specific binary operators. +// + +template <typename LHS_t, typename RHS_t, unsigned Opcode, + bool Commutable = false> +struct BinaryOp_match { + LHS_t L; + RHS_t R; + + // The evaluation order is always stable, regardless of Commutability. + // The LHS is always matched first. + BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} + + template <typename OpTy> bool match(OpTy *V) { + if (V->getValueID() == Value::InstructionVal + Opcode) { + auto *I = cast<BinaryOperator>(V); + return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || + (Commutable && L.match(I->getOperand(1)) && + R.match(I->getOperand(0))); + } + if (auto *CE = dyn_cast<ConstantExpr>(V)) + return CE->getOpcode() == Opcode && + ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) || + (Commutable && L.match(CE->getOperand(1)) && + R.match(CE->getOperand(0)))); + return false; + } +}; + +template <typename LHS, typename RHS> +inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L, + const RHS &R) { + return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R); +} + +template <typename LHS, typename RHS> +inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L, + const RHS &R) { + return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R); +} + +template <typename LHS, typename RHS> +inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L, + const RHS &R) { + return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R); +} + +template <typename LHS, typename RHS> +inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L, + const RHS &R) { + return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R); +} + +template <typename Op_t> struct FNeg_match { + Op_t X; + + FNeg_match(const Op_t &Op) : X(Op) {} + template <typename OpTy> bool match(OpTy *V) { + auto *FPMO = dyn_cast<FPMathOperator>(V); + if (!FPMO || FPMO->getOpcode() != Instruction::FSub) + return false; + if (FPMO->hasNoSignedZeros()) { + // With 'nsz', any zero goes. + if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0))) + return false; + } else { + // Without 'nsz', we need fsub -0.0, X exactly. + if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0))) + return false; + } + return X.match(FPMO->getOperand(1)); + } +}; + +/// Match 'fneg X' as 'fsub -0.0, X'. +template <typename OpTy> +inline FNeg_match<OpTy> +m_FNeg(const OpTy &X) { + return FNeg_match<OpTy>(X); +} + +/// Match 'fneg X' as 'fsub +-0.0, X'. +template <typename RHS> +inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub> +m_FNegNSZ(const RHS &X) { + return m_FSub(m_AnyZeroFP(), X); +} + +template <typename LHS, typename RHS> +inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L, + const RHS &R) { + return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R); +} + +template <typename LHS, typename RHS> +inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L, + const RHS &R) { + return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R); +} + +template <typename LHS, typename RHS> +inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L, + const RHS &R) { + return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R); +} + +template <typename LHS, typename RHS> +inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L, + const RHS &R) { + return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R); +} + +template <typename LHS, typename RHS> +inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L, + const RHS &R) { + return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R); +} + +template <typename LHS, typename RHS> +inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L, + const RHS &R) { + return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R); +} + +template <typename LHS, typename RHS> +inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L, + const RHS &R) { + return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R); +} + +template <typename LHS, typename RHS> +inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L, + const RHS &R) { + return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R); +} + +template <typename LHS, typename RHS> +inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L, + const RHS &R) { + return BinaryOp_match<LHS, RHS, Instruction::And>(L, R); +} + +template <typename LHS, typename RHS> +inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L, + const RHS &R) { + return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R); +} + +template <typename LHS, typename RHS> +inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L, + const RHS &R) { + return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R); +} + +template <typename LHS, typename RHS> +inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L, + const RHS &R) { + return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R); +} + +template <typename LHS, typename RHS> +inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L, + const RHS &R) { + return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R); +} + +template <typename LHS, typename RHS> +inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L, + const RHS &R) { + return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R); +} + +template <typename LHS_t, typename RHS_t, unsigned Opcode, + unsigned WrapFlags = 0> +struct OverflowingBinaryOp_match { + LHS_t L; + RHS_t R; + + OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) + : L(LHS), R(RHS) {} + + template <typename OpTy> bool match(OpTy *V) { + if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) { + if (Op->getOpcode() != Opcode) + return false; + if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap && + !Op->hasNoUnsignedWrap()) + return false; + if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap && + !Op->hasNoSignedWrap()) + return false; + return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1)); + } + return false; + } +}; + +template <typename LHS, typename RHS> +inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, + OverflowingBinaryOperator::NoSignedWrap> +m_NSWAdd(const LHS &L, const RHS &R) { + return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, + OverflowingBinaryOperator::NoSignedWrap>( + L, R); +} +template <typename LHS, typename RHS> +inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, + OverflowingBinaryOperator::NoSignedWrap> +m_NSWSub(const LHS &L, const RHS &R) { + return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, + OverflowingBinaryOperator::NoSignedWrap>( + L, R); +} +template <typename LHS, typename RHS> +inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, + OverflowingBinaryOperator::NoSignedWrap> +m_NSWMul(const LHS &L, const RHS &R) { + return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, + OverflowingBinaryOperator::NoSignedWrap>( + L, R); +} +template <typename LHS, typename RHS> +inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, + OverflowingBinaryOperator::NoSignedWrap> +m_NSWShl(const LHS &L, const RHS &R) { + return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, + OverflowingBinaryOperator::NoSignedWrap>( + L, R); +} + +template <typename LHS, typename RHS> +inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, + OverflowingBinaryOperator::NoUnsignedWrap> +m_NUWAdd(const LHS &L, const RHS &R) { + return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, + OverflowingBinaryOperator::NoUnsignedWrap>( + L, R); +} +template <typename LHS, typename RHS> +inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, + OverflowingBinaryOperator::NoUnsignedWrap> +m_NUWSub(const LHS &L, const RHS &R) { + return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, + OverflowingBinaryOperator::NoUnsignedWrap>( + L, R); +} +template <typename LHS, typename RHS> +inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, + OverflowingBinaryOperator::NoUnsignedWrap> +m_NUWMul(const LHS &L, const RHS &R) { + return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, + OverflowingBinaryOperator::NoUnsignedWrap>( + L, R); +} +template <typename LHS, typename RHS> +inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, + OverflowingBinaryOperator::NoUnsignedWrap> +m_NUWShl(const LHS &L, const RHS &R) { + return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, + OverflowingBinaryOperator::NoUnsignedWrap>( + L, R); +} + +//===----------------------------------------------------------------------===// +// Class that matches a group of binary opcodes. +// +template <typename LHS_t, typename RHS_t, typename Predicate> +struct BinOpPred_match : Predicate { + LHS_t L; + RHS_t R; + + BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} + + template <typename OpTy> bool match(OpTy *V) { + if (auto *I = dyn_cast<Instruction>(V)) + return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) && + R.match(I->getOperand(1)); + if (auto *CE = dyn_cast<ConstantExpr>(V)) + return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) && + R.match(CE->getOperand(1)); + return false; + } +}; + +struct is_shift_op { + bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); } +}; + +struct is_right_shift_op { + bool isOpType(unsigned Opcode) { + return Opcode == Instruction::LShr || Opcode == Instruction::AShr; + } +}; + +struct is_logical_shift_op { + bool isOpType(unsigned Opcode) { + return Opcode == Instruction::LShr || Opcode == Instruction::Shl; + } +}; + +struct is_bitwiselogic_op { + bool isOpType(unsigned Opcode) { + return Instruction::isBitwiseLogicOp(Opcode); + } +}; + +struct is_idiv_op { + bool isOpType(unsigned Opcode) { + return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv; + } +}; + +/// Matches shift operations. +template <typename LHS, typename RHS> +inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L, + const RHS &R) { + return BinOpPred_match<LHS, RHS, is_shift_op>(L, R); +} + +/// Matches logical shift operations. +template <typename LHS, typename RHS> +inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L, + const RHS &R) { + return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R); +} + +/// Matches logical shift operations. +template <typename LHS, typename RHS> +inline BinOpPred_match<LHS, RHS, is_logical_shift_op> +m_LogicalShift(const LHS &L, const RHS &R) { + return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R); +} + +/// Matches bitwise logic operations. +template <typename LHS, typename RHS> +inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op> +m_BitwiseLogic(const LHS &L, const RHS &R) { + return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R); +} + +/// Matches integer division operations. +template <typename LHS, typename RHS> +inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L, + const RHS &R) { + return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R); +} + +//===----------------------------------------------------------------------===// +// Class that matches exact binary ops. +// +template <typename SubPattern_t> struct Exact_match { + SubPattern_t SubPattern; + + Exact_match(const SubPattern_t &SP) : SubPattern(SP) {} + + template <typename OpTy> bool match(OpTy *V) { + if (auto *PEO = dyn_cast<PossiblyExactOperator>(V)) + return PEO->isExact() && SubPattern.match(V); + return false; + } +}; + +template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) { + return SubPattern; +} + +//===----------------------------------------------------------------------===// +// Matchers for CmpInst classes +// + +template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy, + bool Commutable = false> +struct CmpClass_match { + PredicateTy &Predicate; + LHS_t L; + RHS_t R; + + // The evaluation order is always stable, regardless of Commutability. + // The LHS is always matched first. + CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS) + : Predicate(Pred), L(LHS), R(RHS) {} + + template <typename OpTy> bool match(OpTy *V) { + if (auto *I = dyn_cast<Class>(V)) + if ((L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || + (Commutable && L.match(I->getOperand(1)) && + R.match(I->getOperand(0)))) { + Predicate = I->getPredicate(); + return true; + } + return false; + } +}; + +template <typename LHS, typename RHS> +inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate> +m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) { + return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R); +} + +template <typename LHS, typename RHS> +inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate> +m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { + return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R); +} + +template <typename LHS, typename RHS> +inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate> +m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) { + return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R); +} + +//===----------------------------------------------------------------------===// +// Matchers for instructions with a given opcode and number of operands. +// + +/// Matches instructions with Opcode and three operands. +template <typename T0, unsigned Opcode> struct OneOps_match { + T0 Op1; + + OneOps_match(const T0 &Op1) : Op1(Op1) {} + + template <typename OpTy> bool match(OpTy *V) { + if (V->getValueID() == Value::InstructionVal + Opcode) { + auto *I = cast<Instruction>(V); + return Op1.match(I->getOperand(0)); + } + return false; + } +}; + +/// Matches instructions with Opcode and three operands. +template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match { + T0 Op1; + T1 Op2; + + TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {} + + template <typename OpTy> bool match(OpTy *V) { + if (V->getValueID() == Value::InstructionVal + Opcode) { + auto *I = cast<Instruction>(V); + return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)); + } + return false; + } +}; + +/// Matches instructions with Opcode and three operands. +template <typename T0, typename T1, typename T2, unsigned Opcode> +struct ThreeOps_match { + T0 Op1; + T1 Op2; + T2 Op3; + + ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3) + : Op1(Op1), Op2(Op2), Op3(Op3) {} + + template <typename OpTy> bool match(OpTy *V) { + if (V->getValueID() == Value::InstructionVal + Opcode) { + auto *I = cast<Instruction>(V); + return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) && + Op3.match(I->getOperand(2)); + } + return false; + } +}; + +/// Matches SelectInst. +template <typename Cond, typename LHS, typename RHS> +inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select> +m_Select(const Cond &C, const LHS &L, const RHS &R) { + return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R); +} + +/// This matches a select of two constants, e.g.: +/// m_SelectCst<-1, 0>(m_Value(V)) +template <int64_t L, int64_t R, typename Cond> +inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>, + Instruction::Select> +m_SelectCst(const Cond &C) { + return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>()); +} + +/// Matches InsertElementInst. +template <typename Val_t, typename Elt_t, typename Idx_t> +inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement> +m_InsertElement(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) { + return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>( + Val, Elt, Idx); +} + +/// Matches ExtractElementInst. +template <typename Val_t, typename Idx_t> +inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement> +m_ExtractElement(const Val_t &Val, const Idx_t &Idx) { + return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx); +} + +/// Matches ShuffleVectorInst. +template <typename V1_t, typename V2_t, typename Mask_t> +inline ThreeOps_match<V1_t, V2_t, Mask_t, Instruction::ShuffleVector> +m_ShuffleVector(const V1_t &v1, const V2_t &v2, const Mask_t &m) { + return ThreeOps_match<V1_t, V2_t, Mask_t, Instruction::ShuffleVector>(v1, v2, + m); +} + +/// Matches LoadInst. +template <typename OpTy> +inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) { + return OneOps_match<OpTy, Instruction::Load>(Op); +} + +/// Matches StoreInst. +template <typename ValueOpTy, typename PointerOpTy> +inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store> +m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) { + return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp, + PointerOp); +} + +//===----------------------------------------------------------------------===// +// Matchers for CastInst classes +// + +template <typename Op_t, unsigned Opcode> struct CastClass_match { + Op_t Op; + + CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {} + + template <typename OpTy> bool match(OpTy *V) { + if (auto *O = dyn_cast<Operator>(V)) + return O->getOpcode() == Opcode && Op.match(O->getOperand(0)); + return false; + } +}; + +/// Matches BitCast. +template <typename OpTy> +inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) { + return CastClass_match<OpTy, Instruction::BitCast>(Op); +} + +/// Matches PtrToInt. +template <typename OpTy> +inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) { + return CastClass_match<OpTy, Instruction::PtrToInt>(Op); +} + +/// Matches Trunc. +template <typename OpTy> +inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) { + return CastClass_match<OpTy, Instruction::Trunc>(Op); +} + +/// Matches SExt. +template <typename OpTy> +inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) { + return CastClass_match<OpTy, Instruction::SExt>(Op); +} + +/// Matches ZExt. +template <typename OpTy> +inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) { + return CastClass_match<OpTy, Instruction::ZExt>(Op); +} + +template <typename OpTy> +inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, + CastClass_match<OpTy, Instruction::SExt>> +m_ZExtOrSExt(const OpTy &Op) { + return m_CombineOr(m_ZExt(Op), m_SExt(Op)); +} + +/// Matches UIToFP. +template <typename OpTy> +inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) { + return CastClass_match<OpTy, Instruction::UIToFP>(Op); +} + +/// Matches SIToFP. +template <typename OpTy> +inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) { + return CastClass_match<OpTy, Instruction::SIToFP>(Op); +} + +/// Matches FPTrunc +template <typename OpTy> +inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) { + return CastClass_match<OpTy, Instruction::FPTrunc>(Op); +} + +/// Matches FPExt +template <typename OpTy> +inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) { + return CastClass_match<OpTy, Instruction::FPExt>(Op); +} + +//===----------------------------------------------------------------------===// +// Matchers for control flow. +// + +struct br_match { + BasicBlock *&Succ; + + br_match(BasicBlock *&Succ) : Succ(Succ) {} + + template <typename OpTy> bool match(OpTy *V) { + if (auto *BI = dyn_cast<BranchInst>(V)) + if (BI->isUnconditional()) { + Succ = BI->getSuccessor(0); + return true; + } + return false; + } +}; + +inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); } + +template <typename Cond_t> struct brc_match { + Cond_t Cond; + BasicBlock *&T, *&F; + + brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f) + : Cond(C), T(t), F(f) {} + + template <typename OpTy> bool match(OpTy *V) { + if (auto *BI = dyn_cast<BranchInst>(V)) + if (BI->isConditional() && Cond.match(BI->getCondition())) { + T = BI->getSuccessor(0); + F = BI->getSuccessor(1); + return true; + } + return false; + } +}; + +template <typename Cond_t> +inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) { + return brc_match<Cond_t>(C, T, F); +} + +//===----------------------------------------------------------------------===// +// Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y). +// + +template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t, + bool Commutable = false> +struct MaxMin_match { + LHS_t L; + RHS_t R; + + // The evaluation order is always stable, regardless of Commutability. + // The LHS is always matched first. + MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} + + template <typename OpTy> bool match(OpTy *V) { + // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x". + auto *SI = dyn_cast<SelectInst>(V); + if (!SI) + return false; + auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition()); + if (!Cmp) + return false; + // At this point we have a select conditioned on a comparison. Check that + // it is the values returned by the select that are being compared. + Value *TrueVal = SI->getTrueValue(); + Value *FalseVal = SI->getFalseValue(); + Value *LHS = Cmp->getOperand(0); + Value *RHS = Cmp->getOperand(1); + if ((TrueVal != LHS || FalseVal != RHS) && + (TrueVal != RHS || FalseVal != LHS)) + return false; + typename CmpInst_t::Predicate Pred = + LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate(); + // Does "(x pred y) ? x : y" represent the desired max/min operation? + if (!Pred_t::match(Pred)) + return false; + // It does! Bind the operands. + return (L.match(LHS) && R.match(RHS)) || + (Commutable && L.match(RHS) && R.match(LHS)); + } +}; + +/// Helper class for identifying signed max predicates. +struct smax_pred_ty { + static bool match(ICmpInst::Predicate Pred) { + return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE; + } +}; + +/// Helper class for identifying signed min predicates. +struct smin_pred_ty { + static bool match(ICmpInst::Predicate Pred) { + return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE; + } +}; + +/// Helper class for identifying unsigned max predicates. +struct umax_pred_ty { + static bool match(ICmpInst::Predicate Pred) { + return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE; + } +}; + +/// Helper class for identifying unsigned min predicates. +struct umin_pred_ty { + static bool match(ICmpInst::Predicate Pred) { + return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE; + } +}; + +/// Helper class for identifying ordered max predicates. +struct ofmax_pred_ty { + static bool match(FCmpInst::Predicate Pred) { + return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE; + } +}; + +/// Helper class for identifying ordered min predicates. +struct ofmin_pred_ty { + static bool match(FCmpInst::Predicate Pred) { + return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE; + } +}; + +/// Helper class for identifying unordered max predicates. +struct ufmax_pred_ty { + static bool match(FCmpInst::Predicate Pred) { + return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE; + } +}; + +/// Helper class for identifying unordered min predicates. +struct ufmin_pred_ty { + static bool match(FCmpInst::Predicate Pred) { + return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE; + } +}; + +template <typename LHS, typename RHS> +inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L, + const RHS &R) { + return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R); +} + +template <typename LHS, typename RHS> +inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L, + const RHS &R) { + return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R); +} + +template <typename LHS, typename RHS> +inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L, + const RHS &R) { + return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R); +} + +template <typename LHS, typename RHS> +inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L, + const RHS &R) { + return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R); +} + +/// Match an 'ordered' floating point maximum function. +/// Floating point has one special value 'NaN'. Therefore, there is no total +/// order. However, if we can ignore the 'NaN' value (for example, because of a +/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' +/// semantics. In the presence of 'NaN' we have to preserve the original +/// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate. +/// +/// max(L, R) iff L and R are not NaN +/// m_OrdFMax(L, R) = R iff L or R are NaN +template <typename LHS, typename RHS> +inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L, + const RHS &R) { + return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R); +} + +/// Match an 'ordered' floating point minimum function. +/// Floating point has one special value 'NaN'. Therefore, there is no total +/// order. However, if we can ignore the 'NaN' value (for example, because of a +/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' +/// semantics. In the presence of 'NaN' we have to preserve the original +/// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate. +/// +/// min(L, R) iff L and R are not NaN +/// m_OrdFMin(L, R) = R iff L or R are NaN +template <typename LHS, typename RHS> +inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L, + const RHS &R) { + return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R); +} + +/// Match an 'unordered' floating point maximum function. +/// Floating point has one special value 'NaN'. Therefore, there is no total +/// order. However, if we can ignore the 'NaN' value (for example, because of a +/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' +/// semantics. In the presence of 'NaN' we have to preserve the original +/// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate. +/// +/// max(L, R) iff L and R are not NaN +/// m_UnordFMax(L, R) = L iff L or R are NaN +template <typename LHS, typename RHS> +inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty> +m_UnordFMax(const LHS &L, const RHS &R) { + return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R); +} + +/// Match an 'unordered' floating point minimum function. +/// Floating point has one special value 'NaN'. Therefore, there is no total +/// order. However, if we can ignore the 'NaN' value (for example, because of a +/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' +/// semantics. In the presence of 'NaN' we have to preserve the original +/// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate. +/// +/// min(L, R) iff L and R are not NaN +/// m_UnordFMin(L, R) = L iff L or R are NaN +template <typename LHS, typename RHS> +inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty> +m_UnordFMin(const LHS &L, const RHS &R) { + return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R); +} + +//===----------------------------------------------------------------------===// +// Matchers for overflow check patterns: e.g. (a + b) u< a +// + +template <typename LHS_t, typename RHS_t, typename Sum_t> +struct UAddWithOverflow_match { + LHS_t L; + RHS_t R; + Sum_t S; + + UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S) + : L(L), R(R), S(S) {} + + template <typename OpTy> bool match(OpTy *V) { + Value *ICmpLHS, *ICmpRHS; + ICmpInst::Predicate Pred; + if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V)) + return false; + + Value *AddLHS, *AddRHS; + auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS)); + + // (a + b) u< a, (a + b) u< b + if (Pred == ICmpInst::ICMP_ULT) + if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS)) + return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS); + + // a >u (a + b), b >u (a + b) + if (Pred == ICmpInst::ICMP_UGT) + if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS)) + return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS); + + // Match special-case for increment-by-1. + if (Pred == ICmpInst::ICMP_EQ) { + // (a + 1) == 0 + // (1 + a) == 0 + if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) && + (m_One().match(AddLHS) || m_One().match(AddRHS))) + return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS); + // 0 == (a + 1) + // 0 == (1 + a) + if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) && + (m_One().match(AddLHS) || m_One().match(AddRHS))) + return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS); + } + + return false; + } +}; + +/// Match an icmp instruction checking for unsigned overflow on addition. +/// +/// S is matched to the addition whose result is being checked for overflow, and +/// L and R are matched to the LHS and RHS of S. +template <typename LHS_t, typename RHS_t, typename Sum_t> +UAddWithOverflow_match<LHS_t, RHS_t, Sum_t> +m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) { + return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S); +} + +template <typename Opnd_t> struct Argument_match { + unsigned OpI; + Opnd_t Val; + + Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {} + + template <typename OpTy> bool match(OpTy *V) { + // FIXME: Should likely be switched to use `CallBase`. + if (const auto *CI = dyn_cast<CallInst>(V)) + return Val.match(CI->getArgOperand(OpI)); + return false; + } +}; + +/// Match an argument. +template <unsigned OpI, typename Opnd_t> +inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) { + return Argument_match<Opnd_t>(OpI, Op); +} + +/// Intrinsic matchers. +struct IntrinsicID_match { + unsigned ID; + + IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {} + + template <typename OpTy> bool match(OpTy *V) { + if (const auto *CI = dyn_cast<CallInst>(V)) + if (const auto *F = CI->getCalledFunction()) + return F->getIntrinsicID() == ID; + return false; + } +}; + +/// Intrinsic matches are combinations of ID matchers, and argument +/// matchers. Higher arity matcher are defined recursively in terms of and-ing +/// them with lower arity matchers. Here's some convenient typedefs for up to +/// several arguments, and more can be added as needed +template <typename T0 = void, typename T1 = void, typename T2 = void, + typename T3 = void, typename T4 = void, typename T5 = void, + typename T6 = void, typename T7 = void, typename T8 = void, + typename T9 = void, typename T10 = void> +struct m_Intrinsic_Ty; +template <typename T0> struct m_Intrinsic_Ty<T0> { + using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>; +}; +template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> { + using Ty = + match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>; +}; +template <typename T0, typename T1, typename T2> +struct m_Intrinsic_Ty<T0, T1, T2> { + using Ty = + match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty, + Argument_match<T2>>; +}; +template <typename T0, typename T1, typename T2, typename T3> +struct m_Intrinsic_Ty<T0, T1, T2, T3> { + using Ty = + match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty, + Argument_match<T3>>; +}; + +/// Match intrinsic calls like this: +/// m_Intrinsic<Intrinsic::fabs>(m_Value(X)) +template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() { + return IntrinsicID_match(IntrID); +} + +template <Intrinsic::ID IntrID, typename T0> +inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) { + return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0)); +} + +template <Intrinsic::ID IntrID, typename T0, typename T1> +inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0, + const T1 &Op1) { + return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1)); +} + +template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2> +inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty +m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) { + return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2)); +} + +template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, + typename T3> +inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty +m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) { + return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3)); +} + +// Helper intrinsic matching specializations. +template <typename Opnd0> +inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) { + return m_Intrinsic<Intrinsic::bitreverse>(Op0); +} + +template <typename Opnd0> +inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) { + return m_Intrinsic<Intrinsic::bswap>(Op0); +} + +template <typename Opnd0> +inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) { + return m_Intrinsic<Intrinsic::fabs>(Op0); +} + +template <typename Opnd0> +inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) { + return m_Intrinsic<Intrinsic::canonicalize>(Op0); +} + +template <typename Opnd0, typename Opnd1> +inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0, + const Opnd1 &Op1) { + return m_Intrinsic<Intrinsic::minnum>(Op0, Op1); +} + +template <typename Opnd0, typename Opnd1> +inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0, + const Opnd1 &Op1) { + return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1); +} + +//===----------------------------------------------------------------------===// +// Matchers for two-operands operators with the operators in either order +// + +/// Matches a BinaryOperator with LHS and RHS in either order. +template <typename LHS, typename RHS> +inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) { + return AnyBinaryOp_match<LHS, RHS, true>(L, R); +} + +/// Matches an ICmp with a predicate over LHS and RHS in either order. +/// Does not swap the predicate. +template <typename LHS, typename RHS> +inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true> +m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { + return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L, + R); +} + +/// Matches a Add with LHS and RHS in either order. +template <typename LHS, typename RHS> +inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L, + const RHS &R) { + return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R); +} + +/// Matches a Mul with LHS and RHS in either order. +template <typename LHS, typename RHS> +inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L, + const RHS &R) { + return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R); +} + +/// Matches an And with LHS and RHS in either order. +template <typename LHS, typename RHS> +inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L, + const RHS &R) { + return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R); +} + +/// Matches an Or with LHS and RHS in either order. +template <typename LHS, typename RHS> +inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L, + const RHS &R) { + return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R); +} + +/// Matches an Xor with LHS and RHS in either order. +template <typename LHS, typename RHS> +inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L, + const RHS &R) { + return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R); +} + +/// Matches a 'Neg' as 'sub 0, V'. +template <typename ValTy> +inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub> +m_Neg(const ValTy &V) { + return m_Sub(m_ZeroInt(), V); +} + +/// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'. +template <typename ValTy> +inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true> +m_Not(const ValTy &V) { + return m_c_Xor(V, m_AllOnes()); +} + +/// Matches an SMin with LHS and RHS in either order. +template <typename LHS, typename RHS> +inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true> +m_c_SMin(const LHS &L, const RHS &R) { + return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R); +} +/// Matches an SMax with LHS and RHS in either order. +template <typename LHS, typename RHS> +inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true> +m_c_SMax(const LHS &L, const RHS &R) { + return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R); +} +/// Matches a UMin with LHS and RHS in either order. +template <typename LHS, typename RHS> +inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true> +m_c_UMin(const LHS &L, const RHS &R) { + return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R); +} +/// Matches a UMax with LHS and RHS in either order. +template <typename LHS, typename RHS> +inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true> +m_c_UMax(const LHS &L, const RHS &R) { + return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R); +} + +/// Matches FAdd with LHS and RHS in either order. +template <typename LHS, typename RHS> +inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true> +m_c_FAdd(const LHS &L, const RHS &R) { + return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R); +} + +/// Matches FMul with LHS and RHS in either order. +template <typename LHS, typename RHS> +inline BinaryOp_match<LHS, RHS, Instruction::FMul, true> +m_c_FMul(const LHS &L, const RHS &R) { + return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R); +} + +template <typename Opnd_t> struct Signum_match { + Opnd_t Val; + Signum_match(const Opnd_t &V) : Val(V) {} + + template <typename OpTy> bool match(OpTy *V) { + unsigned TypeSize = V->getType()->getScalarSizeInBits(); + if (TypeSize == 0) + return false; + + unsigned ShiftWidth = TypeSize - 1; + Value *OpL = nullptr, *OpR = nullptr; + + // This is the representation of signum we match: + // + // signum(x) == (x >> 63) | (-x >>u 63) + // + // An i1 value is its own signum, so it's correct to match + // + // signum(x) == (x >> 0) | (-x >>u 0) + // + // for i1 values. + + auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth)); + auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth)); + auto Signum = m_Or(LHS, RHS); + + return Signum.match(V) && OpL == OpR && Val.match(OpL); + } +}; + +/// Matches a signum pattern. +/// +/// signum(x) = +/// x > 0 -> 1 +/// x == 0 -> 0 +/// x < 0 -> -1 +template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) { + return Signum_match<Val_t>(V); +} + +} // end namespace PatternMatch +} // end namespace llvm + +#endif // LLVM_IR_PATTERNMATCH_H |
