summaryrefslogtreecommitdiff
path: root/clang-r353983/include/llvm/IR/Type.h
diff options
context:
space:
mode:
Diffstat (limited to 'clang-r353983/include/llvm/IR/Type.h')
-rw-r--r--clang-r353983/include/llvm/IR/Type.h484
1 files changed, 484 insertions, 0 deletions
diff --git a/clang-r353983/include/llvm/IR/Type.h b/clang-r353983/include/llvm/IR/Type.h
new file mode 100644
index 00000000..5f9f44e8
--- /dev/null
+++ b/clang-r353983/include/llvm/IR/Type.h
@@ -0,0 +1,484 @@
+//===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the Type class. For more "Type"
+// stuff, look in DerivedTypes.h.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_IR_TYPE_H
+#define LLVM_IR_TYPE_H
+
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Support/CBindingWrapping.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+
+namespace llvm {
+
+template<class GraphType> struct GraphTraits;
+class IntegerType;
+class LLVMContext;
+class PointerType;
+class raw_ostream;
+class StringRef;
+
+/// The instances of the Type class are immutable: once they are created,
+/// they are never changed. Also note that only one instance of a particular
+/// type is ever created. Thus seeing if two types are equal is a matter of
+/// doing a trivial pointer comparison. To enforce that no two equal instances
+/// are created, Type instances can only be created via static factory methods
+/// in class Type and in derived classes. Once allocated, Types are never
+/// free'd.
+///
+class Type {
+public:
+ //===--------------------------------------------------------------------===//
+ /// Definitions of all of the base types for the Type system. Based on this
+ /// value, you can cast to a class defined in DerivedTypes.h.
+ /// Note: If you add an element to this, you need to add an element to the
+ /// Type::getPrimitiveType function, or else things will break!
+ /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
+ ///
+ enum TypeID {
+ // PrimitiveTypes - make sure LastPrimitiveTyID stays up to date.
+ VoidTyID = 0, ///< 0: type with no size
+ HalfTyID, ///< 1: 16-bit floating point type
+ FloatTyID, ///< 2: 32-bit floating point type
+ DoubleTyID, ///< 3: 64-bit floating point type
+ X86_FP80TyID, ///< 4: 80-bit floating point type (X87)
+ FP128TyID, ///< 5: 128-bit floating point type (112-bit mantissa)
+ PPC_FP128TyID, ///< 6: 128-bit floating point type (two 64-bits, PowerPC)
+ LabelTyID, ///< 7: Labels
+ MetadataTyID, ///< 8: Metadata
+ X86_MMXTyID, ///< 9: MMX vectors (64 bits, X86 specific)
+ TokenTyID, ///< 10: Tokens
+
+ // Derived types... see DerivedTypes.h file.
+ // Make sure FirstDerivedTyID stays up to date!
+ IntegerTyID, ///< 11: Arbitrary bit width integers
+ FunctionTyID, ///< 12: Functions
+ StructTyID, ///< 13: Structures
+ ArrayTyID, ///< 14: Arrays
+ PointerTyID, ///< 15: Pointers
+ VectorTyID ///< 16: SIMD 'packed' format, or other vector type
+ };
+
+private:
+ /// This refers to the LLVMContext in which this type was uniqued.
+ LLVMContext &Context;
+
+ TypeID ID : 8; // The current base type of this type.
+ unsigned SubclassData : 24; // Space for subclasses to store data.
+ // Note that this should be synchronized with
+ // MAX_INT_BITS value in IntegerType class.
+
+protected:
+ friend class LLVMContextImpl;
+
+ explicit Type(LLVMContext &C, TypeID tid)
+ : Context(C), ID(tid), SubclassData(0) {}
+ ~Type() = default;
+
+ unsigned getSubclassData() const { return SubclassData; }
+
+ void setSubclassData(unsigned val) {
+ SubclassData = val;
+ // Ensure we don't have any accidental truncation.
+ assert(getSubclassData() == val && "Subclass data too large for field");
+ }
+
+ /// Keeps track of how many Type*'s there are in the ContainedTys list.
+ unsigned NumContainedTys = 0;
+
+ /// A pointer to the array of Types contained by this Type. For example, this
+ /// includes the arguments of a function type, the elements of a structure,
+ /// the pointee of a pointer, the element type of an array, etc. This pointer
+ /// may be 0 for types that don't contain other types (Integer, Double,
+ /// Float).
+ Type * const *ContainedTys = nullptr;
+
+ static bool isSequentialType(TypeID TyID) {
+ return TyID == ArrayTyID || TyID == VectorTyID;
+ }
+
+public:
+ /// Print the current type.
+ /// Omit the type details if \p NoDetails == true.
+ /// E.g., let %st = type { i32, i16 }
+ /// When \p NoDetails is true, we only print %st.
+ /// Put differently, \p NoDetails prints the type as if
+ /// inlined with the operands when printing an instruction.
+ void print(raw_ostream &O, bool IsForDebug = false,
+ bool NoDetails = false) const;
+
+ void dump() const;
+
+ /// Return the LLVMContext in which this type was uniqued.
+ LLVMContext &getContext() const { return Context; }
+
+ //===--------------------------------------------------------------------===//
+ // Accessors for working with types.
+ //
+
+ /// Return the type id for the type. This will return one of the TypeID enum
+ /// elements defined above.
+ TypeID getTypeID() const { return ID; }
+
+ /// Return true if this is 'void'.
+ bool isVoidTy() const { return getTypeID() == VoidTyID; }
+
+ /// Return true if this is 'half', a 16-bit IEEE fp type.
+ bool isHalfTy() const { return getTypeID() == HalfTyID; }
+
+ /// Return true if this is 'float', a 32-bit IEEE fp type.
+ bool isFloatTy() const { return getTypeID() == FloatTyID; }
+
+ /// Return true if this is 'double', a 64-bit IEEE fp type.
+ bool isDoubleTy() const { return getTypeID() == DoubleTyID; }
+
+ /// Return true if this is x86 long double.
+ bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; }
+
+ /// Return true if this is 'fp128'.
+ bool isFP128Ty() const { return getTypeID() == FP128TyID; }
+
+ /// Return true if this is powerpc long double.
+ bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; }
+
+ /// Return true if this is one of the six floating-point types
+ bool isFloatingPointTy() const {
+ return getTypeID() == HalfTyID || getTypeID() == FloatTyID ||
+ getTypeID() == DoubleTyID ||
+ getTypeID() == X86_FP80TyID || getTypeID() == FP128TyID ||
+ getTypeID() == PPC_FP128TyID;
+ }
+
+ const fltSemantics &getFltSemantics() const {
+ switch (getTypeID()) {
+ case HalfTyID: return APFloat::IEEEhalf();
+ case FloatTyID: return APFloat::IEEEsingle();
+ case DoubleTyID: return APFloat::IEEEdouble();
+ case X86_FP80TyID: return APFloat::x87DoubleExtended();
+ case FP128TyID: return APFloat::IEEEquad();
+ case PPC_FP128TyID: return APFloat::PPCDoubleDouble();
+ default: llvm_unreachable("Invalid floating type");
+ }
+ }
+
+ /// Return true if this is X86 MMX.
+ bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; }
+
+ /// Return true if this is a FP type or a vector of FP.
+ bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); }
+
+ /// Return true if this is 'label'.
+ bool isLabelTy() const { return getTypeID() == LabelTyID; }
+
+ /// Return true if this is 'metadata'.
+ bool isMetadataTy() const { return getTypeID() == MetadataTyID; }
+
+ /// Return true if this is 'token'.
+ bool isTokenTy() const { return getTypeID() == TokenTyID; }
+
+ /// True if this is an instance of IntegerType.
+ bool isIntegerTy() const { return getTypeID() == IntegerTyID; }
+
+ /// Return true if this is an IntegerType of the given width.
+ bool isIntegerTy(unsigned Bitwidth) const;
+
+ /// Return true if this is an integer type or a vector of integer types.
+ bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); }
+
+ /// Return true if this is an integer type or a vector of integer types of
+ /// the given width.
+ bool isIntOrIntVectorTy(unsigned BitWidth) const {
+ return getScalarType()->isIntegerTy(BitWidth);
+ }
+
+ /// Return true if this is an integer type or a pointer type.
+ bool isIntOrPtrTy() const { return isIntegerTy() || isPointerTy(); }
+
+ /// True if this is an instance of FunctionType.
+ bool isFunctionTy() const { return getTypeID() == FunctionTyID; }
+
+ /// True if this is an instance of StructType.
+ bool isStructTy() const { return getTypeID() == StructTyID; }
+
+ /// True if this is an instance of ArrayType.
+ bool isArrayTy() const { return getTypeID() == ArrayTyID; }
+
+ /// True if this is an instance of PointerType.
+ bool isPointerTy() const { return getTypeID() == PointerTyID; }
+
+ /// Return true if this is a pointer type or a vector of pointer types.
+ bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); }
+
+ /// True if this is an instance of VectorType.
+ bool isVectorTy() const { return getTypeID() == VectorTyID; }
+
+ /// Return true if this type could be converted with a lossless BitCast to
+ /// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the
+ /// same size only where no re-interpretation of the bits is done.
+ /// Determine if this type could be losslessly bitcast to Ty
+ bool canLosslesslyBitCastTo(Type *Ty) const;
+
+ /// Return true if this type is empty, that is, it has no elements or all of
+ /// its elements are empty.
+ bool isEmptyTy() const;
+
+ /// Return true if the type is "first class", meaning it is a valid type for a
+ /// Value.
+ bool isFirstClassType() const {
+ return getTypeID() != FunctionTyID && getTypeID() != VoidTyID;
+ }
+
+ /// Return true if the type is a valid type for a register in codegen. This
+ /// includes all first-class types except struct and array types.
+ bool isSingleValueType() const {
+ return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() ||
+ isPointerTy() || isVectorTy();
+ }
+
+ /// Return true if the type is an aggregate type. This means it is valid as
+ /// the first operand of an insertvalue or extractvalue instruction. This
+ /// includes struct and array types, but does not include vector types.
+ bool isAggregateType() const {
+ return getTypeID() == StructTyID || getTypeID() == ArrayTyID;
+ }
+
+ /// Return true if it makes sense to take the size of this type. To get the
+ /// actual size for a particular target, it is reasonable to use the
+ /// DataLayout subsystem to do this.
+ bool isSized(SmallPtrSetImpl<Type*> *Visited = nullptr) const {
+ // If it's a primitive, it is always sized.
+ if (getTypeID() == IntegerTyID || isFloatingPointTy() ||
+ getTypeID() == PointerTyID ||
+ getTypeID() == X86_MMXTyID)
+ return true;
+ // If it is not something that can have a size (e.g. a function or label),
+ // it doesn't have a size.
+ if (getTypeID() != StructTyID && getTypeID() != ArrayTyID &&
+ getTypeID() != VectorTyID)
+ return false;
+ // Otherwise we have to try harder to decide.
+ return isSizedDerivedType(Visited);
+ }
+
+ /// Return the basic size of this type if it is a primitive type. These are
+ /// fixed by LLVM and are not target-dependent.
+ /// This will return zero if the type does not have a size or is not a
+ /// primitive type.
+ ///
+ /// Note that this may not reflect the size of memory allocated for an
+ /// instance of the type or the number of bytes that are written when an
+ /// instance of the type is stored to memory. The DataLayout class provides
+ /// additional query functions to provide this information.
+ ///
+ unsigned getPrimitiveSizeInBits() const LLVM_READONLY;
+
+ /// If this is a vector type, return the getPrimitiveSizeInBits value for the
+ /// element type. Otherwise return the getPrimitiveSizeInBits value for this
+ /// type.
+ unsigned getScalarSizeInBits() const LLVM_READONLY;
+
+ /// Return the width of the mantissa of this type. This is only valid on
+ /// floating-point types. If the FP type does not have a stable mantissa (e.g.
+ /// ppc long double), this method returns -1.
+ int getFPMantissaWidth() const;
+
+ /// If this is a vector type, return the element type, otherwise return
+ /// 'this'.
+ Type *getScalarType() const {
+ if (isVectorTy())
+ return getVectorElementType();
+ return const_cast<Type*>(this);
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Type Iteration support.
+ //
+ using subtype_iterator = Type * const *;
+
+ subtype_iterator subtype_begin() const { return ContainedTys; }
+ subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
+ ArrayRef<Type*> subtypes() const {
+ return makeArrayRef(subtype_begin(), subtype_end());
+ }
+
+ using subtype_reverse_iterator = std::reverse_iterator<subtype_iterator>;
+
+ subtype_reverse_iterator subtype_rbegin() const {
+ return subtype_reverse_iterator(subtype_end());
+ }
+ subtype_reverse_iterator subtype_rend() const {
+ return subtype_reverse_iterator(subtype_begin());
+ }
+
+ /// This method is used to implement the type iterator (defined at the end of
+ /// the file). For derived types, this returns the types 'contained' in the
+ /// derived type.
+ Type *getContainedType(unsigned i) const {
+ assert(i < NumContainedTys && "Index out of range!");
+ return ContainedTys[i];
+ }
+
+ /// Return the number of types in the derived type.
+ unsigned getNumContainedTypes() const { return NumContainedTys; }
+
+ //===--------------------------------------------------------------------===//
+ // Helper methods corresponding to subclass methods. This forces a cast to
+ // the specified subclass and calls its accessor. "getVectorNumElements" (for
+ // example) is shorthand for cast<VectorType>(Ty)->getNumElements(). This is
+ // only intended to cover the core methods that are frequently used, helper
+ // methods should not be added here.
+
+ inline unsigned getIntegerBitWidth() const;
+
+ inline Type *getFunctionParamType(unsigned i) const;
+ inline unsigned getFunctionNumParams() const;
+ inline bool isFunctionVarArg() const;
+
+ inline StringRef getStructName() const;
+ inline unsigned getStructNumElements() const;
+ inline Type *getStructElementType(unsigned N) const;
+
+ inline Type *getSequentialElementType() const {
+ assert(isSequentialType(getTypeID()) && "Not a sequential type!");
+ return ContainedTys[0];
+ }
+
+ inline uint64_t getArrayNumElements() const;
+
+ Type *getArrayElementType() const {
+ assert(getTypeID() == ArrayTyID);
+ return ContainedTys[0];
+ }
+
+ inline unsigned getVectorNumElements() const;
+ Type *getVectorElementType() const {
+ assert(getTypeID() == VectorTyID);
+ return ContainedTys[0];
+ }
+
+ Type *getPointerElementType() const {
+ assert(getTypeID() == PointerTyID);
+ return ContainedTys[0];
+ }
+
+ /// Get the address space of this pointer or pointer vector type.
+ inline unsigned getPointerAddressSpace() const;
+
+ //===--------------------------------------------------------------------===//
+ // Static members exported by the Type class itself. Useful for getting
+ // instances of Type.
+ //
+
+ /// Return a type based on an identifier.
+ static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
+
+ //===--------------------------------------------------------------------===//
+ // These are the builtin types that are always available.
+ //
+ static Type *getVoidTy(LLVMContext &C);
+ static Type *getLabelTy(LLVMContext &C);
+ static Type *getHalfTy(LLVMContext &C);
+ static Type *getFloatTy(LLVMContext &C);
+ static Type *getDoubleTy(LLVMContext &C);
+ static Type *getMetadataTy(LLVMContext &C);
+ static Type *getX86_FP80Ty(LLVMContext &C);
+ static Type *getFP128Ty(LLVMContext &C);
+ static Type *getPPC_FP128Ty(LLVMContext &C);
+ static Type *getX86_MMXTy(LLVMContext &C);
+ static Type *getTokenTy(LLVMContext &C);
+ static IntegerType *getIntNTy(LLVMContext &C, unsigned N);
+ static IntegerType *getInt1Ty(LLVMContext &C);
+ static IntegerType *getInt8Ty(LLVMContext &C);
+ static IntegerType *getInt16Ty(LLVMContext &C);
+ static IntegerType *getInt32Ty(LLVMContext &C);
+ static IntegerType *getInt64Ty(LLVMContext &C);
+ static IntegerType *getInt128Ty(LLVMContext &C);
+ template <typename ScalarTy> static Type *getScalarTy(LLVMContext &C) {
+ int noOfBits = sizeof(ScalarTy) * CHAR_BIT;
+ if (std::is_integral<ScalarTy>::value) {
+ return (Type*) Type::getIntNTy(C, noOfBits);
+ } else if (std::is_floating_point<ScalarTy>::value) {
+ switch (noOfBits) {
+ case 32:
+ return Type::getFloatTy(C);
+ case 64:
+ return Type::getDoubleTy(C);
+ }
+ }
+ llvm_unreachable("Unsupported type in Type::getScalarTy");
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Convenience methods for getting pointer types with one of the above builtin
+ // types as pointee.
+ //
+ static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0);
+ static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
+ static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
+ static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
+ static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
+ static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
+ static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0);
+ static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0);
+ static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
+ static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
+ static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
+ static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
+ static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);
+
+ /// Return a pointer to the current type. This is equivalent to
+ /// PointerType::get(Foo, AddrSpace).
+ PointerType *getPointerTo(unsigned AddrSpace = 0) const;
+
+private:
+ /// Derived types like structures and arrays are sized iff all of the members
+ /// of the type are sized as well. Since asking for their size is relatively
+ /// uncommon, move this operation out-of-line.
+ bool isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited = nullptr) const;
+};
+
+// Printing of types.
+inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) {
+ T.print(OS);
+ return OS;
+}
+
+// allow isa<PointerType>(x) to work without DerivedTypes.h included.
+template <> struct isa_impl<PointerType, Type> {
+ static inline bool doit(const Type &Ty) {
+ return Ty.getTypeID() == Type::PointerTyID;
+ }
+};
+
+// Create wrappers for C Binding types (see CBindingWrapping.h).
+DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef)
+
+/* Specialized opaque type conversions.
+ */
+inline Type **unwrap(LLVMTypeRef* Tys) {
+ return reinterpret_cast<Type**>(Tys);
+}
+
+inline LLVMTypeRef *wrap(Type **Tys) {
+ return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys));
+}
+
+} // end namespace llvm
+
+#endif // LLVM_IR_TYPE_H