diff options
Diffstat (limited to 'clang-r353983/include/llvm/Support/Allocator.h')
| -rw-r--r-- | clang-r353983/include/llvm/Support/Allocator.h | 517 |
1 files changed, 517 insertions, 0 deletions
diff --git a/clang-r353983/include/llvm/Support/Allocator.h b/clang-r353983/include/llvm/Support/Allocator.h new file mode 100644 index 00000000..09e967b9 --- /dev/null +++ b/clang-r353983/include/llvm/Support/Allocator.h @@ -0,0 +1,517 @@ +//===- Allocator.h - Simple memory allocation abstraction -------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +/// \file +/// +/// This file defines the MallocAllocator and BumpPtrAllocator interfaces. Both +/// of these conform to an LLVM "Allocator" concept which consists of an +/// Allocate method accepting a size and alignment, and a Deallocate accepting +/// a pointer and size. Further, the LLVM "Allocator" concept has overloads of +/// Allocate and Deallocate for setting size and alignment based on the final +/// type. These overloads are typically provided by a base class template \c +/// AllocatorBase. +/// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_SUPPORT_ALLOCATOR_H +#define LLVM_SUPPORT_ALLOCATOR_H + +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/MemAlloc.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <cstdlib> +#include <iterator> +#include <type_traits> +#include <utility> + +namespace llvm { + +/// CRTP base class providing obvious overloads for the core \c +/// Allocate() methods of LLVM-style allocators. +/// +/// This base class both documents the full public interface exposed by all +/// LLVM-style allocators, and redirects all of the overloads to a single core +/// set of methods which the derived class must define. +template <typename DerivedT> class AllocatorBase { +public: + /// Allocate \a Size bytes of \a Alignment aligned memory. This method + /// must be implemented by \c DerivedT. + void *Allocate(size_t Size, size_t Alignment) { +#ifdef __clang__ + static_assert(static_cast<void *(AllocatorBase::*)(size_t, size_t)>( + &AllocatorBase::Allocate) != + static_cast<void *(DerivedT::*)(size_t, size_t)>( + &DerivedT::Allocate), + "Class derives from AllocatorBase without implementing the " + "core Allocate(size_t, size_t) overload!"); +#endif + return static_cast<DerivedT *>(this)->Allocate(Size, Alignment); + } + + /// Deallocate \a Ptr to \a Size bytes of memory allocated by this + /// allocator. + void Deallocate(const void *Ptr, size_t Size) { +#ifdef __clang__ + static_assert(static_cast<void (AllocatorBase::*)(const void *, size_t)>( + &AllocatorBase::Deallocate) != + static_cast<void (DerivedT::*)(const void *, size_t)>( + &DerivedT::Deallocate), + "Class derives from AllocatorBase without implementing the " + "core Deallocate(void *) overload!"); +#endif + return static_cast<DerivedT *>(this)->Deallocate(Ptr, Size); + } + + // The rest of these methods are helpers that redirect to one of the above + // core methods. + + /// Allocate space for a sequence of objects without constructing them. + template <typename T> T *Allocate(size_t Num = 1) { + return static_cast<T *>(Allocate(Num * sizeof(T), alignof(T))); + } + + /// Deallocate space for a sequence of objects without constructing them. + template <typename T> + typename std::enable_if< + !std::is_same<typename std::remove_cv<T>::type, void>::value, void>::type + Deallocate(T *Ptr, size_t Num = 1) { + Deallocate(static_cast<const void *>(Ptr), Num * sizeof(T)); + } +}; + +class MallocAllocator : public AllocatorBase<MallocAllocator> { +public: + void Reset() {} + + LLVM_ATTRIBUTE_RETURNS_NONNULL void *Allocate(size_t Size, + size_t /*Alignment*/) { + return safe_malloc(Size); + } + + // Pull in base class overloads. + using AllocatorBase<MallocAllocator>::Allocate; + + void Deallocate(const void *Ptr, size_t /*Size*/) { + free(const_cast<void *>(Ptr)); + } + + // Pull in base class overloads. + using AllocatorBase<MallocAllocator>::Deallocate; + + void PrintStats() const {} +}; + +namespace detail { + +// We call out to an external function to actually print the message as the +// printing code uses Allocator.h in its implementation. +void printBumpPtrAllocatorStats(unsigned NumSlabs, size_t BytesAllocated, + size_t TotalMemory); + +} // end namespace detail + +/// Allocate memory in an ever growing pool, as if by bump-pointer. +/// +/// This isn't strictly a bump-pointer allocator as it uses backing slabs of +/// memory rather than relying on a boundless contiguous heap. However, it has +/// bump-pointer semantics in that it is a monotonically growing pool of memory +/// where every allocation is found by merely allocating the next N bytes in +/// the slab, or the next N bytes in the next slab. +/// +/// Note that this also has a threshold for forcing allocations above a certain +/// size into their own slab. +/// +/// The BumpPtrAllocatorImpl template defaults to using a MallocAllocator +/// object, which wraps malloc, to allocate memory, but it can be changed to +/// use a custom allocator. +template <typename AllocatorT = MallocAllocator, size_t SlabSize = 4096, + size_t SizeThreshold = SlabSize> +class BumpPtrAllocatorImpl + : public AllocatorBase< + BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold>> { +public: + static_assert(SizeThreshold <= SlabSize, + "The SizeThreshold must be at most the SlabSize to ensure " + "that objects larger than a slab go into their own memory " + "allocation."); + + BumpPtrAllocatorImpl() = default; + + template <typename T> + BumpPtrAllocatorImpl(T &&Allocator) + : Allocator(std::forward<T &&>(Allocator)) {} + + // Manually implement a move constructor as we must clear the old allocator's + // slabs as a matter of correctness. + BumpPtrAllocatorImpl(BumpPtrAllocatorImpl &&Old) + : CurPtr(Old.CurPtr), End(Old.End), Slabs(std::move(Old.Slabs)), + CustomSizedSlabs(std::move(Old.CustomSizedSlabs)), + BytesAllocated(Old.BytesAllocated), RedZoneSize(Old.RedZoneSize), + Allocator(std::move(Old.Allocator)) { + Old.CurPtr = Old.End = nullptr; + Old.BytesAllocated = 0; + Old.Slabs.clear(); + Old.CustomSizedSlabs.clear(); + } + + ~BumpPtrAllocatorImpl() { + DeallocateSlabs(Slabs.begin(), Slabs.end()); + DeallocateCustomSizedSlabs(); + } + + BumpPtrAllocatorImpl &operator=(BumpPtrAllocatorImpl &&RHS) { + DeallocateSlabs(Slabs.begin(), Slabs.end()); + DeallocateCustomSizedSlabs(); + + CurPtr = RHS.CurPtr; + End = RHS.End; + BytesAllocated = RHS.BytesAllocated; + RedZoneSize = RHS.RedZoneSize; + Slabs = std::move(RHS.Slabs); + CustomSizedSlabs = std::move(RHS.CustomSizedSlabs); + Allocator = std::move(RHS.Allocator); + + RHS.CurPtr = RHS.End = nullptr; + RHS.BytesAllocated = 0; + RHS.Slabs.clear(); + RHS.CustomSizedSlabs.clear(); + return *this; + } + + /// Deallocate all but the current slab and reset the current pointer + /// to the beginning of it, freeing all memory allocated so far. + void Reset() { + // Deallocate all but the first slab, and deallocate all custom-sized slabs. + DeallocateCustomSizedSlabs(); + CustomSizedSlabs.clear(); + + if (Slabs.empty()) + return; + + // Reset the state. + BytesAllocated = 0; + CurPtr = (char *)Slabs.front(); + End = CurPtr + SlabSize; + + __asan_poison_memory_region(*Slabs.begin(), computeSlabSize(0)); + DeallocateSlabs(std::next(Slabs.begin()), Slabs.end()); + Slabs.erase(std::next(Slabs.begin()), Slabs.end()); + } + + /// Allocate space at the specified alignment. + LLVM_ATTRIBUTE_RETURNS_NONNULL LLVM_ATTRIBUTE_RETURNS_NOALIAS void * + Allocate(size_t Size, size_t Alignment) { + assert(Alignment > 0 && "0-byte alignnment is not allowed. Use 1 instead."); + + // Keep track of how many bytes we've allocated. + BytesAllocated += Size; + + size_t Adjustment = alignmentAdjustment(CurPtr, Alignment); + assert(Adjustment + Size >= Size && "Adjustment + Size must not overflow"); + + size_t SizeToAllocate = Size; +#if LLVM_ADDRESS_SANITIZER_BUILD + // Add trailing bytes as a "red zone" under ASan. + SizeToAllocate += RedZoneSize; +#endif + + // Check if we have enough space. + if (Adjustment + SizeToAllocate <= size_t(End - CurPtr)) { + char *AlignedPtr = CurPtr + Adjustment; + CurPtr = AlignedPtr + SizeToAllocate; + // Update the allocation point of this memory block in MemorySanitizer. + // Without this, MemorySanitizer messages for values originated from here + // will point to the allocation of the entire slab. + __msan_allocated_memory(AlignedPtr, Size); + // Similarly, tell ASan about this space. + __asan_unpoison_memory_region(AlignedPtr, Size); + return AlignedPtr; + } + + // If Size is really big, allocate a separate slab for it. + size_t PaddedSize = SizeToAllocate + Alignment - 1; + if (PaddedSize > SizeThreshold) { + void *NewSlab = Allocator.Allocate(PaddedSize, 0); + // We own the new slab and don't want anyone reading anyting other than + // pieces returned from this method. So poison the whole slab. + __asan_poison_memory_region(NewSlab, PaddedSize); + CustomSizedSlabs.push_back(std::make_pair(NewSlab, PaddedSize)); + + uintptr_t AlignedAddr = alignAddr(NewSlab, Alignment); + assert(AlignedAddr + Size <= (uintptr_t)NewSlab + PaddedSize); + char *AlignedPtr = (char*)AlignedAddr; + __msan_allocated_memory(AlignedPtr, Size); + __asan_unpoison_memory_region(AlignedPtr, Size); + return AlignedPtr; + } + + // Otherwise, start a new slab and try again. + StartNewSlab(); + uintptr_t AlignedAddr = alignAddr(CurPtr, Alignment); + assert(AlignedAddr + SizeToAllocate <= (uintptr_t)End && + "Unable to allocate memory!"); + char *AlignedPtr = (char*)AlignedAddr; + CurPtr = AlignedPtr + SizeToAllocate; + __msan_allocated_memory(AlignedPtr, Size); + __asan_unpoison_memory_region(AlignedPtr, Size); + return AlignedPtr; + } + + // Pull in base class overloads. + using AllocatorBase<BumpPtrAllocatorImpl>::Allocate; + + // Bump pointer allocators are expected to never free their storage; and + // clients expect pointers to remain valid for non-dereferencing uses even + // after deallocation. + void Deallocate(const void *Ptr, size_t Size) { + __asan_poison_memory_region(Ptr, Size); + } + + // Pull in base class overloads. + using AllocatorBase<BumpPtrAllocatorImpl>::Deallocate; + + size_t GetNumSlabs() const { return Slabs.size() + CustomSizedSlabs.size(); } + + /// \return An index uniquely and reproducibly identifying + /// an input pointer \p Ptr in the given allocator. + /// The returned value is negative iff the object is inside a custom-size + /// slab. + /// Returns an empty optional if the pointer is not found in the allocator. + llvm::Optional<int64_t> identifyObject(const void *Ptr) { + const char *P = static_cast<const char *>(Ptr); + int64_t InSlabIdx = 0; + for (size_t Idx = 0, E = Slabs.size(); Idx < E; Idx++) { + const char *S = static_cast<const char *>(Slabs[Idx]); + if (P >= S && P < S + computeSlabSize(Idx)) + return InSlabIdx + static_cast<int64_t>(P - S); + InSlabIdx += static_cast<int64_t>(computeSlabSize(Idx)); + } + + // Use negative index to denote custom sized slabs. + int64_t InCustomSizedSlabIdx = -1; + for (size_t Idx = 0, E = CustomSizedSlabs.size(); Idx < E; Idx++) { + const char *S = static_cast<const char *>(CustomSizedSlabs[Idx].first); + size_t Size = CustomSizedSlabs[Idx].second; + if (P >= S && P < S + Size) + return InCustomSizedSlabIdx - static_cast<int64_t>(P - S); + InCustomSizedSlabIdx -= static_cast<int64_t>(Size); + } + return None; + } + + /// A wrapper around identifyObject that additionally asserts that + /// the object is indeed within the allocator. + /// \return An index uniquely and reproducibly identifying + /// an input pointer \p Ptr in the given allocator. + int64_t identifyKnownObject(const void *Ptr) { + Optional<int64_t> Out = identifyObject(Ptr); + assert(Out && "Wrong allocator used"); + return *Out; + } + + /// A wrapper around identifyKnownObject. Accepts type information + /// about the object and produces a smaller identifier by relying on + /// the alignment information. Note that sub-classes may have different + /// alignment, so the most base class should be passed as template parameter + /// in order to obtain correct results. For that reason automatic template + /// parameter deduction is disabled. + /// \return An index uniquely and reproducibly identifying + /// an input pointer \p Ptr in the given allocator. This identifier is + /// different from the ones produced by identifyObject and + /// identifyAlignedObject. + template <typename T> + int64_t identifyKnownAlignedObject(const void *Ptr) { + int64_t Out = identifyKnownObject(Ptr); + assert(Out % alignof(T) == 0 && "Wrong alignment information"); + return Out / alignof(T); + } + + size_t getTotalMemory() const { + size_t TotalMemory = 0; + for (auto I = Slabs.begin(), E = Slabs.end(); I != E; ++I) + TotalMemory += computeSlabSize(std::distance(Slabs.begin(), I)); + for (auto &PtrAndSize : CustomSizedSlabs) + TotalMemory += PtrAndSize.second; + return TotalMemory; + } + + size_t getBytesAllocated() const { return BytesAllocated; } + + void setRedZoneSize(size_t NewSize) { + RedZoneSize = NewSize; + } + + void PrintStats() const { + detail::printBumpPtrAllocatorStats(Slabs.size(), BytesAllocated, + getTotalMemory()); + } + +private: + /// The current pointer into the current slab. + /// + /// This points to the next free byte in the slab. + char *CurPtr = nullptr; + + /// The end of the current slab. + char *End = nullptr; + + /// The slabs allocated so far. + SmallVector<void *, 4> Slabs; + + /// Custom-sized slabs allocated for too-large allocation requests. + SmallVector<std::pair<void *, size_t>, 0> CustomSizedSlabs; + + /// How many bytes we've allocated. + /// + /// Used so that we can compute how much space was wasted. + size_t BytesAllocated = 0; + + /// The number of bytes to put between allocations when running under + /// a sanitizer. + size_t RedZoneSize = 1; + + /// The allocator instance we use to get slabs of memory. + AllocatorT Allocator; + + static size_t computeSlabSize(unsigned SlabIdx) { + // Scale the actual allocated slab size based on the number of slabs + // allocated. Every 128 slabs allocated, we double the allocated size to + // reduce allocation frequency, but saturate at multiplying the slab size by + // 2^30. + return SlabSize * ((size_t)1 << std::min<size_t>(30, SlabIdx / 128)); + } + + /// Allocate a new slab and move the bump pointers over into the new + /// slab, modifying CurPtr and End. + void StartNewSlab() { + size_t AllocatedSlabSize = computeSlabSize(Slabs.size()); + + void *NewSlab = Allocator.Allocate(AllocatedSlabSize, 0); + // We own the new slab and don't want anyone reading anything other than + // pieces returned from this method. So poison the whole slab. + __asan_poison_memory_region(NewSlab, AllocatedSlabSize); + + Slabs.push_back(NewSlab); + CurPtr = (char *)(NewSlab); + End = ((char *)NewSlab) + AllocatedSlabSize; + } + + /// Deallocate a sequence of slabs. + void DeallocateSlabs(SmallVectorImpl<void *>::iterator I, + SmallVectorImpl<void *>::iterator E) { + for (; I != E; ++I) { + size_t AllocatedSlabSize = + computeSlabSize(std::distance(Slabs.begin(), I)); + Allocator.Deallocate(*I, AllocatedSlabSize); + } + } + + /// Deallocate all memory for custom sized slabs. + void DeallocateCustomSizedSlabs() { + for (auto &PtrAndSize : CustomSizedSlabs) { + void *Ptr = PtrAndSize.first; + size_t Size = PtrAndSize.second; + Allocator.Deallocate(Ptr, Size); + } + } + + template <typename T> friend class SpecificBumpPtrAllocator; +}; + +/// The standard BumpPtrAllocator which just uses the default template +/// parameters. +typedef BumpPtrAllocatorImpl<> BumpPtrAllocator; + +/// A BumpPtrAllocator that allows only elements of a specific type to be +/// allocated. +/// +/// This allows calling the destructor in DestroyAll() and when the allocator is +/// destroyed. +template <typename T> class SpecificBumpPtrAllocator { + BumpPtrAllocator Allocator; + +public: + SpecificBumpPtrAllocator() { + // Because SpecificBumpPtrAllocator walks the memory to call destructors, + // it can't have red zones between allocations. + Allocator.setRedZoneSize(0); + } + SpecificBumpPtrAllocator(SpecificBumpPtrAllocator &&Old) + : Allocator(std::move(Old.Allocator)) {} + ~SpecificBumpPtrAllocator() { DestroyAll(); } + + SpecificBumpPtrAllocator &operator=(SpecificBumpPtrAllocator &&RHS) { + Allocator = std::move(RHS.Allocator); + return *this; + } + + /// Call the destructor of each allocated object and deallocate all but the + /// current slab and reset the current pointer to the beginning of it, freeing + /// all memory allocated so far. + void DestroyAll() { + auto DestroyElements = [](char *Begin, char *End) { + assert(Begin == (char *)alignAddr(Begin, alignof(T))); + for (char *Ptr = Begin; Ptr + sizeof(T) <= End; Ptr += sizeof(T)) + reinterpret_cast<T *>(Ptr)->~T(); + }; + + for (auto I = Allocator.Slabs.begin(), E = Allocator.Slabs.end(); I != E; + ++I) { + size_t AllocatedSlabSize = BumpPtrAllocator::computeSlabSize( + std::distance(Allocator.Slabs.begin(), I)); + char *Begin = (char *)alignAddr(*I, alignof(T)); + char *End = *I == Allocator.Slabs.back() ? Allocator.CurPtr + : (char *)*I + AllocatedSlabSize; + + DestroyElements(Begin, End); + } + + for (auto &PtrAndSize : Allocator.CustomSizedSlabs) { + void *Ptr = PtrAndSize.first; + size_t Size = PtrAndSize.second; + DestroyElements((char *)alignAddr(Ptr, alignof(T)), (char *)Ptr + Size); + } + + Allocator.Reset(); + } + + /// Allocate space for an array of objects without constructing them. + T *Allocate(size_t num = 1) { return Allocator.Allocate<T>(num); } +}; + +} // end namespace llvm + +template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold> +void *operator new(size_t Size, + llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, + SizeThreshold> &Allocator) { + struct S { + char c; + union { + double D; + long double LD; + long long L; + void *P; + } x; + }; + return Allocator.Allocate( + Size, std::min((size_t)llvm::NextPowerOf2(Size), offsetof(S, x))); +} + +template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold> +void operator delete( + void *, llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold> &) { +} + +#endif // LLVM_SUPPORT_ALLOCATOR_H |
