summaryrefslogtreecommitdiff
path: root/clang-r344140b/include/llvm/Transforms/Utils/LoopUtils.h
blob: c75a1de11375c7796a9a5c0248497423029f99e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
//===- llvm/Transforms/Utils/LoopUtils.h - Loop utilities -------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines some loop transformation utilities.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TRANSFORMS_UTILS_LOOPUTILS_H
#define LLVM_TRANSFORMS_UTILS_LOOPUTILS_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/DemandedBits.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/Analysis/IVDescriptors.h"
#include "llvm/Analysis/MustExecute.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/Casting.h"

namespace llvm {

class AliasSet;
class AliasSetTracker;
class BasicBlock;
class DataLayout;
class Loop;
class LoopInfo;
class OptimizationRemarkEmitter;
class PredicatedScalarEvolution;
class PredIteratorCache;
class ScalarEvolution;
class SCEV;
class TargetLibraryInfo;
class TargetTransformInfo;

BasicBlock *InsertPreheaderForLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
                                   bool PreserveLCSSA);

/// Ensure that all exit blocks of the loop are dedicated exits.
///
/// For any loop exit block with non-loop predecessors, we split the loop
/// predecessors to use a dedicated loop exit block. We update the dominator
/// tree and loop info if provided, and will preserve LCSSA if requested.
bool formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
                             bool PreserveLCSSA);

/// Ensures LCSSA form for every instruction from the Worklist in the scope of
/// innermost containing loop.
///
/// For the given instruction which have uses outside of the loop, an LCSSA PHI
/// node is inserted and the uses outside the loop are rewritten to use this
/// node.
///
/// LoopInfo and DominatorTree are required and, since the routine makes no
/// changes to CFG, preserved.
///
/// Returns true if any modifications are made.
bool formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
                              DominatorTree &DT, LoopInfo &LI);

/// Put loop into LCSSA form.
///
/// Looks at all instructions in the loop which have uses outside of the
/// current loop. For each, an LCSSA PHI node is inserted and the uses outside
/// the loop are rewritten to use this node.
///
/// LoopInfo and DominatorTree are required and preserved.
///
/// If ScalarEvolution is passed in, it will be preserved.
///
/// Returns true if any modifications are made to the loop.
bool formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution *SE);

/// Put a loop nest into LCSSA form.
///
/// This recursively forms LCSSA for a loop nest.
///
/// LoopInfo and DominatorTree are required and preserved.
///
/// If ScalarEvolution is passed in, it will be preserved.
///
/// Returns true if any modifications are made to the loop.
bool formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
                          ScalarEvolution *SE);

/// Walk the specified region of the CFG (defined by all blocks
/// dominated by the specified block, and that are in the current loop) in
/// reverse depth first order w.r.t the DominatorTree. This allows us to visit
/// uses before definitions, allowing us to sink a loop body in one pass without
/// iteration. Takes DomTreeNode, AliasAnalysis, LoopInfo, DominatorTree,
/// DataLayout, TargetLibraryInfo, Loop, AliasSet information for all
/// instructions of the loop and loop safety information as
/// arguments. Diagnostics is emitted via \p ORE. It returns changed status.
bool sinkRegion(DomTreeNode *, AliasAnalysis *, LoopInfo *, DominatorTree *,
                TargetLibraryInfo *, TargetTransformInfo *, Loop *,
                AliasSetTracker *, LoopSafetyInfo *,
                OptimizationRemarkEmitter *ORE);

/// Walk the specified region of the CFG (defined by all blocks
/// dominated by the specified block, and that are in the current loop) in depth
/// first order w.r.t the DominatorTree.  This allows us to visit definitions
/// before uses, allowing us to hoist a loop body in one pass without iteration.
/// Takes DomTreeNode, AliasAnalysis, LoopInfo, DominatorTree, DataLayout,
/// TargetLibraryInfo, Loop, AliasSet information for all instructions of the
/// loop and loop safety information as arguments. Diagnostics is emitted via \p
/// ORE. It returns changed status.
bool hoistRegion(DomTreeNode *, AliasAnalysis *, LoopInfo *, DominatorTree *,
                 TargetLibraryInfo *, Loop *, AliasSetTracker *,
                 LoopSafetyInfo *, OptimizationRemarkEmitter *ORE);

/// This function deletes dead loops. The caller of this function needs to
/// guarantee that the loop is infact dead.
/// The function requires a bunch or prerequisites to be present:
///   - The loop needs to be in LCSSA form
///   - The loop needs to have a Preheader
///   - A unique dedicated exit block must exist
///
/// This also updates the relevant analysis information in \p DT, \p SE, and \p
/// LI if pointers to those are provided.
/// It also updates the loop PM if an updater struct is provided.

void deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
                    LoopInfo *LI);

/// Try to promote memory values to scalars by sinking stores out of
/// the loop and moving loads to before the loop.  We do this by looping over
/// the stores in the loop, looking for stores to Must pointers which are
/// loop invariant. It takes a set of must-alias values, Loop exit blocks
/// vector, loop exit blocks insertion point vector, PredIteratorCache,
/// LoopInfo, DominatorTree, Loop, AliasSet information for all instructions
/// of the loop and loop safety information as arguments.
/// Diagnostics is emitted via \p ORE. It returns changed status.
bool promoteLoopAccessesToScalars(const SmallSetVector<Value *, 8> &,
                                  SmallVectorImpl<BasicBlock *> &,
                                  SmallVectorImpl<Instruction *> &,
                                  PredIteratorCache &, LoopInfo *,
                                  DominatorTree *, const TargetLibraryInfo *,
                                  Loop *, AliasSetTracker *, LoopSafetyInfo *,
                                  OptimizationRemarkEmitter *);

/// Does a BFS from a given node to all of its children inside a given loop.
/// The returned vector of nodes includes the starting point.
SmallVector<DomTreeNode *, 16> collectChildrenInLoop(DomTreeNode *N,
                                                     const Loop *CurLoop);

/// Returns the instructions that use values defined in the loop.
SmallVector<Instruction *, 8> findDefsUsedOutsideOfLoop(Loop *L);

/// Find string metadata for loop
///
/// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
/// operand or null otherwise.  If the string metadata is not found return
/// Optional's not-a-value.
Optional<const MDOperand *> findStringMetadataForLoop(Loop *TheLoop,
                                                      StringRef Name);

/// Set input string into loop metadata by keeping other values intact.
void addStringMetadataToLoop(Loop *TheLoop, const char *MDString,
                             unsigned V = 0);

/// Get a loop's estimated trip count based on branch weight metadata.
/// Returns 0 when the count is estimated to be 0, or None when a meaningful
/// estimate can not be made.
Optional<unsigned> getLoopEstimatedTripCount(Loop *L);

/// Check inner loop (L) backedge count is known to be invariant on all
/// iterations of its outer loop. If the loop has no parent, this is trivially
/// true.
bool hasIterationCountInvariantInParent(Loop *L, ScalarEvolution &SE);

/// Helper to consistently add the set of standard passes to a loop pass's \c
/// AnalysisUsage.
///
/// All loop passes should call this as part of implementing their \c
/// getAnalysisUsage.
void getLoopAnalysisUsage(AnalysisUsage &AU);

/// Returns true if is legal to hoist or sink this instruction disregarding the
/// possible introduction of faults.  Reasoning about potential faulting
/// instructions is the responsibility of the caller since it is challenging to
/// do efficiently from within this routine.
/// \p TargetExecutesOncePerLoop is true only when it is guaranteed that the
/// target executes at most once per execution of the loop body.  This is used
/// to assess the legality of duplicating atomic loads.  Generally, this is
/// true when moving out of loop and not true when moving into loops.
/// If \p ORE is set use it to emit optimization remarks.
bool canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
                        Loop *CurLoop, AliasSetTracker *CurAST,
                        bool TargetExecutesOncePerLoop,
                        OptimizationRemarkEmitter *ORE = nullptr);

/// Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
Value *createMinMaxOp(IRBuilder<> &Builder,
                      RecurrenceDescriptor::MinMaxRecurrenceKind RK,
                      Value *Left, Value *Right);

/// Generates an ordered vector reduction using extracts to reduce the value.
Value *
getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src, unsigned Op,
                    RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
                        RecurrenceDescriptor::MRK_Invalid,
                    ArrayRef<Value *> RedOps = None);

/// Generates a vector reduction using shufflevectors to reduce the value.
Value *getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
                           RecurrenceDescriptor::MinMaxRecurrenceKind
                               MinMaxKind = RecurrenceDescriptor::MRK_Invalid,
                           ArrayRef<Value *> RedOps = None);

/// Create a target reduction of the given vector. The reduction operation
/// is described by the \p Opcode parameter. min/max reductions require
/// additional information supplied in \p Flags.
/// The target is queried to determine if intrinsics or shuffle sequences are
/// required to implement the reduction.
Value *createSimpleTargetReduction(IRBuilder<> &B,
                                   const TargetTransformInfo *TTI,
                                   unsigned Opcode, Value *Src,
                                   TargetTransformInfo::ReductionFlags Flags =
                                       TargetTransformInfo::ReductionFlags(),
                                   ArrayRef<Value *> RedOps = None);

/// Create a generic target reduction using a recurrence descriptor \p Desc
/// The target is queried to determine if intrinsics or shuffle sequences are
/// required to implement the reduction.
Value *createTargetReduction(IRBuilder<> &B, const TargetTransformInfo *TTI,
                             RecurrenceDescriptor &Desc, Value *Src,
                             bool NoNaN = false);

/// Get the intersection (logical and) of all of the potential IR flags
/// of each scalar operation (VL) that will be converted into a vector (I).
/// If OpValue is non-null, we only consider operations similar to OpValue
/// when intersecting.
/// Flag set: NSW, NUW, exact, and all of fast-math.
void propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue = nullptr);

} // end namespace llvm

#endif // LLVM_TRANSFORMS_UTILS_LOOPUTILS_H