diff options
| author | Stephen Hines <srhines@google.com> | 2019-07-02 16:25:20 -0700 |
|---|---|---|
| committer | Ali B <abittin@gmail.com> | 2019-07-05 19:33:16 +0300 |
| commit | 9afee4e65dc5f9f5eb371683729ff67b8df81d03 (patch) | |
| tree | 4cf241d6c9044f91ee8c06e6920174d06f8de0b6 /clang-r353983e/include/llvm/Analysis/ScalarEvolutionExpressions.h | |
| parent | 2f19bd722c4c825320d1511c1ed83161b7f95d51 (diff) | |
clang 9.0.5 (based on r353983e) from build 5696680.
Bug: http://b/135931688
Bug: http://b/136008926
Test: N/A
Change-Id: I922d17410047d2e2df4625615352c588ee71b203
Diffstat (limited to 'clang-r353983e/include/llvm/Analysis/ScalarEvolutionExpressions.h')
| -rw-r--r-- | clang-r353983e/include/llvm/Analysis/ScalarEvolutionExpressions.h | 770 |
1 files changed, 770 insertions, 0 deletions
diff --git a/clang-r353983e/include/llvm/Analysis/ScalarEvolutionExpressions.h b/clang-r353983e/include/llvm/Analysis/ScalarEvolutionExpressions.h new file mode 100644 index 00000000..e187a962 --- /dev/null +++ b/clang-r353983e/include/llvm/Analysis/ScalarEvolutionExpressions.h @@ -0,0 +1,770 @@ +//===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines the classes used to represent and build scalar expressions. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H +#define LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H + +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/FoldingSet.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/ErrorHandling.h" +#include <cassert> +#include <cstddef> + +namespace llvm { + +class APInt; +class Constant; +class ConstantRange; +class Loop; +class Type; + + enum SCEVTypes { + // These should be ordered in terms of increasing complexity to make the + // folders simpler. + scConstant, scTruncate, scZeroExtend, scSignExtend, scAddExpr, scMulExpr, + scUDivExpr, scAddRecExpr, scUMaxExpr, scSMaxExpr, + scUnknown, scCouldNotCompute + }; + + /// This class represents a constant integer value. + class SCEVConstant : public SCEV { + friend class ScalarEvolution; + + ConstantInt *V; + + SCEVConstant(const FoldingSetNodeIDRef ID, ConstantInt *v) : + SCEV(ID, scConstant, 1), V(v) {} + + public: + ConstantInt *getValue() const { return V; } + const APInt &getAPInt() const { return getValue()->getValue(); } + + Type *getType() const { return V->getType(); } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const SCEV *S) { + return S->getSCEVType() == scConstant; + } + }; + + static unsigned short computeExpressionSize(ArrayRef<const SCEV *> Args) { + APInt Size(16, 1); + for (auto *Arg : Args) + Size = Size.uadd_sat(APInt(16, Arg->getExpressionSize())); + return (unsigned short)Size.getZExtValue(); + } + + /// This is the base class for unary cast operator classes. + class SCEVCastExpr : public SCEV { + protected: + const SCEV *Op; + Type *Ty; + + SCEVCastExpr(const FoldingSetNodeIDRef ID, + unsigned SCEVTy, const SCEV *op, Type *ty); + + public: + const SCEV *getOperand() const { return Op; } + Type *getType() const { return Ty; } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const SCEV *S) { + return S->getSCEVType() == scTruncate || + S->getSCEVType() == scZeroExtend || + S->getSCEVType() == scSignExtend; + } + }; + + /// This class represents a truncation of an integer value to a + /// smaller integer value. + class SCEVTruncateExpr : public SCEVCastExpr { + friend class ScalarEvolution; + + SCEVTruncateExpr(const FoldingSetNodeIDRef ID, + const SCEV *op, Type *ty); + + public: + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const SCEV *S) { + return S->getSCEVType() == scTruncate; + } + }; + + /// This class represents a zero extension of a small integer value + /// to a larger integer value. + class SCEVZeroExtendExpr : public SCEVCastExpr { + friend class ScalarEvolution; + + SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, + const SCEV *op, Type *ty); + + public: + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const SCEV *S) { + return S->getSCEVType() == scZeroExtend; + } + }; + + /// This class represents a sign extension of a small integer value + /// to a larger integer value. + class SCEVSignExtendExpr : public SCEVCastExpr { + friend class ScalarEvolution; + + SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, + const SCEV *op, Type *ty); + + public: + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const SCEV *S) { + return S->getSCEVType() == scSignExtend; + } + }; + + /// This node is a base class providing common functionality for + /// n'ary operators. + class SCEVNAryExpr : public SCEV { + protected: + // Since SCEVs are immutable, ScalarEvolution allocates operand + // arrays with its SCEVAllocator, so this class just needs a simple + // pointer rather than a more elaborate vector-like data structure. + // This also avoids the need for a non-trivial destructor. + const SCEV *const *Operands; + size_t NumOperands; + + SCEVNAryExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T, + const SCEV *const *O, size_t N) + : SCEV(ID, T, computeExpressionSize(makeArrayRef(O, N))), Operands(O), + NumOperands(N) {} + + public: + size_t getNumOperands() const { return NumOperands; } + + const SCEV *getOperand(unsigned i) const { + assert(i < NumOperands && "Operand index out of range!"); + return Operands[i]; + } + + using op_iterator = const SCEV *const *; + using op_range = iterator_range<op_iterator>; + + op_iterator op_begin() const { return Operands; } + op_iterator op_end() const { return Operands + NumOperands; } + op_range operands() const { + return make_range(op_begin(), op_end()); + } + + Type *getType() const { return getOperand(0)->getType(); } + + NoWrapFlags getNoWrapFlags(NoWrapFlags Mask = NoWrapMask) const { + return (NoWrapFlags)(SubclassData & Mask); + } + + bool hasNoUnsignedWrap() const { + return getNoWrapFlags(FlagNUW) != FlagAnyWrap; + } + + bool hasNoSignedWrap() const { + return getNoWrapFlags(FlagNSW) != FlagAnyWrap; + } + + bool hasNoSelfWrap() const { + return getNoWrapFlags(FlagNW) != FlagAnyWrap; + } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const SCEV *S) { + return S->getSCEVType() == scAddExpr || + S->getSCEVType() == scMulExpr || + S->getSCEVType() == scSMaxExpr || + S->getSCEVType() == scUMaxExpr || + S->getSCEVType() == scAddRecExpr; + } + }; + + /// This node is the base class for n'ary commutative operators. + class SCEVCommutativeExpr : public SCEVNAryExpr { + protected: + SCEVCommutativeExpr(const FoldingSetNodeIDRef ID, + enum SCEVTypes T, const SCEV *const *O, size_t N) + : SCEVNAryExpr(ID, T, O, N) {} + + public: + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const SCEV *S) { + return S->getSCEVType() == scAddExpr || + S->getSCEVType() == scMulExpr || + S->getSCEVType() == scSMaxExpr || + S->getSCEVType() == scUMaxExpr; + } + + /// Set flags for a non-recurrence without clearing previously set flags. + void setNoWrapFlags(NoWrapFlags Flags) { + SubclassData |= Flags; + } + }; + + /// This node represents an addition of some number of SCEVs. + class SCEVAddExpr : public SCEVCommutativeExpr { + friend class ScalarEvolution; + + SCEVAddExpr(const FoldingSetNodeIDRef ID, + const SCEV *const *O, size_t N) + : SCEVCommutativeExpr(ID, scAddExpr, O, N) {} + + public: + Type *getType() const { + // Use the type of the last operand, which is likely to be a pointer + // type, if there is one. This doesn't usually matter, but it can help + // reduce casts when the expressions are expanded. + return getOperand(getNumOperands() - 1)->getType(); + } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const SCEV *S) { + return S->getSCEVType() == scAddExpr; + } + }; + + /// This node represents multiplication of some number of SCEVs. + class SCEVMulExpr : public SCEVCommutativeExpr { + friend class ScalarEvolution; + + SCEVMulExpr(const FoldingSetNodeIDRef ID, + const SCEV *const *O, size_t N) + : SCEVCommutativeExpr(ID, scMulExpr, O, N) {} + + public: + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const SCEV *S) { + return S->getSCEVType() == scMulExpr; + } + }; + + /// This class represents a binary unsigned division operation. + class SCEVUDivExpr : public SCEV { + friend class ScalarEvolution; + + const SCEV *LHS; + const SCEV *RHS; + + SCEVUDivExpr(const FoldingSetNodeIDRef ID, const SCEV *lhs, const SCEV *rhs) + : SCEV(ID, scUDivExpr, computeExpressionSize({lhs, rhs})), LHS(lhs), + RHS(rhs) {} + + public: + const SCEV *getLHS() const { return LHS; } + const SCEV *getRHS() const { return RHS; } + + Type *getType() const { + // In most cases the types of LHS and RHS will be the same, but in some + // crazy cases one or the other may be a pointer. ScalarEvolution doesn't + // depend on the type for correctness, but handling types carefully can + // avoid extra casts in the SCEVExpander. The LHS is more likely to be + // a pointer type than the RHS, so use the RHS' type here. + return getRHS()->getType(); + } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const SCEV *S) { + return S->getSCEVType() == scUDivExpr; + } + }; + + /// This node represents a polynomial recurrence on the trip count + /// of the specified loop. This is the primary focus of the + /// ScalarEvolution framework; all the other SCEV subclasses are + /// mostly just supporting infrastructure to allow SCEVAddRecExpr + /// expressions to be created and analyzed. + /// + /// All operands of an AddRec are required to be loop invariant. + /// + class SCEVAddRecExpr : public SCEVNAryExpr { + friend class ScalarEvolution; + + const Loop *L; + + SCEVAddRecExpr(const FoldingSetNodeIDRef ID, + const SCEV *const *O, size_t N, const Loop *l) + : SCEVNAryExpr(ID, scAddRecExpr, O, N), L(l) {} + + public: + const SCEV *getStart() const { return Operands[0]; } + const Loop *getLoop() const { return L; } + + /// Constructs and returns the recurrence indicating how much this + /// expression steps by. If this is a polynomial of degree N, it + /// returns a chrec of degree N-1. We cannot determine whether + /// the step recurrence has self-wraparound. + const SCEV *getStepRecurrence(ScalarEvolution &SE) const { + if (isAffine()) return getOperand(1); + return SE.getAddRecExpr(SmallVector<const SCEV *, 3>(op_begin()+1, + op_end()), + getLoop(), FlagAnyWrap); + } + + /// Return true if this represents an expression A + B*x where A + /// and B are loop invariant values. + bool isAffine() const { + // We know that the start value is invariant. This expression is thus + // affine iff the step is also invariant. + return getNumOperands() == 2; + } + + /// Return true if this represents an expression A + B*x + C*x^2 + /// where A, B and C are loop invariant values. This corresponds + /// to an addrec of the form {L,+,M,+,N} + bool isQuadratic() const { + return getNumOperands() == 3; + } + + /// Set flags for a recurrence without clearing any previously set flags. + /// For AddRec, either NUW or NSW implies NW. Keep track of this fact here + /// to make it easier to propagate flags. + void setNoWrapFlags(NoWrapFlags Flags) { + if (Flags & (FlagNUW | FlagNSW)) + Flags = ScalarEvolution::setFlags(Flags, FlagNW); + SubclassData |= Flags; + } + + /// Return the value of this chain of recurrences at the specified + /// iteration number. + const SCEV *evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const; + + /// Return the number of iterations of this loop that produce + /// values in the specified constant range. Another way of + /// looking at this is that it returns the first iteration number + /// where the value is not in the condition, thus computing the + /// exit count. If the iteration count can't be computed, an + /// instance of SCEVCouldNotCompute is returned. + const SCEV *getNumIterationsInRange(const ConstantRange &Range, + ScalarEvolution &SE) const; + + /// Return an expression representing the value of this expression + /// one iteration of the loop ahead. + const SCEVAddRecExpr *getPostIncExpr(ScalarEvolution &SE) const; + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const SCEV *S) { + return S->getSCEVType() == scAddRecExpr; + } + }; + + /// This class represents a signed maximum selection. + class SCEVSMaxExpr : public SCEVCommutativeExpr { + friend class ScalarEvolution; + + SCEVSMaxExpr(const FoldingSetNodeIDRef ID, + const SCEV *const *O, size_t N) + : SCEVCommutativeExpr(ID, scSMaxExpr, O, N) { + // Max never overflows. + setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)); + } + + public: + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const SCEV *S) { + return S->getSCEVType() == scSMaxExpr; + } + }; + + /// This class represents an unsigned maximum selection. + class SCEVUMaxExpr : public SCEVCommutativeExpr { + friend class ScalarEvolution; + + SCEVUMaxExpr(const FoldingSetNodeIDRef ID, + const SCEV *const *O, size_t N) + : SCEVCommutativeExpr(ID, scUMaxExpr, O, N) { + // Max never overflows. + setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)); + } + + public: + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const SCEV *S) { + return S->getSCEVType() == scUMaxExpr; + } + }; + + /// This means that we are dealing with an entirely unknown SCEV + /// value, and only represent it as its LLVM Value. This is the + /// "bottom" value for the analysis. + class SCEVUnknown final : public SCEV, private CallbackVH { + friend class ScalarEvolution; + + /// The parent ScalarEvolution value. This is used to update the + /// parent's maps when the value associated with a SCEVUnknown is + /// deleted or RAUW'd. + ScalarEvolution *SE; + + /// The next pointer in the linked list of all SCEVUnknown + /// instances owned by a ScalarEvolution. + SCEVUnknown *Next; + + SCEVUnknown(const FoldingSetNodeIDRef ID, Value *V, + ScalarEvolution *se, SCEVUnknown *next) : + SCEV(ID, scUnknown, 1), CallbackVH(V), SE(se), Next(next) {} + + // Implement CallbackVH. + void deleted() override; + void allUsesReplacedWith(Value *New) override; + + public: + Value *getValue() const { return getValPtr(); } + + /// @{ + /// Test whether this is a special constant representing a type + /// size, alignment, or field offset in a target-independent + /// manner, and hasn't happened to have been folded with other + /// operations into something unrecognizable. This is mainly only + /// useful for pretty-printing and other situations where it isn't + /// absolutely required for these to succeed. + bool isSizeOf(Type *&AllocTy) const; + bool isAlignOf(Type *&AllocTy) const; + bool isOffsetOf(Type *&STy, Constant *&FieldNo) const; + /// @} + + Type *getType() const { return getValPtr()->getType(); } + + /// Methods for support type inquiry through isa, cast, and dyn_cast: + static bool classof(const SCEV *S) { + return S->getSCEVType() == scUnknown; + } + }; + + /// This class defines a simple visitor class that may be used for + /// various SCEV analysis purposes. + template<typename SC, typename RetVal=void> + struct SCEVVisitor { + RetVal visit(const SCEV *S) { + switch (S->getSCEVType()) { + case scConstant: + return ((SC*)this)->visitConstant((const SCEVConstant*)S); + case scTruncate: + return ((SC*)this)->visitTruncateExpr((const SCEVTruncateExpr*)S); + case scZeroExtend: + return ((SC*)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr*)S); + case scSignExtend: + return ((SC*)this)->visitSignExtendExpr((const SCEVSignExtendExpr*)S); + case scAddExpr: + return ((SC*)this)->visitAddExpr((const SCEVAddExpr*)S); + case scMulExpr: + return ((SC*)this)->visitMulExpr((const SCEVMulExpr*)S); + case scUDivExpr: + return ((SC*)this)->visitUDivExpr((const SCEVUDivExpr*)S); + case scAddRecExpr: + return ((SC*)this)->visitAddRecExpr((const SCEVAddRecExpr*)S); + case scSMaxExpr: + return ((SC*)this)->visitSMaxExpr((const SCEVSMaxExpr*)S); + case scUMaxExpr: + return ((SC*)this)->visitUMaxExpr((const SCEVUMaxExpr*)S); + case scUnknown: + return ((SC*)this)->visitUnknown((const SCEVUnknown*)S); + case scCouldNotCompute: + return ((SC*)this)->visitCouldNotCompute((const SCEVCouldNotCompute*)S); + default: + llvm_unreachable("Unknown SCEV type!"); + } + } + + RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S) { + llvm_unreachable("Invalid use of SCEVCouldNotCompute!"); + } + }; + + /// Visit all nodes in the expression tree using worklist traversal. + /// + /// Visitor implements: + /// // return true to follow this node. + /// bool follow(const SCEV *S); + /// // return true to terminate the search. + /// bool isDone(); + template<typename SV> + class SCEVTraversal { + SV &Visitor; + SmallVector<const SCEV *, 8> Worklist; + SmallPtrSet<const SCEV *, 8> Visited; + + void push(const SCEV *S) { + if (Visited.insert(S).second && Visitor.follow(S)) + Worklist.push_back(S); + } + + public: + SCEVTraversal(SV& V): Visitor(V) {} + + void visitAll(const SCEV *Root) { + push(Root); + while (!Worklist.empty() && !Visitor.isDone()) { + const SCEV *S = Worklist.pop_back_val(); + + switch (S->getSCEVType()) { + case scConstant: + case scUnknown: + break; + case scTruncate: + case scZeroExtend: + case scSignExtend: + push(cast<SCEVCastExpr>(S)->getOperand()); + break; + case scAddExpr: + case scMulExpr: + case scSMaxExpr: + case scUMaxExpr: + case scAddRecExpr: + for (const auto *Op : cast<SCEVNAryExpr>(S)->operands()) + push(Op); + break; + case scUDivExpr: { + const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); + push(UDiv->getLHS()); + push(UDiv->getRHS()); + break; + } + case scCouldNotCompute: + llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); + default: + llvm_unreachable("Unknown SCEV kind!"); + } + } + } + }; + + /// Use SCEVTraversal to visit all nodes in the given expression tree. + template<typename SV> + void visitAll(const SCEV *Root, SV& Visitor) { + SCEVTraversal<SV> T(Visitor); + T.visitAll(Root); + } + + /// Return true if any node in \p Root satisfies the predicate \p Pred. + template <typename PredTy> + bool SCEVExprContains(const SCEV *Root, PredTy Pred) { + struct FindClosure { + bool Found = false; + PredTy Pred; + + FindClosure(PredTy Pred) : Pred(Pred) {} + + bool follow(const SCEV *S) { + if (!Pred(S)) + return true; + + Found = true; + return false; + } + + bool isDone() const { return Found; } + }; + + FindClosure FC(Pred); + visitAll(Root, FC); + return FC.Found; + } + + /// This visitor recursively visits a SCEV expression and re-writes it. + /// The result from each visit is cached, so it will return the same + /// SCEV for the same input. + template<typename SC> + class SCEVRewriteVisitor : public SCEVVisitor<SC, const SCEV *> { + protected: + ScalarEvolution &SE; + // Memoize the result of each visit so that we only compute once for + // the same input SCEV. This is to avoid redundant computations when + // a SCEV is referenced by multiple SCEVs. Without memoization, this + // visit algorithm would have exponential time complexity in the worst + // case, causing the compiler to hang on certain tests. + DenseMap<const SCEV *, const SCEV *> RewriteResults; + + public: + SCEVRewriteVisitor(ScalarEvolution &SE) : SE(SE) {} + + const SCEV *visit(const SCEV *S) { + auto It = RewriteResults.find(S); + if (It != RewriteResults.end()) + return It->second; + auto* Visited = SCEVVisitor<SC, const SCEV *>::visit(S); + auto Result = RewriteResults.try_emplace(S, Visited); + assert(Result.second && "Should insert a new entry"); + return Result.first->second; + } + + const SCEV *visitConstant(const SCEVConstant *Constant) { + return Constant; + } + + const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) { + const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand()); + return Operand == Expr->getOperand() + ? Expr + : SE.getTruncateExpr(Operand, Expr->getType()); + } + + const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { + const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand()); + return Operand == Expr->getOperand() + ? Expr + : SE.getZeroExtendExpr(Operand, Expr->getType()); + } + + const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { + const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand()); + return Operand == Expr->getOperand() + ? Expr + : SE.getSignExtendExpr(Operand, Expr->getType()); + } + + const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { + SmallVector<const SCEV *, 2> Operands; + bool Changed = false; + for (auto *Op : Expr->operands()) { + Operands.push_back(((SC*)this)->visit(Op)); + Changed |= Op != Operands.back(); + } + return !Changed ? Expr : SE.getAddExpr(Operands); + } + + const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { + SmallVector<const SCEV *, 2> Operands; + bool Changed = false; + for (auto *Op : Expr->operands()) { + Operands.push_back(((SC*)this)->visit(Op)); + Changed |= Op != Operands.back(); + } + return !Changed ? Expr : SE.getMulExpr(Operands); + } + + const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) { + auto *LHS = ((SC *)this)->visit(Expr->getLHS()); + auto *RHS = ((SC *)this)->visit(Expr->getRHS()); + bool Changed = LHS != Expr->getLHS() || RHS != Expr->getRHS(); + return !Changed ? Expr : SE.getUDivExpr(LHS, RHS); + } + + const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { + SmallVector<const SCEV *, 2> Operands; + bool Changed = false; + for (auto *Op : Expr->operands()) { + Operands.push_back(((SC*)this)->visit(Op)); + Changed |= Op != Operands.back(); + } + return !Changed ? Expr + : SE.getAddRecExpr(Operands, Expr->getLoop(), + Expr->getNoWrapFlags()); + } + + const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) { + SmallVector<const SCEV *, 2> Operands; + bool Changed = false; + for (auto *Op : Expr->operands()) { + Operands.push_back(((SC *)this)->visit(Op)); + Changed |= Op != Operands.back(); + } + return !Changed ? Expr : SE.getSMaxExpr(Operands); + } + + const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) { + SmallVector<const SCEV *, 2> Operands; + bool Changed = false; + for (auto *Op : Expr->operands()) { + Operands.push_back(((SC*)this)->visit(Op)); + Changed |= Op != Operands.back(); + } + return !Changed ? Expr : SE.getUMaxExpr(Operands); + } + + const SCEV *visitUnknown(const SCEVUnknown *Expr) { + return Expr; + } + + const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { + return Expr; + } + }; + + using ValueToValueMap = DenseMap<const Value *, Value *>; + + /// The SCEVParameterRewriter takes a scalar evolution expression and updates + /// the SCEVUnknown components following the Map (Value -> Value). + class SCEVParameterRewriter : public SCEVRewriteVisitor<SCEVParameterRewriter> { + public: + static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE, + ValueToValueMap &Map, + bool InterpretConsts = false) { + SCEVParameterRewriter Rewriter(SE, Map, InterpretConsts); + return Rewriter.visit(Scev); + } + + SCEVParameterRewriter(ScalarEvolution &SE, ValueToValueMap &M, bool C) + : SCEVRewriteVisitor(SE), Map(M), InterpretConsts(C) {} + + const SCEV *visitUnknown(const SCEVUnknown *Expr) { + Value *V = Expr->getValue(); + if (Map.count(V)) { + Value *NV = Map[V]; + if (InterpretConsts && isa<ConstantInt>(NV)) + return SE.getConstant(cast<ConstantInt>(NV)); + return SE.getUnknown(NV); + } + return Expr; + } + + private: + ValueToValueMap ⤅ + bool InterpretConsts; + }; + + using LoopToScevMapT = DenseMap<const Loop *, const SCEV *>; + + /// The SCEVLoopAddRecRewriter takes a scalar evolution expression and applies + /// the Map (Loop -> SCEV) to all AddRecExprs. + class SCEVLoopAddRecRewriter + : public SCEVRewriteVisitor<SCEVLoopAddRecRewriter> { + public: + SCEVLoopAddRecRewriter(ScalarEvolution &SE, LoopToScevMapT &M) + : SCEVRewriteVisitor(SE), Map(M) {} + + static const SCEV *rewrite(const SCEV *Scev, LoopToScevMapT &Map, + ScalarEvolution &SE) { + SCEVLoopAddRecRewriter Rewriter(SE, Map); + return Rewriter.visit(Scev); + } + + const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { + SmallVector<const SCEV *, 2> Operands; + for (const SCEV *Op : Expr->operands()) + Operands.push_back(visit(Op)); + + const Loop *L = Expr->getLoop(); + const SCEV *Res = SE.getAddRecExpr(Operands, L, Expr->getNoWrapFlags()); + + if (0 == Map.count(L)) + return Res; + + const SCEVAddRecExpr *Rec = cast<SCEVAddRecExpr>(Res); + return Rec->evaluateAtIteration(Map[L], SE); + } + + private: + LoopToScevMapT ⤅ + }; + +} // end namespace llvm + +#endif // LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H |
