summaryrefslogtreecommitdiff
path: root/clang-r353983e/include/llvm/IR/Operator.h
diff options
context:
space:
mode:
Diffstat (limited to 'clang-r353983e/include/llvm/IR/Operator.h')
-rw-r--r--clang-r353983e/include/llvm/IR/Operator.h583
1 files changed, 583 insertions, 0 deletions
diff --git a/clang-r353983e/include/llvm/IR/Operator.h b/clang-r353983e/include/llvm/IR/Operator.h
new file mode 100644
index 00000000..613d4342
--- /dev/null
+++ b/clang-r353983e/include/llvm/IR/Operator.h
@@ -0,0 +1,583 @@
+//===-- llvm/Operator.h - Operator utility subclass -------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines various classes for working with Instructions and
+// ConstantExprs.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_IR_OPERATOR_H
+#define LLVM_IR_OPERATOR_H
+
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/Casting.h"
+#include <cstddef>
+
+namespace llvm {
+
+/// This is a utility class that provides an abstraction for the common
+/// functionality between Instructions and ConstantExprs.
+class Operator : public User {
+public:
+ // The Operator class is intended to be used as a utility, and is never itself
+ // instantiated.
+ Operator() = delete;
+ ~Operator() = delete;
+
+ void *operator new(size_t s) = delete;
+
+ /// Return the opcode for this Instruction or ConstantExpr.
+ unsigned getOpcode() const {
+ if (const Instruction *I = dyn_cast<Instruction>(this))
+ return I->getOpcode();
+ return cast<ConstantExpr>(this)->getOpcode();
+ }
+
+ /// If V is an Instruction or ConstantExpr, return its opcode.
+ /// Otherwise return UserOp1.
+ static unsigned getOpcode(const Value *V) {
+ if (const Instruction *I = dyn_cast<Instruction>(V))
+ return I->getOpcode();
+ if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
+ return CE->getOpcode();
+ return Instruction::UserOp1;
+ }
+
+ static bool classof(const Instruction *) { return true; }
+ static bool classof(const ConstantExpr *) { return true; }
+ static bool classof(const Value *V) {
+ return isa<Instruction>(V) || isa<ConstantExpr>(V);
+ }
+};
+
+/// Utility class for integer operators which may exhibit overflow - Add, Sub,
+/// Mul, and Shl. It does not include SDiv, despite that operator having the
+/// potential for overflow.
+class OverflowingBinaryOperator : public Operator {
+public:
+ enum {
+ NoUnsignedWrap = (1 << 0),
+ NoSignedWrap = (1 << 1)
+ };
+
+private:
+ friend class Instruction;
+ friend class ConstantExpr;
+
+ void setHasNoUnsignedWrap(bool B) {
+ SubclassOptionalData =
+ (SubclassOptionalData & ~NoUnsignedWrap) | (B * NoUnsignedWrap);
+ }
+ void setHasNoSignedWrap(bool B) {
+ SubclassOptionalData =
+ (SubclassOptionalData & ~NoSignedWrap) | (B * NoSignedWrap);
+ }
+
+public:
+ /// Test whether this operation is known to never
+ /// undergo unsigned overflow, aka the nuw property.
+ bool hasNoUnsignedWrap() const {
+ return SubclassOptionalData & NoUnsignedWrap;
+ }
+
+ /// Test whether this operation is known to never
+ /// undergo signed overflow, aka the nsw property.
+ bool hasNoSignedWrap() const {
+ return (SubclassOptionalData & NoSignedWrap) != 0;
+ }
+
+ static bool classof(const Instruction *I) {
+ return I->getOpcode() == Instruction::Add ||
+ I->getOpcode() == Instruction::Sub ||
+ I->getOpcode() == Instruction::Mul ||
+ I->getOpcode() == Instruction::Shl;
+ }
+ static bool classof(const ConstantExpr *CE) {
+ return CE->getOpcode() == Instruction::Add ||
+ CE->getOpcode() == Instruction::Sub ||
+ CE->getOpcode() == Instruction::Mul ||
+ CE->getOpcode() == Instruction::Shl;
+ }
+ static bool classof(const Value *V) {
+ return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
+ (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
+ }
+};
+
+/// A udiv or sdiv instruction, which can be marked as "exact",
+/// indicating that no bits are destroyed.
+class PossiblyExactOperator : public Operator {
+public:
+ enum {
+ IsExact = (1 << 0)
+ };
+
+private:
+ friend class Instruction;
+ friend class ConstantExpr;
+
+ void setIsExact(bool B) {
+ SubclassOptionalData = (SubclassOptionalData & ~IsExact) | (B * IsExact);
+ }
+
+public:
+ /// Test whether this division is known to be exact, with zero remainder.
+ bool isExact() const {
+ return SubclassOptionalData & IsExact;
+ }
+
+ static bool isPossiblyExactOpcode(unsigned OpC) {
+ return OpC == Instruction::SDiv ||
+ OpC == Instruction::UDiv ||
+ OpC == Instruction::AShr ||
+ OpC == Instruction::LShr;
+ }
+
+ static bool classof(const ConstantExpr *CE) {
+ return isPossiblyExactOpcode(CE->getOpcode());
+ }
+ static bool classof(const Instruction *I) {
+ return isPossiblyExactOpcode(I->getOpcode());
+ }
+ static bool classof(const Value *V) {
+ return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
+ (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
+ }
+};
+
+/// Convenience struct for specifying and reasoning about fast-math flags.
+class FastMathFlags {
+private:
+ friend class FPMathOperator;
+
+ unsigned Flags = 0;
+
+ FastMathFlags(unsigned F) {
+ // If all 7 bits are set, turn this into -1. If the number of bits grows,
+ // this must be updated. This is intended to provide some forward binary
+ // compatibility insurance for the meaning of 'fast' in case bits are added.
+ if (F == 0x7F) Flags = ~0U;
+ else Flags = F;
+ }
+
+public:
+ // This is how the bits are used in Value::SubclassOptionalData so they
+ // should fit there too.
+ // WARNING: We're out of space. SubclassOptionalData only has 7 bits. New
+ // functionality will require a change in how this information is stored.
+ enum {
+ AllowReassoc = (1 << 0),
+ NoNaNs = (1 << 1),
+ NoInfs = (1 << 2),
+ NoSignedZeros = (1 << 3),
+ AllowReciprocal = (1 << 4),
+ AllowContract = (1 << 5),
+ ApproxFunc = (1 << 6)
+ };
+
+ FastMathFlags() = default;
+
+ bool any() const { return Flags != 0; }
+ bool none() const { return Flags == 0; }
+ bool all() const { return Flags == ~0U; }
+
+ void clear() { Flags = 0; }
+ void set() { Flags = ~0U; }
+
+ /// Flag queries
+ bool allowReassoc() const { return 0 != (Flags & AllowReassoc); }
+ bool noNaNs() const { return 0 != (Flags & NoNaNs); }
+ bool noInfs() const { return 0 != (Flags & NoInfs); }
+ bool noSignedZeros() const { return 0 != (Flags & NoSignedZeros); }
+ bool allowReciprocal() const { return 0 != (Flags & AllowReciprocal); }
+ bool allowContract() const { return 0 != (Flags & AllowContract); }
+ bool approxFunc() const { return 0 != (Flags & ApproxFunc); }
+ /// 'Fast' means all bits are set.
+ bool isFast() const { return all(); }
+
+ /// Flag setters
+ void setAllowReassoc(bool B = true) {
+ Flags = (Flags & ~AllowReassoc) | B * AllowReassoc;
+ }
+ void setNoNaNs(bool B = true) {
+ Flags = (Flags & ~NoNaNs) | B * NoNaNs;
+ }
+ void setNoInfs(bool B = true) {
+ Flags = (Flags & ~NoInfs) | B * NoInfs;
+ }
+ void setNoSignedZeros(bool B = true) {
+ Flags = (Flags & ~NoSignedZeros) | B * NoSignedZeros;
+ }
+ void setAllowReciprocal(bool B = true) {
+ Flags = (Flags & ~AllowReciprocal) | B * AllowReciprocal;
+ }
+ void setAllowContract(bool B = true) {
+ Flags = (Flags & ~AllowContract) | B * AllowContract;
+ }
+ void setApproxFunc(bool B = true) {
+ Flags = (Flags & ~ApproxFunc) | B * ApproxFunc;
+ }
+ void setFast(bool B = true) { B ? set() : clear(); }
+
+ void operator&=(const FastMathFlags &OtherFlags) {
+ Flags &= OtherFlags.Flags;
+ }
+};
+
+/// Utility class for floating point operations which can have
+/// information about relaxed accuracy requirements attached to them.
+class FPMathOperator : public Operator {
+private:
+ friend class Instruction;
+
+ /// 'Fast' means all bits are set.
+ void setFast(bool B) {
+ setHasAllowReassoc(B);
+ setHasNoNaNs(B);
+ setHasNoInfs(B);
+ setHasNoSignedZeros(B);
+ setHasAllowReciprocal(B);
+ setHasAllowContract(B);
+ setHasApproxFunc(B);
+ }
+
+ void setHasAllowReassoc(bool B) {
+ SubclassOptionalData =
+ (SubclassOptionalData & ~FastMathFlags::AllowReassoc) |
+ (B * FastMathFlags::AllowReassoc);
+ }
+
+ void setHasNoNaNs(bool B) {
+ SubclassOptionalData =
+ (SubclassOptionalData & ~FastMathFlags::NoNaNs) |
+ (B * FastMathFlags::NoNaNs);
+ }
+
+ void setHasNoInfs(bool B) {
+ SubclassOptionalData =
+ (SubclassOptionalData & ~FastMathFlags::NoInfs) |
+ (B * FastMathFlags::NoInfs);
+ }
+
+ void setHasNoSignedZeros(bool B) {
+ SubclassOptionalData =
+ (SubclassOptionalData & ~FastMathFlags::NoSignedZeros) |
+ (B * FastMathFlags::NoSignedZeros);
+ }
+
+ void setHasAllowReciprocal(bool B) {
+ SubclassOptionalData =
+ (SubclassOptionalData & ~FastMathFlags::AllowReciprocal) |
+ (B * FastMathFlags::AllowReciprocal);
+ }
+
+ void setHasAllowContract(bool B) {
+ SubclassOptionalData =
+ (SubclassOptionalData & ~FastMathFlags::AllowContract) |
+ (B * FastMathFlags::AllowContract);
+ }
+
+ void setHasApproxFunc(bool B) {
+ SubclassOptionalData =
+ (SubclassOptionalData & ~FastMathFlags::ApproxFunc) |
+ (B * FastMathFlags::ApproxFunc);
+ }
+
+ /// Convenience function for setting multiple fast-math flags.
+ /// FMF is a mask of the bits to set.
+ void setFastMathFlags(FastMathFlags FMF) {
+ SubclassOptionalData |= FMF.Flags;
+ }
+
+ /// Convenience function for copying all fast-math flags.
+ /// All values in FMF are transferred to this operator.
+ void copyFastMathFlags(FastMathFlags FMF) {
+ SubclassOptionalData = FMF.Flags;
+ }
+
+public:
+ /// Test if this operation allows all non-strict floating-point transforms.
+ bool isFast() const {
+ return ((SubclassOptionalData & FastMathFlags::AllowReassoc) != 0 &&
+ (SubclassOptionalData & FastMathFlags::NoNaNs) != 0 &&
+ (SubclassOptionalData & FastMathFlags::NoInfs) != 0 &&
+ (SubclassOptionalData & FastMathFlags::NoSignedZeros) != 0 &&
+ (SubclassOptionalData & FastMathFlags::AllowReciprocal) != 0 &&
+ (SubclassOptionalData & FastMathFlags::AllowContract) != 0 &&
+ (SubclassOptionalData & FastMathFlags::ApproxFunc) != 0);
+ }
+
+ /// Test if this operation may be simplified with reassociative transforms.
+ bool hasAllowReassoc() const {
+ return (SubclassOptionalData & FastMathFlags::AllowReassoc) != 0;
+ }
+
+ /// Test if this operation's arguments and results are assumed not-NaN.
+ bool hasNoNaNs() const {
+ return (SubclassOptionalData & FastMathFlags::NoNaNs) != 0;
+ }
+
+ /// Test if this operation's arguments and results are assumed not-infinite.
+ bool hasNoInfs() const {
+ return (SubclassOptionalData & FastMathFlags::NoInfs) != 0;
+ }
+
+ /// Test if this operation can ignore the sign of zero.
+ bool hasNoSignedZeros() const {
+ return (SubclassOptionalData & FastMathFlags::NoSignedZeros) != 0;
+ }
+
+ /// Test if this operation can use reciprocal multiply instead of division.
+ bool hasAllowReciprocal() const {
+ return (SubclassOptionalData & FastMathFlags::AllowReciprocal) != 0;
+ }
+
+ /// Test if this operation can be floating-point contracted (FMA).
+ bool hasAllowContract() const {
+ return (SubclassOptionalData & FastMathFlags::AllowContract) != 0;
+ }
+
+ /// Test if this operation allows approximations of math library functions or
+ /// intrinsics.
+ bool hasApproxFunc() const {
+ return (SubclassOptionalData & FastMathFlags::ApproxFunc) != 0;
+ }
+
+ /// Convenience function for getting all the fast-math flags
+ FastMathFlags getFastMathFlags() const {
+ return FastMathFlags(SubclassOptionalData);
+ }
+
+ /// Get the maximum error permitted by this operation in ULPs. An accuracy of
+ /// 0.0 means that the operation should be performed with the default
+ /// precision.
+ float getFPAccuracy() const;
+
+ static bool classof(const Value *V) {
+ unsigned Opcode;
+ if (auto *I = dyn_cast<Instruction>(V))
+ Opcode = I->getOpcode();
+ else if (auto *CE = dyn_cast<ConstantExpr>(V))
+ Opcode = CE->getOpcode();
+ else
+ return false;
+
+ switch (Opcode) {
+ case Instruction::FCmp:
+ return true;
+ // non math FP Operators (no FMF)
+ case Instruction::ExtractElement:
+ case Instruction::ShuffleVector:
+ case Instruction::InsertElement:
+ return false;
+ default:
+ return V->getType()->isFPOrFPVectorTy();
+ }
+ }
+};
+
+/// A helper template for defining operators for individual opcodes.
+template<typename SuperClass, unsigned Opc>
+class ConcreteOperator : public SuperClass {
+public:
+ static bool classof(const Instruction *I) {
+ return I->getOpcode() == Opc;
+ }
+ static bool classof(const ConstantExpr *CE) {
+ return CE->getOpcode() == Opc;
+ }
+ static bool classof(const Value *V) {
+ return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
+ (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
+ }
+};
+
+class AddOperator
+ : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Add> {
+};
+class SubOperator
+ : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Sub> {
+};
+class MulOperator
+ : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Mul> {
+};
+class ShlOperator
+ : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Shl> {
+};
+
+class SDivOperator
+ : public ConcreteOperator<PossiblyExactOperator, Instruction::SDiv> {
+};
+class UDivOperator
+ : public ConcreteOperator<PossiblyExactOperator, Instruction::UDiv> {
+};
+class AShrOperator
+ : public ConcreteOperator<PossiblyExactOperator, Instruction::AShr> {
+};
+class LShrOperator
+ : public ConcreteOperator<PossiblyExactOperator, Instruction::LShr> {
+};
+
+class ZExtOperator : public ConcreteOperator<Operator, Instruction::ZExt> {};
+
+class GEPOperator
+ : public ConcreteOperator<Operator, Instruction::GetElementPtr> {
+ friend class GetElementPtrInst;
+ friend class ConstantExpr;
+
+ enum {
+ IsInBounds = (1 << 0),
+ // InRangeIndex: bits 1-6
+ };
+
+ void setIsInBounds(bool B) {
+ SubclassOptionalData =
+ (SubclassOptionalData & ~IsInBounds) | (B * IsInBounds);
+ }
+
+public:
+ /// Test whether this is an inbounds GEP, as defined by LangRef.html.
+ bool isInBounds() const {
+ return SubclassOptionalData & IsInBounds;
+ }
+
+ /// Returns the offset of the index with an inrange attachment, or None if
+ /// none.
+ Optional<unsigned> getInRangeIndex() const {
+ if (SubclassOptionalData >> 1 == 0) return None;
+ return (SubclassOptionalData >> 1) - 1;
+ }
+
+ inline op_iterator idx_begin() { return op_begin()+1; }
+ inline const_op_iterator idx_begin() const { return op_begin()+1; }
+ inline op_iterator idx_end() { return op_end(); }
+ inline const_op_iterator idx_end() const { return op_end(); }
+
+ Value *getPointerOperand() {
+ return getOperand(0);
+ }
+ const Value *getPointerOperand() const {
+ return getOperand(0);
+ }
+ static unsigned getPointerOperandIndex() {
+ return 0U; // get index for modifying correct operand
+ }
+
+ /// Method to return the pointer operand as a PointerType.
+ Type *getPointerOperandType() const {
+ return getPointerOperand()->getType();
+ }
+
+ Type *getSourceElementType() const;
+ Type *getResultElementType() const;
+
+ /// Method to return the address space of the pointer operand.
+ unsigned getPointerAddressSpace() const {
+ return getPointerOperandType()->getPointerAddressSpace();
+ }
+
+ unsigned getNumIndices() const { // Note: always non-negative
+ return getNumOperands() - 1;
+ }
+
+ bool hasIndices() const {
+ return getNumOperands() > 1;
+ }
+
+ /// Return true if all of the indices of this GEP are zeros.
+ /// If so, the result pointer and the first operand have the same
+ /// value, just potentially different types.
+ bool hasAllZeroIndices() const {
+ for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
+ if (ConstantInt *C = dyn_cast<ConstantInt>(I))
+ if (C->isZero())
+ continue;
+ return false;
+ }
+ return true;
+ }
+
+ /// Return true if all of the indices of this GEP are constant integers.
+ /// If so, the result pointer and the first operand have
+ /// a constant offset between them.
+ bool hasAllConstantIndices() const {
+ for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
+ if (!isa<ConstantInt>(I))
+ return false;
+ }
+ return true;
+ }
+
+ unsigned countNonConstantIndices() const {
+ return count_if(make_range(idx_begin(), idx_end()), [](const Use& use) {
+ return !isa<ConstantInt>(*use);
+ });
+ }
+
+ /// Accumulate the constant address offset of this GEP if possible.
+ ///
+ /// This routine accepts an APInt into which it will accumulate the constant
+ /// offset of this GEP if the GEP is in fact constant. If the GEP is not
+ /// all-constant, it returns false and the value of the offset APInt is
+ /// undefined (it is *not* preserved!). The APInt passed into this routine
+ /// must be at exactly as wide as the IntPtr type for the address space of the
+ /// base GEP pointer.
+ bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
+};
+
+class PtrToIntOperator
+ : public ConcreteOperator<Operator, Instruction::PtrToInt> {
+ friend class PtrToInt;
+ friend class ConstantExpr;
+
+public:
+ Value *getPointerOperand() {
+ return getOperand(0);
+ }
+ const Value *getPointerOperand() const {
+ return getOperand(0);
+ }
+
+ static unsigned getPointerOperandIndex() {
+ return 0U; // get index for modifying correct operand
+ }
+
+ /// Method to return the pointer operand as a PointerType.
+ Type *getPointerOperandType() const {
+ return getPointerOperand()->getType();
+ }
+
+ /// Method to return the address space of the pointer operand.
+ unsigned getPointerAddressSpace() const {
+ return cast<PointerType>(getPointerOperandType())->getAddressSpace();
+ }
+};
+
+class BitCastOperator
+ : public ConcreteOperator<Operator, Instruction::BitCast> {
+ friend class BitCastInst;
+ friend class ConstantExpr;
+
+public:
+ Type *getSrcTy() const {
+ return getOperand(0)->getType();
+ }
+
+ Type *getDestTy() const {
+ return getType();
+ }
+};
+
+} // end namespace llvm
+
+#endif // LLVM_IR_OPERATOR_H