summaryrefslogtreecommitdiff
path: root/clang-r353983e/include/llvm/Transforms/Utils/FunctionComparator.h
diff options
context:
space:
mode:
Diffstat (limited to 'clang-r353983e/include/llvm/Transforms/Utils/FunctionComparator.h')
-rw-r--r--clang-r353983e/include/llvm/Transforms/Utils/FunctionComparator.h392
1 files changed, 392 insertions, 0 deletions
diff --git a/clang-r353983e/include/llvm/Transforms/Utils/FunctionComparator.h b/clang-r353983e/include/llvm/Transforms/Utils/FunctionComparator.h
new file mode 100644
index 00000000..4e2571b1
--- /dev/null
+++ b/clang-r353983e/include/llvm/Transforms/Utils/FunctionComparator.h
@@ -0,0 +1,392 @@
+//===- FunctionComparator.h - Function Comparator ---------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the FunctionComparator and GlobalNumberState classes which
+// are used by the MergeFunctions pass for comparing functions.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TRANSFORMS_UTILS_FUNCTIONCOMPARATOR_H
+#define LLVM_TRANSFORMS_UTILS_FUNCTIONCOMPARATOR_H
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/ValueMap.h"
+#include "llvm/Support/AtomicOrdering.h"
+#include "llvm/Support/Casting.h"
+#include <cstdint>
+#include <tuple>
+
+namespace llvm {
+
+class APFloat;
+class APInt;
+class BasicBlock;
+class Constant;
+class Function;
+class GlobalValue;
+class InlineAsm;
+class Instruction;
+class MDNode;
+class Type;
+class Value;
+
+/// GlobalNumberState assigns an integer to each global value in the program,
+/// which is used by the comparison routine to order references to globals. This
+/// state must be preserved throughout the pass, because Functions and other
+/// globals need to maintain their relative order. Globals are assigned a number
+/// when they are first visited. This order is deterministic, and so the
+/// assigned numbers are as well. When two functions are merged, neither number
+/// is updated. If the symbols are weak, this would be incorrect. If they are
+/// strong, then one will be replaced at all references to the other, and so
+/// direct callsites will now see one or the other symbol, and no update is
+/// necessary. Note that if we were guaranteed unique names, we could just
+/// compare those, but this would not work for stripped bitcodes or for those
+/// few symbols without a name.
+class GlobalNumberState {
+ struct Config : ValueMapConfig<GlobalValue *> {
+ enum { FollowRAUW = false };
+ };
+
+ // Each GlobalValue is mapped to an identifier. The Config ensures when RAUW
+ // occurs, the mapping does not change. Tracking changes is unnecessary, and
+ // also problematic for weak symbols (which may be overwritten).
+ using ValueNumberMap = ValueMap<GlobalValue *, uint64_t, Config>;
+ ValueNumberMap GlobalNumbers;
+
+ // The next unused serial number to assign to a global.
+ uint64_t NextNumber = 0;
+
+public:
+ GlobalNumberState() = default;
+
+ uint64_t getNumber(GlobalValue* Global) {
+ ValueNumberMap::iterator MapIter;
+ bool Inserted;
+ std::tie(MapIter, Inserted) = GlobalNumbers.insert({Global, NextNumber});
+ if (Inserted)
+ NextNumber++;
+ return MapIter->second;
+ }
+
+ void erase(GlobalValue *Global) {
+ GlobalNumbers.erase(Global);
+ }
+
+ void clear() {
+ GlobalNumbers.clear();
+ }
+};
+
+/// FunctionComparator - Compares two functions to determine whether or not
+/// they will generate machine code with the same behaviour. DataLayout is
+/// used if available. The comparator always fails conservatively (erring on the
+/// side of claiming that two functions are different).
+class FunctionComparator {
+public:
+ FunctionComparator(const Function *F1, const Function *F2,
+ GlobalNumberState* GN)
+ : FnL(F1), FnR(F2), GlobalNumbers(GN) {}
+
+ /// Test whether the two functions have equivalent behaviour.
+ int compare();
+
+ /// Hash a function. Equivalent functions will have the same hash, and unequal
+ /// functions will have different hashes with high probability.
+ using FunctionHash = uint64_t;
+ static FunctionHash functionHash(Function &);
+
+protected:
+ /// Start the comparison.
+ void beginCompare() {
+ sn_mapL.clear();
+ sn_mapR.clear();
+ }
+
+ /// Compares the signature and other general attributes of the two functions.
+ int compareSignature() const;
+
+ /// Test whether two basic blocks have equivalent behaviour.
+ int cmpBasicBlocks(const BasicBlock *BBL, const BasicBlock *BBR) const;
+
+ /// Constants comparison.
+ /// Its analog to lexicographical comparison between hypothetical numbers
+ /// of next format:
+ /// <bitcastability-trait><raw-bit-contents>
+ ///
+ /// 1. Bitcastability.
+ /// Check whether L's type could be losslessly bitcasted to R's type.
+ /// On this stage method, in case when lossless bitcast is not possible
+ /// method returns -1 or 1, thus also defining which type is greater in
+ /// context of bitcastability.
+ /// Stage 0: If types are equal in terms of cmpTypes, then we can go straight
+ /// to the contents comparison.
+ /// If types differ, remember types comparison result and check
+ /// whether we still can bitcast types.
+ /// Stage 1: Types that satisfies isFirstClassType conditions are always
+ /// greater then others.
+ /// Stage 2: Vector is greater then non-vector.
+ /// If both types are vectors, then vector with greater bitwidth is
+ /// greater.
+ /// If both types are vectors with the same bitwidth, then types
+ /// are bitcastable, and we can skip other stages, and go to contents
+ /// comparison.
+ /// Stage 3: Pointer types are greater than non-pointers. If both types are
+ /// pointers of the same address space - go to contents comparison.
+ /// Different address spaces: pointer with greater address space is
+ /// greater.
+ /// Stage 4: Types are neither vectors, nor pointers. And they differ.
+ /// We don't know how to bitcast them. So, we better don't do it,
+ /// and return types comparison result (so it determines the
+ /// relationship among constants we don't know how to bitcast).
+ ///
+ /// Just for clearance, let's see how the set of constants could look
+ /// on single dimension axis:
+ ///
+ /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
+ /// Where: NFCT - Not a FirstClassType
+ /// FCT - FirstClassTyp:
+ ///
+ /// 2. Compare raw contents.
+ /// It ignores types on this stage and only compares bits from L and R.
+ /// Returns 0, if L and R has equivalent contents.
+ /// -1 or 1 if values are different.
+ /// Pretty trivial:
+ /// 2.1. If contents are numbers, compare numbers.
+ /// Ints with greater bitwidth are greater. Ints with same bitwidths
+ /// compared by their contents.
+ /// 2.2. "And so on". Just to avoid discrepancies with comments
+ /// perhaps it would be better to read the implementation itself.
+ /// 3. And again about overall picture. Let's look back at how the ordered set
+ /// of constants will look like:
+ /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
+ ///
+ /// Now look, what could be inside [FCT, "others"], for example:
+ /// [FCT, "others"] =
+ /// [
+ /// [double 0.1], [double 1.23],
+ /// [i32 1], [i32 2],
+ /// { double 1.0 }, ; StructTyID, NumElements = 1
+ /// { i32 1 }, ; StructTyID, NumElements = 1
+ /// { double 1, i32 1 }, ; StructTyID, NumElements = 2
+ /// { i32 1, double 1 } ; StructTyID, NumElements = 2
+ /// ]
+ ///
+ /// Let's explain the order. Float numbers will be less than integers, just
+ /// because of cmpType terms: FloatTyID < IntegerTyID.
+ /// Floats (with same fltSemantics) are sorted according to their value.
+ /// Then you can see integers, and they are, like a floats,
+ /// could be easy sorted among each others.
+ /// The structures. Structures are grouped at the tail, again because of their
+ /// TypeID: StructTyID > IntegerTyID > FloatTyID.
+ /// Structures with greater number of elements are greater. Structures with
+ /// greater elements going first are greater.
+ /// The same logic with vectors, arrays and other possible complex types.
+ ///
+ /// Bitcastable constants.
+ /// Let's assume, that some constant, belongs to some group of
+ /// "so-called-equal" values with different types, and at the same time
+ /// belongs to another group of constants with equal types
+ /// and "really" equal values.
+ ///
+ /// Now, prove that this is impossible:
+ ///
+ /// If constant A with type TyA is bitcastable to B with type TyB, then:
+ /// 1. All constants with equal types to TyA, are bitcastable to B. Since
+ /// those should be vectors (if TyA is vector), pointers
+ /// (if TyA is pointer), or else (if TyA equal to TyB), those types should
+ /// be equal to TyB.
+ /// 2. All constants with non-equal, but bitcastable types to TyA, are
+ /// bitcastable to B.
+ /// Once again, just because we allow it to vectors and pointers only.
+ /// This statement could be expanded as below:
+ /// 2.1. All vectors with equal bitwidth to vector A, has equal bitwidth to
+ /// vector B, and thus bitcastable to B as well.
+ /// 2.2. All pointers of the same address space, no matter what they point to,
+ /// bitcastable. So if C is pointer, it could be bitcasted to A and to B.
+ /// So any constant equal or bitcastable to A is equal or bitcastable to B.
+ /// QED.
+ ///
+ /// In another words, for pointers and vectors, we ignore top-level type and
+ /// look at their particular properties (bit-width for vectors, and
+ /// address space for pointers).
+ /// If these properties are equal - compare their contents.
+ int cmpConstants(const Constant *L, const Constant *R) const;
+
+ /// Compares two global values by number. Uses the GlobalNumbersState to
+ /// identify the same gobals across function calls.
+ int cmpGlobalValues(GlobalValue *L, GlobalValue *R) const;
+
+ /// Assign or look up previously assigned numbers for the two values, and
+ /// return whether the numbers are equal. Numbers are assigned in the order
+ /// visited.
+ /// Comparison order:
+ /// Stage 0: Value that is function itself is always greater then others.
+ /// If left and right values are references to their functions, then
+ /// they are equal.
+ /// Stage 1: Constants are greater than non-constants.
+ /// If both left and right are constants, then the result of
+ /// cmpConstants is used as cmpValues result.
+ /// Stage 2: InlineAsm instances are greater than others. If both left and
+ /// right are InlineAsm instances, InlineAsm* pointers casted to
+ /// integers and compared as numbers.
+ /// Stage 3: For all other cases we compare order we meet these values in
+ /// their functions. If right value was met first during scanning,
+ /// then left value is greater.
+ /// In another words, we compare serial numbers, for more details
+ /// see comments for sn_mapL and sn_mapR.
+ int cmpValues(const Value *L, const Value *R) const;
+
+ /// Compare two Instructions for equivalence, similar to
+ /// Instruction::isSameOperationAs.
+ ///
+ /// Stages are listed in "most significant stage first" order:
+ /// On each stage below, we do comparison between some left and right
+ /// operation parts. If parts are non-equal, we assign parts comparison
+ /// result to the operation comparison result and exit from method.
+ /// Otherwise we proceed to the next stage.
+ /// Stages:
+ /// 1. Operations opcodes. Compared as numbers.
+ /// 2. Number of operands.
+ /// 3. Operation types. Compared with cmpType method.
+ /// 4. Compare operation subclass optional data as stream of bytes:
+ /// just convert it to integers and call cmpNumbers.
+ /// 5. Compare in operation operand types with cmpType in
+ /// most significant operand first order.
+ /// 6. Last stage. Check operations for some specific attributes.
+ /// For example, for Load it would be:
+ /// 6.1.Load: volatile (as boolean flag)
+ /// 6.2.Load: alignment (as integer numbers)
+ /// 6.3.Load: ordering (as underlying enum class value)
+ /// 6.4.Load: synch-scope (as integer numbers)
+ /// 6.5.Load: range metadata (as integer ranges)
+ /// On this stage its better to see the code, since its not more than 10-15
+ /// strings for particular instruction, and could change sometimes.
+ ///
+ /// Sets \p needToCmpOperands to true if the operands of the instructions
+ /// still must be compared afterwards. In this case it's already guaranteed
+ /// that both instructions have the same number of operands.
+ int cmpOperations(const Instruction *L, const Instruction *R,
+ bool &needToCmpOperands) const;
+
+ /// cmpType - compares two types,
+ /// defines total ordering among the types set.
+ ///
+ /// Return values:
+ /// 0 if types are equal,
+ /// -1 if Left is less than Right,
+ /// +1 if Left is greater than Right.
+ ///
+ /// Description:
+ /// Comparison is broken onto stages. Like in lexicographical comparison
+ /// stage coming first has higher priority.
+ /// On each explanation stage keep in mind total ordering properties.
+ ///
+ /// 0. Before comparison we coerce pointer types of 0 address space to
+ /// integer.
+ /// We also don't bother with same type at left and right, so
+ /// just return 0 in this case.
+ ///
+ /// 1. If types are of different kind (different type IDs).
+ /// Return result of type IDs comparison, treating them as numbers.
+ /// 2. If types are integers, check that they have the same width. If they
+ /// are vectors, check that they have the same count and subtype.
+ /// 3. Types have the same ID, so check whether they are one of:
+ /// * Void
+ /// * Float
+ /// * Double
+ /// * X86_FP80
+ /// * FP128
+ /// * PPC_FP128
+ /// * Label
+ /// * Metadata
+ /// We can treat these types as equal whenever their IDs are same.
+ /// 4. If Left and Right are pointers, return result of address space
+ /// comparison (numbers comparison). We can treat pointer types of same
+ /// address space as equal.
+ /// 5. If types are complex.
+ /// Then both Left and Right are to be expanded and their element types will
+ /// be checked with the same way. If we get Res != 0 on some stage, return it.
+ /// Otherwise return 0.
+ /// 6. For all other cases put llvm_unreachable.
+ int cmpTypes(Type *TyL, Type *TyR) const;
+
+ int cmpNumbers(uint64_t L, uint64_t R) const;
+ int cmpAPInts(const APInt &L, const APInt &R) const;
+ int cmpAPFloats(const APFloat &L, const APFloat &R) const;
+ int cmpMem(StringRef L, StringRef R) const;
+
+ // The two functions undergoing comparison.
+ const Function *FnL, *FnR;
+
+private:
+ int cmpOrderings(AtomicOrdering L, AtomicOrdering R) const;
+ int cmpInlineAsm(const InlineAsm *L, const InlineAsm *R) const;
+ int cmpAttrs(const AttributeList L, const AttributeList R) const;
+ int cmpRangeMetadata(const MDNode *L, const MDNode *R) const;
+ int cmpOperandBundlesSchema(const Instruction *L, const Instruction *R) const;
+
+ /// Compare two GEPs for equivalent pointer arithmetic.
+ /// Parts to be compared for each comparison stage,
+ /// most significant stage first:
+ /// 1. Address space. As numbers.
+ /// 2. Constant offset, (using GEPOperator::accumulateConstantOffset method).
+ /// 3. Pointer operand type (using cmpType method).
+ /// 4. Number of operands.
+ /// 5. Compare operands, using cmpValues method.
+ int cmpGEPs(const GEPOperator *GEPL, const GEPOperator *GEPR) const;
+ int cmpGEPs(const GetElementPtrInst *GEPL,
+ const GetElementPtrInst *GEPR) const {
+ return cmpGEPs(cast<GEPOperator>(GEPL), cast<GEPOperator>(GEPR));
+ }
+
+ /// Assign serial numbers to values from left function, and values from
+ /// right function.
+ /// Explanation:
+ /// Being comparing functions we need to compare values we meet at left and
+ /// right sides.
+ /// Its easy to sort things out for external values. It just should be
+ /// the same value at left and right.
+ /// But for local values (those were introduced inside function body)
+ /// we have to ensure they were introduced at exactly the same place,
+ /// and plays the same role.
+ /// Let's assign serial number to each value when we meet it first time.
+ /// Values that were met at same place will be with same serial numbers.
+ /// In this case it would be good to explain few points about values assigned
+ /// to BBs and other ways of implementation (see below).
+ ///
+ /// 1. Safety of BB reordering.
+ /// It's safe to change the order of BasicBlocks in function.
+ /// Relationship with other functions and serial numbering will not be
+ /// changed in this case.
+ /// As follows from FunctionComparator::compare(), we do CFG walk: we start
+ /// from the entry, and then take each terminator. So it doesn't matter how in
+ /// fact BBs are ordered in function. And since cmpValues are called during
+ /// this walk, the numbering depends only on how BBs located inside the CFG.
+ /// So the answer is - yes. We will get the same numbering.
+ ///
+ /// 2. Impossibility to use dominance properties of values.
+ /// If we compare two instruction operands: first is usage of local
+ /// variable AL from function FL, and second is usage of local variable AR
+ /// from FR, we could compare their origins and check whether they are
+ /// defined at the same place.
+ /// But, we are still not able to compare operands of PHI nodes, since those
+ /// could be operands from further BBs we didn't scan yet.
+ /// So it's impossible to use dominance properties in general.
+ mutable DenseMap<const Value*, int> sn_mapL, sn_mapR;
+
+ // The global state we will use
+ GlobalNumberState* GlobalNumbers;
+};
+
+} // end namespace llvm
+
+#endif // LLVM_TRANSFORMS_UTILS_FUNCTIONCOMPARATOR_H